1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_btree.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_rmap_btree.h" 19 #include "xfs_alloc.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 #include "xfs_ag_resv.h" 24 #include "xfs_health.h" 25 #include "xfs_error.h" 26 #include "xfs_bmap.h" 27 #include "xfs_defer.h" 28 #include "xfs_log_format.h" 29 #include "xfs_trans.h" 30 #include "xfs_trace.h" 31 #include "xfs_inode.h" 32 #include "xfs_icache.h" 33 34 35 /* 36 * Passive reference counting access wrappers to the perag structures. If the 37 * per-ag structure is to be freed, the freeing code is responsible for cleaning 38 * up objects with passive references before freeing the structure. This is 39 * things like cached buffers. 40 */ 41 struct xfs_perag * 42 xfs_perag_get( 43 struct xfs_mount *mp, 44 xfs_agnumber_t agno) 45 { 46 struct xfs_perag *pag; 47 int ref = 0; 48 49 rcu_read_lock(); 50 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 51 if (pag) { 52 ASSERT(atomic_read(&pag->pag_ref) >= 0); 53 ref = atomic_inc_return(&pag->pag_ref); 54 } 55 rcu_read_unlock(); 56 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 57 return pag; 58 } 59 60 /* 61 * search from @first to find the next perag with the given tag set. 62 */ 63 struct xfs_perag * 64 xfs_perag_get_tag( 65 struct xfs_mount *mp, 66 xfs_agnumber_t first, 67 unsigned int tag) 68 { 69 struct xfs_perag *pag; 70 int found; 71 int ref; 72 73 rcu_read_lock(); 74 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 75 (void **)&pag, first, 1, tag); 76 if (found <= 0) { 77 rcu_read_unlock(); 78 return NULL; 79 } 80 ref = atomic_inc_return(&pag->pag_ref); 81 rcu_read_unlock(); 82 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 83 return pag; 84 } 85 86 void 87 xfs_perag_put( 88 struct xfs_perag *pag) 89 { 90 int ref; 91 92 ASSERT(atomic_read(&pag->pag_ref) > 0); 93 ref = atomic_dec_return(&pag->pag_ref); 94 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 95 } 96 97 /* 98 * xfs_initialize_perag_data 99 * 100 * Read in each per-ag structure so we can count up the number of 101 * allocated inodes, free inodes and used filesystem blocks as this 102 * information is no longer persistent in the superblock. Once we have 103 * this information, write it into the in-core superblock structure. 104 */ 105 int 106 xfs_initialize_perag_data( 107 struct xfs_mount *mp, 108 xfs_agnumber_t agcount) 109 { 110 xfs_agnumber_t index; 111 struct xfs_perag *pag; 112 struct xfs_sb *sbp = &mp->m_sb; 113 uint64_t ifree = 0; 114 uint64_t ialloc = 0; 115 uint64_t bfree = 0; 116 uint64_t bfreelst = 0; 117 uint64_t btree = 0; 118 uint64_t fdblocks; 119 int error = 0; 120 121 for (index = 0; index < agcount; index++) { 122 /* 123 * Read the AGF and AGI buffers to populate the per-ag 124 * structures for us. 125 */ 126 pag = xfs_perag_get(mp, index); 127 error = xfs_alloc_read_agf(pag, NULL, 0, NULL); 128 if (!error) 129 error = xfs_ialloc_read_agi(pag, NULL, NULL); 130 if (error) { 131 xfs_perag_put(pag); 132 return error; 133 } 134 135 ifree += pag->pagi_freecount; 136 ialloc += pag->pagi_count; 137 bfree += pag->pagf_freeblks; 138 bfreelst += pag->pagf_flcount; 139 btree += pag->pagf_btreeblks; 140 xfs_perag_put(pag); 141 } 142 fdblocks = bfree + bfreelst + btree; 143 144 /* 145 * If the new summary counts are obviously incorrect, fail the 146 * mount operation because that implies the AGFs are also corrupt. 147 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 148 * will prevent xfs_repair from fixing anything. 