xref: /linux/fs/xfs/libxfs/xfs_ag.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2018 Red Hat, Inc.
5  * All rights reserved.
6  */
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_btree.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_rmap.h"
22 #include "xfs_ag.h"
23 #include "xfs_ag_resv.h"
24 #include "xfs_health.h"
25 #include "xfs_error.h"
26 #include "xfs_bmap.h"
27 #include "xfs_defer.h"
28 #include "xfs_log_format.h"
29 #include "xfs_trans.h"
30 #include "xfs_trace.h"
31 #include "xfs_inode.h"
32 #include "xfs_icache.h"
33 
34 
35 /*
36  * Passive reference counting access wrappers to the perag structures.  If the
37  * per-ag structure is to be freed, the freeing code is responsible for cleaning
38  * up objects with passive references before freeing the structure. This is
39  * things like cached buffers.
40  */
41 struct xfs_perag *
42 xfs_perag_get(
43 	struct xfs_mount	*mp,
44 	xfs_agnumber_t		agno)
45 {
46 	struct xfs_perag	*pag;
47 
48 	rcu_read_lock();
49 	pag = xa_load(&mp->m_perags, agno);
50 	if (pag) {
51 		trace_xfs_perag_get(pag, _RET_IP_);
52 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 		atomic_inc(&pag->pag_ref);
54 	}
55 	rcu_read_unlock();
56 	return pag;
57 }
58 
59 /* Get a passive reference to the given perag. */
60 struct xfs_perag *
61 xfs_perag_hold(
62 	struct xfs_perag	*pag)
63 {
64 	ASSERT(atomic_read(&pag->pag_ref) > 0 ||
65 	       atomic_read(&pag->pag_active_ref) > 0);
66 
67 	trace_xfs_perag_hold(pag, _RET_IP_);
68 	atomic_inc(&pag->pag_ref);
69 	return pag;
70 }
71 
72 void
73 xfs_perag_put(
74 	struct xfs_perag	*pag)
75 {
76 	trace_xfs_perag_put(pag, _RET_IP_);
77 	ASSERT(atomic_read(&pag->pag_ref) > 0);
78 	atomic_dec(&pag->pag_ref);
79 }
80 
81 /*
82  * Active references for perag structures. This is for short term access to the
83  * per ag structures for walking trees or accessing state. If an AG is being
84  * shrunk or is offline, then this will fail to find that AG and return NULL
85  * instead.
86  */
87 struct xfs_perag *
88 xfs_perag_grab(
89 	struct xfs_mount	*mp,
90 	xfs_agnumber_t		agno)
91 {
92 	struct xfs_perag	*pag;
93 
94 	rcu_read_lock();
95 	pag = xa_load(&mp->m_perags, agno);
96 	if (pag) {
97 		trace_xfs_perag_grab(pag, _RET_IP_);
98 		if (!atomic_inc_not_zero(&pag->pag_active_ref))
99 			pag = NULL;
100 	}
101 	rcu_read_unlock();
102 	return pag;
103 }
104 
105 void
106 xfs_perag_rele(
107 	struct xfs_perag	*pag)
108 {
109 	trace_xfs_perag_rele(pag, _RET_IP_);
110 	if (atomic_dec_and_test(&pag->pag_active_ref))
111 		wake_up(&pag->pag_active_wq);
112 }
113 
114 /*
115  * xfs_initialize_perag_data
116  *
117  * Read in each per-ag structure so we can count up the number of
118  * allocated inodes, free inodes and used filesystem blocks as this
119  * information is no longer persistent in the superblock. Once we have
120  * this information, write it into the in-core superblock structure.
121  */
122 int
123 xfs_initialize_perag_data(
124 	struct xfs_mount	*mp,
125 	xfs_agnumber_t		agcount)
126 {
127 	xfs_agnumber_t		index;
128 	struct xfs_perag	*pag;
129 	struct xfs_sb		*sbp = &mp->m_sb;
130 	uint64_t		ifree = 0;
131 	uint64_t		ialloc = 0;
132 	uint64_t		bfree = 0;
133 	uint64_t		bfreelst = 0;
134 	uint64_t		btree = 0;
135 	uint64_t		fdblocks;
136 	int			error = 0;
137 
138 	for (index = 0; index < agcount; index++) {
139 		/*
140 		 * Read the AGF and AGI buffers to populate the per-ag
141 		 * structures for us.
