xref: /linux/fs/userfaultfd.c (revision f220d3ebba8343dcbd8c83e4bb4fa6fbcfc616c6)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* memory mappings are changing because of non-cooperative event */
66 	bool mmap_changing;
67 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
68 	struct mm_struct *mm;
69 };
70 
71 struct userfaultfd_fork_ctx {
72 	struct userfaultfd_ctx *orig;
73 	struct userfaultfd_ctx *new;
74 	struct list_head list;
75 };
76 
77 struct userfaultfd_unmap_ctx {
78 	struct userfaultfd_ctx *ctx;
79 	unsigned long start;
80 	unsigned long end;
81 	struct list_head list;
82 };
83 
84 struct userfaultfd_wait_queue {
85 	struct uffd_msg msg;
86 	wait_queue_entry_t wq;
87 	struct userfaultfd_ctx *ctx;
88 	bool waken;
89 };
90 
91 struct userfaultfd_wake_range {
92 	unsigned long start;
93 	unsigned long len;
94 };
95 
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97 				     int wake_flags, void *key)
98 {
99 	struct userfaultfd_wake_range *range = key;
100 	int ret;
101 	struct userfaultfd_wait_queue *uwq;
102 	unsigned long start, len;
103 
104 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105 	ret = 0;
106 	/* len == 0 means wake all */
107 	start = range->start;
108 	len = range->len;
109 	if (len && (start > uwq->msg.arg.pagefault.address ||
110 		    start + len <= uwq->msg.arg.pagefault.address))
111 		goto out;
112 	WRITE_ONCE(uwq->waken, true);
113 	/*
114 	 * The Program-Order guarantees provided by the scheduler
115 	 * ensure uwq->waken is visible before the task is woken.
116 	 */
117 	ret = wake_up_state(wq->private, mode);
118 	if (ret) {
119 		/*
120 		 * Wake only once, autoremove behavior.
121 		 *
122 		 * After the effect of list_del_init is visible to the other
123 		 * CPUs, the waitqueue may disappear from under us, see the
124 		 * !list_empty_careful() in handle_userfault().
125 		 *
126 		 * try_to_wake_up() has an implicit smp_mb(), and the
127 		 * wq->private is read before calling the extern function
128 		 * "wake_up_state" (which in turns calls try_to_wake_up).
129 		 */
130 		list_del_init(&wq->entry);
131 	}
132 out:
133 	return ret;
134 }
135 
136 /**
137  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138  * context.
139  * @ctx: [in] Pointer to the userfaultfd context.
140  */
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
142 {
143 	if (!atomic_inc_not_zero(&ctx->refcount))
144 		BUG();
145 }
146 
147 /**
148  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to userfaultfd context.
151  *
152  * The userfaultfd context reference must have been previously acquired either
153  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
154  */
155 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
156 {
157 	if (atomic_dec_and_test(&ctx->refcount)) {
158 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
159 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
160 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
161 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
162 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
163 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
164 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
165 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
166 		mmdrop(ctx->mm);
167 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
168 	}
169 }
170 
171 static inline void msg_init(struct uffd_msg *msg)
172 {
173 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
174 	/*
175 	 * Must use memset to zero out the paddings or kernel data is
176 	 * leaked to userland.
177 	 */
178 	memset(msg, 0, sizeof(struct uffd_msg));
179 }
180 
181 static inline struct uffd_msg userfault_msg(unsigned long address,
182 					    unsigned int flags,
183 					    unsigned long reason,
184 					    unsigned int features)
185 {
186 	struct uffd_msg msg;
187 	msg_init(&msg);
188 	msg.event = UFFD_EVENT_PAGEFAULT;
189 	msg.arg.pagefault.address = address;
190 	if (flags & FAULT_FLAG_WRITE)
191 		/*
192 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 		 * was a read fault, otherwise if set it means it's
196 		 * a write fault.
197 		 */
198 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 	if (reason & VM_UFFD_WP)
200 		/*
201 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 		 * a missing fault, otherwise if set it means it's a
205 		 * write protect fault.
206 		 */
207 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 	if (features & UFFD_FEATURE_THREAD_ID)
209 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
210 	return msg;
211 }
212 
213 #ifdef CONFIG_HUGETLB_PAGE
214 /*
215  * Same functionality as userfaultfd_must_wait below with modifications for
216  * hugepmd ranges.
217  */
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219 					 struct vm_area_struct *vma,
220 					 unsigned long address,
221 					 unsigned long flags,
222 					 unsigned long reason)
223 {
224 	struct mm_struct *mm = ctx->mm;
225 	pte_t *ptep, pte;
226 	bool ret = true;
227 
228 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
229 
230 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
231 
232 	if (!ptep)
233 		goto out;
234 
235 	ret = false;
236 	pte = huge_ptep_get(ptep);
237 
238 	/*
239 	 * Lockless access: we're in a wait_event so it's ok if it
240 	 * changes under us.
241 	 */
242 	if (huge_pte_none(pte))
243 		ret = true;
244 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
245 		ret = true;
246 out:
247 	return ret;
248 }
249 #else
250 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
251 					 struct vm_area_struct *vma,
252 					 unsigned long address,
253 					 unsigned long flags,
254 					 unsigned long reason)
255 {
256 	return false;	/* should never get here */
257 }
258 #endif /* CONFIG_HUGETLB_PAGE */
259 
260 /*
261  * Verify the pagetables are still not ok after having reigstered into
262  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
263  * userfault that has already been resolved, if userfaultfd_read and
264  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
265  * threads.
266  */
267 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
268 					 unsigned long address,
269 					 unsigned long flags,
270 					 unsigned long reason)
271 {
272 	struct mm_struct *mm = ctx->mm;
273 	pgd_t *pgd;
274 	p4d_t *p4d;
275 	pud_t *pud;
276 	pmd_t *pmd, _pmd;
277 	pte_t *pte;
278 	bool ret = true;
279 
280 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
281 
282 	pgd = pgd_offset(mm, address);
283 	if (!pgd_present(*pgd))
284 		goto out;
285 	p4d = p4d_offset(pgd, address);
286 	if (!p4d_present(*p4d))
287 		goto out;
288 	pud = pud_offset(p4d, address);
289 	if (!pud_present(*pud))
290 		goto out;
291 	pmd = pmd_offset(pud, address);
292 	/*
293 	 * READ_ONCE must function as a barrier with narrower scope
294 	 * and it must be equivalent to:
295 	 *	_pmd = *pmd; barrier();
296 	 *
297 	 * This is to deal with the instability (as in
298 	 * pmd_trans_unstable) of the pmd.
299 	 */
300 	_pmd = READ_ONCE(*pmd);
301 	if (pmd_none(_pmd))
302 		goto out;
303 
304 	ret = false;
305 	if (!pmd_present(_pmd))
306 		goto out;
307 
308 	if (pmd_trans_huge(_pmd))
309 		goto out;
310 
311 	/*
312 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
313 	 * and use the standard pte_offset_map() instead of parsing _pmd.
314 	 */
315 	pte = pte_offset_map(pmd, address);
316 	/*
317 	 * Lockless access: we're in a wait_event so it's ok if it
318 	 * changes under us.
319 	 */
320 	if (pte_none(*pte))
321 		ret = true;
322 	pte_unmap(pte);
323 
324 out:
325 	return ret;
326 }
327 
328 /*
329  * The locking rules involved in returning VM_FAULT_RETRY depending on
330  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
331  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
332  * recommendation in __lock_page_or_retry is not an understatement.