149 */ 150 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 151 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 152 error = -EFSCORRUPTED; 153 goto out; 154 } 155 156 /* Overwrite incore superblock counters with just-read data */ 157 spin_lock(&mp->m_sb_lock); 158 sbp->sb_ifree = ifree; 159 sbp->sb_icount = ialloc; 160 sbp->sb_fdblocks = fdblocks; 161 spin_unlock(&mp->m_sb_lock); 162 163 xfs_reinit_percpu_counters(mp); 164 out: 165 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 166 return error; 167 } 168 169 STATIC void 170 __xfs_free_perag( 171 struct rcu_head *head) 172 { 173 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 174 175 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 176 kmem_free(pag); 177 } 178 179 /* 180 * Free up the per-ag resources associated with the mount structure. 181 */ 182 void 183 xfs_free_perag( 184 struct xfs_mount *mp) 185 { 186 struct xfs_perag *pag; 187 xfs_agnumber_t agno; 188 189 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 190 spin_lock(&mp->m_perag_lock); 191 pag = radix_tree_delete(&mp->m_perag_tree, agno); 192 spin_unlock(&mp->m_perag_lock); 193 ASSERT(pag); 194 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0); 195 196 cancel_delayed_work_sync(&pag->pag_blockgc_work); 197 xfs_buf_hash_destroy(pag); 198 199 call_rcu(&pag->rcu_head, __xfs_free_perag); 200 } 201 } 202 203 /* Find the size of the AG, in blocks. */ 204 static xfs_agblock_t 205 __xfs_ag_block_count( 206 struct xfs_mount *mp, 207 xfs_agnumber_t agno, 208 xfs_agnumber_t agcount, 209 xfs_rfsblock_t dblocks) 210 { 211 ASSERT(agno < agcount); 212 213 if (agno < agcount - 1) 214 return mp->m_sb.sb_agblocks; 215 return dblocks - (agno * mp->m_sb.sb_agblocks); 216 } 217 218 xfs_agblock_t 219 xfs_ag_block_count( 220 struct xfs_mount *mp, 221 xfs_agnumber_t agno) 222 { 223 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount, 224 mp->m_sb.sb_dblocks); 225 } 226 227 /* Calculate the first and last possible inode number in an AG. */ 228 static void 229 __xfs_agino_range( 230 struct xfs_mount *mp, 231 xfs_agblock_t eoag, 232 xfs_agino_t *first, 233 xfs_agino_t *last) 234 { 235 xfs_agblock_t bno; 236 237 /* 238 * Calculate the first inode, which will be in the first 239 * cluster-aligned block after the AGFL. 240 */ 241 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align); 242 *first = XFS_AGB_TO_AGINO(mp, bno); 243 244 /* 245 * Calculate the last inode, which will be at the end of the 246 * last (aligned) cluster that can be allocated in the AG. 247 */ 248 bno = round_down(eoag, M_IGEO(mp)->cluster_align); 249 *last = XFS_AGB_TO_AGINO(mp, bno) - 1; 250 } 251 252 void 253 xfs_agino_range( 254 struct xfs_mount *mp, 255 xfs_agnumber_t agno, 256 xfs_agino_t *first, 257 xfs_agino_t *last) 258 { 259 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last); 260 } 261 262 int 263 xfs_initialize_perag( 264 struct xfs_mount *mp, 265 xfs_agnumber_t agcount, 266 xfs_rfsblock_t dblocks, 267 xfs_agnumber_t *maxagi) 268 { 269 struct xfs_perag *pag; 270 xfs_agnumber_t index; 271 xfs_agnumber_t first_initialised = NULLAGNUMBER; 272 int error; 273 274 /* 275 * Walk the current per-ag tree so we don't try to initialise AGs 276 * that already exist (growfs case). Allocate and insert all the 277 * AGs we don't find ready for initialisation. 