142 		 */
143 		pag = xfs_perag_get(mp, index);
144 		error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
145 		if (!error)
146 			error = xfs_ialloc_read_agi(pag, NULL, 0, NULL);
147 		if (error) {
148 			xfs_perag_put(pag);
149 			return error;
150 		}
151 
152 		ifree += pag->pagi_freecount;
153 		ialloc += pag->pagi_count;
154 		bfree += pag->pagf_freeblks;
155 		bfreelst += pag->pagf_flcount;
156 		btree += pag->pagf_btreeblks;
157 		xfs_perag_put(pag);
158 	}
159 	fdblocks = bfree + bfreelst + btree;
160 
161 	/*
162 	 * If the new summary counts are obviously incorrect, fail the
163 	 * mount operation because that implies the AGFs are also corrupt.
164 	 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
165 	 * will prevent xfs_repair from fixing anything.
166 	 */
167 	if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
168 		xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
169 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
170 		error = -EFSCORRUPTED;
171 		goto out;
172 	}
173 
174 	/* Overwrite incore superblock counters with just-read data */
175 	spin_lock(&mp->m_sb_lock);
176 	sbp->sb_ifree = ifree;
177 	sbp->sb_icount = ialloc;
178 	sbp->sb_fdblocks = fdblocks;
179 	spin_unlock(&mp->m_sb_lock);
180 
181 	xfs_reinit_percpu_counters(mp);
182 out:
183 	xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
184 	return error;
185 }
186 
187 /*
188  * Free up the per-ag resources associated with the mount structure.
189  */
190 void
191 xfs_free_perag(
192 	struct xfs_mount	*mp)
193 {
194 	struct xfs_perag	*pag;
195 	xfs_agnumber_t		agno;
196 
197 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
198 		pag = xa_erase(&mp->m_perags, agno);
199 		ASSERT(pag);
200 		XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
201 		xfs_defer_drain_free(&pag->pag_intents_drain);
202 
203 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
204 		xfs_buf_cache_destroy(&pag->pag_bcache);
205 
206 		/* drop the mount's active reference */
207 		xfs_perag_rele(pag);
208 		XFS_IS_CORRUPT(pag->pag_mount,
209 				atomic_read(&pag->pag_active_ref) != 0);
210 		kfree_rcu_mightsleep(pag);
211 	}
212 }
213 
214 /* Find the size of the AG, in blocks. */
215 static xfs_agblock_t
216 __xfs_ag_block_count(
217 	struct xfs_mount	*mp,
218 	xfs_agnumber_t		agno,
219 	xfs_agnumber_t		agcount,
220 	xfs_rfsblock_t		dblocks)
221 {
222 	ASSERT(agno < agcount);
223 
224 	if (agno < agcount - 1)
225 		return mp->m_sb.sb_agblocks;
226 	return dblocks - (agno * mp->m_sb.sb_agblocks);
227 }
228 
229 xfs_agblock_t
230 xfs_ag_block_count(
231 	struct xfs_mount	*mp,
232 	xfs_agnumber_t		agno)
233 {
234 	return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
235 			mp->m_sb.sb_dblocks);
236 }
237 
238 /* Calculate the first and last possible inode number in an AG. */
239 static void
240 __xfs_agino_range(
241 	struct xfs_mount	*mp,
242 	xfs_agblock_t		eoag,
243 	xfs_agino_t		*first,
244 	xfs_agino_t		*last)
245 {
246 	xfs_agblock_t		bno;
247 
248 	/*
249 	 * Calculate the first inode, which will be in the first
250 	 * cluster-aligned block after the AGFL.
251 	 */
252 	bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
253 	*first = XFS_AGB_TO_AGINO(mp, bno);
254 
255 	/*
256 	 * Calculate the last inode, which will be at the end of the
257 	 * last (aligned) cluster that can be allocated in the AG.
258 	 */
259 	bno = round_down(eoag, M_IGEO(mp)->cluster_align);
260 	*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
261 }
262 
263 void
264 xfs_agino_range(
265 	struct xfs_mount	*mp,
266 	xfs_agnumber_t		agno,
267 	xfs_agino_t		*first,
268 	xfs_agino_t		*last)
269 {
270 	return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
271 }
272 
273 /*
274  * Free perag within the specified AG range, it is only used to free unused
275  * perags under the error handling path.
