xref: /linux/fs/userfaultfd.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
35 
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
37 
38 #ifdef CONFIG_SYSCTL
39 static struct ctl_table vm_userfaultfd_table[] = {
40 	{
41 		.procname	= "unprivileged_userfaultfd",
42 		.data		= &sysctl_unprivileged_userfaultfd,
43 		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
44 		.mode		= 0644,
45 		.proc_handler	= proc_dointvec_minmax,
46 		.extra1		= SYSCTL_ZERO,
47 		.extra2		= SYSCTL_ONE,
48 	},
49 };
50 #endif
51 
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53 
54 struct userfaultfd_fork_ctx {
55 	struct userfaultfd_ctx *orig;
56 	struct userfaultfd_ctx *new;
57 	struct list_head list;
58 };
59 
60 struct userfaultfd_unmap_ctx {
61 	struct userfaultfd_ctx *ctx;
62 	unsigned long start;
63 	unsigned long end;
64 	struct list_head list;
65 };
66 
67 struct userfaultfd_wait_queue {
68 	struct uffd_msg msg;
69 	wait_queue_entry_t wq;
70 	struct userfaultfd_ctx *ctx;
71 	bool waken;
72 };
73 
74 struct userfaultfd_wake_range {
75 	unsigned long start;
76 	unsigned long len;
77 };
78 
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
81 
82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83 {
84 	return ctx->features & UFFD_FEATURE_INITIALIZED;
85 }
86 
87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88 {
89 	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
90 }
91 
92 /*
93  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
94  * meaningful when userfaultfd_wp()==true on the vma and when it's
95  * anonymous.
96  */
97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98 {
99 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
100 
101 	if (!ctx)
102 		return false;
103 
104 	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
105 }
106 
107 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
108 				     vm_flags_t flags)
109 {
110 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
111 
112 	vm_flags_reset(vma, flags);
113 	/*
114 	 * For shared mappings, we want to enable writenotify while
115 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
116 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
117 	 */
118 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
119 		vma_set_page_prot(vma);
120 }
121 
122 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
123 				     int wake_flags, void *key)
124 {
125 	struct userfaultfd_wake_range *range = key;
126 	int ret;
127 	struct userfaultfd_wait_queue *uwq;
128 	unsigned long start, len;
129 
130 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
131 	ret = 0;
132 	/* len == 0 means wake all */
133 	start = range->start;
134 	len = range->len;
135 	if (len && (start > uwq->msg.arg.pagefault.address ||
136 		    start + len <= uwq->msg.arg.pagefault.address))
137 		goto out;
138 	WRITE_ONCE(uwq->waken, true);
139 	/*
140 	 * The Program-Order guarantees provided by the scheduler
141 	 * ensure uwq->waken is visible before the task is woken.
142 	 */
143 	ret = wake_up_state(wq->private, mode);
144 	if (ret) {
145 		/*
146 		 * Wake only once, autoremove behavior.
147 		 *
148 		 * After the effect of list_del_init is visible to the other
149 		 * CPUs, the waitqueue may disappear from under us, see the
150 		 * !list_empty_careful() in handle_userfault().
151 		 *
152 		 * try_to_wake_up() has an implicit smp_mb(), and the
153 		 * wq->private is read before calling the extern function
154 		 * "wake_up_state" (which in turns calls try_to_wake_up).
155 		 */
156 		list_del_init(&wq->entry);
157 	}
158 out:
159 	return ret;
160 }
161 
162 /**
163  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
164  * context.
165  * @ctx: [in] Pointer to the userfaultfd context.
166  */
167 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
168 {
169 	refcount_inc(&ctx->refcount);
170 }
171 
172 /**
173  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
174  * context.
175  * @ctx: [in] Pointer to userfaultfd context.
176  *
177  * The userfaultfd context reference must have been previously acquired either
178  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
179  */
180 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
181 {
182 	if (refcount_dec_and_test(&ctx->refcount)) {
183 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
184 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
185 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
186 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
187 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
188 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
189 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
190 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
191 		mmdrop(ctx->mm);
192 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
193 	}
194 }
195 
196 static inline void msg_init(struct uffd_msg *msg)
197 {
198 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
199 	/*
200 	 * Must use memset to zero out the paddings or kernel data is
201 	 * leaked to userland.
202 	 */
203 	memset(msg, 0, sizeof(struct uffd_msg));
204 }
205 
206 static inline struct uffd_msg userfault_msg(unsigned long address,
207 					    unsigned long real_address,
208 					    unsigned int flags,
209 					    unsigned long reason,
210 					    unsigned int features)
211 {
212 	struct uffd_msg msg;
213 
214 	msg_init(&msg);
215 	msg.event = UFFD_EVENT_PAGEFAULT;
216 
217 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
218 				    real_address : address;
219 
220 	/*
221 	 * These flags indicate why the userfault occurred:
222 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
223 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
224 	 * - Neither of these flags being set indicates a MISSING fault.
225 	 *
226 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
227 	 * fault. Otherwise, it was a read fault.
228 	 */
229 	if (flags & FAULT_FLAG_WRITE)
230 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
231 	if (reason & VM_UFFD_WP)
232 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
233 	if (reason & VM_UFFD_MINOR)
234 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
235 	if (features & UFFD_FEATURE_THREAD_ID)
236 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
237 	return msg;
238 }
239 
240 #ifdef CONFIG_HUGETLB_PAGE
241 /*
242  * Same functionality as userfaultfd_must_wait below with modifications for
243  * hugepmd ranges.
244  */
245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246 					      struct vm_fault *vmf,
247 					      unsigned long reason)
248 {
249 	struct vm_area_struct *vma = vmf->vma;
250 	pte_t *ptep, pte;
251 	bool ret = true;
252 
253 	assert_fault_locked(vmf);
254 
255 	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
256 	if (!ptep)
257 		goto out;
258 
259 	ret = false;
260 	pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep);
261 
262 	/*
263 	 * Lockless access: we're in a wait_event so it's ok if it
264 	 * changes under us.  PTE markers should be handled the same as none
265 	 * ptes here.
266 	 */
267 	if (huge_pte_none_mostly(pte))
268 		ret = true;
269 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
270 		ret = true;
271 out:
272 	return ret;
273 }
274 #else
275 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
276 					      struct vm_fault *vmf,
277 					      unsigned long reason)
278 {
279 	return false;	/* should never get here */
280 }
281 #endif /* CONFIG_HUGETLB_PAGE */
282 
283 /*
284  * Verify the pagetables are still not ok after having reigstered into
285  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
286  * userfault that has already been resolved, if userfaultfd_read_iter and
287  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
288  * threads.
289  */
290 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
291 					 struct vm_fault *vmf,
292 					 unsigned long reason)
293 {
294 	struct mm_struct *mm = ctx->mm;
295 	unsigned long address = vmf->address;
296 	pgd_t *pgd;
297 	p4d_t *p4d;
298 	pud_t *pud;
299 	pmd_t *pmd, _pmd;
300 	pte_t *pte;
301 	pte_t ptent;
302 	bool ret = true;
303 
304 	assert_fault_locked(vmf);
305 
306 	pgd = pgd_offset(mm, address);
307 	if (!pgd_present(*pgd))
308 		goto out;
309 	p4d = p4d_offset(pgd, address);
310 	if (!p4d_present(*p4d))
311 		goto out;
312 	pud = pud_offset(p4d, address);
313 	if (!pud_present(*pud))
314 		goto out;
315 	pmd = pmd_offset(pud, address);
316 again:
317 	_pmd = pmdp_get_lockless(pmd);
318 	if (pmd_none(_pmd))
319 		goto out;
320 
321 	ret = false;
322 	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
323 		goto out;
324 
325 	if (pmd_trans_huge(_pmd)) {
326 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327 			ret = true;
328 		goto out;
329 	}
330 
331 	pte = pte_offset_map(pmd, address);
332 	if (!pte) {
333 		ret = true;
334 		goto again;
335 	}
336 	/*
337 	 * Lockless access: we're in a wait_event so it's ok if it
338 	 * changes under us.  PTE markers should be handled the same as none
339 	 * ptes here.
340 	 */
341 	ptent = ptep_get(pte);
342 	if (pte_none_mostly(ptent))
343 		ret = true;
344 	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
345 		ret = true;
346 	pte_unmap(pte);
347 
348 out:
349 	return ret;
350 }
351 
352 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
353 {
354 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
355 		return TASK_INTERRUPTIBLE;
356 
357 	if (flags & FAULT_FLAG_KILLABLE)
358 		return TASK_KILLABLE;
359 
360 	return TASK_UNINTERRUPTIBLE;
361 }
362 
363 /*
364  * The locking rules involved in returning VM_FAULT_RETRY depending on
365  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
366  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
367  * recommendation in __lock_page_or_retry is not an understatement.
