xref: /linux/fs/userfaultfd.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
66 	struct mm_struct *mm;
67 };
68 
69 struct userfaultfd_fork_ctx {
70 	struct userfaultfd_ctx *orig;
71 	struct userfaultfd_ctx *new;
72 	struct list_head list;
73 };
74 
75 struct userfaultfd_unmap_ctx {
76 	struct userfaultfd_ctx *ctx;
77 	unsigned long start;
78 	unsigned long end;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_wait_queue {
83 	struct uffd_msg msg;
84 	wait_queue_t wq;
85 	struct userfaultfd_ctx *ctx;
86 	bool waken;
87 };
88 
89 struct userfaultfd_wake_range {
90 	unsigned long start;
91 	unsigned long len;
92 };
93 
94 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
95 				     int wake_flags, void *key)
96 {
97 	struct userfaultfd_wake_range *range = key;
98 	int ret;
99 	struct userfaultfd_wait_queue *uwq;
100 	unsigned long start, len;
101 
102 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 	ret = 0;
104 	/* len == 0 means wake all */
105 	start = range->start;
106 	len = range->len;
107 	if (len && (start > uwq->msg.arg.pagefault.address ||
108 		    start + len <= uwq->msg.arg.pagefault.address))
109 		goto out;
110 	WRITE_ONCE(uwq->waken, true);
111 	/*
112 	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 	 * renders uwq->waken visible to other CPUs before the task is
114 	 * waken.
115 	 */
116 	ret = wake_up_state(wq->private, mode);
117 	if (ret)
118 		/*
119 		 * Wake only once, autoremove behavior.
120 		 *
121 		 * After the effect of list_del_init is visible to the
122 		 * other CPUs, the waitqueue may disappear from under
123 		 * us, see the !list_empty_careful() in
124 		 * handle_userfault(). try_to_wake_up() has an
125 		 * implicit smp_mb__before_spinlock, and the
126 		 * wq->private is read before calling the extern
127 		 * function "wake_up_state" (which in turns calls
128 		 * try_to_wake_up). While the spin_lock;spin_unlock;
129 		 * wouldn't be enough, the smp_mb__before_spinlock is
130 		 * enough to avoid an explicit smp_mb() here.
131 		 */
132 		list_del_init(&wq->task_list);
133 out:
134 	return ret;
135 }
136 
137 /**
138  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139  * context.
140  * @ctx: [in] Pointer to the userfaultfd context.
141  */
142 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
143 {
144 	if (!atomic_inc_not_zero(&ctx->refcount))
145 		BUG();
146 }
147 
148 /**
149  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150  * context.
151  * @ctx: [in] Pointer to userfaultfd context.
152  *
153  * The userfaultfd context reference must have been previously acquired either
154  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155  */
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157 {
158 	if (atomic_dec_and_test(&ctx->refcount)) {
159 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
160 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
161 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
162 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
163 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
164 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
165 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
166 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
167 		mmdrop(ctx->mm);
168 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
169 	}
170 }
171 
172 static inline void msg_init(struct uffd_msg *msg)
173 {
174 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175 	/*
176 	 * Must use memset to zero out the paddings or kernel data is
177 	 * leaked to userland.
178 	 */
179 	memset(msg, 0, sizeof(struct uffd_msg));
180 }
181 
182 static inline struct uffd_msg userfault_msg(unsigned long address,
183 					    unsigned int flags,
184 					    unsigned long reason)
185 {
186 	struct uffd_msg msg;
187 	msg_init(&msg);
188 	msg.event = UFFD_EVENT_PAGEFAULT;
189 	msg.arg.pagefault.address = address;
190 	if (flags & FAULT_FLAG_WRITE)
191 		/*
192 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 		 * was a read fault, otherwise if set it means it's
196 		 * a write fault.
197 		 */
198 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 	if (reason & VM_UFFD_WP)
200 		/*
201 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 		 * a missing fault, otherwise if set it means it's a
205 		 * write protect fault.
206 		 */
207 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 	return msg;
209 }
210 
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213  * Same functionality as userfaultfd_must_wait below with modifications for
214  * hugepmd ranges.
215  */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 					 unsigned long address,
218 					 unsigned long flags,
219 					 unsigned long reason)
220 {
221 	struct mm_struct *mm = ctx->mm;
222 	pte_t *pte;
223 	bool ret = true;
224 
225 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
226 
227 	pte = huge_pte_offset(mm, address);
228 	if (!pte)
229 		goto out;
230 
231 	ret = false;
232 
233 	/*
234 	 * Lockless access: we're in a wait_event so it's ok if it
235 	 * changes under us.
