1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_btree.h" 16 #include "xfs_alloc_btree.h" 17 #include "xfs_rmap_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_rmap.h" 21 #include "xfs_ag.h" 22 #include "xfs_ag_resv.h" 23 #include "xfs_health.h" 24 25 static struct xfs_buf * 26 xfs_get_aghdr_buf( 27 struct xfs_mount *mp, 28 xfs_daddr_t blkno, 29 size_t numblks, 30 int flags, 31 const struct xfs_buf_ops *ops) 32 { 33 struct xfs_buf *bp; 34 35 bp = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, flags); 36 if (!bp) 37 return NULL; 38 39 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 40 bp->b_bn = blkno; 41 bp->b_maps[0].bm_bn = blkno; 42 bp->b_ops = ops; 43 44 return bp; 45 } 46 47 /* 48 * Generic btree root block init function 49 */ 50 static void 51 xfs_btroot_init( 52 struct xfs_mount *mp, 53 struct xfs_buf *bp, 54 struct aghdr_init_data *id) 55 { 56 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno, 0); 57 } 58 59 /* 60 * Alloc btree root block init functions 61 */ 62 static void 63 xfs_bnoroot_init( 64 struct xfs_mount *mp, 65 struct xfs_buf *bp, 66 struct aghdr_init_data *id) 67 { 68 struct xfs_alloc_rec *arec; 69 70 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno, 0); 71 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 72 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 73 arec->ar_blockcount = cpu_to_be32(id->agsize - 74 be32_to_cpu(arec->ar_startblock)); 75 } 76 77 static void 78 xfs_cntroot_init( 79 struct xfs_mount *mp, 80 struct xfs_buf *bp, 81 struct aghdr_init_data *id) 82 { 83 struct xfs_alloc_rec *arec; 84 85 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno, 0); 86 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 87 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 88 arec->ar_blockcount = cpu_to_be32(id->agsize - 89 be32_to_cpu(arec->ar_startblock)); 90 } 91 92 /* 93 * Reverse map root block init 94 */ 95 static void 96 xfs_rmaproot_init( 97 struct xfs_mount *mp, 98 struct xfs_buf *bp, 99 struct aghdr_init_data *id) 100 { 101 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 102 struct xfs_rmap_rec *rrec; 103 104 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno, 0); 105 106 /* 107 * mark the AG header regions as static metadata The BNO 108 * btree block is the first block after the headers, so 109 * it's location defines the size of region the static 110 * metadata consumes. 111 * 112 * Note: unlike mkfs, we never have to account for log 113 * space when growing the data regions 114 */ 115 rrec = XFS_RMAP_REC_ADDR(block, 1); 116 rrec->rm_startblock = 0; 117 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 118 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 119 rrec->rm_offset = 0; 120 121 /* account freespace btree root blocks */ 122 rrec = XFS_RMAP_REC_ADDR(block, 2); 123 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 124 rrec->rm_blockcount = cpu_to_be32(2); 125 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 126 rrec->rm_offset = 0; 127 128 /* account inode btree root blocks */ 129 rrec = XFS_RMAP_REC_ADDR(block, 3); 130 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 131 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 132 XFS_IBT_BLOCK(mp)); 133 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 134 rrec->rm_offset = 0; 135 136 /* account for rmap btree root */ 137 rrec = XFS_RMAP_REC_ADDR(block, 4); 138 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 139 rrec->rm_blockcount = cpu_to_be32(1); 140 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 141 rrec->rm_offset = 0; 142 143 /* account for refc btree root */ 144 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 145 rrec = XFS_RMAP_REC_ADDR(block, 5); 146 