1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Data verification functions, i.e. hooks for ->readahead() 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 #include "fsverity_private.h" 9 10 #include <crypto/hash.h> 11 #include <linux/bio.h> 12 13 static struct workqueue_struct *fsverity_read_workqueue; 14 15 /* 16 * Returns true if the hash block with index @hblock_idx in the tree, located in 17 * @hpage, has already been verified. 18 */ 19 static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage, 20 unsigned long hblock_idx) 21 { 22 bool verified; 23 unsigned int blocks_per_page; 24 unsigned int i; 25 26 /* 27 * When the Merkle tree block size and page size are the same, then the 28 * ->hash_block_verified bitmap isn't allocated, and we use PG_checked 29 * to directly indicate whether the page's block has been verified. 30 * 31 * Using PG_checked also guarantees that we re-verify hash pages that 32 * get evicted and re-instantiated from the backing storage, as new 33 * pages always start out with PG_checked cleared. 34 */ 35 if (!vi->hash_block_verified) 36 return PageChecked(hpage); 37 38 /* 39 * When the Merkle tree block size and page size differ, we use a bitmap 40 * to indicate whether each hash block has been verified. 41 * 42 * However, we still need to ensure that hash pages that get evicted and 43 * re-instantiated from the backing storage are re-verified. To do 44 * this, we use PG_checked again, but now it doesn't really mean 45 * "checked". Instead, now it just serves as an indicator for whether 46 * the hash page is newly instantiated or not. 47 * 48 * The first thread that sees PG_checked=0 must clear the corresponding 49 * bitmap bits, then set PG_checked=1. This requires a spinlock. To 50 * avoid having to take this spinlock in the common case of 51 * PG_checked=1, we start with an opportunistic lockless read. 52 */ 53 if (PageChecked(hpage)) { 54 /* 55 * A read memory barrier is needed here to give ACQUIRE 56 * semantics to the above PageChecked() test. 57 */ 58 smp_rmb(); 59 return test_bit(hblock_idx, vi->hash_block_verified); 60 } 61 spin_lock(&vi->hash_page_init_lock); 62 if (PageChecked(hpage)) { 63 verified = test_bit(hblock_idx, vi->hash_block_verified); 64 } else { 65 blocks_per_page = vi->tree_params.blocks_per_page; 66 hblock_idx = round_down(hblock_idx, blocks_per_page); 67 for (i = 0; i < blocks_per_page; i++) 68 clear_bit(hblock_idx + i, vi->hash_block_verified); 69 /* 70 * A write memory barrier is needed here to give RELEASE 71 * semantics to the below SetPageChecked() operation. 72 */ 73 smp_wmb(); 74 SetPageChecked(hpage); 75 verified = false; 76 } 77 spin_unlock(&vi->hash_page_init_lock); 78 return verified; 79 } 80 81 /* 82 * Verify a single data block against the file's Merkle tree. 83 * 84 * In principle, we need to verify the entire path to the root node. However, 85 * for efficiency the filesystem may cache the hash blocks. Therefore we need 86 * only ascend the tree until an already-verified hash block is seen, and then 87 * verify the path to that block. 88 * 89 * Return: %true if the data block is valid, else %false. 90 */ 91 static bool 92 verify_data_block(struct inode *inode, struct fsverity_info *vi, 93 const void *data, u64 data_pos, unsigned long max_ra_pages) 94 { 95 const struct merkle_tree_params *params = &vi->tree_params; 96 const unsigned int hsize = params->digest_size; 97 int level; 98 u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE]; 99 const u8 *want_hash; 100 u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE]; 101 /* The hash blocks that are traversed, indexed by level */ 102 struct { 103 /* Page containing the hash block */ 104 struct page *page; 105 /* Mapped address of the hash block (will be within @page) */ 106 const void *addr; 107 /* Index of the hash block in the tree overall */ 108 unsigned long index; 109 /* Byte offset of the wanted hash relative to @addr */ 110 unsigned int hoffset; 111 } hblocks[FS_VERITY_MAX_LEVELS]; 112 /* 113 * The index of the previous level's block within that level; also the 114 * index of that block's hash within the current level. 