278 */ 279 for (index = 0; index < agcount; index++) { 280 pag = xfs_perag_get(mp, index); 281 if (pag) { 282 xfs_perag_put(pag); 283 continue; 284 } 285 286 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 287 if (!pag) { 288 error = -ENOMEM; 289 goto out_unwind_new_pags; 290 } 291 pag->pag_agno = index; 292 pag->pag_mount = mp; 293 294 error = radix_tree_preload(GFP_NOFS); 295 if (error) 296 goto out_free_pag; 297 298 spin_lock(&mp->m_perag_lock); 299 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 300 WARN_ON_ONCE(1); 301 spin_unlock(&mp->m_perag_lock); 302 radix_tree_preload_end(); 303 error = -EEXIST; 304 goto out_free_pag; 305 } 306 spin_unlock(&mp->m_perag_lock); 307 radix_tree_preload_end(); 308 309 #ifdef __KERNEL__ 310 /* Place kernel structure only init below this point. */ 311 spin_lock_init(&pag->pag_ici_lock); 312 spin_lock_init(&pag->pagb_lock); 313 spin_lock_init(&pag->pag_state_lock); 314 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 315 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 316 init_waitqueue_head(&pag->pagb_wait); 317 pag->pagb_count = 0; 318 pag->pagb_tree = RB_ROOT; 319 #endif /* __KERNEL__ */ 320 321 error = xfs_buf_hash_init(pag); 322 if (error) 323 goto out_remove_pag; 324 325 /* first new pag is fully initialized */ 326 if (first_initialised == NULLAGNUMBER) 327 first_initialised = index; 328 329 /* 330 * Pre-calculated geometry 331 */ 332 pag->block_count = __xfs_ag_block_count(mp, index, agcount, 333 dblocks); 334 pag->min_block = XFS_AGFL_BLOCK(mp); 335 __xfs_agino_range(mp, pag->block_count, &pag->agino_min, 336 &pag->agino_max); 337 } 338 339 index = xfs_set_inode_alloc(mp, agcount); 340 341 if (maxagi) 342 *maxagi = index; 343 344 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 345 return 0; 346 347 out_remove_pag: 348 radix_tree_delete(&mp->m_perag_tree, index); 349 out_free_pag: 350 kmem_free(pag); 351 out_unwind_new_pags: 352 /* unwind any prior newly initialized pags */ 353 for (index = first_initialised; index < agcount; index++) { 354 pag = radix_tree_delete(&mp->m_perag_tree, index); 355 if (!pag) 356 break; 357 xfs_buf_hash_destroy(pag); 358 kmem_free(pag); 359 } 360 return error; 361 } 362 363 static int 364 xfs_get_aghdr_buf( 365 struct xfs_mount *mp, 366 xfs_daddr_t blkno, 367 size_t numblks, 368 struct xfs_buf **bpp, 369 const struct xfs_buf_ops *ops) 370 { 371 struct xfs_buf *bp; 372 int error; 373 374 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp); 375 if (error) 376 return error; 377 378 bp->b_maps[0].bm_bn = blkno; 379 bp->b_ops = ops; 380 381 *bpp = bp; 382 return 0; 383 } 384 385 /* 386 * Generic btree root block init function 387 */ 388 static void 389 xfs_btroot_init( 390 struct xfs_mount *mp, 391 struct xfs_buf *bp, 392 struct aghdr_init_data *id) 393 { 394 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno); 395 } 396 397 /* Finish initializing a free space btree. */ 398 static void 399 xfs_freesp_init_recs( 400 struct xfs_mount *mp, 401 struct xfs_buf *bp, 402 struct aghdr_init_data *id) 403 { 404 struct xfs_alloc_rec *arec; 405 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 406 407 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 408 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 409 410 if (xfs_ag_contains_log(mp, id->agno)) { 411 struct xfs_alloc_rec *nrec; 412 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, 413 mp->m_sb.sb_logstart); 414 415 ASSERT(start >= mp->m_ag_prealloc_blocks); 416 if (start != mp->m_ag_prealloc_blocks) { 417 /* 418 * Modify first record to pad stripe align of log 419 */ 420 arec->ar_blockcount = cpu_to_be32(start - 421 mp->m_ag_prealloc_blocks); 422 nrec = arec + 1; 423 424 /* 425 * Insert second record at start of internal log 426 * which then gets trimmed. 