333  *
334  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
335  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
336  * not set.
337  *
338  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
339  * set, VM_FAULT_RETRY can still be returned if and only if there are
340  * fatal_signal_pending()s, and the mmap_sem must be released before
341  * returning it.
342  */
343 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
344 {
345 	struct mm_struct *mm = vmf->vma->vm_mm;
346 	struct userfaultfd_ctx *ctx;
347 	struct userfaultfd_wait_queue uwq;
348 	vm_fault_t ret = VM_FAULT_SIGBUS;
349 	bool must_wait, return_to_userland;
350 	long blocking_state;
351 
352 	/*
353 	 * We don't do userfault handling for the final child pid update.
354 	 *
355 	 * We also don't do userfault handling during
356 	 * coredumping. hugetlbfs has the special
357 	 * follow_hugetlb_page() to skip missing pages in the
358 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
359 	 * the no_page_table() helper in follow_page_mask(), but the
360 	 * shmem_vm_ops->fault method is invoked even during
361 	 * coredumping without mmap_sem and it ends up here.
362 	 */
363 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
364 		goto out;
365 
366 	/*
367 	 * Coredumping runs without mmap_sem so we can only check that
368 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
369 	 */
370 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
371 
372 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
373 	if (!ctx)
374 		goto out;
375 
376 	BUG_ON(ctx->mm != mm);
377 
378 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
379 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
380 
381 	if (ctx->features & UFFD_FEATURE_SIGBUS)
382 		goto out;
383 
384 	/*
385 	 * If it's already released don't get it. This avoids to loop
386 	 * in __get_user_pages if userfaultfd_release waits on the
387 	 * caller of handle_userfault to release the mmap_sem.
388 	 */
389 	if (unlikely(READ_ONCE(ctx->released))) {
390 		/*
391 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
392 		 * cooperative manager can close the uffd after the
393 		 * last UFFDIO_COPY, without risking to trigger an
394 		 * involuntary SIGBUS if the process was starting the
395 		 * userfaultfd while the userfaultfd was still armed
396 		 * (but after the last UFFDIO_COPY). If the uffd
397 		 * wasn't already closed when the userfault reached
398 		 * this point, that would normally be solved by
399 		 * userfaultfd_must_wait returning 'false'.
400 		 *
401 		 * If we were to return VM_FAULT_SIGBUS here, the non
402 		 * cooperative manager would be instead forced to
403 		 * always call UFFDIO_UNREGISTER before it can safely
404 		 * close the uffd.
405 		 */
406 		ret = VM_FAULT_NOPAGE;
407 		goto out;
408 	}
409 
410 	/*
411 	 * Check that we can return VM_FAULT_RETRY.
412 	 *
413 	 * NOTE: it should become possible to return VM_FAULT_RETRY
414 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
415 	 * -EBUSY failures, if the userfaultfd is to be extended for
416 	 * VM_UFFD_WP tracking and we intend to arm the userfault
417 	 * without first stopping userland access to the memory. For
418 	 * VM_UFFD_MISSING userfaults this is enough for now.
419 	 */
420 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
421 		/*
422 		 * Validate the invariant that nowait must allow retry
423 		 * to be sure not to return SIGBUS erroneously on
424 		 * nowait invocations.
425 		 */
426 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
427 #ifdef CONFIG_DEBUG_VM
428 		if (printk_ratelimit()) {
429 			printk(KERN_WARNING
430 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
431 			       vmf->flags);
432 			dump_stack();
433 		}
434 #endif
435 		goto out;
436 	}
437 
438 	/*
439 	 * Handle nowait, not much to do other than tell it to retry
440 	 * and wait.
441 	 */
442 	ret = VM_FAULT_RETRY;
443 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
444 		goto out;
445 
446 	/* take the reference before dropping the mmap_sem */
447 	userfaultfd_ctx_get(ctx);
448 
449 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
450 	uwq.wq.private = current;
451 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
452 			ctx->features);
453 	uwq.ctx = ctx;
454 	uwq.waken = false;
455 
456 	return_to_userland =
457 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
458 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
459 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
460 			 TASK_KILLABLE;
461 
462 	spin_lock(&ctx->fault_pending_wqh.lock);
463 	/*
464 	 * After the __add_wait_queue the uwq is visible to userland
465 	 * through poll/read().
466 	 */
467 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
468 	/*
469 	 * The smp_mb() after __set_current_state prevents the reads
470 	 * following the spin_unlock to happen before the list_add in
471 	 * __add_wait_queue.
472 	 */
473 	set_current_state(blocking_state);
474 	spin_unlock(&ctx->fault_pending_wqh.lock);
475 
476 	if (!is_vm_hugetlb_page(vmf->vma))
477 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
478 						  reason);
479 	else
480 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
481 						       vmf->address,
482 						       vmf->flags, reason);
483 	up_read(&mm->mmap_sem);
484 
485 	if (likely(must_wait && !READ_ONCE(ctx->released) &&
486 		   (return_to_userland ? !signal_pending(current) :
487 		    !fatal_signal_pending(current)))) {
488 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
489 		schedule();
490 		ret |= VM_FAULT_MAJOR;
491 
492 		/*
493 		 * False wakeups can orginate even from rwsem before
494 		 * up_read() however userfaults will wait either for a
495 		 * targeted wakeup on the specific uwq waitqueue from
496 		 * wake_userfault() or for signals or for uffd
497 		 * release.
498 		 */
499 		while (!READ_ONCE(uwq.waken)) {
500 			/*
501 			 * This needs the full smp_store_mb()
502 			 * guarantee as the state write must be
503 			 * visible to other CPUs before reading
504 			 * uwq.waken from other CPUs.
505 			 */
506 			set_current_state(blocking_state);
507 			if (READ_ONCE(uwq.waken) ||
508 			    READ_ONCE(ctx->released) ||
509 			    (return_to_userland ? signal_pending(current) :
510 			     fatal_signal_pending(current)))
511 				break;
512 			schedule();
513 		}
514 	}
515 
516 	__set_current_state(TASK_RUNNING);
517 
518 	if (return_to_userland) {
519 		if (signal_pending(current) &&
520 		    !fatal_signal_pending(current)) {
521 			/*
522 			 * If we got a SIGSTOP or SIGCONT and this is
523 			 * a normal userland page fault, just let
524 			 * userland return so the signal will be
525 			 * handled and gdb debugging works.  The page
526 			 * fault code immediately after we return from
527 			 * this function is going to release the
528 			 * mmap_sem and it's not depending on it
529 			 * (unlike gup would if we were not to return
530 			 * VM_FAULT_RETRY).
531 			 *
532 			 * If a fatal signal is pending we still take
533 			 * the streamlined VM_FAULT_RETRY failure path
534 			 * and there's no need to retake the mmap_sem
535 			 * in such case.
536 			 */
537 			down_read(&mm->mmap_sem);
538 			ret = VM_FAULT_NOPAGE;
539 		}
540 	}
541 
542 	/*
543 	 * Here we race with the list_del; list_add in
544 	 * userfaultfd_ctx_read(), however because we don't ever run
545 	 * list_del_init() to refile across the two lists, the prev
546 	 * and next pointers will never point to self. list_add also
547 	 * would never let any of the two pointers to point to
548 	 * self. So list_empty_careful won't risk to see both pointers
549 	 * pointing to self at any time during the list refile. The
550 	 * only case where list_del_init() is called is the full
551 	 * removal in the wake function and there we don't re-list_add
552 	 * and it's fine not to block on the spinlock. The uwq on this
553 	 * kernel stack can be released after the list_del_init.