276  */
277 void
278 xfs_free_unused_perag_range(
279 	struct xfs_mount	*mp,
280 	xfs_agnumber_t		agstart,
281 	xfs_agnumber_t		agend)
282 {
283 	struct xfs_perag	*pag;
284 	xfs_agnumber_t		index;
285 
286 	for (index = agstart; index < agend; index++) {
287 		pag = xa_erase(&mp->m_perags, index);
288 		if (!pag)
289 			break;
290 		xfs_buf_cache_destroy(&pag->pag_bcache);
291 		xfs_defer_drain_free(&pag->pag_intents_drain);
292 		kfree(pag);
293 	}
294 }
295 
296 int
297 xfs_initialize_perag(
298 	struct xfs_mount	*mp,
299 	xfs_agnumber_t		agcount,
300 	xfs_rfsblock_t		dblocks,
301 	xfs_agnumber_t		*maxagi)
302 {
303 	struct xfs_perag	*pag;
304 	xfs_agnumber_t		index;
305 	xfs_agnumber_t		first_initialised = NULLAGNUMBER;
306 	int			error;
307 
308 	/*
309 	 * Walk the current per-ag tree so we don't try to initialise AGs
310 	 * that already exist (growfs case). Allocate and insert all the
311 	 * AGs we don't find ready for initialisation.
312 	 */
313 	for (index = 0; index < agcount; index++) {
314 		pag = xfs_perag_get(mp, index);
315 		if (pag) {
316 			xfs_perag_put(pag);
317 			continue;
318 		}
319 
320 		pag = kzalloc(sizeof(*pag), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
321 		if (!pag) {
322 			error = -ENOMEM;
323 			goto out_unwind_new_pags;
324 		}
325 		pag->pag_agno = index;
326 		pag->pag_mount = mp;
327 
328 		error = xa_insert(&mp->m_perags, index, pag, GFP_KERNEL);
329 		if (error) {
330 			WARN_ON_ONCE(error == -EBUSY);
331 			goto out_free_pag;
332 		}
333 
334 #ifdef __KERNEL__
335 		/* Place kernel structure only init below this point. */
336 		spin_lock_init(&pag->pag_ici_lock);
337 		spin_lock_init(&pag->pagb_lock);
338 		spin_lock_init(&pag->pag_state_lock);
339 		INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
340 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
341 		xfs_defer_drain_init(&pag->pag_intents_drain);
342 		init_waitqueue_head(&pag->pagb_wait);
343 		init_waitqueue_head(&pag->pag_active_wq);
344 		pag->pagb_count = 0;
345 		pag->pagb_tree = RB_ROOT;
346 		xfs_hooks_init(&pag->pag_rmap_update_hooks);
347 #endif /* __KERNEL__ */
348 
349 		error = xfs_buf_cache_init(&pag->pag_bcache);
350 		if (error)
351 			goto out_remove_pag;
352 
353 		/* Active ref owned by mount indicates AG is online. */
354 		atomic_set(&pag->pag_active_ref, 1);
355 
356 		/* first new pag is fully initialized */
357 		if (first_initialised == NULLAGNUMBER)
358 			first_initialised = index;
359 
360 		/*
361 		 * Pre-calculated geometry
362 		 */
363 		pag->block_count = __xfs_ag_block_count(mp, index, agcount,
364 				dblocks);
365 		pag->min_block = XFS_AGFL_BLOCK(mp);
366 		__xfs_agino_range(mp, pag->block_count, &pag->agino_min,
367 				&pag->agino_max);
368 	}
369 
370 	index = xfs_set_inode_alloc(mp, agcount);
371 
372 	if (maxagi)
373 		*maxagi = index;
374 
375 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
376 	return 0;
377 
378 out_remove_pag:
379 	xfs_defer_drain_free(&pag->pag_intents_drain);
380 	pag = xa_erase(&mp->m_perags, index);
381 out_free_pag:
382 	kfree(pag);
383 out_unwind_new_pags:
384 	/* unwind any prior newly initialized pags */
385 	xfs_free_unused_perag_range(mp, first_initialised, agcount);
386 	return error;
387 }
388 
389 static int
390 xfs_get_aghdr_buf(
391 	struct xfs_mount	*mp,
392 	xfs_daddr_t		blkno,
393 	size_t			numblks,
394 	struct xfs_buf		**bpp,
395 	const struct xfs_buf_ops *ops)
396 {
397 	struct xfs_buf		*bp;
398 	int			error;
399 
400 	error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
401 	if (error)
402 		return error;
403 
404 	bp->b_maps[0].bm_bn = blkno;
405 	bp->b_ops = ops;
406 
407 	*bpp = bp;
408 	return 0;
409 }
410 
411 /*
412  * Generic btree root block init function
413  */
414 static void
415 xfs_btroot_init(
416 	struct xfs_mount	*mp,
417 	struct xfs_buf		*bp,
418 	struct aghdr_init_data	*id)
419 {
420 	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno);
421 }
422 
423 /* Finish initializing a free space btree. */
424 static void
425 xfs_freesp_init_recs(
426 	struct xfs_mount	*mp,
427 	struct xfs_buf		*bp,
428 	struct aghdr_init_data	*id)
429 {
430 	struct xfs_alloc_rec	*arec;
431 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
432 
433 	arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
434 	arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
435 
436 	if (xfs_ag_contains_log(mp, id->agno)) {
437 		struct xfs_alloc_rec	*nrec;
438 		xfs_agblock_t		start = XFS_FSB_TO_AGBNO(mp,
439 							mp->m_sb.sb_logstart);
440 
441 		ASSERT(start >= mp->m_ag_prealloc_blocks);
442 		if (start != mp->m_ag_prealloc_blocks) {
443 			/*
444 			 * Modify first record to pad stripe align of log and
445 			 * bump the record count.