368  *
369  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
370  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
371  * not set.
372  *
373  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
374  * set, VM_FAULT_RETRY can still be returned if and only if there are
375  * fatal_signal_pending()s, and the mmap_lock must be released before
376  * returning it.
377  */
378 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
379 {
380 	struct vm_area_struct *vma = vmf->vma;
381 	struct mm_struct *mm = vma->vm_mm;
382 	struct userfaultfd_ctx *ctx;
383 	struct userfaultfd_wait_queue uwq;
384 	vm_fault_t ret = VM_FAULT_SIGBUS;
385 	bool must_wait;
386 	unsigned int blocking_state;
387 
388 	/*
389 	 * We don't do userfault handling for the final child pid update.
390 	 *
391 	 * We also don't do userfault handling during
392 	 * coredumping. hugetlbfs has the special
393 	 * hugetlb_follow_page_mask() to skip missing pages in the
394 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
395 	 * the no_page_table() helper in follow_page_mask(), but the
396 	 * shmem_vm_ops->fault method is invoked even during
397 	 * coredumping and it ends up here.
398 	 */
399 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
400 		goto out;
401 
402 	assert_fault_locked(vmf);
403 
404 	ctx = vma->vm_userfaultfd_ctx.ctx;
405 	if (!ctx)
406 		goto out;
407 
408 	BUG_ON(ctx->mm != mm);
409 
410 	/* Any unrecognized flag is a bug. */
411 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
412 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
413 	VM_BUG_ON(!reason || (reason & (reason - 1)));
414 
415 	if (ctx->features & UFFD_FEATURE_SIGBUS)
416 		goto out;
417 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
418 		goto out;
419 
420 	/*
421 	 * If it's already released don't get it. This avoids to loop
422 	 * in __get_user_pages if userfaultfd_release waits on the
423 	 * caller of handle_userfault to release the mmap_lock.
424 	 */
425 	if (unlikely(READ_ONCE(ctx->released))) {
426 		/*
427 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
428 		 * cooperative manager can close the uffd after the
429 		 * last UFFDIO_COPY, without risking to trigger an
430 		 * involuntary SIGBUS if the process was starting the
431 		 * userfaultfd while the userfaultfd was still armed
432 		 * (but after the last UFFDIO_COPY). If the uffd
433 		 * wasn't already closed when the userfault reached
434 		 * this point, that would normally be solved by
435 		 * userfaultfd_must_wait returning 'false'.
436 		 *
437 		 * If we were to return VM_FAULT_SIGBUS here, the non
438 		 * cooperative manager would be instead forced to
439 		 * always call UFFDIO_UNREGISTER before it can safely
440 		 * close the uffd.
441 		 */
442 		ret = VM_FAULT_NOPAGE;
443 		goto out;
444 	}
445 
446 	/*
447 	 * Check that we can return VM_FAULT_RETRY.
448 	 *
449 	 * NOTE: it should become possible to return VM_FAULT_RETRY
450 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
451 	 * -EBUSY failures, if the userfaultfd is to be extended for
452 	 * VM_UFFD_WP tracking and we intend to arm the userfault
453 	 * without first stopping userland access to the memory. For
454 	 * VM_UFFD_MISSING userfaults this is enough for now.
455 	 */
456 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
457 		/*
458 		 * Validate the invariant that nowait must allow retry
459 		 * to be sure not to return SIGBUS erroneously on
460 		 * nowait invocations.
461 		 */
462 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
463 #ifdef CONFIG_DEBUG_VM
464 		if (printk_ratelimit()) {
465 			printk(KERN_WARNING
466 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
467 			       vmf->flags);
468 			dump_stack();
469 		}
470 #endif
471 		goto out;
472 	}
473 
474 	/*
475 	 * Handle nowait, not much to do other than tell it to retry
476 	 * and wait.
477 	 */
478 	ret = VM_FAULT_RETRY;
479 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
480 		goto out;
481 
482 	/* take the reference before dropping the mmap_lock */
483 	userfaultfd_ctx_get(ctx);
484 
485 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
486 	uwq.wq.private = current;
487 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
488 				reason, ctx->features);
489 	uwq.ctx = ctx;
490 	uwq.waken = false;
491 
492 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
493 
494         /*
495          * Take the vma lock now, in order to safely call
496          * userfaultfd_huge_must_wait() later. Since acquiring the
497          * (sleepable) vma lock can modify the current task state, that
498          * must be before explicitly calling set_current_state().
499          */
500 	if (is_vm_hugetlb_page(vma))
501 		hugetlb_vma_lock_read(vma);
502 
503 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
504 	/*
505 	 * After the __add_wait_queue the uwq is visible to userland
506 	 * through poll/read().
507 	 */
508 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
509 	/*
510 	 * The smp_mb() after __set_current_state prevents the reads
511 	 * following the spin_unlock to happen before the list_add in
512 	 * __add_wait_queue.
513 	 */
514 	set_current_state(blocking_state);
515 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
516 
517 	if (!is_vm_hugetlb_page(vma))
518 		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
519 	else
520 		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
521 	if (is_vm_hugetlb_page(vma))
522 		hugetlb_vma_unlock_read(vma);
523 	release_fault_lock(vmf);
524 
525 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
526 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
527 		schedule();
528 	}
529 
530 	__set_current_state(TASK_RUNNING);
531 
532 	/*
533 	 * Here we race with the list_del; list_add in
534 	 * userfaultfd_ctx_read(), however because we don't ever run
535 	 * list_del_init() to refile across the two lists, the prev
536 	 * and next pointers will never point to self. list_add also
537 	 * would never let any of the two pointers to point to
538 	 * self. So list_empty_careful won't risk to see both pointers
539 	 * pointing to self at any time during the list refile. The
540 	 * only case where list_del_init() is called is the full
541 	 * removal in the wake function and there we don't re-list_add
542 	 * and it's fine not to block on the spinlock. The uwq on this
543 	 * kernel stack can be released after the list_del_init.
544 	 */
545 	if (!list_empty_careful(&uwq.wq.entry)) {
546 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
547 		/*
548 		 * No need of list_del_init(), the uwq on the stack
549 		 * will be freed shortly anyway.
550 		 */
551 		list_del(&uwq.wq.entry);
552 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
553 	}
554 
555 	/*
556 	 * ctx may go away after this if the userfault pseudo fd is
557 	 * already released.
558 	 */
559 	userfaultfd_ctx_put(ctx);
560 
561 out:
562 	return ret;
563 }
564 
565 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
566 					      struct userfaultfd_wait_queue *ewq)
567 {
568 	struct userfaultfd_ctx *release_new_ctx;
569 
570 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
571 		goto out;
572 
573 	ewq->ctx = ctx;
574 	init_waitqueue_entry(&ewq->wq, current);
575 	release_new_ctx = NULL;
576 
577 	spin_lock_irq(&ctx->event_wqh.lock);
578 	/*
579 	 * After the __add_wait_queue the uwq is visible to userland
580 	 * through poll/read().
581 	 */
582 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
583 	for (;;) {
584 		set_current_state(TASK_KILLABLE);
585 		if (ewq->msg.event == 0)
586 			break;
587 		if (READ_ONCE(ctx->released) ||
588 		    fatal_signal_pending(current)) {
589 			/*
590 			 * &ewq->wq may be queued in fork_event, but
591 			 * __remove_wait_queue ignores the head
592 			 * parameter. It would be a problem if it
593 			 * didn't.
594 			 */
595 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
596 			if (ewq->msg.event == UFFD_EVENT_FORK) {
597 				struct userfaultfd_ctx *new;
598 
599 				new = (struct userfaultfd_ctx *)
600 					(unsigned long)
601 					ewq->msg.arg.reserved.reserved1;
602 				release_new_ctx = new;
603 			}
604 			break;
605 		}
606 
607 		spin_unlock_irq(&ctx->event_wqh.lock);
608 
609 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
610 		schedule();
611 
612 		spin_lock_irq(&ctx->event_wqh.lock);
613 	}
614 	__set_current_state(TASK_RUNNING);
615 	spin_unlock_irq(&ctx->event_wqh.lock);
616 
617 	if (release_new_ctx) {
618 		struct vm_area_struct *vma;
619 		struct mm_struct *mm = release_new_ctx->mm;
620 		VMA_ITERATOR(vmi, mm, 0);
621 
622 		/* the various vma->vm_userfaultfd_ctx still points to it */
623 		mmap_write_lock(mm);
624 		for_each_vma(vmi, vma) {
625 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
626 				vma_start_write(vma);
627 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
628 				userfaultfd_set_vm_flags(vma,
629 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
630 			}
631 		}
632 		mmap_write_unlock(mm);
633 
634 		userfaultfd_ctx_put(release_new_ctx);
635 	}
636 
637 	/*
638 	 * ctx may go away after this if the userfault pseudo fd is
639 	 * already released.