427 */ 428 nrec->ar_startblock = cpu_to_be32( 429 be32_to_cpu(arec->ar_startblock) + 430 be32_to_cpu(arec->ar_blockcount)); 431 arec = nrec; 432 be16_add_cpu(&block->bb_numrecs, 1); 433 } 434 /* 435 * Change record start to after the internal log 436 */ 437 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); 438 } 439 440 /* 441 * Calculate the record block count and check for the case where 442 * the log might have consumed all available space in the AG. If 443 * so, reset the record count to 0 to avoid exposure of an invalid 444 * record start block. 445 */ 446 arec->ar_blockcount = cpu_to_be32(id->agsize - 447 be32_to_cpu(arec->ar_startblock)); 448 if (!arec->ar_blockcount) 449 block->bb_numrecs = 0; 450 } 451 452 /* 453 * Alloc btree root block init functions 454 */ 455 static void 456 xfs_bnoroot_init( 457 struct xfs_mount *mp, 458 struct xfs_buf *bp, 459 struct aghdr_init_data *id) 460 { 461 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno); 462 xfs_freesp_init_recs(mp, bp, id); 463 } 464 465 static void 466 xfs_cntroot_init( 467 struct xfs_mount *mp, 468 struct xfs_buf *bp, 469 struct aghdr_init_data *id) 470 { 471 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno); 472 xfs_freesp_init_recs(mp, bp, id); 473 } 474 475 /* 476 * Reverse map root block init 477 */ 478 static void 479 xfs_rmaproot_init( 480 struct xfs_mount *mp, 481 struct xfs_buf *bp, 482 struct aghdr_init_data *id) 483 { 484 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 485 struct xfs_rmap_rec *rrec; 486 487 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno); 488 489 /* 490 * mark the AG header regions as static metadata The BNO 491 * btree block is the first block after the headers, so 492 * it's location defines the size of region the static 493 * metadata consumes. 494 * 495 * Note: unlike mkfs, we never have to account for log 496 * space when growing the data regions 497 */ 498 rrec = XFS_RMAP_REC_ADDR(block, 1); 499 rrec->rm_startblock = 0; 500 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 501 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 502 rrec->rm_offset = 0; 503 504 /* account freespace btree root blocks */ 505 rrec = XFS_RMAP_REC_ADDR(block, 2); 506 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 507 rrec->rm_blockcount = cpu_to_be32(2); 508 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 509 rrec->rm_offset = 0; 510 511 /* account inode btree root blocks */ 512 rrec = XFS_RMAP_REC_ADDR(block, 3); 513 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 514 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 515 XFS_IBT_BLOCK(mp)); 516 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 517 rrec->rm_offset = 0; 518 519 /* account for rmap btree root */ 520 rrec = XFS_RMAP_REC_ADDR(block, 4); 521 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 522 rrec->rm_blockcount = cpu_to_be32(1); 523 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 524 rrec->rm_offset = 0; 525 526 /* account for refc btree root */ 527 if (xfs_has_reflink(mp)) { 528 rrec = XFS_RMAP_REC_ADDR(block, 5); 529 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 530 rrec->rm_blockcount = cpu_to_be32(1); 531 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 532 rrec->rm_offset = 0; 533 be16_add_cpu(&block->bb_numrecs, 1); 534 } 535 536 /* account for the log space */ 537 if (xfs_ag_contains_log(mp, id->agno)) { 538 rrec = XFS_RMAP_REC_ADDR(block, 539 be16_to_cpu(block->bb_numrecs) + 1); 540 rrec->rm_startblock = cpu_to_be32( 541 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); 542 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); 543 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); 544 rrec->rm_offset = 0; 545 be16_add_cpu(&block->bb_numrecs, 1); 546 } 547 } 548 549 /* 550 * Initialise new secondary superblocks with the pre-grow geometry, but mark 551 * them as "in progress" so we know they haven't yet been activated. This will 552 * get cleared when the update with the new geometry information is done after 553 * changes to the primary are committed. This isn't strictly necessary, but we 554 * get it for free with the delayed buffer write lists and it means we can tell 555 * if a grow operation didn't complete properly after the fact. 556 */ 557 static void 558 xfs_sbblock_init( 559 struct xfs_mount *mp, 560 struct xfs_buf *bp, 561 struct aghdr_init_data *id) 562 { 563 struct xfs_dsb *dsb = bp->b_addr; 564 565 xfs_sb_to_disk(dsb, &mp->m_sb); 566 dsb->sb_inprogress = 1; 567 } 568 569 static void 570 xfs_agfblock_init( 571 struct xfs_mount *mp, 572 struct xfs_buf *bp, 573 struct aghdr_init_data *id) 574 { 575 struct xfs_agf *agf = bp->b_addr; 576 xfs_extlen_t tmpsize; 577 578 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 579 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 580 agf->agf_seqno = cpu_to_be32(id->agno); 581 agf->agf_length = cpu_to_be32(id->agsize); 582 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); 583 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); 584 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); 585 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); 586 if (xfs_has_rmapbt(mp)) { 587 agf->agf_roots[XFS_BTNUM_RMAPi] = 588 cpu_to_be32(XFS_RMAP_BLOCK(mp)); 589 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); 590 agf->agf_rmap_blocks = cpu_to_be32(1); 591 } 592 593 agf->agf_flfirst = cpu_to_be32(1); 594 agf->agf_fllast = 0; 595 agf->agf_flcount = 0; 596 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 597 agf->agf_freeblks = cpu_to_be32(tmpsize); 598 agf->agf_longest = cpu_to_be32(tmpsize); 599 if (xfs_has_crc(mp)) 600 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 601 if (xfs_has_reflink(mp)) { 602 agf->agf_refcount_root = cpu_to_be32( 603 xfs_refc_block(mp)); 604 agf->agf_refcount_level = cpu_to_be32(1); 605 agf->agf_refcount_blocks = cpu_to_be32(1); 606 } 607 608 if (xfs_ag_contains_log(mp, id->agno)) { 609 int64_t logblocks = mp->m_sb.sb_logblocks; 610 611 be32_add_cpu(&agf->agf_freeblks, -logblocks); 612 agf->agf_longest = cpu_to_be32(id->agsize - 613 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); 614 } 615 } 616 617 static void 618 xfs_agflblock_init( 619 struct xfs_mount *mp, 620 struct xfs_buf *bp, 621 struct aghdr_init_data *id) 622 { 623 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 624 __be32 *agfl_bno; 625 int bucket; 626 627 if (xfs_has_crc(mp)) { 628 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 629 agfl->agfl_seqno = cpu_to_be32(id->agno); 630 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 631 } 632 633 agfl_bno = xfs_buf_to_agfl_bno(bp); 634 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 635 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 636 } 637 638 static void 639 xfs_agiblock_init( 640 struct xfs_mount *mp, 641 struct xfs_buf *bp, 642 struct aghdr_init_data *id) 643 { 644 struct xfs_agi *agi = bp->b_addr; 645 int bucket; 646 647 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 648 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 649 agi->agi_seqno = cpu_to_be32(id->agno); 650 agi->agi_length = cpu_to_be32(id->agsize); 651 agi->agi_count = 0; 652 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 653 agi->agi_level = cpu_to_be32(1); 654 agi->agi_freecount = 0; 655 agi->agi_newino = cpu_to_be32(NULLAGINO); 656 agi->agi_dirino = cpu_to_be32(NULLAGINO); 657 if (xfs_has_crc(mp)) 658 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 659 if (xfs_has_finobt(mp)) { 660 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 661 agi->agi_free_level = cpu_to_be32(1); 662 } 663 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 664 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 665 if (xfs_has_inobtcounts(mp)) { 666 agi->agi_iblocks = cpu_to_be32(1); 667 if (xfs_has_finobt(mp)) 668 agi->agi_fblocks = cpu_to_be32(1); 669 } 670 } 671 672 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 673 struct aghdr_init_data *id); 674 static int 675 xfs_ag_init_hdr( 676 struct xfs_mount *mp, 677 struct aghdr_init_data *id, 678 aghdr_init_work_f work, 679 const struct xfs_buf_ops *ops) 680 { 681 struct xfs_buf *bp; 682 int error; 683 684 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops); 685 if (error) 686 return error; 687 688 (*work)(mp, bp, id); 689 690 xfs_buf_delwri_queue(bp, &id->buffer_list); 691 xfs_buf_relse(bp); 692 return 0; 693 } 694 695 struct xfs_aghdr_grow_data { 696 xfs_daddr_t daddr; 697 size_t numblks; 698 const struct xfs_buf_ops *ops; 699 aghdr_init_work_f work; 700 xfs_btnum_t type; 701 bool need_init; 702 }; 703 704 /* 705 * Prepare new AG headers to be written to disk. We use uncached buffers here, 706 * as it is assumed these new AG headers are currently beyond the currently 707 * valid filesystem address space. Using cached buffers would trip over EOFS 708 * corruption detection alogrithms in the buffer cache lookup routines. 709 * 710 * This is a non-transactional function, but the prepared buffers are added to a 711 * delayed write buffer list supplied by the caller so they can submit them to 712 * disk and wait on them as required. 713 */ 714 int 715 xfs_ag_init_headers( 716 struct xfs_mount *mp, 717 struct aghdr_init_data *id) 718 719 { 720 struct xfs_aghdr_grow_data aghdr_data[] = { 721 { /* SB */ 722 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 723 .numblks = XFS_FSS_TO_BB(mp, 1), 724 .ops = &xfs_sb_buf_ops, 725 .work = &xfs_sbblock_init, 726 .need_init = true 727 }, 728 { /* AGF */ 729 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 730 .numblks = XFS_FSS_TO_BB(mp, 1), 731 .ops = &xfs_agf_buf_ops, 732 .work = &xfs_agfblock_init, 733 .need_init = true 734 }, 735 { /* AGFL */ 736 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 737 .numblks = XFS_FSS_TO_BB(mp, 1), 738 .ops = &xfs_agfl_buf_ops, 739 .work = &xfs_agflblock_init, 740 .need_init = true 741 }, 742 { /* AGI */ 743 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 744 .numblks = XFS_FSS_TO_BB(mp, 1), 745 .ops = &xfs_agi_buf_ops, 746 .work = &xfs_agiblock_init, 747 .need_init = true 748 }, 749 { /* BNO root block */ 750 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 751 .numblks = BTOBB(mp->m_sb.sb_blocksize), 752 .ops = &xfs_bnobt_buf_ops, 753 .work = &xfs_bnoroot_init, 754 .need_init = true 755 }, 756 { /* CNT root block */ 757 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 758 .numblks = BTOBB(mp->m_sb.sb_blocksize), 759 .ops = &xfs_cntbt_buf_ops, 760 .work = &xfs_cntroot_init, 761 .need_init = true 762 }, 763 { /* INO root block */ 764 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 765 .numblks = BTOBB(mp->m_sb.sb_blocksize), 766 .ops = &xfs_inobt_buf_ops, 767 .work = &xfs_btroot_init, 768 .type = XFS_BTNUM_INO, 769 .need_init = true 770 }, 771 { /* FINO root block */ 772 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 773 .numblks = BTOBB(mp->m_sb.sb_blocksize), 774 .ops = &xfs_finobt_buf_ops, 775 .work = &xfs_btroot_init, 776 .type = XFS_BTNUM_FINO, 777 .need_init = xfs_has_finobt(mp) 778 }, 779 { /* RMAP root block */ 780 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 781 .numblks = BTOBB(mp->m_sb.sb_blocksize), 782 .ops = &xfs_rmapbt_buf_ops, 783 .work = &xfs_rmaproot_init, 784 .need_init = xfs_has_rmapbt(mp) 785 }, 786 { /* REFC root block */ 787 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 788 .numblks = BTOBB(mp->m_sb.sb_blocksize), 789 .ops = &xfs_refcountbt_buf_ops, 790 .work = &xfs_btroot_init, 791 .type = XFS_BTNUM_REFC, 792 .need_init = xfs_has_reflink(mp) 793 }, 794 { /* NULL terminating block */ 795 .daddr = XFS_BUF_DADDR_NULL, 796 } 797 }; 798 struct xfs_aghdr_grow_data *dp; 799 int error = 0; 800 801 /* Account for AG free space in new AG */ 802 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 803 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 804 if (!dp->need_init) 805 continue; 806 807 id->daddr = dp->daddr; 808 id->numblks = dp->numblks; 809 id->type = dp->type; 810 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 811 if (error) 812 break; 813 } 814 return error; 815 } 816 817 int 818 xfs_ag_shrink_space( 819 struct xfs_perag *pag, 820 struct xfs_trans **tpp, 821 xfs_extlen_t delta) 822 { 823 struct xfs_mount *mp = pag->pag_mount; 824 struct xfs_alloc_arg args = { 825 .tp = *tpp, 826 .mp = mp, 827 .type = XFS_ALLOCTYPE_THIS_BNO, 828 .minlen = delta, 829 .maxlen = delta, 830 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE, 831 .resv = XFS_AG_RESV_NONE, 832 .prod = 1 833 }; 834 struct xfs_buf *agibp, *agfbp; 835 struct xfs_agi *agi; 836 struct xfs_agf *agf; 837 xfs_agblock_t aglen; 838 int error, err2; 839 840 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1); 841 error = xfs_ialloc_read_agi(pag, *tpp, &agibp); 842 if (error) 843 return error; 844 845 agi = agibp->b_addr; 846 847 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp); 848 if (error) 849 return error; 850 851 agf = agfbp->b_addr; 852 aglen = be32_to_cpu(agi->agi_length); 853 /* some extra paranoid checks before we shrink the ag */ 854 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) 855 return -EFSCORRUPTED; 856 if (delta >= aglen) 857 return -EINVAL; 858 859 args.fsbno = XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta); 860 861 /* 862 * Make sure that the last inode cluster cannot overlap with the new 863 * end of the AG, even if it's sparse. 864 */ 865 error = xfs_ialloc_check_shrink(*tpp, pag->pag_agno, agibp, 866 aglen - delta); 867 if (error) 868 return error; 869 870 /* 871 * Disable perag reservations so it doesn't cause the allocation request 872 * to fail. We'll reestablish reservation before we return. 873 */ 874 error = xfs_ag_resv_free(pag); 875 if (error) 876 return error; 877 878 /* internal log shouldn't also show up in the free space btrees */ 879 error = xfs_alloc_vextent(&args); 880 if (!error && args.agbno == NULLAGBLOCK) 881 error = -ENOSPC; 882 883 if (error) { 884 /* 885 * if extent allocation fails, need to roll the transaction to 886 * ensure that the AGFL fixup has been committed anyway. 887 */ 888 xfs_trans_bhold(*tpp, agfbp); 889 err2 = xfs_trans_roll(tpp); 890 if (err2) 891 return err2; 892 xfs_trans_bjoin(*tpp, agfbp); 893 goto resv_init_out; 894 } 895 896 /* 897 * if successfully deleted from freespace btrees, need to confirm 898 * per-AG reservation works as expected. 