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 147 rrec->rm_blockcount = cpu_to_be32(1); 148 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 149 rrec->rm_offset = 0; 150 be16_add_cpu(&block->bb_numrecs, 1); 151 } 152 } 153 154 /* 155 * Initialise new secondary superblocks with the pre-grow geometry, but mark 156 * them as "in progress" so we know they haven't yet been activated. This will 157 * get cleared when the update with the new geometry information is done after 158 * changes to the primary are committed. This isn't strictly necessary, but we 159 * get it for free with the delayed buffer write lists and it means we can tell 160 * if a grow operation didn't complete properly after the fact. 161 */ 162 static void 163 xfs_sbblock_init( 164 struct xfs_mount *mp, 165 struct xfs_buf *bp, 166 struct aghdr_init_data *id) 167 { 168 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 169 170 xfs_sb_to_disk(dsb, &mp->m_sb); 171 dsb->sb_inprogress = 1; 172 } 173 174 static void 175 xfs_agfblock_init( 176 struct xfs_mount *mp, 177 struct xfs_buf *bp, 178 struct aghdr_init_data *id) 179 { 180 struct xfs_agf *agf = XFS_BUF_TO_AGF(bp); 181 xfs_extlen_t tmpsize; 182 183 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 184 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 185 agf->agf_seqno = cpu_to_be32(id->agno); 186 agf->agf_length = cpu_to_be32(id->agsize); 187 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); 188 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); 189 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); 190 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); 191 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 192 agf->agf_roots[XFS_BTNUM_RMAPi] = 193 cpu_to_be32(XFS_RMAP_BLOCK(mp)); 194 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); 195 agf->agf_rmap_blocks = cpu_to_be32(1); 196 } 197 198 agf->agf_flfirst = cpu_to_be32(1); 199 agf->agf_fllast = 0; 200 agf->agf_flcount = 0; 201 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 202 agf->agf_freeblks = cpu_to_be32(tmpsize); 203 agf->agf_longest = cpu_to_be32(tmpsize); 204 if (xfs_sb_version_hascrc(&mp->m_sb)) 205 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 206 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 207 agf->agf_refcount_root = cpu_to_be32( 208 xfs_refc_block(mp)); 209 agf->agf_refcount_level = cpu_to_be32(1); 210 agf->agf_refcount_blocks = cpu_to_be32(1); 211 } 212 } 213 214 static void 215 xfs_agflblock_init( 216 struct xfs_mount *mp, 217 struct xfs_buf *bp, 218 struct aghdr_init_data *id) 219 { 220 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 221 __be32 *agfl_bno; 222 int bucket; 223 224 if (xfs_sb_version_hascrc(&mp->m_sb)) { 225 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 226 agfl->agfl_seqno = cpu_to_be32(id->agno); 227 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 228 } 229 230 agfl_bno = XFS_BUF_TO_AGFL_BNO(mp, bp); 231 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 232 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 233 } 234 235 static void 236 xfs_agiblock_init( 237 struct xfs_mount *mp, 238 struct xfs_buf *bp, 239 struct aghdr_init_data *id) 240 { 241 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 242 int bucket; 243 244 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 245 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 246 agi->agi_seqno = cpu_to_be32(id->agno); 247 agi->agi_length = cpu_to_be32(id->agsize); 248 agi->agi_count = 0; 249 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 250 agi->agi_level = cpu_to_be32(1); 251 agi->agi_freecount = 0; 252 agi->agi_newino = cpu_to_be32(NULLAGINO); 253 agi->agi_dirino = cpu_to_be32(NULLAGINO); 254 if (xfs_sb_version_hascrc(&mp->m_sb)) 255 