640 	 */
641 out:
642 	atomic_dec(&ctx->mmap_changing);
643 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
644 	userfaultfd_ctx_put(ctx);
645 }
646 
647 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
648 				       struct userfaultfd_wait_queue *ewq)
649 {
650 	ewq->msg.event = 0;
651 	wake_up_locked(&ctx->event_wqh);
652 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
653 }
654 
655 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
656 {
657 	struct userfaultfd_ctx *ctx = NULL, *octx;
658 	struct userfaultfd_fork_ctx *fctx;
659 
660 	octx = vma->vm_userfaultfd_ctx.ctx;
661 	if (!octx)
662 		return 0;
663 
664 	if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665 		vma_start_write(vma);
666 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
667 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
668 		return 0;
669 	}
670 
671 	list_for_each_entry(fctx, fcs, list)
672 		if (fctx->orig == octx) {
673 			ctx = fctx->new;
674 			break;
675 		}
676 
677 	if (!ctx) {
678 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
679 		if (!fctx)
680 			return -ENOMEM;
681 
682 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
683 		if (!ctx) {
684 			kfree(fctx);
685 			return -ENOMEM;
686 		}
687 
688 		refcount_set(&ctx->refcount, 1);
689 		ctx->flags = octx->flags;
690 		ctx->features = octx->features;
691 		ctx->released = false;
692 		init_rwsem(&ctx->map_changing_lock);
693 		atomic_set(&ctx->mmap_changing, 0);
694 		ctx->mm = vma->vm_mm;
695 		mmgrab(ctx->mm);
696 
697 		userfaultfd_ctx_get(octx);
698 		down_write(&octx->map_changing_lock);
699 		atomic_inc(&octx->mmap_changing);
700 		up_write(&octx->map_changing_lock);
701 		fctx->orig = octx;
702 		fctx->new = ctx;
703 		list_add_tail(&fctx->list, fcs);
704 	}
705 
706 	vma->vm_userfaultfd_ctx.ctx = ctx;
707 	return 0;
708 }
709 
710 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
711 {
712 	struct userfaultfd_ctx *ctx = fctx->orig;
713 	struct userfaultfd_wait_queue ewq;
714 
715 	msg_init(&ewq.msg);
716 
717 	ewq.msg.event = UFFD_EVENT_FORK;
718 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
719 
720 	userfaultfd_event_wait_completion(ctx, &ewq);
721 }
722 
723 void dup_userfaultfd_complete(struct list_head *fcs)
724 {
725 	struct userfaultfd_fork_ctx *fctx, *n;
726 
727 	list_for_each_entry_safe(fctx, n, fcs, list) {
728 		dup_fctx(fctx);
729 		list_del(&fctx->list);
730 		kfree(fctx);
731 	}
732 }
733 
734 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
735 			     struct vm_userfaultfd_ctx *vm_ctx)
736 {
737 	struct userfaultfd_ctx *ctx;
738 
739 	ctx = vma->vm_userfaultfd_ctx.ctx;
740 
741 	if (!ctx)
742 		return;
743 
744 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
745 		vm_ctx->ctx = ctx;
746 		userfaultfd_ctx_get(ctx);
747 		down_write(&ctx->map_changing_lock);
748 		atomic_inc(&ctx->mmap_changing);
749 		up_write(&ctx->map_changing_lock);
750 	} else {
751 		/* Drop uffd context if remap feature not enabled */
752 		vma_start_write(vma);
753 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
754 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
755 	}
756 }
757 
758 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
759 				 unsigned long from, unsigned long to,
760 				 unsigned long len)
761 {
762 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
763 	struct userfaultfd_wait_queue ewq;
764 
765 	if (!ctx)
766 		return;
767 
768 	if (to & ~PAGE_MASK) {
769 		userfaultfd_ctx_put(ctx);
770 		return;
771 	}
772 
773 	msg_init(&ewq.msg);
774 
775 	ewq.msg.event = UFFD_EVENT_REMAP;
776 	ewq.msg.arg.remap.from = from;
777 	ewq.msg.arg.remap.to = to;
778 	ewq.msg.arg.remap.len = len;
779 
780 	userfaultfd_event_wait_completion(ctx, &ewq);
781 }
782 
783 bool userfaultfd_remove(struct vm_area_struct *vma,
784 			unsigned long start, unsigned long end)
785 {
786 	struct mm_struct *mm = vma->vm_mm;
787 	struct userfaultfd_ctx *ctx;
788 	struct userfaultfd_wait_queue ewq;
789 
790 	ctx = vma->vm_userfaultfd_ctx.ctx;
791 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
792 		return true;
793 
794 	userfaultfd_ctx_get(ctx);
795 	down_write(&ctx->map_changing_lock);
796 	atomic_inc(&ctx->mmap_changing);
797 	up_write(&ctx->map_changing_lock);
798 	mmap_read_unlock(mm);
799 
800 	msg_init(&ewq.msg);
801 
802 	ewq.msg.event = UFFD_EVENT_REMOVE;
803 	ewq.msg.arg.remove.start = start;
804 	ewq.msg.arg.remove.end = end;
805 
806 	userfaultfd_event_wait_completion(ctx, &ewq);
807 
808 	return false;
809 }
810 
811 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
812 			  unsigned long start, unsigned long end)
813 {
814 	struct userfaultfd_unmap_ctx *unmap_ctx;
815 
816 	list_for_each_entry(unmap_ctx, unmaps, list)
817 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
818 		    unmap_ctx->end == end)
819 			return true;
820 
821 	return false;
822 }
823 
824 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
825 			   unsigned long end, struct list_head *unmaps)
826 {
827 	struct userfaultfd_unmap_ctx *unmap_ctx;
828 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
829 
830 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
831 	    has_unmap_ctx(ctx, unmaps, start, end))
832 		return 0;
833 
834 	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
835 	if (!unmap_ctx)
836 		return -ENOMEM;
837 
838 	userfaultfd_ctx_get(ctx);
839 	down_write(&ctx->map_changing_lock);
840 	atomic_inc(&ctx->mmap_changing);
841 	up_write(&ctx->map_changing_lock);
842 	unmap_ctx->ctx = ctx;
843 	unmap_ctx->start = start;
844 	unmap_ctx->end = end;
845 	list_add_tail(&unmap_ctx->list, unmaps);
846 
847 	return 0;
848 }
849 
850 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
851 {
852 	struct userfaultfd_unmap_ctx *ctx, *n;
853 	struct userfaultfd_wait_queue ewq;
854 
855 	list_for_each_entry_safe(ctx, n, uf, list) {
856 		msg_init(&ewq.msg);
857 
858 		ewq.msg.event = UFFD_EVENT_UNMAP;
859 		ewq.msg.arg.remove.start = ctx->start;
860 		ewq.msg.arg.remove.end = ctx->end;
861 
862 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
863 
864 		list_del(&ctx->list);
865 		kfree(ctx);
866 	}
867 }
868 
869 static int userfaultfd_release(struct inode *inode, struct file *file)
870 {
871 	struct userfaultfd_ctx *ctx = file->private_data;
872 	struct mm_struct *mm = ctx->mm;
873 	struct vm_area_struct *vma, *prev;
874 	/* len == 0 means wake all */
875 	struct userfaultfd_wake_range range = { .len = 0, };
876 	unsigned long new_flags;
877 	VMA_ITERATOR(vmi, mm, 0);
878 
879 	WRITE_ONCE(ctx->released, true);
880 
881 	if (!mmget_not_zero(mm))
882 		goto wakeup;
883 
884 	/*
885 	 * Flush page faults out of all CPUs. NOTE: all page faults
886 	 * must be retried without returning VM_FAULT_SIGBUS if
887 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
888 	 * changes while handle_userfault released the mmap_lock. So
889 	 * it's critical that released is set to true (above), before
890 	 * taking the mmap_lock for writing.
891 	 */
892 	mmap_write_lock(mm);
893 	prev = NULL;
894 	for_each_vma(vmi, vma) {
895 		cond_resched();
896 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
897 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
898 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
899 			prev = vma;
900 			continue;
901 		}
902 		/* Reset ptes for the whole vma range if wr-protected */
903 		if (userfaultfd_wp(vma))
904 			uffd_wp_range(vma, vma->vm_start,
905 				      vma->vm_end - vma->vm_start, false);
906 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
907 		vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
908 					    vma->vm_end, new_flags,
909 					    NULL_VM_UFFD_CTX);
910 
911 		vma_start_write(vma);
912 		userfaultfd_set_vm_flags(vma, new_flags);
913 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
914 
915 		prev = vma;
916 	}
917 	mmap_write_unlock(mm);
918 	mmput(mm);
919 wakeup:
920 	/*
921 	 * After no new page faults can wait on this fault_*wqh, flush
922 	 * the last page faults that may have been already waiting on
923 	 * the fault_*wqh.