446 			 */
447 			arec->ar_blockcount = cpu_to_be32(start -
448 						mp->m_ag_prealloc_blocks);
449 			be16_add_cpu(&block->bb_numrecs, 1);
450 			nrec = arec + 1;
451 
452 			/*
453 			 * Insert second record at start of internal log
454 			 * which then gets trimmed.
455 			 */
456 			nrec->ar_startblock = cpu_to_be32(
457 					be32_to_cpu(arec->ar_startblock) +
458 					be32_to_cpu(arec->ar_blockcount));
459 			arec = nrec;
460 		}
461 		/*
462 		 * Change record start to after the internal log
463 		 */
464 		be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
465 	}
466 
467 	/*
468 	 * Calculate the block count of this record; if it is nonzero,
469 	 * increment the record count.
470 	 */
471 	arec->ar_blockcount = cpu_to_be32(id->agsize -
472 					  be32_to_cpu(arec->ar_startblock));
473 	if (arec->ar_blockcount)
474 		be16_add_cpu(&block->bb_numrecs, 1);
475 }
476 
477 /*
478  * bnobt/cntbt btree root block init functions
479  */
480 static void
481 xfs_bnoroot_init(
482 	struct xfs_mount	*mp,
483 	struct xfs_buf		*bp,
484 	struct aghdr_init_data	*id)
485 {
486 	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno);
487 	xfs_freesp_init_recs(mp, bp, id);
488 }
489 
490 /*
491  * Reverse map root block init
492  */
493 static void
494 xfs_rmaproot_init(
495 	struct xfs_mount	*mp,
496 	struct xfs_buf		*bp,
497 	struct aghdr_init_data	*id)
498 {
499 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
500 	struct xfs_rmap_rec	*rrec;
501 
502 	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 4, id->agno);
503 
504 	/*
505 	 * mark the AG header regions as static metadata The BNO
506 	 * btree block is the first block after the headers, so
507 	 * it's location defines the size of region the static
508 	 * metadata consumes.
509 	 *
510 	 * Note: unlike mkfs, we never have to account for log
511 	 * space when growing the data regions
512 	 */
513 	rrec = XFS_RMAP_REC_ADDR(block, 1);
514 	rrec->rm_startblock = 0;
515 	rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
516 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
517 	rrec->rm_offset = 0;
518 
519 	/* account freespace btree root blocks */
520 	rrec = XFS_RMAP_REC_ADDR(block, 2);
521 	rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
522 	rrec->rm_blockcount = cpu_to_be32(2);
523 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
524 	rrec->rm_offset = 0;
525 
526 	/* account inode btree root blocks */
527 	rrec = XFS_RMAP_REC_ADDR(block, 3);
528 	rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
529 	rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
530 					  XFS_IBT_BLOCK(mp));
531 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
532 	rrec->rm_offset = 0;
533 
534 	/* account for rmap btree root */
535 	rrec = XFS_RMAP_REC_ADDR(block, 4);
536 	rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
537 	rrec->rm_blockcount = cpu_to_be32(1);
538 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
539 	rrec->rm_offset = 0;
540 
541 	/* account for refc btree root */
542 	if (xfs_has_reflink(mp)) {
543 		rrec = XFS_RMAP_REC_ADDR(block, 5);
544 		rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
545 		rrec->rm_blockcount = cpu_to_be32(1);
546 		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
547 		rrec->rm_offset = 0;
548 		be16_add_cpu(&block->bb_numrecs, 1);
549 	}
550 
551 	/* account for the log space */
552 	if (xfs_ag_contains_log(mp, id->agno)) {
553 		rrec = XFS_RMAP_REC_ADDR(block,
554 				be16_to_cpu(block->bb_numrecs) + 1);
555 		rrec->rm_startblock = cpu_to_be32(
556 				XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
557 		rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
558 		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
559 		rrec->rm_offset = 0;
560 		be16_add_cpu(&block->bb_numrecs, 1);
561 	}
562 }
563 
564 /*
565  * Initialise new secondary superblocks with the pre-grow geometry, but mark
566  * them as "in progress" so we know they haven't yet been activated. This will
567  * get cleared when the update with the new geometry information is done after
568  * changes to the primary are committed. This isn't strictly necessary, but we
569  * get it for free with the delayed buffer write lists and it means we can tell
570  * if a grow operation didn't complete properly after the fact.
