1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_btree.h" 16 #include "xfs_alloc_btree.h" 17 #include "xfs_rmap_btree.h" 18 #include "xfs_alloc.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_rmap.h" 21 #include "xfs_ag.h" 22 23 static struct xfs_buf * 24 xfs_get_aghdr_buf( 25 struct xfs_mount *mp, 26 xfs_daddr_t blkno, 27 size_t numblks, 28 int flags, 29 const struct xfs_buf_ops *ops) 30 { 31 struct xfs_buf *bp; 32 33 bp = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, flags); 34 if (!bp) 35 return NULL; 36 37 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 38 bp->b_bn = blkno; 39 bp->b_maps[0].bm_bn = blkno; 40 bp->b_ops = ops; 41 42 return bp; 43 } 44 45 /* 46 * Generic btree root block init function 47 */ 48 static void 49 xfs_btroot_init( 50 struct xfs_mount *mp, 51 struct xfs_buf *bp, 52 struct aghdr_init_data *id) 53 { 54 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno, 0); 55 } 56 57 /* 58 * Alloc btree root block init functions 59 */ 60 static void 61 xfs_bnoroot_init( 62 struct xfs_mount *mp, 63 struct xfs_buf *bp, 64 struct aghdr_init_data *id) 65 { 66 struct xfs_alloc_rec *arec; 67 68 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno, 0); 69 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 70 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 71 arec->ar_blockcount = cpu_to_be32(id->agsize - 72 be32_to_cpu(arec->ar_startblock)); 73 } 74 75 static void 76 xfs_cntroot_init( 77 struct xfs_mount *mp, 78 struct xfs_buf *bp, 79 struct aghdr_init_data *id) 80 { 81 struct xfs_alloc_rec *arec; 82 83 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno, 0); 84 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 85 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 86 arec->ar_blockcount = cpu_to_be32(id->agsize - 87 be32_to_cpu(arec->ar_startblock)); 88 } 89 90 /* 91 * Reverse map root block init 92 */ 93 static void 94 xfs_rmaproot_init( 95 struct xfs_mount *mp, 96 struct xfs_buf *bp, 97 struct aghdr_init_data *id) 98 { 99 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 100 struct xfs_rmap_rec *rrec; 101 102 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno, 0); 103 104 /* 105 * mark the AG header regions as static metadata The BNO 106 * btree block is the first block after the headers, so 107 * it's location defines the size of region the static 108 * metadata consumes. 109 * 110 * Note: unlike mkfs, we never have to account for log 111 * space when growing the data regions 112 */ 113 rrec = XFS_RMAP_REC_ADDR(block, 1); 114 rrec->rm_startblock = 0; 115 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 116 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 117 rrec->rm_offset = 0; 118 119 /* account freespace btree root blocks */ 120 rrec = XFS_RMAP_REC_ADDR(block, 2); 121 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 122 rrec->rm_blockcount = cpu_to_be32(2); 123 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 124 rrec->rm_offset = 0; 125 126 /* account inode btree root blocks */ 127 rrec = XFS_RMAP_REC_ADDR(block, 3); 128 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 129 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 130 XFS_IBT_BLOCK(mp)); 131 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 132 rrec->rm_offset = 0; 133 134 /* account for rmap btree root */ 135 rrec = XFS_RMAP_REC_ADDR(block, 4); 136 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 137 rrec->rm_blockcount = cpu_to_be32(1); 138 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 139 rrec->rm_offset = 0; 140 141 /* account for refc btree root */ 142 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 143 rrec = XFS_RMAP_REC_ADDR(block, 5); 144 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 145 rrec->rm_blockcount = cpu_to_be32(1); 146 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 147 rrec->rm_offset = 0; 148 be16_add_cpu(&block->bb_numrecs, 1); 149 } 150 } 151 152 /* 153 * Initialise new secondary superblocks with the pre-grow geometry, but mark 154 * them as "in progress" so we know they haven't yet been activated. This will 155 * get cleared when the update with the new geometry information is done after 156 * changes to the primary are committed. This isn't strictly necessary, but we 157 * get it for free with the delayed buffer write lists and it means we can tell 158 * if a grow operation didn't complete properly after the fact. 159 */ 160 static void 161 xfs_sbblock_init( 162 struct xfs_mount *mp, 163 struct xfs_buf *bp, 164 struct aghdr_init_data *id) 165 { 166 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 167 168 xfs_sb_to_disk(dsb, &mp->m_sb); 169 dsb->sb_inprogress = 1; 170 } 171 172 static void 173 xfs_agfblock_init( 174 struct xfs_mount *mp, 175 struct xfs_buf *bp, 176 struct aghdr_init_data *id) 177 { 178 struct xfs_agf *agf = XFS_BUF_TO_AGF(bp); 179 xfs_extlen_t tmpsize; 180 181 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 182 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 183 agf->agf_seqno = cpu_to_be32(id->agno); 184 agf->agf_length = cpu_to_be32(id->agsize); 185 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); 186 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); 187 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); 188 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); 189 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 190 agf->agf_roots[XFS_BTNUM_RMAPi] = 191 cpu_to_be32(XFS_RMAP_BLOCK(mp)); 192 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); 193 agf->agf_rmap_blocks = cpu_to_be32(1); 194 } 195 196 agf->agf_flfirst = cpu_to_be32(1); 197 agf->agf_fllast = 0; 198 agf->agf_flcount = 0; 199 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 200 agf->agf_freeblks = cpu_to_be32(tmpsize); 201 agf->agf_longest = cpu_to_be32(tmpsize); 202 if (xfs_sb_version_hascrc(&mp->m_sb)) 203 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 204 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 205 agf->agf_refcount_root = cpu_to_be32( 206 xfs_refc_block(mp)); 207 agf->agf_refcount_level = cpu_to_be32(1); 208 agf->agf_refcount_blocks = cpu_to_be32(1); 209 } 210 } 211 212 static void 213 xfs_agflblock_init( 214 struct xfs_mount *mp, 215 struct xfs_buf *bp, 216 struct aghdr_init_data *id) 217 { 218 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 219 __be32 *agfl_bno; 220 int bucket; 221 222 if (xfs_sb_version_hascrc(&mp->m_sb)) { 223 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 224 agfl->agfl_seqno = cpu_to_be32(id->agno); 225 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 226 } 227 228 agfl_bno = XFS_BUF_TO_AGFL_BNO(mp, bp); 229 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 230 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 231 } 232 233 static void 234 xfs_agiblock_init( 235 struct xfs_mount *mp, 236 struct xfs_buf *bp, 237 struct aghdr_init_data *id) 238 { 239 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); 240 int bucket; 241 242 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 243 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 244 agi->agi_seqno = cpu_to_be32(id->agno); 245 agi->agi_length = cpu_to_be32(id->agsize); 246 agi->agi_count = 0; 247 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 248 agi->agi_level = cpu_to_be32(1); 249 agi->agi_freecount = 0; 250 agi->agi_newino = cpu_to_be32(NULLAGINO); 251 agi->agi_dirino = cpu_to_be32(NULLAGINO); 252 if (xfs_sb_version_hascrc(&mp->m_sb)) 253 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 254 if (xfs_sb_version_hasfinobt(&mp->m_sb)) { 255 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 256 agi->agi_free_level = cpu_to_be32(1); 257 } 258 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 259 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 260 } 261 262 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 263 struct aghdr_init_data *id); 264 static int 265 xfs_ag_init_hdr( 266 struct xfs_mount *mp, 267 struct aghdr_init_data *id, 268 aghdr_init_work_f work, 269 const struct xfs_buf_ops *ops) 270 271 { 272 struct xfs_buf *bp; 273 274 bp = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, 0, ops); 275 if (!bp) 276 return -ENOMEM; 277 278 (*work)(mp, bp, id); 279 280 xfs_buf_delwri_queue(bp, &id->buffer_list); 281 xfs_buf_relse(bp); 282 return 0; 283 } 284 285 struct xfs_aghdr_grow_data { 286 xfs_daddr_t daddr; 287 size_t numblks; 288 const struct xfs_buf_ops *ops; 289 aghdr_init_work_f work; 290 xfs_btnum_t type; 291 bool need_init; 292 }; 293 294 /* 295 * Prepare new AG headers to be written to disk. We use uncached buffers here, 296 * as it is assumed these new AG headers are currently beyond the currently 297 * valid filesystem address space. Using cached buffers would trip over EOFS 298 * corruption detection alogrithms in the buffer cache lookup routines. 299 * 300 * This is a non-transactional function, but the prepared buffers are added to a 301 * delayed write buffer list supplied by the caller so they can submit them to 302 * disk and wait on them as required. 