924 	 */
925 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
926 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
927 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
928 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
929 
930 	/* Flush pending events that may still wait on event_wqh */
931 	wake_up_all(&ctx->event_wqh);
932 
933 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
934 	userfaultfd_ctx_put(ctx);
935 	return 0;
936 }
937 
938 /* fault_pending_wqh.lock must be hold by the caller */
939 static inline struct userfaultfd_wait_queue *find_userfault_in(
940 		wait_queue_head_t *wqh)
941 {
942 	wait_queue_entry_t *wq;
943 	struct userfaultfd_wait_queue *uwq;
944 
945 	lockdep_assert_held(&wqh->lock);
946 
947 	uwq = NULL;
948 	if (!waitqueue_active(wqh))
949 		goto out;
950 	/* walk in reverse to provide FIFO behavior to read userfaults */
951 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
952 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
953 out:
954 	return uwq;
955 }
956 
957 static inline struct userfaultfd_wait_queue *find_userfault(
958 		struct userfaultfd_ctx *ctx)
959 {
960 	return find_userfault_in(&ctx->fault_pending_wqh);
961 }
962 
963 static inline struct userfaultfd_wait_queue *find_userfault_evt(
964 		struct userfaultfd_ctx *ctx)
965 {
966 	return find_userfault_in(&ctx->event_wqh);
967 }
968 
969 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
970 {
971 	struct userfaultfd_ctx *ctx = file->private_data;
972 	__poll_t ret;
973 
974 	poll_wait(file, &ctx->fd_wqh, wait);
975 
976 	if (!userfaultfd_is_initialized(ctx))
977 		return EPOLLERR;
978 
979 	/*
980 	 * poll() never guarantees that read won't block.
981 	 * userfaults can be waken before they're read().
982 	 */
983 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
984 		return EPOLLERR;
985 	/*
986 	 * lockless access to see if there are pending faults
987 	 * __pollwait last action is the add_wait_queue but
988 	 * the spin_unlock would allow the waitqueue_active to
989 	 * pass above the actual list_add inside
990 	 * add_wait_queue critical section. So use a full
991 	 * memory barrier to serialize the list_add write of
992 	 * add_wait_queue() with the waitqueue_active read
993 	 * below.
994 	 */
995 	ret = 0;
996 	smp_mb();
997 	if (waitqueue_active(&ctx->fault_pending_wqh))
998 		ret = EPOLLIN;
999 	else if (waitqueue_active(&ctx->event_wqh))
1000 		ret = EPOLLIN;
1001 
1002 	return ret;
1003 }
1004 
1005 static const struct file_operations userfaultfd_fops;
1006 
1007 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1008 				  struct inode *inode,
1009 				  struct uffd_msg *msg)
1010 {
1011 	int fd;
1012 
1013 	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1014 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1015 	if (fd < 0)
1016 		return fd;
1017 
1018 	msg->arg.reserved.reserved1 = 0;
1019 	msg->arg.fork.ufd = fd;
1020 	return 0;
1021 }
1022 
1023 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1024 				    struct uffd_msg *msg, struct inode *inode)
1025 {
1026 	ssize_t ret;
1027 	DECLARE_WAITQUEUE(wait, current);
1028 	struct userfaultfd_wait_queue *uwq;
1029 	/*
1030 	 * Handling fork event requires sleeping operations, so
1031 	 * we drop the event_wqh lock, then do these ops, then
1032 	 * lock it back and wake up the waiter. While the lock is
1033 	 * dropped the ewq may go away so we keep track of it
1034 	 * carefully.
1035 	 */
1036 	LIST_HEAD(fork_event);
1037 	struct userfaultfd_ctx *fork_nctx = NULL;
1038 
1039 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1040 	spin_lock_irq(&ctx->fd_wqh.lock);
1041 	__add_wait_queue(&ctx->fd_wqh, &wait);
1042 	for (;;) {
1043 		set_current_state(TASK_INTERRUPTIBLE);
1044 		spin_lock(&ctx->fault_pending_wqh.lock);
1045 		uwq = find_userfault(ctx);
1046 		if (uwq) {
1047 			/*
1048 			 * Use a seqcount to repeat the lockless check
1049 			 * in wake_userfault() to avoid missing
1050 			 * wakeups because during the refile both
1051 			 * waitqueue could become empty if this is the
1052 			 * only userfault.
1053 			 */
1054 			write_seqcount_begin(&ctx->refile_seq);
1055 
1056 			/*
1057 			 * The fault_pending_wqh.lock prevents the uwq
1058 			 * to disappear from under us.
1059 			 *
1060 			 * Refile this userfault from
1061 			 * fault_pending_wqh to fault_wqh, it's not
1062 			 * pending anymore after we read it.
1063 			 *
1064 			 * Use list_del() by hand (as
1065 			 * userfaultfd_wake_function also uses
1066 			 * list_del_init() by hand) to be sure nobody
1067 			 * changes __remove_wait_queue() to use
1068 			 * list_del_init() in turn breaking the
1069 			 * !list_empty_careful() check in
1070 			 * handle_userfault(). The uwq->wq.head list
1071 			 * must never be empty at any time during the
1072 			 * refile, or the waitqueue could disappear
1073 			 * from under us. The "wait_queue_head_t"
1074 			 * parameter of __remove_wait_queue() is unused
1075 			 * anyway.
1076 			 */
1077 			list_del(&uwq->wq.entry);
1078 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1079 
1080 			write_seqcount_end(&ctx->refile_seq);
1081 
1082 			/* careful to always initialize msg if ret == 0 */
1083 			*msg = uwq->msg;
1084 			spin_unlock(&ctx->fault_pending_wqh.lock);
1085 			ret = 0;
1086 			break;
1087 		}
1088 		spin_unlock(&ctx->fault_pending_wqh.lock);
1089 
1090 		spin_lock(&ctx->event_wqh.lock);
1091 		uwq = find_userfault_evt(ctx);
1092 		if (uwq) {
1093 			*msg = uwq->msg;
1094 
1095 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1096 				fork_nctx = (struct userfaultfd_ctx *)
1097 					(unsigned long)
1098 					uwq->msg.arg.reserved.reserved1;
1099 				list_move(&uwq->wq.entry, &fork_event);
1100 				/*
1101 				 * fork_nctx can be freed as soon as
1102 				 * we drop the lock, unless we take a
1103 				 * reference on it.
1104 				 */
1105 				userfaultfd_ctx_get(fork_nctx);
1106 				spin_unlock(&ctx->event_wqh.lock);
1107 				ret = 0;
1108 				break;
1109 			}
1110 
1111 			userfaultfd_event_complete(ctx, uwq);
1112 			spin_unlock(&ctx->event_wqh.lock);
1113 			ret = 0;
1114 			break;
1115 		}
1116 		spin_unlock(&ctx->event_wqh.lock);
1117 
1118 		if (signal_pending(current)) {
1119 			ret = -ERESTARTSYS;
1120 			break;
1121 		}
1122 		if (no_wait) {
1123 			ret = -EAGAIN;
1124 			break;
1125 		}
1126 		spin_unlock_irq(&ctx->fd_wqh.lock);
1127 		schedule();
1128 		spin_lock_irq(&ctx->fd_wqh.lock);
1129 	}
1130 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1131 	__set_current_state(TASK_RUNNING);
1132 	spin_unlock_irq(&ctx->fd_wqh.lock);
1133 
1134 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1135 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1136 		spin_lock_irq(&ctx->event_wqh.lock);
1137 		if (!list_empty(&fork_event)) {
1138 			/*
1139 			 * The fork thread didn't abort, so we can
1140 			 * drop the temporary refcount.
1141 			 */
1142 			userfaultfd_ctx_put(fork_nctx);
1143 
1144 			uwq = list_first_entry(&fork_event,
1145 					       typeof(*uwq),
1146 					       wq.entry);
1147 			/*
1148 			 * If fork_event list wasn't empty and in turn
1149 			 * the event wasn't already released by fork
1150 			 * (the event is allocated on fork kernel
1151 			 * stack), put the event back to its place in
1152 			 * the event_wq. fork_event head will be freed
1153 			 * as soon as we return so the event cannot
1154 			 * stay queued there no matter the current
1155 			 * "ret" value.