571  */
572 static void
573 xfs_sbblock_init(
574 	struct xfs_mount	*mp,
575 	struct xfs_buf		*bp,
576 	struct aghdr_init_data	*id)
577 {
578 	struct xfs_dsb		*dsb = bp->b_addr;
579 
580 	xfs_sb_to_disk(dsb, &mp->m_sb);
581 	dsb->sb_inprogress = 1;
582 }
583 
584 static void
585 xfs_agfblock_init(
586 	struct xfs_mount	*mp,
587 	struct xfs_buf		*bp,
588 	struct aghdr_init_data	*id)
589 {
590 	struct xfs_agf		*agf = bp->b_addr;
591 	xfs_extlen_t		tmpsize;
592 
593 	agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
594 	agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
595 	agf->agf_seqno = cpu_to_be32(id->agno);
596 	agf->agf_length = cpu_to_be32(id->agsize);
597 	agf->agf_bno_root = cpu_to_be32(XFS_BNO_BLOCK(mp));
598 	agf->agf_cnt_root = cpu_to_be32(XFS_CNT_BLOCK(mp));
599 	agf->agf_bno_level = cpu_to_be32(1);
600 	agf->agf_cnt_level = cpu_to_be32(1);
601 	if (xfs_has_rmapbt(mp)) {
602 		agf->agf_rmap_root = cpu_to_be32(XFS_RMAP_BLOCK(mp));
603 		agf->agf_rmap_level = cpu_to_be32(1);
604 		agf->agf_rmap_blocks = cpu_to_be32(1);
605 	}
606 
607 	agf->agf_flfirst = cpu_to_be32(1);
608 	agf->agf_fllast = 0;
609 	agf->agf_flcount = 0;
610 	tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
611 	agf->agf_freeblks = cpu_to_be32(tmpsize);
612 	agf->agf_longest = cpu_to_be32(tmpsize);
613 	if (xfs_has_crc(mp))
614 		uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
615 	if (xfs_has_reflink(mp)) {
616 		agf->agf_refcount_root = cpu_to_be32(
617 				xfs_refc_block(mp));
618 		agf->agf_refcount_level = cpu_to_be32(1);
619 		agf->agf_refcount_blocks = cpu_to_be32(1);
620 	}
621 
622 	if (xfs_ag_contains_log(mp, id->agno)) {
623 		int64_t	logblocks = mp->m_sb.sb_logblocks;
624 
625 		be32_add_cpu(&agf->agf_freeblks, -logblocks);
626 		agf->agf_longest = cpu_to_be32(id->agsize -
627 			XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
628 	}
629 }
630 
631 static void
632 xfs_agflblock_init(
633 	struct xfs_mount	*mp,
634 	struct xfs_buf		*bp,
635 	struct aghdr_init_data	*id)
636 {
637 	struct xfs_agfl		*agfl = XFS_BUF_TO_AGFL(bp);
638 	__be32			*agfl_bno;
639 	int			bucket;
640 
641 	if (xfs_has_crc(mp)) {
642 		agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
643 		agfl->agfl_seqno = cpu_to_be32(id->agno);
644 		uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
645 	}
646 
647 	agfl_bno = xfs_buf_to_agfl_bno(bp);
648 	for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
649 		agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
650 }
651 
652 static void
653 xfs_agiblock_init(
654 	struct xfs_mount	*mp,
655 	struct xfs_buf		*bp,
656 	struct aghdr_init_data	*id)
657 {
658 	struct xfs_agi		*agi = bp->b_addr;
659 	int			bucket;
660 
661 	agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
662 	agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
663 	agi->agi_seqno = cpu_to_be32(id->agno);
664 	agi->agi_length = cpu_to_be32(id->agsize);
665 	agi->agi_count = 0;
666 	agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
667 	agi->agi_level = cpu_to_be32(1);
668 	agi->agi_freecount = 0;
669 	agi->agi_newino = cpu_to_be32(NULLAGINO);
670 	agi->agi_dirino = cpu_to_be32(NULLAGINO);
671 	if (xfs_has_crc(mp))
672 		uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
673 	if (xfs_has_finobt(mp)) {
674 		agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
675 		agi->agi_free_level = cpu_to_be32(1);
676 	}
677 	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
678 		agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
679 	if (xfs_has_inobtcounts(mp)) {
680 		agi->agi_iblocks = cpu_to_be32(1);
681 		if (xfs_has_finobt(mp))
682 			agi->agi_fblocks = cpu_to_be32(1);
683 	}
684 }
685 