554 	 */
555 	if (!list_empty_careful(&uwq.wq.entry)) {
556 		spin_lock(&ctx->fault_pending_wqh.lock);
557 		/*
558 		 * No need of list_del_init(), the uwq on the stack
559 		 * will be freed shortly anyway.
560 		 */
561 		list_del(&uwq.wq.entry);
562 		spin_unlock(&ctx->fault_pending_wqh.lock);
563 	}
564 
565 	/*
566 	 * ctx may go away after this if the userfault pseudo fd is
567 	 * already released.
568 	 */
569 	userfaultfd_ctx_put(ctx);
570 
571 out:
572 	return ret;
573 }
574 
575 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
576 					      struct userfaultfd_wait_queue *ewq)
577 {
578 	struct userfaultfd_ctx *release_new_ctx;
579 
580 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
581 		goto out;
582 
583 	ewq->ctx = ctx;
584 	init_waitqueue_entry(&ewq->wq, current);
585 	release_new_ctx = NULL;
586 
587 	spin_lock(&ctx->event_wqh.lock);
588 	/*
589 	 * After the __add_wait_queue the uwq is visible to userland
590 	 * through poll/read().
591 	 */
592 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
593 	for (;;) {
594 		set_current_state(TASK_KILLABLE);
595 		if (ewq->msg.event == 0)
596 			break;
597 		if (READ_ONCE(ctx->released) ||
598 		    fatal_signal_pending(current)) {
599 			/*
600 			 * &ewq->wq may be queued in fork_event, but
601 			 * __remove_wait_queue ignores the head
602 			 * parameter. It would be a problem if it
603 			 * didn't.
604 			 */
605 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
606 			if (ewq->msg.event == UFFD_EVENT_FORK) {
607 				struct userfaultfd_ctx *new;
608 
609 				new = (struct userfaultfd_ctx *)
610 					(unsigned long)
611 					ewq->msg.arg.reserved.reserved1;
612 				release_new_ctx = new;
613 			}
614 			break;
615 		}
616 
617 		spin_unlock(&ctx->event_wqh.lock);
618 
619 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
620 		schedule();
621 
622 		spin_lock(&ctx->event_wqh.lock);
623 	}
624 	__set_current_state(TASK_RUNNING);
625 	spin_unlock(&ctx->event_wqh.lock);
626 
627 	if (release_new_ctx) {
628 		struct vm_area_struct *vma;
629 		struct mm_struct *mm = release_new_ctx->mm;
630 
631 		/* the various vma->vm_userfaultfd_ctx still points to it */
632 		down_write(&mm->mmap_sem);
633 		for (vma = mm->mmap; vma; vma = vma->vm_next)
634 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
635 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
636 				vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
637 			}
638 		up_write(&mm->mmap_sem);
639 
640 		userfaultfd_ctx_put(release_new_ctx);
641 	}
642 
643 	/*
644 	 * ctx may go away after this if the userfault pseudo fd is
645 	 * already released.
646 	 */
647 out:
648 	WRITE_ONCE(ctx->mmap_changing, false);
649 	userfaultfd_ctx_put(ctx);
650 }
651 
652 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
653 				       struct userfaultfd_wait_queue *ewq)
654 {
655 	ewq->msg.event = 0;
656 	wake_up_locked(&ctx->event_wqh);
657 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
658 }
659 
660 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
661 {
662 	struct userfaultfd_ctx *ctx = NULL, *octx;
663 	struct userfaultfd_fork_ctx *fctx;
664 
665 	octx = vma->vm_userfaultfd_ctx.ctx;
666 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
667 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
668 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
669 		return 0;
670 	}
671 
672 	list_for_each_entry(fctx, fcs, list)
673 		if (fctx->orig == octx) {
674 			ctx = fctx->new;
675 			break;
676 		}
677 
678 	if (!ctx) {
679 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
680 		if (!fctx)
681 			return -ENOMEM;
682 
683 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
684 		if (!ctx) {
685 			kfree(fctx);
686 			return -ENOMEM;
687 		}
688 
689 		atomic_set(&ctx->refcount, 1);
690 		ctx->flags = octx->flags;
691 		ctx->state = UFFD_STATE_RUNNING;
692 		ctx->features = octx->features;
693 		ctx->released = false;
694 		ctx->mmap_changing = false;
695 		ctx->mm = vma->vm_mm;
696 		mmgrab(ctx->mm);
697 
698 		userfaultfd_ctx_get(octx);
699 		WRITE_ONCE(octx->mmap_changing, true);
700 		fctx->orig = octx;
701 		fctx->new = ctx;
702 		list_add_tail(&fctx->list, fcs);
703 	}
704 
705 	vma->vm_userfaultfd_ctx.ctx = ctx;
706 	return 0;
707 }
708 
709 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
710 {
711 	struct userfaultfd_ctx *ctx = fctx->orig;
712 	struct userfaultfd_wait_queue ewq;
713 
714 	msg_init(&ewq.msg);
715 
716 	ewq.msg.event = UFFD_EVENT_FORK;
717 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
718 
719 	userfaultfd_event_wait_completion(ctx, &ewq);
720 }
721 
722 void dup_userfaultfd_complete(struct list_head *fcs)
723 {
724 	struct userfaultfd_fork_ctx *fctx, *n;
725 
726 	list_for_each_entry_safe(fctx, n, fcs, list) {
727 		dup_fctx(fctx);
728 		list_del(&fctx->list);
729 		kfree(fctx);
730 	}
731 }
732 
733 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
734 			     struct vm_userfaultfd_ctx *vm_ctx)
735 {
736 	struct userfaultfd_ctx *ctx;
737 
738 	ctx = vma->vm_userfaultfd_ctx.ctx;
739 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
740 		vm_ctx->ctx = ctx;
741 		userfaultfd_ctx_get(ctx);
742 		WRITE_ONCE(ctx->mmap_changing, true);
743 	}
744 }
745 
746 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
747 				 unsigned long from, unsigned long to,
748 				 unsigned long len)
749 {
750 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
751 	struct userfaultfd_wait_queue ewq;
752 
753 	if (!ctx)
754 		return;
755 
756 	if (to & ~PAGE_MASK) {
757 		userfaultfd_ctx_put(ctx);
758 		return;
759 	}
760 
761 	msg_init(&ewq.msg);
762 
763 	ewq.msg.event = UFFD_EVENT_REMAP;
764 	ewq.msg.arg.remap.from = from;
765 	ewq.msg.arg.remap.to = to;
766 	ewq.msg.arg.remap.len = len;
767 
768 	userfaultfd_event_wait_completion(ctx, &ewq);
769 }
770 
771 bool userfaultfd_remove(struct vm_area_struct *vma,
772 			unsigned long start, unsigned long end)
773 {
774 	struct mm_struct *mm = vma->vm_mm;
775 	struct userfaultfd_ctx *ctx;
776 	struct userfaultfd_wait_queue ewq;
777 
778 	ctx = vma->vm_userfaultfd_ctx.ctx;
779 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
780 		return true;
781 
782 	userfaultfd_ctx_get(ctx);
783 	WRITE_ONCE(ctx->mmap_changing, true);
784 	up_read(&mm->mmap_sem);
785 
786 	msg_init(&ewq.msg);
787 
788 	ewq.msg.event = UFFD_EVENT_REMOVE;
789 	ewq.msg.arg.remove.start = start;
790 	ewq.msg.arg.remove.end = end;
791 
792 	userfaultfd_event_wait_completion(ctx, &ewq);
793 
794 	return false;
795 }
796 
797 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
798 			  unsigned long start, unsigned long end)
799 {
800 	struct userfaultfd_unmap_ctx *unmap_ctx;
801 
802 	list_for_each_entry(unmap_ctx, unmaps, list)