236 	 */
237 	if (huge_pte_none(*pte))
238 		ret = true;
239 	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
240 		ret = true;
241 out:
242 	return ret;
243 }
244 #else
245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246 					 unsigned long address,
247 					 unsigned long flags,
248 					 unsigned long reason)
249 {
250 	return false;	/* should never get here */
251 }
252 #endif /* CONFIG_HUGETLB_PAGE */
253 
254 /*
255  * Verify the pagetables are still not ok after having reigstered into
256  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
257  * userfault that has already been resolved, if userfaultfd_read and
258  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
259  * threads.
260  */
261 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
262 					 unsigned long address,
263 					 unsigned long flags,
264 					 unsigned long reason)
265 {
266 	struct mm_struct *mm = ctx->mm;
267 	pgd_t *pgd;
268 	p4d_t *p4d;
269 	pud_t *pud;
270 	pmd_t *pmd, _pmd;
271 	pte_t *pte;
272 	bool ret = true;
273 
274 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
275 
276 	pgd = pgd_offset(mm, address);
277 	if (!pgd_present(*pgd))
278 		goto out;
279 	p4d = p4d_offset(pgd, address);
280 	if (!p4d_present(*p4d))
281 		goto out;
282 	pud = pud_offset(p4d, address);
283 	if (!pud_present(*pud))
284 		goto out;
285 	pmd = pmd_offset(pud, address);
286 	/*
287 	 * READ_ONCE must function as a barrier with narrower scope
288 	 * and it must be equivalent to:
289 	 *	_pmd = *pmd; barrier();
290 	 *
291 	 * This is to deal with the instability (as in
292 	 * pmd_trans_unstable) of the pmd.
293 	 */
294 	_pmd = READ_ONCE(*pmd);
295 	if (!pmd_present(_pmd))
296 		goto out;
297 
298 	ret = false;
299 	if (pmd_trans_huge(_pmd))
300 		goto out;
301 
302 	/*
303 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
304 	 * and use the standard pte_offset_map() instead of parsing _pmd.
305 	 */
306 	pte = pte_offset_map(pmd, address);
307 	/*
308 	 * Lockless access: we're in a wait_event so it's ok if it
309 	 * changes under us.
310 	 */
311 	if (pte_none(*pte))
312 		ret = true;
313 	pte_unmap(pte);
314 
315 out:
316 	return ret;
317 }
318 
319 /*
320  * The locking rules involved in returning VM_FAULT_RETRY depending on
321  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
322  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
323  * recommendation in __lock_page_or_retry is not an understatement.
324  *
325  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
326  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
327  * not set.
328  *
329  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
330  * set, VM_FAULT_RETRY can still be returned if and only if there are
331  * fatal_signal_pending()s, and the mmap_sem must be released before
332  * returning it.
333  */
334 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
335 {
336 	struct mm_struct *mm = vmf->vma->vm_mm;
337 	struct userfaultfd_ctx *ctx;
338 	struct userfaultfd_wait_queue uwq;
339 	int ret;
340 	bool must_wait, return_to_userland;
341 	long blocking_state;
342 
343 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
344 
345 	ret = VM_FAULT_SIGBUS;
346 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
347 	if (!ctx)
348 		goto out;
349 
350 	BUG_ON(ctx->mm != mm);
351 
352 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
353 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
354 
355 	/*
356 	 * If it's already released don't get it. This avoids to loop
357 	 * in __get_user_pages if userfaultfd_release waits on the
358 	 * caller of handle_userfault to release the mmap_sem.
359 	 */
360 	if (unlikely(ACCESS_ONCE(ctx->released)))
361 		goto out;
362 
363 	/*
364 	 * We don't do userfault handling for the final child pid update.
365 	 */
366 	if (current->flags & PF_EXITING)
367 		goto out;
368 
369 	/*
370 	 * Check that we can return VM_FAULT_RETRY.
371 	 *
372 	 * NOTE: it should become possible to return VM_FAULT_RETRY
373 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
374 	 * -EBUSY failures, if the userfaultfd is to be extended for
375 	 * VM_UFFD_WP tracking and we intend to arm the userfault
376 	 * without first stopping userland access to the memory. For
377 	 * VM_UFFD_MISSING userfaults this is enough for now.
378 	 */
379 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
380 		/*
381 		 * Validate the invariant that nowait must allow retry
382 		 * to be sure not to return SIGBUS erroneously on
383 		 * nowait invocations.
384 		 */
385 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
386 #ifdef CONFIG_DEBUG_VM
387 		if (printk_ratelimit()) {
388 			printk(KERN_WARNING
389 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
390 			       vmf->flags);
391 			dump_stack();
392 		}
393 #endif
394 		goto out;
395 	}
396 
397 	/*
398 	 * Handle nowait, not much to do other than tell it to retry
399 	 * and wait.
400 	 */
401 	ret = VM_FAULT_RETRY;
402 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
403 		goto out;
404 
405 	/* take the reference before dropping the mmap_sem */
406 	userfaultfd_ctx_get(ctx);
407 
408 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
409 	uwq.wq.private = current;
410 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
411 	uwq.ctx = ctx;
412 	uwq.waken = false;
413 
414 	return_to_userland =
415 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
416 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
417 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
418 			 TASK_KILLABLE;
419 
420 	spin_lock(&ctx->fault_pending_wqh.lock);
421 	/*
422 	 * After the __add_wait_queue the uwq is visible to userland
423 	 * through poll/read().