686 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
687 				  struct aghdr_init_data *id);
688 static int
689 xfs_ag_init_hdr(
690 	struct xfs_mount	*mp,
691 	struct aghdr_init_data	*id,
692 	aghdr_init_work_f	work,
693 	const struct xfs_buf_ops *ops)
694 {
695 	struct xfs_buf		*bp;
696 	int			error;
697 
698 	error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
699 	if (error)
700 		return error;
701 
702 	(*work)(mp, bp, id);
703 
704 	xfs_buf_delwri_queue(bp, &id->buffer_list);
705 	xfs_buf_relse(bp);
706 	return 0;
707 }
708 
709 struct xfs_aghdr_grow_data {
710 	xfs_daddr_t		daddr;
711 	size_t			numblks;
712 	const struct xfs_buf_ops *ops;
713 	aghdr_init_work_f	work;
714 	const struct xfs_btree_ops *bc_ops;
715 	bool			need_init;
716 };
717 
718 /*
719  * Prepare new AG headers to be written to disk. We use uncached buffers here,
720  * as it is assumed these new AG headers are currently beyond the currently
721  * valid filesystem address space. Using cached buffers would trip over EOFS
722  * corruption detection alogrithms in the buffer cache lookup routines.
723  *
724  * This is a non-transactional function, but the prepared buffers are added to a
725  * delayed write buffer list supplied by the caller so they can submit them to
726  * disk and wait on them as required.
727  */
728 int
729 xfs_ag_init_headers(
730 	struct xfs_mount	*mp,
731 	struct aghdr_init_data	*id)
732 
733 {
734 	struct xfs_aghdr_grow_data aghdr_data[] = {
735 	{ /* SB */
736 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
737 		.numblks = XFS_FSS_TO_BB(mp, 1),
738 		.ops = &xfs_sb_buf_ops,
739 		.work = &xfs_sbblock_init,
740 		.need_init = true
741 	},
742 	{ /* AGF */
743 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
744 		.numblks = XFS_FSS_TO_BB(mp, 1),
745 		.ops = &xfs_agf_buf_ops,
746 		.work = &xfs_agfblock_init,
747 		.need_init = true
748 	},
749 	{ /* AGFL */
750 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
751 		.numblks = XFS_FSS_TO_BB(mp, 1),
752 		.ops = &xfs_agfl_buf_ops,
753 		.work = &xfs_agflblock_init,
754 		.need_init = true
755 	},
756 	{ /* AGI */
757 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
758 		.numblks = XFS_FSS_TO_BB(mp, 1),
759 		.ops = &xfs_agi_buf_ops,
760 		.work = &xfs_agiblock_init,
761 		.need_init = true
762 	},
763 	{ /* BNO root block */
764 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
765 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
766 		.ops = &xfs_bnobt_buf_ops,
767 		.work = &xfs_bnoroot_init,
768 		.bc_ops = &xfs_bnobt_ops,
769 		.need_init = true
770 	},
771 	{ /* CNT root block */
772 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
773 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
774 		.ops = &xfs_cntbt_buf_ops,
775 		.work = &xfs_bnoroot_init,
776 		.bc_ops = &xfs_cntbt_ops,
777 		.need_init = true
778 	},
779 	{ /* INO root block */
780 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
781 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
782 		.ops = &xfs_inobt_buf_ops,
783 		.work = &xfs_btroot_init,
784 		.bc_ops = &xfs_inobt_ops,
785 		.need_init = true
786 	},
787 	{ /* FINO root block */
788 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
789 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
790 		.ops = &xfs_finobt_buf_ops,
791 		.work = &xfs_btroot_init,
792 		.bc_ops = &xfs_finobt_ops,
793 		.need_init =  xfs_has_finobt(mp)
794 	},
795 	{ /* RMAP root block */
796 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
797 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
798 		.ops = &xfs_rmapbt_buf_ops,
799 		.work = &xfs_rmaproot_init,
800 		.bc_ops = &xfs_rmapbt_ops,
801 		.need_init = xfs_has_rmapbt(mp)