803 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
804 		    unmap_ctx->end == end)
805 			return true;
806 
807 	return false;
808 }
809 
810 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
811 			   unsigned long start, unsigned long end,
812 			   struct list_head *unmaps)
813 {
814 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
815 		struct userfaultfd_unmap_ctx *unmap_ctx;
816 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
817 
818 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
819 		    has_unmap_ctx(ctx, unmaps, start, end))
820 			continue;
821 
822 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
823 		if (!unmap_ctx)
824 			return -ENOMEM;
825 
826 		userfaultfd_ctx_get(ctx);
827 		WRITE_ONCE(ctx->mmap_changing, true);
828 		unmap_ctx->ctx = ctx;
829 		unmap_ctx->start = start;
830 		unmap_ctx->end = end;
831 		list_add_tail(&unmap_ctx->list, unmaps);
832 	}
833 
834 	return 0;
835 }
836 
837 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
838 {
839 	struct userfaultfd_unmap_ctx *ctx, *n;
840 	struct userfaultfd_wait_queue ewq;
841 
842 	list_for_each_entry_safe(ctx, n, uf, list) {
843 		msg_init(&ewq.msg);
844 
845 		ewq.msg.event = UFFD_EVENT_UNMAP;
846 		ewq.msg.arg.remove.start = ctx->start;
847 		ewq.msg.arg.remove.end = ctx->end;
848 
849 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
850 
851 		list_del(&ctx->list);
852 		kfree(ctx);
853 	}
854 }
855 
856 static int userfaultfd_release(struct inode *inode, struct file *file)
857 {
858 	struct userfaultfd_ctx *ctx = file->private_data;
859 	struct mm_struct *mm = ctx->mm;
860 	struct vm_area_struct *vma, *prev;
861 	/* len == 0 means wake all */
862 	struct userfaultfd_wake_range range = { .len = 0, };
863 	unsigned long new_flags;
864 
865 	WRITE_ONCE(ctx->released, true);
866 
867 	if (!mmget_not_zero(mm))
868 		goto wakeup;
869 
870 	/*
871 	 * Flush page faults out of all CPUs. NOTE: all page faults
872 	 * must be retried without returning VM_FAULT_SIGBUS if
873 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
874 	 * changes while handle_userfault released the mmap_sem. So
875 	 * it's critical that released is set to true (above), before
876 	 * taking the mmap_sem for writing.
877 	 */
878 	down_write(&mm->mmap_sem);
879 	prev = NULL;
880 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
881 		cond_resched();
882 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
883 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
884 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
885 			prev = vma;
886 			continue;
887 		}
888 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
889 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
890 				 new_flags, vma->anon_vma,
891 				 vma->vm_file, vma->vm_pgoff,
892 				 vma_policy(vma),
893 				 NULL_VM_UFFD_CTX);
894 		if (prev)
895 			vma = prev;
896 		else
897 			prev = vma;
898 		vma->vm_flags = new_flags;
899 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
900 	}
901 	up_write(&mm->mmap_sem);
902 	mmput(mm);
903 wakeup:
904 	/*
905 	 * After no new page faults can wait on this fault_*wqh, flush
906 	 * the last page faults that may have been already waiting on
907 	 * the fault_*wqh.
908 	 */
909 	spin_lock(&ctx->fault_pending_wqh.lock);
910 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
911 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
912 	spin_unlock(&ctx->fault_pending_wqh.lock);
913 
914 	/* Flush pending events that may still wait on event_wqh */
915 	wake_up_all(&ctx->event_wqh);
916 
917 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
918 	userfaultfd_ctx_put(ctx);
919 	return 0;
920 }
921 
922 /* fault_pending_wqh.lock must be hold by the caller */
923 static inline struct userfaultfd_wait_queue *find_userfault_in(
924 		wait_queue_head_t *wqh)
925 {
926 	wait_queue_entry_t *wq;
927 	struct userfaultfd_wait_queue *uwq;
928 
929 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
930 
931 	uwq = NULL;
932 	if (!waitqueue_active(wqh))
933 		goto out;
934 	/* walk in reverse to provide FIFO behavior to read userfaults */
935 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
936 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
937 out:
938 	return uwq;
939 }
940 
941 static inline struct userfaultfd_wait_queue *find_userfault(
942 		struct userfaultfd_ctx *ctx)
943 {
944 	return find_userfault_in(&ctx->fault_pending_wqh);
945 }
946 
947 static inline struct userfaultfd_wait_queue *find_userfault_evt(
948 		struct userfaultfd_ctx *ctx)
949 {
950 	return find_userfault_in(&ctx->event_wqh);
951 }
952 
953 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
954 {
955 	struct userfaultfd_ctx *ctx = file->private_data;
956 	__poll_t ret;
957 
958 	poll_wait(file, &ctx->fd_wqh, wait);
959 
960 	switch (ctx->state) {
961 	case UFFD_STATE_WAIT_API:
962 		return EPOLLERR;
963 	case UFFD_STATE_RUNNING:
964 		/*
965 		 * poll() never guarantees that read won't block.
966 		 * userfaults can be waken before they're read().
967 		 */
968 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
969 			return EPOLLERR;
970 		/*
971 		 * lockless access to see if there are pending faults
972 		 * __pollwait last action is the add_wait_queue but
973 		 * the spin_unlock would allow the waitqueue_active to
974 		 * pass above the actual list_add inside
975 		 * add_wait_queue critical section. So use a full
976 		 * memory barrier to serialize the list_add write of
977 		 * add_wait_queue() with the waitqueue_active read
978 		 * below.
979 		 */
980 		ret = 0;
981 		smp_mb();
982 		if (waitqueue_active(&ctx->fault_pending_wqh))
983 			ret = EPOLLIN;
984 		else if (waitqueue_active(&ctx->event_wqh))
985 			ret = EPOLLIN;
986 
987 		return ret;
988 	default:
989 		WARN_ON_ONCE(1);
990 		return EPOLLERR;
991 	}
992 }
993 
994 static const struct file_operations userfaultfd_fops;
995 
996 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
997 				  struct userfaultfd_ctx *new,
998 				  struct uffd_msg *msg)
999 {
1000 	int fd;
1001 
1002 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1003 			      O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1004 	if (fd < 0)
1005 		return fd;
1006 
1007 	msg->arg.reserved.reserved1 = 0;
1008 	msg->arg.fork.ufd = fd;
1009 	return 0;
1010 }
1011 
1012 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1013 				    struct uffd_msg *msg)
1014 {
1015 	ssize_t ret;
1016 	DECLARE_WAITQUEUE(wait, current);
1017 	struct userfaultfd_wait_queue *uwq;
1018 	/*
1019 	 * Handling fork event requires sleeping operations, so
1020 	 * we drop the event_wqh lock, then do these ops, then
1021 	 * lock it back and wake up the waiter. While the lock is
1022 	 * dropped the ewq may go away so we keep track of it
1023 	 * carefully.