1156 			 */
1157 			list_del(&uwq->wq.entry);
1158 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1159 
1160 			/*
1161 			 * Leave the event in the waitqueue and report
1162 			 * error to userland if we failed to resolve
1163 			 * the userfault fork.
1164 			 */
1165 			if (likely(!ret))
1166 				userfaultfd_event_complete(ctx, uwq);
1167 		} else {
1168 			/*
1169 			 * Here the fork thread aborted and the
1170 			 * refcount from the fork thread on fork_nctx
1171 			 * has already been released. We still hold
1172 			 * the reference we took before releasing the
1173 			 * lock above. If resolve_userfault_fork
1174 			 * failed we've to drop it because the
1175 			 * fork_nctx has to be freed in such case. If
1176 			 * it succeeded we'll hold it because the new
1177 			 * uffd references it.
1178 			 */
1179 			if (ret)
1180 				userfaultfd_ctx_put(fork_nctx);
1181 		}
1182 		spin_unlock_irq(&ctx->event_wqh.lock);
1183 	}
1184 
1185 	return ret;
1186 }
1187 
1188 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1189 {
1190 	struct file *file = iocb->ki_filp;
1191 	struct userfaultfd_ctx *ctx = file->private_data;
1192 	ssize_t _ret, ret = 0;
1193 	struct uffd_msg msg;
1194 	struct inode *inode = file_inode(file);
1195 	bool no_wait;
1196 
1197 	if (!userfaultfd_is_initialized(ctx))
1198 		return -EINVAL;
1199 
1200 	no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1201 	for (;;) {
1202 		if (iov_iter_count(to) < sizeof(msg))
1203 			return ret ? ret : -EINVAL;
1204 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1205 		if (_ret < 0)
1206 			return ret ? ret : _ret;
1207 		_ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1208 		if (_ret)
1209 			return ret ? ret : -EFAULT;
1210 		ret += sizeof(msg);
1211 		/*
1212 		 * Allow to read more than one fault at time but only
1213 		 * block if waiting for the very first one.
1214 		 */
1215 		no_wait = true;
1216 	}
1217 }
1218 
1219 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1220 			     struct userfaultfd_wake_range *range)
1221 {
1222 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1223 	/* wake all in the range and autoremove */
1224 	if (waitqueue_active(&ctx->fault_pending_wqh))
1225 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1226 				     range);
1227 	if (waitqueue_active(&ctx->fault_wqh))
1228 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1229 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1230 }
1231 
1232 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1233 					   struct userfaultfd_wake_range *range)
1234 {
1235 	unsigned seq;
1236 	bool need_wakeup;
1237 
1238 	/*
1239 	 * To be sure waitqueue_active() is not reordered by the CPU
1240 	 * before the pagetable update, use an explicit SMP memory
1241 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1242 	 * have release semantics that can allow the
1243 	 * waitqueue_active() to be reordered before the pte update.
1244 	 */
1245 	smp_mb();
1246 
1247 	/*
1248 	 * Use waitqueue_active because it's very frequent to
1249 	 * change the address space atomically even if there are no
1250 	 * userfaults yet. So we take the spinlock only when we're
1251 	 * sure we've userfaults to wake.
1252 	 */
1253 	do {
1254 		seq = read_seqcount_begin(&ctx->refile_seq);
1255 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1256 			waitqueue_active(&ctx->fault_wqh);
1257 		cond_resched();
1258 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1259 	if (need_wakeup)
1260 		__wake_userfault(ctx, range);
1261 }
1262 
1263 static __always_inline int validate_unaligned_range(
1264 	struct mm_struct *mm, __u64 start, __u64 len)
1265 {
1266 	__u64 task_size = mm->task_size;
1267 
1268 	if (len & ~PAGE_MASK)
1269 		return -EINVAL;
1270 	if (!len)
1271 		return -EINVAL;
1272 	if (start < mmap_min_addr)
1273 		return -EINVAL;
1274 	if (start >= task_size)
1275 		return -EINVAL;
1276 	if (len > task_size - start)
1277 		return -EINVAL;
1278 	if (start + len <= start)
1279 		return -EINVAL;
1280 	return 0;
1281 }
1282 
1283 static __always_inline int validate_range(struct mm_struct *mm,
1284 					  __u64 start, __u64 len)
1285 {
1286 	if (start & ~PAGE_MASK)
1287 		return -EINVAL;
1288 
1289 	return validate_unaligned_range(mm, start, len);
1290 }
1291 
1292 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1293 				unsigned long arg)
1294 {
1295 	struct mm_struct *mm = ctx->mm;
1296 	struct vm_area_struct *vma, *prev, *cur;
1297 	int ret;
1298 	struct uffdio_register uffdio_register;
1299 	struct uffdio_register __user *user_uffdio_register;
1300 	unsigned long vm_flags, new_flags;
1301 	bool found;
1302 	bool basic_ioctls;
1303 	unsigned long start, end, vma_end;
1304 	struct vma_iterator vmi;
1305 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1306 
1307 	user_uffdio_register = (struct uffdio_register __user *) arg;
1308 
1309 	ret = -EFAULT;
1310 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1311 			   sizeof(uffdio_register)-sizeof(__u64)))
1312 		goto out;
1313 
1314 	ret = -EINVAL;
1315 	if (!uffdio_register.mode)
1316 		goto out;
1317 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1318 		goto out;
1319 	vm_flags = 0;
1320 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1321 		vm_flags |= VM_UFFD_MISSING;
1322 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1323 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1324 		goto out;
1325 #endif
1326 		vm_flags |= VM_UFFD_WP;
1327 	}
1328 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1329 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1330 		goto out;
1331 #endif
1332 		vm_flags |= VM_UFFD_MINOR;
1333 	}
1334 
1335 	ret = validate_range(mm, uffdio_register.range.start,
1336 			     uffdio_register.range.len);
1337 	if (ret)
1338 		goto out;
1339 
1340 	start = uffdio_register.range.start;
1341 	end = start + uffdio_register.range.len;
1342 
1343 	ret = -ENOMEM;
1344 	if (!mmget_not_zero(mm))
1345 		goto out;
1346 
1347 	ret = -EINVAL;
1348 	mmap_write_lock(mm);
1349 	vma_iter_init(&vmi, mm, start);
1350 	vma = vma_find(&vmi, end);
1351 	if (!vma)
1352 		goto out_unlock;
1353 
1354 	/*
1355 	 * If the first vma contains huge pages, make sure start address
1356 	 * is aligned to huge page size.
1357 	 */
1358 	if (is_vm_hugetlb_page(vma)) {
1359 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1360 
1361 		if (start & (vma_hpagesize - 1))
1362 			goto out_unlock;
1363 	}
1364 
1365 	/*
1366 	 * Search for not compatible vmas.
1367 	 */
1368 	found = false;
1369 	basic_ioctls = false;
1370 	cur = vma;
1371 	do {
1372 		cond_resched();
1373 
1374 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1375 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1376 
1377 		/* check not compatible vmas */
1378 		ret = -EINVAL;
1379 		if (!vma_can_userfault(cur, vm_flags, wp_async))
1380 			goto out_unlock;
1381 
1382 		/*
1383 		 * UFFDIO_COPY will fill file holes even without
1384 		 * PROT_WRITE. This check enforces that if this is a
1385 		 * MAP_SHARED, the process has write permission to the backing
1386 		 * file. If VM_MAYWRITE is set it also enforces that on a
1387 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1388 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1389 		 */
1390 		ret = -EPERM;
1391 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1392 			goto out_unlock;
1393 
1394 		/*
1395 		 * If this vma contains ending address, and huge pages
1396 		 * check alignment.
1397 		 */
1398 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1399 		    end > cur->vm_start) {
1400 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1401 
1402 			ret = -EINVAL;
1403 
1404 			if (end & (vma_hpagesize - 1))
1405 				goto out_unlock;
1406 		}
1407 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1408 			goto out_unlock;
1409 
1410 		/*
1411 		 * Check that this vma isn't already owned by a
1412 		 * different userfaultfd. We can't allow more than one
1413 		 * userfaultfd to own a single vma simultaneously or we
1414 		 * wouldn't know which one to deliver the userfaults to.
1415 		 */
1416 		ret = -EBUSY;
1417 		if (cur->vm_userfaultfd_ctx.ctx &&
1418 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1419 			goto out_unlock;
1420 
1421 		/*
1422 		 * Note vmas containing huge pages
1423 		 */
1424 		if (is_vm_hugetlb_page(cur))
1425 			basic_ioctls = true;
1426 
1427 		found = true;
1428 	} for_each_vma_range(vmi, cur, end);
1429 	BUG_ON(!found);
1430 
1431 	vma_iter_set(&vmi, start);
1432 	prev = vma_prev(&vmi);
1433 	if (vma->vm_start < start)
1434 		prev = vma;
1435 
1436 	ret = 0;
1437 	for_each_vma_range(vmi, vma, end) {
1438 		cond_resched();
1439 
1440 		BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1441 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1443 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1444 
1445 		/*
1446 		 * Nothing to do: this vma is already registered into this
1447 		 * userfaultfd and with the right tracking mode too.