424 	 */
425 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
426 	/*
427 	 * The smp_mb() after __set_current_state prevents the reads
428 	 * following the spin_unlock to happen before the list_add in
429 	 * __add_wait_queue.
430 	 */
431 	set_current_state(blocking_state);
432 	spin_unlock(&ctx->fault_pending_wqh.lock);
433 
434 	if (!is_vm_hugetlb_page(vmf->vma))
435 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
436 						  reason);
437 	else
438 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
439 						       vmf->flags, reason);
440 	up_read(&mm->mmap_sem);
441 
442 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
443 		   (return_to_userland ? !signal_pending(current) :
444 		    !fatal_signal_pending(current)))) {
445 		wake_up_poll(&ctx->fd_wqh, POLLIN);
446 		schedule();
447 		ret |= VM_FAULT_MAJOR;
448 
449 		/*
450 		 * False wakeups can orginate even from rwsem before
451 		 * up_read() however userfaults will wait either for a
452 		 * targeted wakeup on the specific uwq waitqueue from
453 		 * wake_userfault() or for signals or for uffd
454 		 * release.
455 		 */
456 		while (!READ_ONCE(uwq.waken)) {
457 			/*
458 			 * This needs the full smp_store_mb()
459 			 * guarantee as the state write must be
460 			 * visible to other CPUs before reading
461 			 * uwq.waken from other CPUs.
462 			 */
463 			set_current_state(blocking_state);
464 			if (READ_ONCE(uwq.waken) ||
465 			    READ_ONCE(ctx->released) ||
466 			    (return_to_userland ? signal_pending(current) :
467 			     fatal_signal_pending(current)))
468 				break;
469 			schedule();
470 		}
471 	}
472 
473 	__set_current_state(TASK_RUNNING);
474 
475 	if (return_to_userland) {
476 		if (signal_pending(current) &&
477 		    !fatal_signal_pending(current)) {
478 			/*
479 			 * If we got a SIGSTOP or SIGCONT and this is
480 			 * a normal userland page fault, just let
481 			 * userland return so the signal will be
482 			 * handled and gdb debugging works.  The page
483 			 * fault code immediately after we return from
484 			 * this function is going to release the
485 			 * mmap_sem and it's not depending on it
486 			 * (unlike gup would if we were not to return
487 			 * VM_FAULT_RETRY).
488 			 *
489 			 * If a fatal signal is pending we still take
490 			 * the streamlined VM_FAULT_RETRY failure path
491 			 * and there's no need to retake the mmap_sem
492 			 * in such case.
493 			 */
494 			down_read(&mm->mmap_sem);
495 			ret = VM_FAULT_NOPAGE;
496 		}
497 	}
498 
499 	/*
500 	 * Here we race with the list_del; list_add in
501 	 * userfaultfd_ctx_read(), however because we don't ever run
502 	 * list_del_init() to refile across the two lists, the prev
503 	 * and next pointers will never point to self. list_add also
504 	 * would never let any of the two pointers to point to
505 	 * self. So list_empty_careful won't risk to see both pointers
506 	 * pointing to self at any time during the list refile. The
507 	 * only case where list_del_init() is called is the full
508 	 * removal in the wake function and there we don't re-list_add
509 	 * and it's fine not to block on the spinlock. The uwq on this
510 	 * kernel stack can be released after the list_del_init.
511 	 */
512 	if (!list_empty_careful(&uwq.wq.task_list)) {
513 		spin_lock(&ctx->fault_pending_wqh.lock);
514 		/*
515 		 * No need of list_del_init(), the uwq on the stack
516 		 * will be freed shortly anyway.
517 		 */
518 		list_del(&uwq.wq.task_list);
519 		spin_unlock(&ctx->fault_pending_wqh.lock);
520 	}
521 
522 	/*
523 	 * ctx may go away after this if the userfault pseudo fd is
524 	 * already released.
525 	 */
526 	userfaultfd_ctx_put(ctx);
527 
528 out:
529 	return ret;
530 }
531 
532 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
533 					      struct userfaultfd_wait_queue *ewq)
534 {
535 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
536 		goto out;
537 
538 	ewq->ctx = ctx;
539 	init_waitqueue_entry(&ewq->wq, current);
540 
541 	spin_lock(&ctx->event_wqh.lock);
542 	/*
543 	 * After the __add_wait_queue the uwq is visible to userland
544 	 * through poll/read().