1024 	 */
1025 	LIST_HEAD(fork_event);
1026 	struct userfaultfd_ctx *fork_nctx = NULL;
1027 
1028 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1029 	spin_lock(&ctx->fd_wqh.lock);
1030 	__add_wait_queue(&ctx->fd_wqh, &wait);
1031 	for (;;) {
1032 		set_current_state(TASK_INTERRUPTIBLE);
1033 		spin_lock(&ctx->fault_pending_wqh.lock);
1034 		uwq = find_userfault(ctx);
1035 		if (uwq) {
1036 			/*
1037 			 * Use a seqcount to repeat the lockless check
1038 			 * in wake_userfault() to avoid missing
1039 			 * wakeups because during the refile both
1040 			 * waitqueue could become empty if this is the
1041 			 * only userfault.
1042 			 */
1043 			write_seqcount_begin(&ctx->refile_seq);
1044 
1045 			/*
1046 			 * The fault_pending_wqh.lock prevents the uwq
1047 			 * to disappear from under us.
1048 			 *
1049 			 * Refile this userfault from
1050 			 * fault_pending_wqh to fault_wqh, it's not
1051 			 * pending anymore after we read it.
1052 			 *
1053 			 * Use list_del() by hand (as
1054 			 * userfaultfd_wake_function also uses
1055 			 * list_del_init() by hand) to be sure nobody
1056 			 * changes __remove_wait_queue() to use
1057 			 * list_del_init() in turn breaking the
1058 			 * !list_empty_careful() check in
1059 			 * handle_userfault(). The uwq->wq.head list
1060 			 * must never be empty at any time during the
1061 			 * refile, or the waitqueue could disappear
1062 			 * from under us. The "wait_queue_head_t"
1063 			 * parameter of __remove_wait_queue() is unused
1064 			 * anyway.
1065 			 */
1066 			list_del(&uwq->wq.entry);
1067 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1068 
1069 			write_seqcount_end(&ctx->refile_seq);
1070 
1071 			/* careful to always initialize msg if ret == 0 */
1072 			*msg = uwq->msg;
1073 			spin_unlock(&ctx->fault_pending_wqh.lock);
1074 			ret = 0;
1075 			break;
1076 		}
1077 		spin_unlock(&ctx->fault_pending_wqh.lock);
1078 
1079 		spin_lock(&ctx->event_wqh.lock);
1080 		uwq = find_userfault_evt(ctx);
1081 		if (uwq) {
1082 			*msg = uwq->msg;
1083 
1084 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1085 				fork_nctx = (struct userfaultfd_ctx *)
1086 					(unsigned long)
1087 					uwq->msg.arg.reserved.reserved1;
1088 				list_move(&uwq->wq.entry, &fork_event);
1089 				/*
1090 				 * fork_nctx can be freed as soon as
1091 				 * we drop the lock, unless we take a
1092 				 * reference on it.
1093 				 */
1094 				userfaultfd_ctx_get(fork_nctx);
1095 				spin_unlock(&ctx->event_wqh.lock);
1096 				ret = 0;
1097 				break;
1098 			}
1099 
1100 			userfaultfd_event_complete(ctx, uwq);
1101 			spin_unlock(&ctx->event_wqh.lock);
1102 			ret = 0;
1103 			break;
1104 		}
1105 		spin_unlock(&ctx->event_wqh.lock);
1106 
1107 		if (signal_pending(current)) {
1108 			ret = -ERESTARTSYS;
1109 			break;
1110 		}
1111 		if (no_wait) {
1112 			ret = -EAGAIN;
1113 			break;
1114 		}
1115 		spin_unlock(&ctx->fd_wqh.lock);
1116 		schedule();
1117 		spin_lock(&ctx->fd_wqh.lock);
1118 	}
1119 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1120 	__set_current_state(TASK_RUNNING);
1121 	spin_unlock(&ctx->fd_wqh.lock);
1122 
1123 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1124 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1125 		spin_lock(&ctx->event_wqh.lock);
1126 		if (!list_empty(&fork_event)) {
1127 			/*
1128 			 * The fork thread didn't abort, so we can
1129 			 * drop the temporary refcount.
1130 			 */
1131 			userfaultfd_ctx_put(fork_nctx);
1132 
1133 			uwq = list_first_entry(&fork_event,
1134 					       typeof(*uwq),
1135 					       wq.entry);
1136 			/*
1137 			 * If fork_event list wasn't empty and in turn
1138 			 * the event wasn't already released by fork
1139 			 * (the event is allocated on fork kernel
1140 			 * stack), put the event back to its place in
1141 			 * the event_wq. fork_event head will be freed
1142 			 * as soon as we return so the event cannot
1143 			 * stay queued there no matter the current
1144 			 * "ret" value.
1145 			 */
1146 			list_del(&uwq->wq.entry);
1147 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1148 
1149 			/*
1150 			 * Leave the event in the waitqueue and report
1151 			 * error to userland if we failed to resolve
1152 			 * the userfault fork.
1153 			 */
1154 			if (likely(!ret))
1155 				userfaultfd_event_complete(ctx, uwq);
1156 		} else {
1157 			/*
1158 			 * Here the fork thread aborted and the
1159 			 * refcount from the fork thread on fork_nctx
1160 			 * has already been released. We still hold
1161 			 * the reference we took before releasing the
1162 			 * lock above. If resolve_userfault_fork
1163 			 * failed we've to drop it because the
1164 			 * fork_nctx has to be freed in such case. If
1165 			 * it succeeded we'll hold it because the new
1166 			 * uffd references it.
1167 			 */
1168 			if (ret)
1169 				userfaultfd_ctx_put(fork_nctx);
1170 		}
1171 		spin_unlock(&ctx->event_wqh.lock);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1178 				size_t count, loff_t *ppos)
1179 {
1180 	struct userfaultfd_ctx *ctx = file->private_data;
1181 	ssize_t _ret, ret = 0;
1182 	struct uffd_msg msg;
1183 	int no_wait = file->f_flags & O_NONBLOCK;
1184 
1185 	if (ctx->state == UFFD_STATE_WAIT_API)
1186 		return -EINVAL;
1187 
1188 	for (;;) {
1189 		if (count < sizeof(msg))
1190 			return ret ? ret : -EINVAL;
1191 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1192 		if (_ret < 0)
1193 			return ret ? ret : _ret;
1194 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1195 			return ret ? ret : -EFAULT;
1196 		ret += sizeof(msg);
1197 		buf += sizeof(msg);
1198 		count -= sizeof(msg);
1199 		/*
1200 		 * Allow to read more than one fault at time but only
1201 		 * block if waiting for the very first one.
1202 		 */
1203 		no_wait = O_NONBLOCK;
1204 	}
1205 }
1206 
1207 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1208 			     struct userfaultfd_wake_range *range)
1209 {
1210 	spin_lock(&ctx->fault_pending_wqh.lock);
1211 	/* wake all in the range and autoremove */
1212 	if (waitqueue_active(&ctx->fault_pending_wqh))
1213 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1214 				     range);
1215 	if (waitqueue_active(&ctx->fault_wqh))
1216 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1217 	spin_unlock(&ctx->fault_pending_wqh.lock);
1218 }
1219 
1220 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1221 					   struct userfaultfd_wake_range *range)
1222 {
1223 	unsigned seq;
1224 	bool need_wakeup;
1225 
1226 	/*
1227 	 * To be sure waitqueue_active() is not reordered by the CPU
1228 	 * before the pagetable update, use an explicit SMP memory
1229 	 * barrier here. PT lock release or up_read(mmap_sem) still
1230 	 * have release semantics that can allow the
1231 	 * waitqueue_active() to be reordered before the pte update.