1448 		 */
1449 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450 		    (vma->vm_flags & vm_flags) == vm_flags)
1451 			goto skip;
1452 
1453 		if (vma->vm_start > start)
1454 			start = vma->vm_start;
1455 		vma_end = min(end, vma->vm_end);
1456 
1457 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1458 		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1459 					    new_flags,
1460 					    (struct vm_userfaultfd_ctx){ctx});
1461 		if (IS_ERR(vma)) {
1462 			ret = PTR_ERR(vma);
1463 			break;
1464 		}
1465 
1466 		/*
1467 		 * In the vma_merge() successful mprotect-like case 8:
1468 		 * the next vma was merged into the current one and
1469 		 * the current one has not been updated yet.
1470 		 */
1471 		vma_start_write(vma);
1472 		userfaultfd_set_vm_flags(vma, new_flags);
1473 		vma->vm_userfaultfd_ctx.ctx = ctx;
1474 
1475 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1476 			hugetlb_unshare_all_pmds(vma);
1477 
1478 	skip:
1479 		prev = vma;
1480 		start = vma->vm_end;
1481 	}
1482 
1483 out_unlock:
1484 	mmap_write_unlock(mm);
1485 	mmput(mm);
1486 	if (!ret) {
1487 		__u64 ioctls_out;
1488 
1489 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1490 		    UFFD_API_RANGE_IOCTLS;
1491 
1492 		/*
1493 		 * Declare the WP ioctl only if the WP mode is
1494 		 * specified and all checks passed with the range
1495 		 */
1496 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1497 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1498 
1499 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1500 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1501 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1502 
1503 		/*
1504 		 * Now that we scanned all vmas we can already tell
1505 		 * userland which ioctls methods are guaranteed to
1506 		 * succeed on this range.
1507 		 */
1508 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1509 			ret = -EFAULT;
1510 	}
1511 out:
1512 	return ret;
1513 }
1514 
1515 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1516 				  unsigned long arg)
1517 {
1518 	struct mm_struct *mm = ctx->mm;
1519 	struct vm_area_struct *vma, *prev, *cur;
1520 	int ret;
1521 	struct uffdio_range uffdio_unregister;
1522 	unsigned long new_flags;
1523 	bool found;
1524 	unsigned long start, end, vma_end;
1525 	const void __user *buf = (void __user *)arg;
1526 	struct vma_iterator vmi;
1527 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1528 
1529 	ret = -EFAULT;
1530 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1531 		goto out;
1532 
1533 	ret = validate_range(mm, uffdio_unregister.start,
1534 			     uffdio_unregister.len);
1535 	if (ret)
1536 		goto out;
1537 
1538 	start = uffdio_unregister.start;
1539 	end = start + uffdio_unregister.len;
1540 
1541 	ret = -ENOMEM;
1542 	if (!mmget_not_zero(mm))
1543 		goto out;
1544 
1545 	mmap_write_lock(mm);
1546 	ret = -EINVAL;
1547 	vma_iter_init(&vmi, mm, start);
1548 	vma = vma_find(&vmi, end);
1549 	if (!vma)
1550 		goto out_unlock;
1551 
1552 	/*
1553 	 * If the first vma contains huge pages, make sure start address
1554 	 * is aligned to huge page size.
1555 	 */
1556 	if (is_vm_hugetlb_page(vma)) {
1557 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1558 
1559 		if (start & (vma_hpagesize - 1))
1560 			goto out_unlock;
1561 	}
1562 
1563 	/*
1564 	 * Search for not compatible vmas.
1565 	 */
1566 	found = false;
1567 	cur = vma;
1568 	do {
1569 		cond_resched();
1570 
1571 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1572 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1573 
1574 		/*
1575 		 * Check not compatible vmas, not strictly required
1576 		 * here as not compatible vmas cannot have an
1577 		 * userfaultfd_ctx registered on them, but this
1578 		 * provides for more strict behavior to notice
1579 		 * unregistration errors.
1580 		 */
1581 		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1582 			goto out_unlock;
1583 
1584 		found = true;
1585 	} for_each_vma_range(vmi, cur, end);
1586 	BUG_ON(!found);
1587 
1588 	vma_iter_set(&vmi, start);
1589 	prev = vma_prev(&vmi);
1590 	if (vma->vm_start < start)
1591 		prev = vma;
1592 
1593 	ret = 0;
1594 	for_each_vma_range(vmi, vma, end) {
1595 		cond_resched();
1596 
1597 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1598 
1599 		/*
1600 		 * Nothing to do: this vma is already registered into this
1601 		 * userfaultfd and with the right tracking mode too.
1602 		 */
1603 		if (!vma->vm_userfaultfd_ctx.ctx)
1604 			goto skip;
1605 
1606 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1607 
1608 		if (vma->vm_start > start)
1609 			start = vma->vm_start;
1610 		vma_end = min(end, vma->vm_end);
1611 
1612 		if (userfaultfd_missing(vma)) {
1613 			/*
1614 			 * Wake any concurrent pending userfault while
1615 			 * we unregister, so they will not hang
1616 			 * permanently and it avoids userland to call
1617 			 * UFFDIO_WAKE explicitly.
1618 			 */
1619 			struct userfaultfd_wake_range range;
1620 			range.start = start;
1621 			range.len = vma_end - start;
1622 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1623 		}
1624 
1625 		/* Reset ptes for the whole vma range if wr-protected */
1626 		if (userfaultfd_wp(vma))
1627 			uffd_wp_range(vma, start, vma_end - start, false);
1628 
1629 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1630 		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1631 					    new_flags, NULL_VM_UFFD_CTX);
1632 		if (IS_ERR(vma)) {
1633 			ret = PTR_ERR(vma);
1634 			break;
1635 		}
1636 
1637 		/*
1638 		 * In the vma_merge() successful mprotect-like case 8:
1639 		 * the next vma was merged into the current one and
1640 		 * the current one has not been updated yet.
1641 		 */
1642 		vma_start_write(vma);
1643 		userfaultfd_set_vm_flags(vma, new_flags);
1644 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1645 
1646 	skip:
1647 		prev = vma;
1648 		start = vma->vm_end;
1649 	}
1650 
1651 out_unlock:
1652 	mmap_write_unlock(mm);
1653 	mmput(mm);
1654 out:
1655 	return ret;
1656 }
1657 
1658 /*
1659  * userfaultfd_wake may be used in combination with the
1660  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1661  */
1662 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1663 			    unsigned long arg)
1664 {
1665 	int ret;
1666 	struct uffdio_range uffdio_wake;
1667 	struct userfaultfd_wake_range range;
1668 	const void __user *buf = (void __user *)arg;
1669 
1670 	ret = -EFAULT;
1671 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1672 		goto out;
1673 
1674 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1675 	if (ret)
1676 		goto out;
1677 
1678 	range.start = uffdio_wake.start;
1679 	range.len = uffdio_wake.len;
1680 
1681 	/*
1682 	 * len == 0 means wake all and we don't want to wake all here,
1683 	 * so check it again to be sure.