899 */ 900 be32_add_cpu(&agi->agi_length, -delta); 901 be32_add_cpu(&agf->agf_length, -delta); 902 903 err2 = xfs_ag_resv_init(pag, *tpp); 904 if (err2) { 905 be32_add_cpu(&agi->agi_length, delta); 906 be32_add_cpu(&agf->agf_length, delta); 907 if (err2 != -ENOSPC) 908 goto resv_err; 909 910 __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true); 911 912 /* 913 * Roll the transaction before trying to re-init the per-ag 914 * reservation. The new transaction is clean so it will cancel 915 * without any side effects. 916 */ 917 error = xfs_defer_finish(tpp); 918 if (error) 919 return error; 920 921 error = -ENOSPC; 922 goto resv_init_out; 923 } 924 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH); 925 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH); 926 return 0; 927 928 resv_init_out: 929 err2 = xfs_ag_resv_init(pag, *tpp); 930 if (!err2) 931 return error; 932 resv_err: 933 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2); 934 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 935 return err2; 936 } 937 938 /* 939 * Extent the AG indicated by the @id by the length passed in 940 */ 941 int 942 xfs_ag_extend_space( 943 struct xfs_perag *pag, 944 struct xfs_trans *tp, 945 xfs_extlen_t len) 946 { 947 struct xfs_buf *bp; 948 struct xfs_agi *agi; 949 struct xfs_agf *agf; 950 int error; 951 952 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1); 953 954 error = xfs_ialloc_read_agi(pag, tp, &bp); 955 if (error) 956 return error; 957 958 agi = bp->b_addr; 959 be32_add_cpu(&agi->agi_length, len); 960 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 961 962 /* 963 * Change agf length. 964 */ 965 error = xfs_alloc_read_agf(pag, tp, 0, &bp); 966 if (error) 967 return error; 968 969 agf = bp->b_addr; 970 be32_add_cpu(&agf->agf_length, len); 971 ASSERT(agf->agf_length == agi->agi_length); 972 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 973 974 /* 975 * Free the new space. 976 * 977 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 978 * this doesn't actually exist in the rmap btree. 979 */ 980 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len, 981 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 982 if (error) 983 return error; 984 985 error = xfs_free_extent(tp, XFS_AGB_TO_FSB(pag->pag_mount, pag->pag_agno, 986 be32_to_cpu(agf->agf_length) - len), 987 len, &XFS_RMAP_OINFO_SKIP_UPDATE, 988 XFS_AG_RESV_NONE); 989 if (error) 990 return error; 991 992 /* Update perag geometry */ 993 pag->block_count = be32_to_cpu(agf->agf_length); 994 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min, 995 &pag->agino_max); 996 return 0; 997 } 998 999 /* Retrieve AG geometry. */ 1000 int 1001 xfs_ag_get_geometry( 1002 struct xfs_perag *pag, 1003 struct xfs_ag_geometry *ageo) 1004 { 1005 struct xfs_buf *agi_bp; 1006 struct xfs_buf *agf_bp; 1007 struct xfs_agi *agi; 1008 struct xfs_agf *agf; 1009 unsigned int freeblks; 1010 int error; 1011 1012 /* Lock the AG headers. */ 1013 error = xfs_ialloc_read_agi(pag, NULL, &agi_bp); 1014 if (error) 1015 return error; 1016 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp); 1017 if (error) 1018 goto out_agi; 1019 1020 /* Fill out form. */ 1021 memset(ageo, 0, sizeof(*ageo)); 1022 ageo->ag_number = pag->pag_agno; 1023 1024 agi = agi_bp->b_addr; 1025 ageo->ag_icount = be32_to_cpu(agi->agi_count); 1026 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 1027 1028 agf = agf_bp->b_addr; 1029 ageo->ag_length = be32_to_cpu(agf->agf_length); 1030 freeblks = pag->pagf_freeblks + 1031 pag->pagf_flcount + 1032 pag->pagf_btreeblks - 1033 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 1034 ageo->ag_freeblks = freeblks; 1035 xfs_ag_geom_health(pag, ageo); 1036 1037 /* Release resources. */ 1038 xfs_buf_relse(agf_bp); 1039 out_agi: 1040 xfs_buf_relse(agi_bp); 1041 return error; 1042 } 1043