802 	},
803 	{ /* REFC root block */
804 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
805 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
806 		.ops = &xfs_refcountbt_buf_ops,
807 		.work = &xfs_btroot_init,
808 		.bc_ops = &xfs_refcountbt_ops,
809 		.need_init = xfs_has_reflink(mp)
810 	},
811 	{ /* NULL terminating block */
812 		.daddr = XFS_BUF_DADDR_NULL,
813 	}
814 	};
815 	struct  xfs_aghdr_grow_data *dp;
816 	int			error = 0;
817 
818 	/* Account for AG free space in new AG */
819 	id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
820 	for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
821 		if (!dp->need_init)
822 			continue;
823 
824 		id->daddr = dp->daddr;
825 		id->numblks = dp->numblks;
826 		id->bc_ops = dp->bc_ops;
827 		error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
828 		if (error)
829 			break;
830 	}
831 	return error;
832 }
833 
834 int
835 xfs_ag_shrink_space(
836 	struct xfs_perag	*pag,
837 	struct xfs_trans	**tpp,
838 	xfs_extlen_t		delta)
839 {
840 	struct xfs_mount	*mp = pag->pag_mount;
841 	struct xfs_alloc_arg	args = {
842 		.tp	= *tpp,
843 		.mp	= mp,
844 		.pag	= pag,
845 		.minlen = delta,
846 		.maxlen = delta,
847 		.oinfo	= XFS_RMAP_OINFO_SKIP_UPDATE,
848 		.resv	= XFS_AG_RESV_NONE,
849 		.prod	= 1
850 	};
851 	struct xfs_buf		*agibp, *agfbp;
852 	struct xfs_agi		*agi;
853 	struct xfs_agf		*agf;
854 	xfs_agblock_t		aglen;
855 	int			error, err2;
856 
857 	ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
858 	error = xfs_ialloc_read_agi(pag, *tpp, 0, &agibp);
859 	if (error)
860 		return error;
861 
862 	agi = agibp->b_addr;
863 
864 	error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
865 	if (error)
866 		return error;
867 
868 	agf = agfbp->b_addr;
869 	aglen = be32_to_cpu(agi->agi_length);
870 	/* some extra paranoid checks before we shrink the ag */
871 	if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) {
872 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
873 		return -EFSCORRUPTED;
874 	}
875 	if (delta >= aglen)
876 		return -EINVAL;
877 
878 	/*
879 	 * Make sure that the last inode cluster cannot overlap with the new
880 	 * end of the AG, even if it's sparse.
881 	 */
882 	error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
883 	if (error)
884 		return error;
885 
886 	/*
887 	 * Disable perag reservations so it doesn't cause the allocation request
888 	 * to fail. We'll reestablish reservation before we return.
889 	 */
890 	xfs_ag_resv_free(pag);
891 
892 	/* internal log shouldn't also show up in the free space btrees */
893 	error = xfs_alloc_vextent_exact_bno(&args,
894 			XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
895 	if (!error && args.agbno == NULLAGBLOCK)
896 		error = -ENOSPC;
897 
898 	if (error) {
899 		/*
900 		 * If extent allocation fails, need to roll the transaction to
901 		 * ensure that the AGFL fixup has been committed anyway.
902 		 *
903 		 * We need to hold the AGF across the roll to ensure nothing can
904 		 * access the AG for allocation until the shrink is fully
905 		 * cleaned up. And due to the resetting of the AG block
906 		 * reservation space needing to lock the AGI, we also have to
907 		 * hold that so we don't get AGI/AGF lock order inversions in
908 		 * the error handling path.
909 		 */
910 		xfs_trans_bhold(*tpp, agfbp);
911 		xfs_trans_bhold(*tpp, agibp);
912 		err2 = xfs_trans_roll(tpp);
913 		if (err2)
914 			return err2;
915 		xfs_trans_bjoin(*tpp, agfbp);
916 		xfs_trans_bjoin(*tpp, agibp);
917 		goto resv_init_out;
918 	}
919 
920 	/*
921 	 * if successfully deleted from freespace btrees, need to confirm
922 	 * per-AG reservation works as expected.