545 	 */
546 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
547 	for (;;) {
548 		set_current_state(TASK_KILLABLE);
549 		if (ewq->msg.event == 0)
550 			break;
551 		if (ACCESS_ONCE(ctx->released) ||
552 		    fatal_signal_pending(current)) {
553 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
554 			if (ewq->msg.event == UFFD_EVENT_FORK) {
555 				struct userfaultfd_ctx *new;
556 
557 				new = (struct userfaultfd_ctx *)
558 					(unsigned long)
559 					ewq->msg.arg.reserved.reserved1;
560 
561 				userfaultfd_ctx_put(new);
562 			}
563 			break;
564 		}
565 
566 		spin_unlock(&ctx->event_wqh.lock);
567 
568 		wake_up_poll(&ctx->fd_wqh, POLLIN);
569 		schedule();
570 
571 		spin_lock(&ctx->event_wqh.lock);
572 	}
573 	__set_current_state(TASK_RUNNING);
574 	spin_unlock(&ctx->event_wqh.lock);
575 
576 	/*
577 	 * ctx may go away after this if the userfault pseudo fd is
578 	 * already released.
579 	 */
580 out:
581 	userfaultfd_ctx_put(ctx);
582 }
583 
584 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
585 				       struct userfaultfd_wait_queue *ewq)
586 {
587 	ewq->msg.event = 0;
588 	wake_up_locked(&ctx->event_wqh);
589 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
590 }
591 
592 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
593 {
594 	struct userfaultfd_ctx *ctx = NULL, *octx;
595 	struct userfaultfd_fork_ctx *fctx;
596 
597 	octx = vma->vm_userfaultfd_ctx.ctx;
598 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
599 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
600 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
601 		return 0;
602 	}
603 
604 	list_for_each_entry(fctx, fcs, list)
605 		if (fctx->orig == octx) {
606 			ctx = fctx->new;
607 			break;
608 		}
609 
610 	if (!ctx) {
611 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
612 		if (!fctx)
613 			return -ENOMEM;
614 
615 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
616 		if (!ctx) {
617 			kfree(fctx);
618 			return -ENOMEM;
619 		}
620 
621 		atomic_set(&ctx->refcount, 1);
622 		ctx->flags = octx->flags;
623 		ctx->state = UFFD_STATE_RUNNING;
624 		ctx->features = octx->features;
625 		ctx->released = false;
626 		ctx->mm = vma->vm_mm;
627 		atomic_inc(&ctx->mm->mm_count);
628 
629 		userfaultfd_ctx_get(octx);
630 		fctx->orig = octx;
631 		fctx->new = ctx;
632 		list_add_tail(&fctx->list, fcs);
633 	}
634 
635 	vma->vm_userfaultfd_ctx.ctx = ctx;
636 	return 0;
637 }
638 
639 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
640 {
641 	struct userfaultfd_ctx *ctx = fctx->orig;
642 	struct userfaultfd_wait_queue ewq;
643 
644 	msg_init(&ewq.msg);
645 
646 	ewq.msg.event = UFFD_EVENT_FORK;
647 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
648 
649 	userfaultfd_event_wait_completion(ctx, &ewq);
650 }
651 
652 void dup_userfaultfd_complete(struct list_head *fcs)
653 {
654 	struct userfaultfd_fork_ctx *fctx, *n;
655 
656 	list_for_each_entry_safe(fctx, n, fcs, list) {
657 		dup_fctx(fctx);
658 		list_del(&fctx->list);
659 		kfree(fctx);
660 	}
661 }
662 
663 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
664 			     struct vm_userfaultfd_ctx *vm_ctx)
665 {
666 	struct userfaultfd_ctx *ctx;
667 
668 	ctx = vma->vm_userfaultfd_ctx.ctx;
669 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
670 		vm_ctx->ctx = ctx;
671 		userfaultfd_ctx_get(ctx);
672 	}
673 }
674 
675 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
676 				 unsigned long from, unsigned long to,
677 				 unsigned long len)
678 {
679 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
680 	struct userfaultfd_wait_queue ewq;
681 
682 	if (!ctx)
683 		return;
684 
685 	if (to & ~PAGE_MASK) {
686 		userfaultfd_ctx_put(ctx);
687 		return;
688 	}
689 
690 	msg_init(&ewq.msg);
691 
692 	ewq.msg.event = UFFD_EVENT_REMAP;
693 	ewq.msg.arg.remap.from = from;
694 	ewq.msg.arg.remap.to = to;
695 	ewq.msg.arg.remap.len = len;
696 
697 	userfaultfd_event_wait_completion(ctx, &ewq);
698 }
699 
700 bool userfaultfd_remove(struct vm_area_struct *vma,
701 			unsigned long start, unsigned long end)
702 {
703 	struct mm_struct *mm = vma->vm_mm;
704 	struct userfaultfd_ctx *ctx;
705 	struct userfaultfd_wait_queue ewq;
706 
707 	ctx = vma->vm_userfaultfd_ctx.ctx;
708 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
709 		return true;
710 
711 	userfaultfd_ctx_get(ctx);
712 	up_read(&mm->mmap_sem);
713 
714 	msg_init(&ewq.msg);
715 
716 	ewq.msg.event = UFFD_EVENT_REMOVE;
717 	ewq.msg.arg.remove.start = start;
718 	ewq.msg.arg.remove.end = end;
719 
720 	userfaultfd_event_wait_completion(ctx, &ewq);
721 
722 	return false;
723 }
724 
725 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
726 			  unsigned long start, unsigned long end)
727 {
728 	struct userfaultfd_unmap_ctx *unmap_ctx;
729 
730 	list_for_each_entry(unmap_ctx, unmaps, list)