115 */ 116 u64 hidx = data_pos >> params->log_blocksize; 117 118 /* Up to 1 + FS_VERITY_MAX_LEVELS pages may be mapped at once */ 119 BUILD_BUG_ON(1 + FS_VERITY_MAX_LEVELS > KM_MAX_IDX); 120 121 if (unlikely(data_pos >= inode->i_size)) { 122 /* 123 * This can happen in the data page spanning EOF when the Merkle 124 * tree block size is less than the page size. The Merkle tree 125 * doesn't cover data blocks fully past EOF. But the entire 126 * page spanning EOF can be visible to userspace via a mmap, and 127 * any part past EOF should be all zeroes. Therefore, we need 128 * to verify that any data blocks fully past EOF are all zeroes. 129 */ 130 if (memchr_inv(data, 0, params->block_size)) { 131 fsverity_err(inode, 132 "FILE CORRUPTED! Data past EOF is not zeroed"); 133 return false; 134 } 135 return true; 136 } 137 138 /* 139 * Starting at the leaf level, ascend the tree saving hash blocks along 140 * the way until we find a hash block that has already been verified, or 141 * until we reach the root. 142 */ 143 for (level = 0; level < params->num_levels; level++) { 144 unsigned long next_hidx; 145 unsigned long hblock_idx; 146 pgoff_t hpage_idx; 147 unsigned int hblock_offset_in_page; 148 unsigned int hoffset; 149 struct page *hpage; 150 const void *haddr; 151 152 /* 153 * The index of the block in the current level; also the index 154 * of that block's hash within the next level. 155 */ 156 next_hidx = hidx >> params->log_arity; 157 158 /* Index of the hash block in the tree overall */ 159 hblock_idx = params->level_start[level] + next_hidx; 160 161 /* Index of the hash page in the tree overall */ 162 hpage_idx = hblock_idx >> params->log_blocks_per_page; 163 164 /* Byte offset of the hash block within the page */ 165 hblock_offset_in_page = 166 (hblock_idx << params->log_blocksize) & ~PAGE_MASK; 167 168 /* Byte offset of the hash within the block */ 169 hoffset = (hidx << params->log_digestsize) & 170 (params->block_size - 1); 171 172 hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, 173 hpage_idx, level == 0 ? min(max_ra_pages, 174 params->tree_pages - hpage_idx) : 0); 175 if (IS_ERR(hpage)) { 176 fsverity_err(inode, 177 "Error %ld reading Merkle tree page %lu", 178 PTR_ERR(hpage), hpage_idx); 179 goto error; 180 } 181 haddr = kmap_local_page(hpage) + hblock_offset_in_page; 182 if (is_hash_block_verified(vi, hpage, hblock_idx)) { 183 memcpy(_want_hash, haddr + hoffset, hsize); 184 want_hash = _want_hash; 185 kunmap_local(haddr); 186 put_page(hpage); 187 goto descend; 188 } 189 hblocks[level].page = hpage; 190 hblocks[level].addr = haddr; 191 hblocks[level].index = hblock_idx; 192 hblocks[level].hoffset = hoffset; 193 hidx = next_hidx; 194 } 195 196 want_hash = vi->root_hash; 197 descend: 198 /* Descend the tree verifying hash blocks. */ 199 for (; level > 0; level--) { 200 struct page *hpage = hblocks[level - 1].page; 201 const void *haddr = hblocks[level - 1].addr; 202 unsigned long hblock_idx = hblocks[level - 1].index; 203 unsigned int hoffset = hblocks[level - 1].hoffset; 204 205 if (fsverity_hash_block(params, inode, haddr, real_hash) != 0) 206 goto error; 207 if (memcmp(want_hash, real_hash, hsize) != 0) 208 goto corrupted; 209 /* 210 * Mark the hash block as verified. This must be atomic and 211 * idempotent, as the same hash block might be verified by 212 * multiple threads concurrently. 213 */ 214 if (vi->hash_block_verified) 215 set_bit(hblock_idx, vi->hash_block_verified); 216 else 217 SetPageChecked(hpage); 218 memcpy(_want_hash, haddr + hoffset, hsize); 219 want_hash = _want_hash; 220 kunmap_local(haddr); 221 put_page(hpage); 222 } 223 224 /* Finally, verify the data block. */ 225 if (fsverity_hash_block(params, inode, data, real_hash) != 0) 226 goto error; 227 if (memcmp(want_hash, real_hash, hsize) != 0) 228 goto corrupted; 229 return true; 230 231 corrupted: 232 fsverity_err(inode, 233 "FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN", 234 data_pos, level - 1, 235 params->hash_alg->name, hsize, want_hash, 236 params->hash_alg->name, hsize, real_hash); 237 error: 238 for (; level > 0; level--) { 239 kunmap_local(hblocks[level - 1].addr); 240 put_page(hblocks[level - 1].page); 241 } 242 return false; 243 } 244 245 static bool 246 verify_data_blocks(struct folio *data_folio, size_t len, size_t offset, 247 unsigned long max_ra_pages) 248 { 249 