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 256 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 257 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 258 agi->agi_free_level = cpu_to_be32(1); 259 } 260 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 261 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 262 } 263 264 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 265 struct aghdr_init_data *id); 266 static int 267 xfs_ag_init_hdr( 268 struct xfs_mount *mp, 269 struct aghdr_init_data *id, 270 aghdr_init_work_f work, 271 const struct xfs_buf_ops *ops) 272 273 { 274 struct xfs_buf *bp; 275 276 bp = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, 0, ops); 277 if (!bp) 278 return -ENOMEM; 279 280 (*work)(mp, bp, id); 281 282 xfs_buf_delwri_queue(bp, &id->buffer_list); 283 xfs_buf_relse(bp); 284 return 0; 285 } 286 287 struct xfs_aghdr_grow_data { 288 xfs_daddr_t daddr; 289 size_t numblks; 290 const struct xfs_buf_ops *ops; 291 aghdr_init_work_f work; 292 xfs_btnum_t type; 293 bool need_init; 294 }; 295 296 /* 297 * Prepare new AG headers to be written to disk. We use uncached buffers here, 298 * as it is assumed these new AG headers are currently beyond the currently 299 * valid filesystem address space. Using cached buffers would trip over EOFS 300 * corruption detection alogrithms in the buffer cache lookup routines. 301 * 302 * This is a non-transactional function, but the prepared buffers are added to a 303 * delayed write buffer list supplied by the caller so they can submit them to 304 * disk and wait on them as required. 305 */ 306 int 307 xfs_ag_init_headers( 308 struct xfs_mount *mp, 309 struct aghdr_init_data *id) 310 311 { 312 struct xfs_aghdr_grow_data aghdr_data[] = { 313 { /* SB */ 314 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 315 .numblks = XFS_FSS_TO_BB(mp, 1), 316 .ops = &xfs_sb_buf_ops, 317 .work = &xfs_sbblock_init, 318 .need_init = true 319 }, 320 { /* AGF */ 321 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 322 .numblks = XFS_FSS_TO_BB(mp, 1), 323 .ops = &xfs_agf_buf_ops, 324 .work = &xfs_agfblock_init, 325 .need_init = true 326 }, 327 { /* AGFL */ 328 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 329 .numblks = XFS_FSS_TO_BB(mp, 1), 330 .ops = &xfs_agfl_buf_ops, 331 .work = &xfs_agflblock_init, 332 .need_init = true 333 }, 334 { /* AGI */ 335 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 336 .numblks = XFS_FSS_TO_BB(mp, 1), 337 .ops = &xfs_agi_buf_ops, 338 .work = &xfs_agiblock_init, 339 .need_init = true 340 }, 341 { /* BNO root block */ 342 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 343 .numblks = BTOBB(mp->m_sb.sb_blocksize), 344 .ops = &xfs_bnobt_buf_ops, 345 .work = &xfs_bnoroot_init, 346 .need_init = true 347 }, 348 { /* CNT root block */ 349 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 350 .numblks = BTOBB(mp->m_sb.sb_blocksize), 351 .ops = &xfs_cntbt_buf_ops, 352 .work = &xfs_cntroot_init, 353 .need_init = true 354 }, 355 { /* INO root block */ 356 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 357 .numblks = BTOBB(mp->m_sb.sb_blocksize), 358 .ops = &xfs_inobt_buf_ops, 359 .work = &xfs_btroot_init, 360 .type = XFS_BTNUM_INO, 361 .need_init = true 362 }, 363 { /* FINO root block */ 364 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 365 .numblks = BTOBB(mp->m_sb.sb_blocksize), 366 .ops = &xfs_finobt_buf_ops, 367 .work = &xfs_btroot_init, 368 .type = XFS_BTNUM_FINO, 369 .need_init = xfs_sb_version_hasfinobt(&mp->m_sb) 370 }, 371 { /* RMAP root block */ 372 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 373 .numblks = BTOBB(mp->m_sb.sb_blocksize), 374 .ops = &xfs_rmapbt_buf_ops, 375 .work = &xfs_rmaproot_init, 376 .need_init = xfs_sb_version_hasrmapbt(&mp->m_sb) 