731 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
732 		    unmap_ctx->end == end)
733 			return true;
734 
735 	return false;
736 }
737 
738 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
739 			   unsigned long start, unsigned long end,
740 			   struct list_head *unmaps)
741 {
742 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
743 		struct userfaultfd_unmap_ctx *unmap_ctx;
744 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
745 
746 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
747 		    has_unmap_ctx(ctx, unmaps, start, end))
748 			continue;
749 
750 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
751 		if (!unmap_ctx)
752 			return -ENOMEM;
753 
754 		userfaultfd_ctx_get(ctx);
755 		unmap_ctx->ctx = ctx;
756 		unmap_ctx->start = start;
757 		unmap_ctx->end = end;
758 		list_add_tail(&unmap_ctx->list, unmaps);
759 	}
760 
761 	return 0;
762 }
763 
764 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
765 {
766 	struct userfaultfd_unmap_ctx *ctx, *n;
767 	struct userfaultfd_wait_queue ewq;
768 
769 	list_for_each_entry_safe(ctx, n, uf, list) {
770 		msg_init(&ewq.msg);
771 
772 		ewq.msg.event = UFFD_EVENT_UNMAP;
773 		ewq.msg.arg.remove.start = ctx->start;
774 		ewq.msg.arg.remove.end = ctx->end;
775 
776 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
777 
778 		list_del(&ctx->list);
779 		kfree(ctx);
780 	}
781 }
782 
783 static int userfaultfd_release(struct inode *inode, struct file *file)
784 {
785 	struct userfaultfd_ctx *ctx = file->private_data;
786 	struct mm_struct *mm = ctx->mm;
787 	struct vm_area_struct *vma, *prev;
788 	/* len == 0 means wake all */
789 	struct userfaultfd_wake_range range = { .len = 0, };
790 	unsigned long new_flags;
791 
792 	ACCESS_ONCE(ctx->released) = true;
793 
794 	if (!mmget_not_zero(mm))
795 		goto wakeup;
796 
797 	/*
798 	 * Flush page faults out of all CPUs. NOTE: all page faults
799 	 * must be retried without returning VM_FAULT_SIGBUS if
800 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
801 	 * changes while handle_userfault released the mmap_sem. So
802 	 * it's critical that released is set to true (above), before
803 	 * taking the mmap_sem for writing.
804 	 */
805 	down_write(&mm->mmap_sem);
806 	prev = NULL;
807 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
808 		cond_resched();
809 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
810 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
811 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
812 			prev = vma;
813 			continue;
814 		}
815 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
816 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
817 				 new_flags, vma->anon_vma,
818 				 vma->vm_file, vma->vm_pgoff,
819 				 vma_policy(vma),
820 				 NULL_VM_UFFD_CTX);
821 		if (prev)
822 			vma = prev;
823 		else
824 			prev = vma;
825 		vma->vm_flags = new_flags;
826 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
827 	}
828 	up_write(&mm->mmap_sem);
829 	mmput(mm);
830 wakeup:
831 	/*
832 	 * After no new page faults can wait on this fault_*wqh, flush
833 	 * the last page faults that may have been already waiting on
834 	 * the fault_*wqh.
835 	 */
836 	spin_lock(&ctx->fault_pending_wqh.lock);
837 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
838 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
839 	spin_unlock(&ctx->fault_pending_wqh.lock);
840 
841 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
842 	userfaultfd_ctx_put(ctx);
843 	return 0;
844 }
845 
846 /* fault_pending_wqh.lock must be hold by the caller */
847 static inline struct userfaultfd_wait_queue *find_userfault_in(
848 		wait_queue_head_t *wqh)
849 {
850 	wait_queue_t *wq;
851 	struct userfaultfd_wait_queue *uwq;
852 
853 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
854 
855 	uwq = NULL;
856 	if (!waitqueue_active(wqh))
857 		goto out;
858 	/* walk in reverse to provide FIFO behavior to read userfaults */
859 	wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
860 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
861 out:
862 	return uwq;
863 }
864 
865 static inline struct userfaultfd_wait_queue *find_userfault(
866 		struct userfaultfd_ctx *ctx)
867 {
868 	return find_userfault_in(&ctx->fault_pending_wqh);
869 }
870 
871 static inline struct userfaultfd_wait_queue *find_userfault_evt(
872 		struct userfaultfd_ctx *ctx)
873 {
874 	return find_userfault_in(&ctx->event_wqh);
875 }
876 
877 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
878 {
879 	struct userfaultfd_ctx *ctx = file->private_data;
880 	unsigned int ret;
881 
882 	poll_wait(file, &ctx->fd_wqh, wait);
883 
884 	switch (ctx->state) {
885 	case UFFD_STATE_WAIT_API:
886 		return POLLERR;
887 	case UFFD_STATE_RUNNING:
888 		/*
889 		 * poll() never guarantees that read won't block.