1232 	 */
1233 	smp_mb();
1234 
1235 	/*
1236 	 * Use waitqueue_active because it's very frequent to
1237 	 * change the address space atomically even if there are no
1238 	 * userfaults yet. So we take the spinlock only when we're
1239 	 * sure we've userfaults to wake.
1240 	 */
1241 	do {
1242 		seq = read_seqcount_begin(&ctx->refile_seq);
1243 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1244 			waitqueue_active(&ctx->fault_wqh);
1245 		cond_resched();
1246 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1247 	if (need_wakeup)
1248 		__wake_userfault(ctx, range);
1249 }
1250 
1251 static __always_inline int validate_range(struct mm_struct *mm,
1252 					  __u64 start, __u64 len)
1253 {
1254 	__u64 task_size = mm->task_size;
1255 
1256 	if (start & ~PAGE_MASK)
1257 		return -EINVAL;
1258 	if (len & ~PAGE_MASK)
1259 		return -EINVAL;
1260 	if (!len)
1261 		return -EINVAL;
1262 	if (start < mmap_min_addr)
1263 		return -EINVAL;
1264 	if (start >= task_size)
1265 		return -EINVAL;
1266 	if (len > task_size - start)
1267 		return -EINVAL;
1268 	return 0;
1269 }
1270 
1271 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1272 {
1273 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1274 		vma_is_shmem(vma);
1275 }
1276 
1277 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1278 				unsigned long arg)
1279 {
1280 	struct mm_struct *mm = ctx->mm;
1281 	struct vm_area_struct *vma, *prev, *cur;
1282 	int ret;
1283 	struct uffdio_register uffdio_register;
1284 	struct uffdio_register __user *user_uffdio_register;
1285 	unsigned long vm_flags, new_flags;
1286 	bool found;
1287 	bool basic_ioctls;
1288 	unsigned long start, end, vma_end;
1289 
1290 	user_uffdio_register = (struct uffdio_register __user *) arg;
1291 
1292 	ret = -EFAULT;
1293 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1294 			   sizeof(uffdio_register)-sizeof(__u64)))
1295 		goto out;
1296 
1297 	ret = -EINVAL;
1298 	if (!uffdio_register.mode)
1299 		goto out;
1300 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1301 				     UFFDIO_REGISTER_MODE_WP))
1302 		goto out;
1303 	vm_flags = 0;
1304 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1305 		vm_flags |= VM_UFFD_MISSING;
1306 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1307 		vm_flags |= VM_UFFD_WP;
1308 		/*
1309 		 * FIXME: remove the below error constraint by
1310 		 * implementing the wprotect tracking mode.
1311 		 */
1312 		ret = -EINVAL;
1313 		goto out;
1314 	}
1315 
1316 	ret = validate_range(mm, uffdio_register.range.start,
1317 			     uffdio_register.range.len);
1318 	if (ret)
1319 		goto out;
1320 
1321 	start = uffdio_register.range.start;
1322 	end = start + uffdio_register.range.len;
1323 
1324 	ret = -ENOMEM;
1325 	if (!mmget_not_zero(mm))
1326 		goto out;
1327 
1328 	down_write(&mm->mmap_sem);
1329 	vma = find_vma_prev(mm, start, &prev);
1330 	if (!vma)
1331 		goto out_unlock;
1332 
1333 	/* check that there's at least one vma in the range */
1334 	ret = -EINVAL;
1335 	if (vma->vm_start >= end)
1336 		goto out_unlock;
1337 
1338 	/*
1339 	 * If the first vma contains huge pages, make sure start address
1340 	 * is aligned to huge page size.
1341 	 */
1342 	if (is_vm_hugetlb_page(vma)) {
1343 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1344 
1345 		if (start & (vma_hpagesize - 1))
1346 			goto out_unlock;
1347 	}
1348 
1349 	/*
1350 	 * Search for not compatible vmas.
1351 	 */
1352 	found = false;
1353 	basic_ioctls = false;
1354 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1355 		cond_resched();
1356 
1357 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1358 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1359 
1360 		/* check not compatible vmas */
1361 		ret = -EINVAL;
1362 		if (!vma_can_userfault(cur))
1363 			goto out_unlock;
1364 		/*
1365 		 * If this vma contains ending address, and huge pages
1366 		 * check alignment.
1367 		 */
1368 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1369 		    end > cur->vm_start) {
1370 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1371 
1372 			ret = -EINVAL;
1373 
1374 			if (end & (vma_hpagesize - 1))
1375 				goto out_unlock;
1376 		}
1377 
1378 		/*
1379 		 * Check that this vma isn't already owned by a
1380 		 * different userfaultfd. We can't allow more than one
1381 		 * userfaultfd to own a single vma simultaneously or we
1382 		 * wouldn't know which one to deliver the userfaults to.
1383 		 */
1384 		ret = -EBUSY;
1385 		if (cur->vm_userfaultfd_ctx.ctx &&
1386 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1387 			goto out_unlock;
1388 
1389 		/*
1390 		 * Note vmas containing huge pages
1391 		 */
1392 		if (is_vm_hugetlb_page(cur))
1393 			basic_ioctls = true;
1394 
1395 		found = true;
1396 	}
1397 	BUG_ON(!found);
1398 
1399 	if (vma->vm_start < start)
1400 		prev = vma;
1401 
1402 	ret = 0;
1403 	do {
1404 		cond_resched();
1405 
1406 		BUG_ON(!vma_can_userfault(vma));
1407 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1408 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1409 
1410 		/*
1411 		 * Nothing to do: this vma is already registered into this
1412 		 * userfaultfd and with the right tracking mode too.
1413 		 */
1414 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1415 		    (vma->vm_flags & vm_flags) == vm_flags)
1416 			goto skip;
1417 
1418 		if (vma->vm_start > start)
1419 			start = vma->vm_start;
1420 		vma_end = min(end, vma->vm_end);
1421 
1422 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1423 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1424 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1425 				 vma_policy(vma),
1426 				 ((struct vm_userfaultfd_ctx){ ctx }));
1427 		if (prev) {
1428 			vma = prev;
1429 			goto next;
1430 		}
1431 		if (vma->vm_start < start) {
1432 			ret = split_vma(mm, vma, start, 1);
1433 			if (ret)
1434 				break;
1435 		}
1436 		if (vma->vm_end > end) {
1437 			ret = split_vma(mm, vma, end, 0);
1438 			if (ret)
1439 				break;
1440 		}
1441 	next:
1442 		/*
1443 		 * In the vma_merge() successful mprotect-like case 8:
1444 		 * the next vma was merged into the current one and
1445 		 * the current one has not been updated yet.