struct inode *inode = data_folio->mapping->host; 250 struct fsverity_info *vi = inode->i_verity_info; 251 const unsigned int block_size = vi->tree_params.block_size; 252 u64 pos = (u64)data_folio->index << PAGE_SHIFT; 253 254 if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size))) 255 return false; 256 if (WARN_ON_ONCE(!folio_test_locked(data_folio) || 257 folio_test_uptodate(data_folio))) 258 return false; 259 do { 260 void *data; 261 bool valid; 262 263 data = kmap_local_folio(data_folio, offset); 264 valid = verify_data_block(inode, vi, data, pos + offset, 265 max_ra_pages); 266 kunmap_local(data); 267 if (!valid) 268 return false; 269 offset += block_size; 270 len -= block_size; 271 } while (len); 272 return true; 273 } 274 275 /** 276 * fsverity_verify_blocks() - verify data in a folio 277 * @folio: the folio containing the data to verify 278 * @len: the length of the data to verify in the folio 279 * @offset: the offset of the data to verify in the folio 280 * 281 * Verify data that has just been read from a verity file. The data must be 282 * located in a pagecache folio that is still locked and not yet uptodate. The 283 * length and offset of the data must be Merkle tree block size aligned. 284 * 285 * Return: %true if the data is valid, else %false. 286 */ 287 bool fsverity_verify_blocks(struct folio *folio, size_t len, size_t offset) 288 { 289 return verify_data_blocks(folio, len, offset, 0); 290 } 291 EXPORT_SYMBOL_GPL(fsverity_verify_blocks); 292 293 #ifdef CONFIG_BLOCK 294 /** 295 * fsverity_verify_bio() - verify a 'read' bio that has just completed 296 * @bio: the bio to verify 297 * 298 * Verify the bio's data against the file's Merkle tree. All bio data segments 299 * must be aligned to the file's Merkle tree block size. If any data fails 300 * verification, then bio->bi_status is set to an error status. 301 * 302 * This is a helper function for use by the ->readahead() method of filesystems 303 * that issue bios to read data directly into the page cache. Filesystems that 304 * populate the page cache without issuing bios (e.g. non block-based 305 * filesystems) must instead call fsverity_verify_page() directly on each page. 306 * All filesystems must also call fsverity_verify_page() on holes. 307 */ 308 void fsverity_verify_bio(struct bio *bio) 309 { 310 struct folio_iter fi; 311 unsigned long max_ra_pages = 0; 312 313 if (bio->bi_opf & REQ_RAHEAD) { 314 /* 315 * If this bio is for data readahead, then we also do readahead 316 * of the first (largest) level of the Merkle tree. Namely, 317 * when a Merkle tree page is read, we also try to piggy-back on 318 * some additional pages -- up to 1/4 the number of data pages. 319 * 320 * This improves sequential read performance, as it greatly 321 * reduces the number of I/O requests made to the Merkle tree. 322 */ 323 max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2); 324 } 325 326 bio_for_each_folio_all(fi, bio) { 327 if (!verify_data_blocks(fi.folio, fi.length, fi.offset, 328 max_ra_pages)) { 329 bio->bi_status = BLK_STS_IOERR; 330 break; 331 } 332 } 333 } 334 EXPORT_SYMBOL_GPL(fsverity_verify_bio); 335 #endif /* CONFIG_BLOCK */ 336 337 /** 338 * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue 339 * @work: the work to enqueue 340 * 341 * Enqueue verification work for asynchronous processing. 342 */ 343 void fsverity_enqueue_verify_work(struct work_struct *work) 344 { 345 queue_work(fsverity_read_workqueue, work); 346 } 347 EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work); 348 349 int __init fsverity_init_workqueue(void) 350 { 351 /* 352 * Use a high-priority workqueue to prioritize verification work, which 353 * blocks reads from completing, over regular application tasks. 354 * 355 * For performance reasons, don't use an unbound workqueue. Using an 356 * unbound workqueue for crypto operations causes excessive scheduler 357 * latency on ARM64. 358 */ 359 fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue", 360 WQ_HIGHPRI, 361 num_online_cpus()); 362 if (!fsverity_read_workqueue) 363 return -ENOMEM; 364 return 0; 365 } 366 367 void __init fsverity_exit_workqueue(void) 368 { 369 destroy_workqueue(fsverity_read_workqueue); 370 fsverity_read_workqueue = NULL; 371 } 372