890 		 * userfaults can be waken before they're read().
891 		 */
892 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
893 			return POLLERR;
894 		/*
895 		 * lockless access to see if there are pending faults
896 		 * __pollwait last action is the add_wait_queue but
897 		 * the spin_unlock would allow the waitqueue_active to
898 		 * pass above the actual list_add inside
899 		 * add_wait_queue critical section. So use a full
900 		 * memory barrier to serialize the list_add write of
901 		 * add_wait_queue() with the waitqueue_active read
902 		 * below.
903 		 */
904 		ret = 0;
905 		smp_mb();
906 		if (waitqueue_active(&ctx->fault_pending_wqh))
907 			ret = POLLIN;
908 		else if (waitqueue_active(&ctx->event_wqh))
909 			ret = POLLIN;
910 
911 		return ret;
912 	default:
913 		WARN_ON_ONCE(1);
914 		return POLLERR;
915 	}
916 }
917 
918 static const struct file_operations userfaultfd_fops;
919 
920 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
921 				  struct userfaultfd_ctx *new,
922 				  struct uffd_msg *msg)
923 {
924 	int fd;
925 	struct file *file;
926 	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
927 
928 	fd = get_unused_fd_flags(flags);
929 	if (fd < 0)
930 		return fd;
931 
932 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
933 				  O_RDWR | flags);
934 	if (IS_ERR(file)) {
935 		put_unused_fd(fd);
936 		return PTR_ERR(file);
937 	}
938 
939 	fd_install(fd, file);
940 	msg->arg.reserved.reserved1 = 0;
941 	msg->arg.fork.ufd = fd;
942 
943 	return 0;
944 }
945 
946 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
947 				    struct uffd_msg *msg)
948 {
949 	ssize_t ret;
950 	DECLARE_WAITQUEUE(wait, current);
951 	struct userfaultfd_wait_queue *uwq;
952 	/*
953 	 * Handling fork event requires sleeping operations, so
954 	 * we drop the event_wqh lock, then do these ops, then
955 	 * lock it back and wake up the waiter. While the lock is
956 	 * dropped the ewq may go away so we keep track of it
957 	 * carefully.
958 	 */
959 	LIST_HEAD(fork_event);
960 	struct userfaultfd_ctx *fork_nctx = NULL;
961 
962 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
963 	spin_lock(&ctx->fd_wqh.lock);
964 	__add_wait_queue(&ctx->fd_wqh, &wait);
965 	for (;;) {
966 		set_current_state(TASK_INTERRUPTIBLE);
967 		spin_lock(&ctx->fault_pending_wqh.lock);
968 		uwq = find_userfault(ctx);
969 		if (uwq) {
970 			/*
971 			 * Use a seqcount to repeat the lockless check
972 			 * in wake_userfault() to avoid missing
973 			 * wakeups because during the refile both
974 			 * waitqueue could become empty if this is the
975 			 * only userfault.
976 			 */
977 			write_seqcount_begin(&ctx->refile_seq);
978 
979 			/*
980 			 * The fault_pending_wqh.lock prevents the uwq
981 			 * to disappear from under us.
982 			 *
983 			 * Refile this userfault from
984 			 * fault_pending_wqh to fault_wqh, it's not
985 			 * pending anymore after we read it.
986 			 *
987 			 * Use list_del() by hand (as
988 			 * userfaultfd_wake_function also uses
989 			 * list_del_init() by hand) to be sure nobody
990 			 * changes __remove_wait_queue() to use
991 			 * list_del_init() in turn breaking the
992 			 * !list_empty_careful() check in
993 			 * handle_userfault(). The uwq->wq.task_list
994 			 * must never be empty at any time during the
995 			 * refile, or the waitqueue could disappear
996 			 * from under us. The "wait_queue_head_t"
997 			 * parameter of __remove_wait_queue() is unused
998 			 * anyway.