1446 		 */
1447 		vma->vm_flags = new_flags;
1448 		vma->vm_userfaultfd_ctx.ctx = ctx;
1449 
1450 	skip:
1451 		prev = vma;
1452 		start = vma->vm_end;
1453 		vma = vma->vm_next;
1454 	} while (vma && vma->vm_start < end);
1455 out_unlock:
1456 	up_write(&mm->mmap_sem);
1457 	mmput(mm);
1458 	if (!ret) {
1459 		/*
1460 		 * Now that we scanned all vmas we can already tell
1461 		 * userland which ioctls methods are guaranteed to
1462 		 * succeed on this range.
1463 		 */
1464 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1465 			     UFFD_API_RANGE_IOCTLS,
1466 			     &user_uffdio_register->ioctls))
1467 			ret = -EFAULT;
1468 	}
1469 out:
1470 	return ret;
1471 }
1472 
1473 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1474 				  unsigned long arg)
1475 {
1476 	struct mm_struct *mm = ctx->mm;
1477 	struct vm_area_struct *vma, *prev, *cur;
1478 	int ret;
1479 	struct uffdio_range uffdio_unregister;
1480 	unsigned long new_flags;
1481 	bool found;
1482 	unsigned long start, end, vma_end;
1483 	const void __user *buf = (void __user *)arg;
1484 
1485 	ret = -EFAULT;
1486 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1487 		goto out;
1488 
1489 	ret = validate_range(mm, uffdio_unregister.start,
1490 			     uffdio_unregister.len);
1491 	if (ret)
1492 		goto out;
1493 
1494 	start = uffdio_unregister.start;
1495 	end = start + uffdio_unregister.len;
1496 
1497 	ret = -ENOMEM;
1498 	if (!mmget_not_zero(mm))
1499 		goto out;
1500 
1501 	down_write(&mm->mmap_sem);
1502 	vma = find_vma_prev(mm, start, &prev);
1503 	if (!vma)
1504 		goto out_unlock;
1505 
1506 	/* check that there's at least one vma in the range */
1507 	ret = -EINVAL;
1508 	if (vma->vm_start >= end)
1509 		goto out_unlock;
1510 
1511 	/*
1512 	 * If the first vma contains huge pages, make sure start address
1513 	 * is aligned to huge page size.
1514 	 */
1515 	if (is_vm_hugetlb_page(vma)) {
1516 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1517 
1518 		if (start & (vma_hpagesize - 1))
1519 			goto out_unlock;
1520 	}
1521 
1522 	/*
1523 	 * Search for not compatible vmas.
1524 	 */
1525 	found = false;
1526 	ret = -EINVAL;
1527 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1528 		cond_resched();
1529 
1530 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1531 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1532 
1533 		/*
1534 		 * Check not compatible vmas, not strictly required
1535 		 * here as not compatible vmas cannot have an
1536 		 * userfaultfd_ctx registered on them, but this
1537 		 * provides for more strict behavior to notice
1538 		 * unregistration errors.
1539 		 */
1540 		if (!vma_can_userfault(cur))
1541 			goto out_unlock;
1542 
1543 		found = true;
1544 	}
1545 	BUG_ON(!found);
1546 
1547 	if (vma->vm_start < start)
1548 		prev = vma;
1549 
1550 	ret = 0;
1551 	do {
1552 		cond_resched();
1553 
1554 		BUG_ON(!vma_can_userfault(vma));
1555 
1556 		/*
1557 		 * Nothing to do: this vma is already registered into this
1558 		 * userfaultfd and with the right tracking mode too.
1559 		 */
1560 		if (!vma->vm_userfaultfd_ctx.ctx)
1561 			goto skip;
1562 
1563 		if (vma->vm_start > start)
1564 			start = vma->vm_start;
1565 		vma_end = min(end, vma->vm_end);
1566 
1567 		if (userfaultfd_missing(vma)) {
1568 			/*
1569 			 * Wake any concurrent pending userfault while
1570 			 * we unregister, so they will not hang
1571 			 * permanently and it avoids userland to call
1572 			 * UFFDIO_WAKE explicitly.
1573 			 */
1574 			struct userfaultfd_wake_range range;
1575 			range.start = start;
1576 			range.len = vma_end - start;
1577 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1578 		}
1579 
1580 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1581 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1582 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1583 				 vma_policy(vma),
1584 				 NULL_VM_UFFD_CTX);
1585 		if (prev) {
1586 			vma = prev;
1587 			goto next;
1588 		}
1589 		if (vma->vm_start < start) {
1590 			ret = split_vma(mm, vma, start, 1);
1591 			if (ret)
1592 				break;
1593 		}
1594 		if (vma->vm_end > end) {
1595 			ret = split_vma(mm, vma, end, 0);
1596 			if (ret)
1597 				break;
1598 		}
1599 	next:
1600 		/*
1601 		 * In the vma_merge() successful mprotect-like case 8:
1602 		 * the next vma was merged into the current one and
1603 		 * the current one has not been updated yet.
1604 		 */
1605 		vma->vm_flags = new_flags;
1606 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1607 
1608 	skip:
1609 		prev = vma;
1610 		start = vma->vm_end;
1611 		vma = vma->vm_next;
1612 	} while (vma && vma->vm_start < end);
1613 out_unlock:
1614 	up_write(&mm->mmap_sem);
1615 	mmput(mm);
1616 out:
1617 	return ret;
1618 }
1619 
1620 /*
1621  * userfaultfd_wake may be used in combination with the
1622  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1623  */
1624 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1625 			    unsigned long arg)
1626 {
1627 	int ret;
1628 	struct uffdio_range uffdio_wake;
1629 	struct userfaultfd_wake_range range;
1630 	const void __user *buf = (void __user *)arg;
1631 
1632 	ret = -EFAULT;
1633 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1634 		goto out;
1635 
1636 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1637 	if (ret)
1638 		goto out;
1639 
1640 	range.start = uffdio_wake.start;
1641 	range.len = uffdio_wake.len;
1642 
1643 	/*
1644 	 * len == 0 means wake all and we don't want to wake all here,
1645 	 * so check it again to be sure.
1646 	 */
1647 	VM_BUG_ON(!range.len);
1648 
1649 	wake_userfault(ctx, &range);
1650 	ret = 0;
1651 
1652 out:
1653 	return ret;
1654 }
1655 
1656 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1657 			    unsigned long arg)
1658 {
1659 	__s64 ret;
1660 	struct uffdio_copy uffdio_copy;
1661 	struct uffdio_copy __user *user_uffdio_copy;
1662 	struct userfaultfd_wake_range range;
1663 
1664 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1665 
1666 	ret = -EAGAIN;
1667 	if (READ_ONCE(ctx->mmap_changing))
1668 		goto out;
1669 
1670 	ret = -EFAULT;
1671 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1672 			   /* don't copy "copy" last field */
1673 			   sizeof(uffdio_copy)-sizeof(__s64)))
1674 		goto out;
1675 
1676 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1677 	if (ret)
1678 		goto out;
1679 	/*
1680 	 * double check for wraparound just in case. copy_from_user()
1681 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1682 	 * in the userland range.