1684 	 */
1685 	VM_BUG_ON(!range.len);
1686 
1687 	wake_userfault(ctx, &range);
1688 	ret = 0;
1689 
1690 out:
1691 	return ret;
1692 }
1693 
1694 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1695 			    unsigned long arg)
1696 {
1697 	__s64 ret;
1698 	struct uffdio_copy uffdio_copy;
1699 	struct uffdio_copy __user *user_uffdio_copy;
1700 	struct userfaultfd_wake_range range;
1701 	uffd_flags_t flags = 0;
1702 
1703 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1704 
1705 	ret = -EAGAIN;
1706 	if (atomic_read(&ctx->mmap_changing))
1707 		goto out;
1708 
1709 	ret = -EFAULT;
1710 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1711 			   /* don't copy "copy" last field */
1712 			   sizeof(uffdio_copy)-sizeof(__s64)))
1713 		goto out;
1714 
1715 	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1716 				       uffdio_copy.len);
1717 	if (ret)
1718 		goto out;
1719 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1720 	if (ret)
1721 		goto out;
1722 
1723 	ret = -EINVAL;
1724 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1725 		goto out;
1726 	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1727 		flags |= MFILL_ATOMIC_WP;
1728 	if (mmget_not_zero(ctx->mm)) {
1729 		ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1730 					uffdio_copy.len, flags);
1731 		mmput(ctx->mm);
1732 	} else {
1733 		return -ESRCH;
1734 	}
1735 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1736 		return -EFAULT;
1737 	if (ret < 0)
1738 		goto out;
1739 	BUG_ON(!ret);
1740 	/* len == 0 would wake all */
1741 	range.len = ret;
1742 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1743 		range.start = uffdio_copy.dst;
1744 		wake_userfault(ctx, &range);
1745 	}
1746 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1747 out:
1748 	return ret;
1749 }
1750 
1751 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1752 				unsigned long arg)
1753 {
1754 	__s64 ret;
1755 	struct uffdio_zeropage uffdio_zeropage;
1756 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1757 	struct userfaultfd_wake_range range;
1758 
1759 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1760 
1761 	ret = -EAGAIN;
1762 	if (atomic_read(&ctx->mmap_changing))
1763 		goto out;
1764 
1765 	ret = -EFAULT;
1766 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1767 			   /* don't copy "zeropage" last field */
1768 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1769 		goto out;
1770 
1771 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1772 			     uffdio_zeropage.range.len);
1773 	if (ret)
1774 		goto out;
1775 	ret = -EINVAL;
1776 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1777 		goto out;
1778 
1779 	if (mmget_not_zero(ctx->mm)) {
1780 		ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1781 					   uffdio_zeropage.range.len);
1782 		mmput(ctx->mm);
1783 	} else {
1784 		return -ESRCH;
1785 	}
1786 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787 		return -EFAULT;
1788 	if (ret < 0)
1789 		goto out;
1790 	/* len == 0 would wake all */
1791 	BUG_ON(!ret);
1792 	range.len = ret;
1793 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794 		range.start = uffdio_zeropage.range.start;
1795 		wake_userfault(ctx, &range);
1796 	}
1797 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798 out:
1799 	return ret;
1800 }
1801 
1802 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1803 				    unsigned long arg)
1804 {
1805 	int ret;
1806 	struct uffdio_writeprotect uffdio_wp;
1807 	struct uffdio_writeprotect __user *user_uffdio_wp;
1808 	struct userfaultfd_wake_range range;
1809 	bool mode_wp, mode_dontwake;
1810 
1811 	if (atomic_read(&ctx->mmap_changing))
1812 		return -EAGAIN;
1813 
1814 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1815 
1816 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817 			   sizeof(struct uffdio_writeprotect)))
1818 		return -EFAULT;
1819 
1820 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1821 			     uffdio_wp.range.len);
1822 	if (ret)
1823 		return ret;
1824 
1825 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826 			       UFFDIO_WRITEPROTECT_MODE_WP))
1827 		return -EINVAL;
1828 
1829 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1831 
1832 	if (mode_wp && mode_dontwake)
1833 		return -EINVAL;
1834 
1835 	if (mmget_not_zero(ctx->mm)) {
1836 		ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1837 					  uffdio_wp.range.len, mode_wp);
1838 		mmput(ctx->mm);
1839 	} else {
1840 		return -ESRCH;
1841 	}
1842 
1843 	if (ret)
1844 		return ret;
1845 
1846 	if (!mode_wp && !mode_dontwake) {
1847 		range.start = uffdio_wp.range.start;
1848 		range.len = uffdio_wp.range.len;
1849 		wake_userfault(ctx, &range);
1850 	}
1851 	return ret;
1852 }
1853 
1854 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1855 {
1856 	__s64 ret;
1857 	struct uffdio_continue uffdio_continue;
1858 	struct uffdio_continue __user *user_uffdio_continue;
1859 	struct userfaultfd_wake_range range;
1860 	uffd_flags_t flags = 0;
1861 
1862 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1863 
1864 	ret = -EAGAIN;
1865 	if (atomic_read(&ctx->mmap_changing))
1866 		goto out;
1867 
1868 	ret = -EFAULT;
1869 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1870 			   /* don't copy the output fields */
1871 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1872 		goto out;
1873 
1874 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1875 			     uffdio_continue.range.len);
1876 	if (ret)
1877 		goto out;
1878 
1879 	ret = -EINVAL;
1880 	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1881 				     UFFDIO_CONTINUE_MODE_WP))
1882 		goto out;
1883 	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1884 		flags |= MFILL_ATOMIC_WP;
1885 
1886 	if (mmget_not_zero(ctx->mm)) {
1887 		ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1888 					    uffdio_continue.range.len, flags);
1889 		mmput(ctx->mm);
1890 	} else {
1891 		return -ESRCH;
1892 	}
1893 
1894 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1895 		return -EFAULT;
1896 	if (ret < 0)
1897 		goto out;
1898 
1899 	/* len == 0 would wake all */
1900 	BUG_ON(!ret);
1901 	range.len = ret;
1902 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1903 		range.start = uffdio_continue.range.start;
1904 		wake_userfault(ctx, &range);
1905 	}
1906 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1907 
1908 out:
1909 	return ret;
1910 }
1911 
1912 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1913 {
1914 	__s64 ret;
1915 	struct uffdio_poison uffdio_poison;
1916 	struct uffdio_poison __user *user_uffdio_poison;
1917 	struct userfaultfd_wake_range range;
1918 
1919 	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1920 
1921 	ret = -EAGAIN;
1922 	if (atomic_read(&ctx->mmap_changing))
1923 		goto out;
1924 
1925 	ret = -EFAULT;
1926 	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1927 			   /* don't copy the output fields */
1928 			   sizeof(uffdio_poison) - (sizeof(__s64))))
1929 		goto out;
1930 
1931 	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1932 			     uffdio_poison.range.len);
1933 	if (ret)
1934 		goto out;
1935 
1936 	ret = -EINVAL;
1937 	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1938 		goto out;
1939 
1940 	if (mmget_not_zero(ctx->mm)) {
1941 		ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1942 					  uffdio_poison.range.len, 0);
1943 		mmput(ctx->mm);
1944 	} else {
1945 		return -ESRCH;
1946 	}
1947 
1948 	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1949 		return -EFAULT;
1950 	if (ret < 0)
1951 		goto out;
1952 
1953 	/* len == 0 would wake all */
1954 	BUG_ON(!ret);
1955 	range.len = ret;
1956 	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1957 		range.start = uffdio_poison.range.start;
1958 		wake_userfault(ctx, &range);
1959 	}
1960 	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1961 
1962 out:
1963 	return ret;
1964 }
1965 
1966 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1967 {
1968 	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1969 }
1970 
1971 static inline unsigned int uffd_ctx_features(__u64 user_features)
1972 {
1973 	/*
1974 	 * For the current set of features the bits just coincide. Set
1975 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1976 	 */
1977 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1978 }
1979 
1980 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1981 			    unsigned long arg)
1982 {
1983 	__s64 ret;
1984 	struct uffdio_move uffdio_move;
1985 	struct uffdio_move __user *user_uffdio_move;
1986 	struct userfaultfd_wake_range range;
1987 	struct mm_struct *mm = ctx->mm;
1988 
1989 	user_uffdio_move = (struct uffdio_move __user *) arg;
1990 
1991 	if (atomic_read(&ctx->mmap_changing))
1992 		return -EAGAIN;
1993 
1994 	if (copy_from_user(&uffdio_move, user_uffdio_move,
1995 			   /* don't copy "move" last field */
1996 			   sizeof(uffdio_move)-sizeof(__s64)))
1997 		return -EFAULT;
1998 
1999 	/* Do not allow cross-mm moves. */
2000 	if (mm != current->mm)
2001 		return -EINVAL;
2002 
2003 	ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2004 	if (ret)
2005 		return ret;
2006 
2007 	ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2008 	if (ret)
2009 		return ret;
2010 
2011 	if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2012 				  UFFDIO_MOVE_MODE_DONTWAKE))
2013 		return -EINVAL;
2014 
2015 	if (mmget_not_zero(mm)) {
2016 		ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2017 				 uffdio_move.len, uffdio_move.mode);
2018 		mmput(mm);
2019 	} else {
2020 		return -ESRCH;
2021 	}
2022 
2023 	if (unlikely(put_user(ret, &user_uffdio_move->move)))
2024 		return -EFAULT;
2025 	if (ret < 0)
2026 		goto out;
2027 
2028 	/* len == 0 would wake all */
2029 	VM_WARN_ON(!ret);
2030 	range.len = ret;
2031 	if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2032 		range.start = uffdio_move.dst;
2033 		wake_userfault(ctx, &range);
2034 	}
2035 	ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2036 
2037 out:
2038 	return ret;
2039 }
2040 
2041 /*
2042  * userland asks for a certain API version and we return which bits
2043  * and ioctl commands are implemented in this kernel for such API
2044  * version or -EINVAL if unknown.