999 			 */
1000 			list_del(&uwq->wq.task_list);
1001 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1002 
1003 			write_seqcount_end(&ctx->refile_seq);
1004 
1005 			/* careful to always initialize msg if ret == 0 */
1006 			*msg = uwq->msg;
1007 			spin_unlock(&ctx->fault_pending_wqh.lock);
1008 			ret = 0;
1009 			break;
1010 		}
1011 		spin_unlock(&ctx->fault_pending_wqh.lock);
1012 
1013 		spin_lock(&ctx->event_wqh.lock);
1014 		uwq = find_userfault_evt(ctx);
1015 		if (uwq) {
1016 			*msg = uwq->msg;
1017 
1018 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1019 				fork_nctx = (struct userfaultfd_ctx *)
1020 					(unsigned long)
1021 					uwq->msg.arg.reserved.reserved1;
1022 				list_move(&uwq->wq.task_list, &fork_event);
1023 				spin_unlock(&ctx->event_wqh.lock);
1024 				ret = 0;
1025 				break;
1026 			}
1027 
1028 			userfaultfd_event_complete(ctx, uwq);
1029 			spin_unlock(&ctx->event_wqh.lock);
1030 			ret = 0;
1031 			break;
1032 		}
1033 		spin_unlock(&ctx->event_wqh.lock);
1034 
1035 		if (signal_pending(current)) {
1036 			ret = -ERESTARTSYS;
1037 			break;
1038 		}
1039 		if (no_wait) {
1040 			ret = -EAGAIN;
1041 			break;
1042 		}
1043 		spin_unlock(&ctx->fd_wqh.lock);
1044 		schedule();
1045 		spin_lock(&ctx->fd_wqh.lock);
1046 	}
1047 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1048 	__set_current_state(TASK_RUNNING);
1049 	spin_unlock(&ctx->fd_wqh.lock);
1050 
1051 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1052 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1053 
1054 		if (!ret) {
1055 			spin_lock(&ctx->event_wqh.lock);
1056 			if (!list_empty(&fork_event)) {
1057 				uwq = list_first_entry(&fork_event,
1058 						       typeof(*uwq),
1059 						       wq.task_list);
1060 				list_del(&uwq->wq.task_list);
1061 				__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1062 				userfaultfd_event_complete(ctx, uwq);
1063 			}
1064 			spin_unlock(&ctx->event_wqh.lock);
1065 		}
1066 	}
1067 
1068 	return ret;
1069 }
1070 
1071 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1072 				size_t count, loff_t *ppos)
1073 {
1074 	struct userfaultfd_ctx *ctx = file->private_data;
1075 	ssize_t _ret, ret = 0;
1076 	struct uffd_msg msg;
1077 	int no_wait = file->f_flags & O_NONBLOCK;
1078 
1079 	if (ctx->state == UFFD_STATE_WAIT_API)
1080 		return -EINVAL;
1081 
1082 	for (;;) {
1083 		if (count < sizeof(msg))
1084 			return ret ? ret : -EINVAL;
1085 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1086 		if (_ret < 0)
1087 			return ret ? ret : _ret;
1088 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1089 			return ret ? ret : -EFAULT;
1090 		ret += sizeof(msg);
1091 		buf += sizeof(msg);
1092 		count -= sizeof(msg);
1093 		/*
1094 		 * Allow to read more than one fault at time but only
1095 		 * block if waiting for the very first one.
1096 		 */
1097 		no_wait = O_NONBLOCK;
1098 	}
1099 }
1100 
1101 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1102 			     struct userfaultfd_wake_range *range)
1103 {
1104 	unsigned long start, end;
1105 
1106 	start = range->start;
1107 	end = range->start + range->len;
1108 
1109 	spin_lock(&ctx->fault_pending_wqh.lock);
1110 	/* wake all in the range and autoremove */
1111 	if (waitqueue_active(&ctx->fault_pending_wqh))
1112 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1113 				     range);
1114 	if (waitqueue_active(&ctx->fault_wqh))
1115 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1116 	spin_unlock(&ctx->fault_pending_wqh.lock);
1117 }
1118 
1119 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1120 					   struct userfaultfd_wake_range *range)
1121 {
1122 	unsigned seq;
1123 	bool need_wakeup;
1124 
1125 	/*
1126 	 * To be sure waitqueue_active() is not reordered by the CPU
1127 	 * before the pagetable update, use an explicit SMP memory
1128 	 * barrier here. PT lock release or up_read(mmap_sem) still
1129 	 * have release semantics that can allow the
1130 	 * waitqueue_active() to be reordered before the pte update.
1131 	 */
1132 	smp_mb();
1133 
1134 	/*
1135 	 * Use waitqueue_active because it's very frequent to
1136 	 * change the address space atomically even if there are no
1137 	 * userfaults yet. So we take the spinlock only when we're
1138 	 * sure we've userfaults to wake.