377 }, 378 { /* REFC root block */ 379 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 380 .numblks = BTOBB(mp->m_sb.sb_blocksize), 381 .ops = &xfs_refcountbt_buf_ops, 382 .work = &xfs_btroot_init, 383 .type = XFS_BTNUM_REFC, 384 .need_init = xfs_sb_version_hasreflink(&mp->m_sb) 385 }, 386 { /* NULL terminating block */ 387 .daddr = XFS_BUF_DADDR_NULL, 388 } 389 }; 390 struct xfs_aghdr_grow_data *dp; 391 int error = 0; 392 393 /* Account for AG free space in new AG */ 394 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 395 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 396 if (!dp->need_init) 397 continue; 398 399 id->daddr = dp->daddr; 400 id->numblks = dp->numblks; 401 id->type = dp->type; 402 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 403 if (error) 404 break; 405 } 406 return error; 407 } 408 409 /* 410 * Extent the AG indicated by the @id by the length passed in 411 */ 412 int 413 xfs_ag_extend_space( 414 struct xfs_mount *mp, 415 struct xfs_trans *tp, 416 struct aghdr_init_data *id, 417 xfs_extlen_t len) 418 { 419 struct xfs_buf *bp; 420 struct xfs_agi *agi; 421 struct xfs_agf *agf; 422 int error; 423 424 /* 425 * Change the agi length. 426 */ 427 error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp); 428 if (error) 429 return error; 430 431 agi = XFS_BUF_TO_AGI(bp); 432 be32_add_cpu(&agi->agi_length, len); 433 ASSERT(id->agno == mp->m_sb.sb_agcount - 1 || 434 be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks); 435 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 436 437 /* 438 * Change agf length. 439 */ 440 error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp); 441 if (error) 442 return error; 443 444 agf = XFS_BUF_TO_AGF(bp); 445 be32_add_cpu(&agf->agf_length, len); 446 ASSERT(agf->agf_length == agi->agi_length); 447 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 448 449 /* 450 * Free the new space. 451 * 452 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 453 * this doesn't actually exist in the rmap btree. 454 */ 455 error = xfs_rmap_free(tp, bp, id->agno, 456 be32_to_cpu(agf->agf_length) - len, 457 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 458 if (error) 459 return error; 460 461 return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno, 462 be32_to_cpu(agf->agf_length) - len), 463 len, &XFS_RMAP_OINFO_SKIP_UPDATE, 464 XFS_AG_RESV_NONE); 465 } 466 467 /* Retrieve AG geometry. */ 468 int 469 xfs_ag_get_geometry( 470 struct xfs_mount *mp, 471 xfs_agnumber_t agno, 472 struct xfs_ag_geometry *ageo) 473 { 474 struct xfs_buf *agi_bp; 475 struct xfs_buf *agf_bp; 476 struct xfs_agi *agi; 477 struct xfs_agf *agf; 478 struct xfs_perag *pag; 479 unsigned int freeblks; 480 int error; 481 482 if (agno >= mp->m_sb.sb_agcount) 483 return -EINVAL; 484 485 /* Lock the AG headers. */ 486 error = xfs_ialloc_read_agi(mp, NULL, agno, &agi_bp); 487 if (error) 488 return error; 489 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agf_bp); 490 if (error) 491 goto out_agi; 492 pag = xfs_perag_get(mp, agno); 493 494 /* Fill out form. */ 495 memset(ageo, 0, sizeof(*ageo)); 496 ageo->ag_number = agno; 497 498 agi = XFS_BUF_TO_AGI(agi_bp); 499 ageo->ag_icount = be32_to_cpu(agi->agi_count); 500 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 501 502 agf = XFS_BUF_TO_AGF(agf_bp); 503 ageo->ag_length = be32_to_cpu(agf->agf_length); 504 freeblks = pag->pagf_freeblks + 505 pag->pagf_flcount + 506 pag->pagf_btreeblks - 507 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 508 ageo->ag_freeblks = freeblks; 509 xfs_ag_geom_health(pag, ageo); 510 511 /* Release resources. */ 512 xfs_perag_put(pag); 513 xfs_buf_relse(agf_bp); 514 out_agi: 515 xfs_buf_relse(agi_bp); 516 return error; 517 } 518