1683 	 */
1684 	ret = -EINVAL;
1685 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1686 		goto out;
1687 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1688 		goto out;
1689 	if (mmget_not_zero(ctx->mm)) {
1690 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1691 				   uffdio_copy.len, &ctx->mmap_changing);
1692 		mmput(ctx->mm);
1693 	} else {
1694 		return -ESRCH;
1695 	}
1696 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1697 		return -EFAULT;
1698 	if (ret < 0)
1699 		goto out;
1700 	BUG_ON(!ret);
1701 	/* len == 0 would wake all */
1702 	range.len = ret;
1703 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1704 		range.start = uffdio_copy.dst;
1705 		wake_userfault(ctx, &range);
1706 	}
1707 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1708 out:
1709 	return ret;
1710 }
1711 
1712 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1713 				unsigned long arg)
1714 {
1715 	__s64 ret;
1716 	struct uffdio_zeropage uffdio_zeropage;
1717 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1718 	struct userfaultfd_wake_range range;
1719 
1720 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1721 
1722 	ret = -EAGAIN;
1723 	if (READ_ONCE(ctx->mmap_changing))
1724 		goto out;
1725 
1726 	ret = -EFAULT;
1727 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1728 			   /* don't copy "zeropage" last field */
1729 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1730 		goto out;
1731 
1732 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1733 			     uffdio_zeropage.range.len);
1734 	if (ret)
1735 		goto out;
1736 	ret = -EINVAL;
1737 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1738 		goto out;
1739 
1740 	if (mmget_not_zero(ctx->mm)) {
1741 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1742 				     uffdio_zeropage.range.len,
1743 				     &ctx->mmap_changing);
1744 		mmput(ctx->mm);
1745 	} else {
1746 		return -ESRCH;
1747 	}
1748 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1749 		return -EFAULT;
1750 	if (ret < 0)
1751 		goto out;
1752 	/* len == 0 would wake all */
1753 	BUG_ON(!ret);
1754 	range.len = ret;
1755 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1756 		range.start = uffdio_zeropage.range.start;
1757 		wake_userfault(ctx, &range);
1758 	}
1759 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1760 out:
1761 	return ret;
1762 }
1763 
1764 static inline unsigned int uffd_ctx_features(__u64 user_features)
1765 {
1766 	/*
1767 	 * For the current set of features the bits just coincide
1768 	 */
1769 	return (unsigned int)user_features;
1770 }
1771 
1772 /*
1773  * userland asks for a certain API version and we return which bits
1774  * and ioctl commands are implemented in this kernel for such API
1775  * version or -EINVAL if unknown.
1776  */
1777 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1778 			   unsigned long arg)
1779 {
1780 	struct uffdio_api uffdio_api;
1781 	void __user *buf = (void __user *)arg;
1782 	int ret;
1783 	__u64 features;
1784 
1785 	ret = -EINVAL;
1786 	if (ctx->state != UFFD_STATE_WAIT_API)
1787 		goto out;
1788 	ret = -EFAULT;
1789 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1790 		goto out;
1791 	features = uffdio_api.features;
1792 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1793 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1794 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1795 			goto out;
1796 		ret = -EINVAL;
1797 		goto out;
1798 	}
1799 	/* report all available features and ioctls to userland */
1800 	uffdio_api.features = UFFD_API_FEATURES;
1801 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1802 	ret = -EFAULT;
1803 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1804 		goto out;
1805 	ctx->state = UFFD_STATE_RUNNING;
1806 	/* only enable the requested features for this uffd context */
1807 	ctx->features = uffd_ctx_features(features);
1808 	ret = 0;
1809 out:
1810 	return ret;
1811 }
1812 
1813 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1814 			      unsigned long arg)
1815 {
1816 	int ret = -EINVAL;
1817 	struct userfaultfd_ctx *ctx = file->private_data;
1818 
1819 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1820 		return -EINVAL;
1821 
1822 	switch(cmd) {
1823 	case UFFDIO_API:
1824 		ret = userfaultfd_api(ctx, arg);
1825 		break;
1826 	case UFFDIO_REGISTER:
1827 		ret = userfaultfd_register(ctx, arg);
1828 		break;
1829 	case UFFDIO_UNREGISTER:
1830 		ret = userfaultfd_unregister(ctx, arg);
1831 		break;
1832 	case UFFDIO_WAKE:
1833 		ret = userfaultfd_wake(ctx, arg);
1834 		break;
1835 	case UFFDIO_COPY:
1836 		ret = userfaultfd_copy(ctx, arg);
1837 		break;
1838 	case UFFDIO_ZEROPAGE:
1839 		ret = userfaultfd_zeropage(ctx, arg);
1840 		break;
1841 	}
1842 	return ret;
1843 }
1844 
1845 #ifdef CONFIG_PROC_FS
1846 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1847 {
1848 	struct userfaultfd_ctx *ctx = f->private_data;
1849 	wait_queue_entry_t *wq;
1850 	unsigned long pending = 0, total = 0;
1851 
1852 	spin_lock(&ctx->fault_pending_wqh.lock);
1853 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1854 		pending++;
1855 		total++;
1856 	}
1857 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1858 		total++;
1859 	}
1860 	spin_unlock(&ctx->fault_pending_wqh.lock);
1861 
1862 	/*
1863 	 * If more protocols will be added, there will be all shown
1864 	 * separated by a space. Like this:
1865 	 *	protocols: aa:... bb:...
1866 	 */
1867 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1868 		   pending, total, UFFD_API, ctx->features,
1869 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1870 }
1871 #endif
1872 
1873 static const struct file_operations userfaultfd_fops = {
1874 #ifdef CONFIG_PROC_FS
1875 	.show_fdinfo	= userfaultfd_show_fdinfo,
1876 #endif
1877 	.release	= userfaultfd_release,
1878 	.poll		= userfaultfd_poll,
1879 	.read		= userfaultfd_read,
1880 	.unlocked_ioctl = userfaultfd_ioctl,
1881 	.compat_ioctl	= userfaultfd_ioctl,
1882 	.llseek		= noop_llseek,
1883 };
1884 
1885 static void init_once_userfaultfd_ctx(void *mem)
1886 {
1887 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1888 
1889 	init_waitqueue_head(&ctx->fault_pending_wqh);
1890 	init_waitqueue_head(&ctx->fault_wqh);
1891 	init_waitqueue_head(&ctx->event_wqh);
1892 	init_waitqueue_head(&ctx->fd_wqh);
1893 	seqcount_init(&ctx->refile_seq);
1894 }
1895 
1896 SYSCALL_DEFINE1(userfaultfd, int, flags)
1897 {
1898 	struct userfaultfd_ctx *ctx;
1899 	int fd;
1900 
1901 	BUG_ON(!current->mm);
1902 
1903 	/* Check the UFFD_* constants for consistency.  */
1904 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1905 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1906 
1907 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1908 		return -EINVAL;
1909 
1910 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1911 	if (!ctx)
1912 		return -ENOMEM;
1913 
1914 	atomic_set(&ctx->refcount, 1);
1915 	ctx->flags = flags;
1916 	ctx->features = 0;
1917 	ctx->state = UFFD_STATE_WAIT_API;
1918 	ctx->released = false;
1919 	ctx->mmap_changing = false;
1920 	ctx->mm = current->mm;
1921 	/* prevent the mm struct to be freed */
1922 	mmgrab(ctx->mm);
1923 
1924 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1925 			      O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1926 	if (fd < 0) {
1927 		mmdrop(ctx->mm);
1928 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1929 	}
1930 	return fd;
1931 }
1932 
1933 static int __init userfaultfd_init(void)
1934 {
1935 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1936 						sizeof(struct userfaultfd_ctx),
1937 						0,
1938 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1939 						init_once_userfaultfd_ctx);
1940 	return 0;
1941 }
1942 __initcall(userfaultfd_init);
1943