2045  */
2046 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2047 			   unsigned long arg)
2048 {
2049 	struct uffdio_api uffdio_api;
2050 	void __user *buf = (void __user *)arg;
2051 	unsigned int ctx_features;
2052 	int ret;
2053 	__u64 features;
2054 
2055 	ret = -EFAULT;
2056 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2057 		goto out;
2058 	features = uffdio_api.features;
2059 	ret = -EINVAL;
2060 	if (uffdio_api.api != UFFD_API)
2061 		goto err_out;
2062 	ret = -EPERM;
2063 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2064 		goto err_out;
2065 
2066 	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2067 	if (features & UFFD_FEATURE_WP_ASYNC)
2068 		features |= UFFD_FEATURE_WP_UNPOPULATED;
2069 
2070 	/* report all available features and ioctls to userland */
2071 	uffdio_api.features = UFFD_API_FEATURES;
2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2073 	uffdio_api.features &=
2074 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2075 #endif
2076 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2077 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2078 #endif
2079 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2080 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2081 	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2082 	uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2083 #endif
2084 
2085 	ret = -EINVAL;
2086 	if (features & ~uffdio_api.features)
2087 		goto err_out;
2088 
2089 	uffdio_api.ioctls = UFFD_API_IOCTLS;
2090 	ret = -EFAULT;
2091 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2092 		goto out;
2093 
2094 	/* only enable the requested features for this uffd context */
2095 	ctx_features = uffd_ctx_features(features);
2096 	ret = -EINVAL;
2097 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2098 		goto err_out;
2099 
2100 	ret = 0;
2101 out:
2102 	return ret;
2103 err_out:
2104 	memset(&uffdio_api, 0, sizeof(uffdio_api));
2105 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2106 		ret = -EFAULT;
2107 	goto out;
2108 }
2109 
2110 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2111 			      unsigned long arg)
2112 {
2113 	int ret = -EINVAL;
2114 	struct userfaultfd_ctx *ctx = file->private_data;
2115 
2116 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2117 		return -EINVAL;
2118 
2119 	switch(cmd) {
2120 	case UFFDIO_API:
2121 		ret = userfaultfd_api(ctx, arg);
2122 		break;
2123 	case UFFDIO_REGISTER:
2124 		ret = userfaultfd_register(ctx, arg);
2125 		break;
2126 	case UFFDIO_UNREGISTER:
2127 		ret = userfaultfd_unregister(ctx, arg);
2128 		break;
2129 	case UFFDIO_WAKE:
2130 		ret = userfaultfd_wake(ctx, arg);
2131 		break;
2132 	case UFFDIO_COPY:
2133 		ret = userfaultfd_copy(ctx, arg);
2134 		break;
2135 	case UFFDIO_ZEROPAGE:
2136 		ret = userfaultfd_zeropage(ctx, arg);
2137 		break;
2138 	case UFFDIO_MOVE:
2139 		ret = userfaultfd_move(ctx, arg);
2140 		break;
2141 	case UFFDIO_WRITEPROTECT:
2142 		ret = userfaultfd_writeprotect(ctx, arg);
2143 		break;
2144 	case UFFDIO_CONTINUE:
2145 		ret = userfaultfd_continue(ctx, arg);
2146 		break;
2147 	case UFFDIO_POISON:
2148 		ret = userfaultfd_poison(ctx, arg);
2149 		break;
2150 	}
2151 	return ret;
2152 }
2153 
2154 #ifdef CONFIG_PROC_FS
2155 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2156 {
2157 	struct userfaultfd_ctx *ctx = f->private_data;
2158 	wait_queue_entry_t *wq;
2159 	unsigned long pending = 0, total = 0;
2160 
2161 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2162 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2163 		pending++;
2164 		total++;
2165 	}
2166 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2167 		total++;
2168 	}
2169 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2170 
2171 	/*
2172 	 * If more protocols will be added, there will be all shown
2173 	 * separated by a space. Like this:
2174 	 *	protocols: aa:... bb:...
2175 	 */
2176 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2177 		   pending, total, UFFD_API, ctx->features,
2178 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2179 }
2180 #endif
2181 
2182 static const struct file_operations userfaultfd_fops = {
2183 #ifdef CONFIG_PROC_FS
2184 	.show_fdinfo	= userfaultfd_show_fdinfo,
2185 #endif
2186 	.release	= userfaultfd_release,
2187 	.poll		= userfaultfd_poll,
2188 	.read_iter	= userfaultfd_read_iter,
2189 	.unlocked_ioctl = userfaultfd_ioctl,
2190 	.compat_ioctl	= compat_ptr_ioctl,
2191 	.llseek		= noop_llseek,
2192 };
2193 
2194 static void init_once_userfaultfd_ctx(void *mem)
2195 {
2196 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2197 
2198 	init_waitqueue_head(&ctx->fault_pending_wqh);
2199 	init_waitqueue_head(&ctx->fault_wqh);
2200 	init_waitqueue_head(&ctx->event_wqh);
2201 	init_waitqueue_head(&ctx->fd_wqh);
2202 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2203 }
2204 
2205 static int new_userfaultfd(int flags)
2206 {
2207 	struct userfaultfd_ctx *ctx;
2208 	struct file *file;
2209 	int fd;
2210 
2211 	BUG_ON(!current->mm);
2212 
2213 	/* Check the UFFD_* constants for consistency.  */
2214 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2215 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2216 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2217 
2218 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2219 		return -EINVAL;
2220 
2221 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2222 	if (!ctx)
2223 		return -ENOMEM;
2224 
2225 	refcount_set(&ctx->refcount, 1);
2226 	ctx->flags = flags;
2227 	ctx->features = 0;
2228 	ctx->released = false;
2229 	init_rwsem(&ctx->map_changing_lock);
2230 	atomic_set(&ctx->mmap_changing, 0);
2231 	ctx->mm = current->mm;
2232 
2233 	fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
2234 	if (fd < 0)
2235 		goto err_out;
2236 
2237 	/* Create a new inode so that the LSM can block the creation.  */
2238 	file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2239 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2240 	if (IS_ERR(file)) {
2241 		put_unused_fd(fd);
2242 		fd = PTR_ERR(file);
2243 		goto err_out;
2244 	}
2245 	/* prevent the mm struct to be freed */
2246 	mmgrab(ctx->mm);
2247 	file->f_mode |= FMODE_NOWAIT;
2248 	fd_install(fd, file);
2249 	return fd;
2250 err_out:
2251 	kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2252 	return fd;
2253 }
2254 
2255 static inline bool userfaultfd_syscall_allowed(int flags)
2256 {
2257 	/* Userspace-only page faults are always allowed */
2258 	if (flags & UFFD_USER_MODE_ONLY)
2259 		return true;
2260 
2261 	/*
2262 	 * The user is requesting a userfaultfd which can handle kernel faults.
2263 	 * Privileged users are always allowed to do this.
2264 	 */
2265 	if (capable(CAP_SYS_PTRACE))
2266 		return true;
2267 
2268 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2269 	return sysctl_unprivileged_userfaultfd;
2270 }
2271 
2272 SYSCALL_DEFINE1(userfaultfd, int, flags)
2273 {
2274 	if (!userfaultfd_syscall_allowed(flags))
2275 		return -EPERM;
2276 
2277 	return new_userfaultfd(flags);
2278 }
2279 
2280 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2281 {
2282 	if (cmd != USERFAULTFD_IOC_NEW)
2283 		return -EINVAL;
2284 
2285 	return new_userfaultfd(flags);
2286 }
2287 
2288 static const struct file_operations userfaultfd_dev_fops = {
2289 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2290 	.compat_ioctl = userfaultfd_dev_ioctl,
2291 	.owner = THIS_MODULE,
2292 	.llseek = noop_llseek,
2293 };
2294 
2295 static struct miscdevice userfaultfd_misc = {
2296 	.minor = MISC_DYNAMIC_MINOR,
2297 	.name = "userfaultfd",
2298 	.fops = &userfaultfd_dev_fops
2299 };
2300 
2301 static int __init userfaultfd_init(void)
2302 {
2303 	int ret;
2304 
2305 	ret = misc_register(&userfaultfd_misc);
2306 	if (ret)
2307 		return ret;
2308 
2309 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2310 						sizeof(struct userfaultfd_ctx),
2311 						0,
2312 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2313 						init_once_userfaultfd_ctx);
2314 #ifdef CONFIG_SYSCTL
2315 	register_sysctl_init("vm", vm_userfaultfd_table);
2316 #endif
2317 	return 0;
2318 }
2319 __initcall(userfaultfd_init);
2320