923 	 */
924 	be32_add_cpu(&agi->agi_length, -delta);
925 	be32_add_cpu(&agf->agf_length, -delta);
926 
927 	err2 = xfs_ag_resv_init(pag, *tpp);
928 	if (err2) {
929 		be32_add_cpu(&agi->agi_length, delta);
930 		be32_add_cpu(&agf->agf_length, delta);
931 		if (err2 != -ENOSPC)
932 			goto resv_err;
933 
934 		err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
935 				XFS_AG_RESV_NONE, XFS_FREE_EXTENT_SKIP_DISCARD);
936 		if (err2)
937 			goto resv_err;
938 
939 		/*
940 		 * Roll the transaction before trying to re-init the per-ag
941 		 * reservation. The new transaction is clean so it will cancel
942 		 * without any side effects.
943 		 */
944 		error = xfs_defer_finish(tpp);
945 		if (error)
946 			return error;
947 
948 		error = -ENOSPC;
949 		goto resv_init_out;
950 	}
951 
952 	/* Update perag geometry */
953 	pag->block_count -= delta;
954 	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
955 				&pag->agino_max);
956 
957 	xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
958 	xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
959 	return 0;
960 
961 resv_init_out:
962 	err2 = xfs_ag_resv_init(pag, *tpp);
963 	if (!err2)
964 		return error;
965 resv_err:
966 	xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
967 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
968 	return err2;
969 }
970 
971 /*
972  * Extent the AG indicated by the @id by the length passed in
973  */
974 int
975 xfs_ag_extend_space(
976 	struct xfs_perag	*pag,
977 	struct xfs_trans	*tp,
978 	xfs_extlen_t		len)
979 {
980 	struct xfs_buf		*bp;
981 	struct xfs_agi		*agi;
982 	struct xfs_agf		*agf;
983 	int			error;
984 
985 	ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
986 
987 	error = xfs_ialloc_read_agi(pag, tp, 0, &bp);
988 	if (error)
989 		return error;
990 
991 	agi = bp->b_addr;
992 	be32_add_cpu(&agi->agi_length, len);
993 	xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
994 
995 	/*
996 	 * Change agf length.
997 	 */
998 	error = xfs_alloc_read_agf(pag, tp, 0, &bp);
999 	if (error)
1000 		return error;
1001 
1002 	agf = bp->b_addr;
1003 	be32_add_cpu(&agf->agf_length, len);
1004 	ASSERT(agf->agf_length == agi->agi_length);
1005 	xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1006 
1007 	/*
1008 	 * Free the new space.
1009 	 *
1010 	 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
1011 	 * this doesn't actually exist in the rmap btree.
1012 	 */
1013 	error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
1014 				len, &XFS_RMAP_OINFO_SKIP_UPDATE);
1015 	if (error)
1016 		return error;
1017 
1018 	error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1019 			len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
1020 	if (error)
1021 		return error;
1022 
1023 	/* Update perag geometry */
1024 	pag->block_count = be32_to_cpu(agf->agf_length);
1025 	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1026 				&pag->agino_max);
1027 	return 0;
1028 }
1029 
1030 /* Retrieve AG geometry. */
1031 int
1032 xfs_ag_get_geometry(
1033 	struct xfs_perag	*pag,
1034 	struct xfs_ag_geometry	*ageo)
1035 {
1036 	struct xfs_buf		*agi_bp;
1037 	struct xfs_buf		*agf_bp;
1038 	struct xfs_agi		*agi;
1039 	struct xfs_agf		*agf;
1040 	unsigned int		freeblks;
1041 	int			error;
1042 
1043 	/* Lock the AG headers. */
1044 	error = xfs_ialloc_read_agi(pag, NULL, 0, &agi_bp);
1045 	if (error)
1046 		return error;
1047 	error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1048 	if (error)
1049 		goto out_agi;
1050 
1051 	/* Fill out form. */
1052 	memset(ageo, 0, sizeof(*ageo));
1053 	ageo->ag_number = pag->pag_agno;
1054 
1055 	agi = agi_bp->b_addr;
1056 	ageo->ag_icount = be32_to_cpu(agi->agi_count);
1057 	ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1058 
1059 	agf = agf_bp->b_addr;
1060 	ageo->ag_length = be32_to_cpu(agf->agf_length);
1061 	freeblks = pag->pagf_freeblks +
1062 		   pag->pagf_flcount +
1063 		   pag->pagf_btreeblks -
1064 		   xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1065 	ageo->ag_freeblks = freeblks;
1066 	xfs_ag_geom_health(pag, ageo);
1067 
1068 	/* Release resources. */
1069 	xfs_buf_relse(agf_bp);
1070 out_agi:
1071 	xfs_buf_relse(agi_bp);
1072 	return error;
1073 }
1074