303 */ 304 int 305 xfs_ag_init_headers( 306 struct xfs_mount *mp, 307 struct aghdr_init_data *id) 308 309 { 310 struct xfs_aghdr_grow_data aghdr_data[] = { 311 { /* SB */ 312 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 313 .numblks = XFS_FSS_TO_BB(mp, 1), 314 .ops = &xfs_sb_buf_ops, 315 .work = &xfs_sbblock_init, 316 .need_init = true 317 }, 318 { /* AGF */ 319 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 320 .numblks = XFS_FSS_TO_BB(mp, 1), 321 .ops = &xfs_agf_buf_ops, 322 .work = &xfs_agfblock_init, 323 .need_init = true 324 }, 325 { /* AGFL */ 326 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 327 .numblks = XFS_FSS_TO_BB(mp, 1), 328 .ops = &xfs_agfl_buf_ops, 329 .work = &xfs_agflblock_init, 330 .need_init = true 331 }, 332 { /* AGI */ 333 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 334 .numblks = XFS_FSS_TO_BB(mp, 1), 335 .ops = &xfs_agi_buf_ops, 336 .work = &xfs_agiblock_init, 337 .need_init = true 338 }, 339 { /* BNO root block */ 340 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 341 .numblks = BTOBB(mp->m_sb.sb_blocksize), 342 .ops = &xfs_bnobt_buf_ops, 343 .work = &xfs_bnoroot_init, 344 .need_init = true 345 }, 346 { /* CNT root block */ 347 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 348 .numblks = BTOBB(mp->m_sb.sb_blocksize), 349 .ops = &xfs_cntbt_buf_ops, 350 .work = &xfs_cntroot_init, 351 .need_init = true 352 }, 353 { /* INO root block */ 354 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 355 .numblks = BTOBB(mp->m_sb.sb_blocksize), 356 .ops = &xfs_inobt_buf_ops, 357 .work = &xfs_btroot_init, 358 .type = XFS_BTNUM_INO, 359 .need_init = true 360 }, 361 { /* FINO root block */ 362 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 363 .numblks = BTOBB(mp->m_sb.sb_blocksize), 364 .ops = &xfs_finobt_buf_ops, 365 .work = &xfs_btroot_init, 366 .type = XFS_BTNUM_FINO, 367 .need_init = xfs_sb_version_hasfinobt(&mp->m_sb) 368 }, 369 { /* RMAP root block */ 370 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 371 .numblks = BTOBB(mp->m_sb.sb_blocksize), 372 .ops = &xfs_rmapbt_buf_ops, 373 .work = &xfs_rmaproot_init, 374 .need_init = xfs_sb_version_hasrmapbt(&mp->m_sb) 375 }, 376 { /* REFC root block */ 377 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 378 .numblks = BTOBB(mp->m_sb.sb_blocksize), 379 .ops = &xfs_refcountbt_buf_ops, 380 .work = &xfs_btroot_init, 381 .type = XFS_BTNUM_REFC, 382 .need_init = xfs_sb_version_hasreflink(&mp->m_sb) 383 }, 384 { /* NULL terminating block */ 385 .daddr = XFS_BUF_DADDR_NULL, 386 } 387 }; 388 struct xfs_aghdr_grow_data *dp; 389 int error = 0; 390 391 /* Account for AG free space in new AG */ 392 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 393 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 394 if (!dp->need_init) 395 continue; 396 397 id->daddr = dp->daddr; 398 id->numblks = dp->numblks; 399 id->type = dp->type; 400 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 401 if (error) 402 break; 403 } 404 return error; 405 } 406 407 /* 408 * Extent the AG indicated by the @id by the length passed in 409 */ 410 int 411 xfs_ag_extend_space( 412 struct xfs_mount *mp, 413 struct xfs_trans *tp, 414 struct aghdr_init_data *id, 415 xfs_extlen_t len) 416 { 417 struct xfs_buf *bp; 418 struct xfs_agi *agi; 419 struct xfs_agf *agf; 420 int error; 421 422 /* 423 * Change the agi length. 424 */ 425 error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp); 426 if (error) 427 return error; 428 429 agi = XFS_BUF_TO_AGI(bp); 430 be32_add_cpu(&agi->agi_length, len); 431 ASSERT(id->agno == mp->m_sb.sb_agcount - 1 || 432 be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks); 433 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 434 435 /* 436 * Change agf length. 437 */ 438 error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp); 439 if (error) 440 return error; 441 442 agf = XFS_BUF_TO_AGF(bp); 443 be32_add_cpu(&agf->agf_length, len); 444 ASSERT(agf->agf_length == agi->agi_length); 445 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 446 447 /* 448 * Free the new space. 449 * 450 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 451 * this doesn't actually exist in the rmap btree. 452 */ 453 error = xfs_rmap_free(tp, bp, id->agno, 454 be32_to_cpu(agf->agf_length) - len, 455 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 456 if (error) 457 return error; 458 459 return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno, 460 be32_to_cpu(agf->agf_length) - len), 461 len, &XFS_RMAP_OINFO_SKIP_UPDATE, 462 XFS_AG_RESV_NONE); 463 } 464