1139 	 */
1140 	do {
1141 		seq = read_seqcount_begin(&ctx->refile_seq);
1142 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1143 			waitqueue_active(&ctx->fault_wqh);
1144 		cond_resched();
1145 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1146 	if (need_wakeup)
1147 		__wake_userfault(ctx, range);
1148 }
1149 
1150 static __always_inline int validate_range(struct mm_struct *mm,
1151 					  __u64 start, __u64 len)
1152 {
1153 	__u64 task_size = mm->task_size;
1154 
1155 	if (start & ~PAGE_MASK)
1156 		return -EINVAL;
1157 	if (len & ~PAGE_MASK)
1158 		return -EINVAL;
1159 	if (!len)
1160 		return -EINVAL;
1161 	if (start < mmap_min_addr)
1162 		return -EINVAL;
1163 	if (start >= task_size)
1164 		return -EINVAL;
1165 	if (len > task_size - start)
1166 		return -EINVAL;
1167 	return 0;
1168 }
1169 
1170 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1171 {
1172 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1173 		vma_is_shmem(vma);
1174 }
1175 
1176 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1177 				unsigned long arg)
1178 {
1179 	struct mm_struct *mm = ctx->mm;
1180 	struct vm_area_struct *vma, *prev, *cur;
1181 	int ret;
1182 	struct uffdio_register uffdio_register;
1183 	struct uffdio_register __user *user_uffdio_register;
1184 	unsigned long vm_flags, new_flags;
1185 	bool found;
1186 	bool non_anon_pages;
1187 	unsigned long start, end, vma_end;
1188 
1189 	user_uffdio_register = (struct uffdio_register __user *) arg;
1190 
1191 	ret = -EFAULT;
1192 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1193 			   sizeof(uffdio_register)-sizeof(__u64)))
1194 		goto out;
1195 
1196 	ret = -EINVAL;
1197 	if (!uffdio_register.mode)
1198 		goto out;
1199 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1200 				     UFFDIO_REGISTER_MODE_WP))
1201 		goto out;
1202 	vm_flags = 0;
1203 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1204 		vm_flags |= VM_UFFD_MISSING;
1205 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1206 		vm_flags |= VM_UFFD_WP;
1207 		/*
1208 		 * FIXME: remove the below error constraint by
1209 		 * implementing the wprotect tracking mode.
1210 		 */
1211 		ret = -EINVAL;
1212 		goto out;
1213 	}
1214 
1215 	ret = validate_range(mm, uffdio_register.range.start,
1216 			     uffdio_register.range.len);
1217 	if (ret)
1218 		goto out;
1219 
1220 	start = uffdio_register.range.start;
1221 	end = start + uffdio_register.range.len;
1222 
1223 	ret = -ENOMEM;
1224 	if (!mmget_not_zero(mm))
1225 		goto out;
1226 
1227 	down_write(&mm->mmap_sem);
1228 	vma = find_vma_prev(mm, start, &prev);
1229 	if (!vma)
1230 		goto out_unlock;
1231 
1232 	/* check that there's at least one vma in the range */
1233 	ret = -EINVAL;
1234 	if (vma->vm_start >= end)
1235 		goto out_unlock;
1236 
1237 	/*
1238 	 * If the first vma contains huge pages, make sure start address
1239 	 * is aligned to huge page size.
1240 	 */
1241 	if (is_vm_hugetlb_page(vma)) {
1242 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1243 
1244 		if (start & (vma_hpagesize - 1))
1245 			goto out_unlock;
1246 	}
1247 
1248 	/*
1249 	 * Search for not compatible vmas.
1250 	 */
1251 	found = false;
1252 	non_anon_pages = false;
1253 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1254 		cond_resched();
1255 
1256 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1257 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1258 
1259 		/* check not compatible vmas */
1260 		ret = -EINVAL;
1261 		if (!vma_can_userfault(cur))
1262 			goto out_unlock;
1263 		/*
1264 		 * If this vma contains ending address, and huge pages
1265 		 * check alignment.
1266 		 */
1267 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1268 		    end > cur->vm_start) {
1269 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1270 
1271 			ret = -EINVAL;
1272 
1273 			if (end & (vma_hpagesize - 1))
1274 				goto out_unlock;
1275 		}
1276 
1277 		/*
1278 		 * Check that this vma isn't already owned by a
1279 		 * different userfaultfd. We can't allow more than one
1280 		 * userfaultfd to own a single vma simultaneously or we
1281 		 * wouldn't know which one to deliver the userfaults to.
1282 		 */
1283 		ret = -EBUSY;
1284 		if (cur->vm_userfaultfd_ctx.ctx &&
1285 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1286 			goto out_unlock;
1287 
1288 		/*
1289 		 * Note vmas containing huge pages
1290 		 */
1291 		if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1292 			non_anon_pages = true;
1293 
1294 		found = true;
1295 	}
1296 	BUG_ON(!found);
1297 
1298 	if (vma->vm_start < start)
1299 		prev = vma;
1300 
1301 	ret = 0;
1302 	do {
1303 		cond_resched();
1304 
1305 		BUG_ON(!vma_can_userfault(vma));
1306 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1307 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1308 
1309 		/*
1310 		 * Nothing to do: this vma is already registered into this
1311 		 * userfaultfd and with the right tracking mode too.
1312 		 */
1313 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1314 		    (vma->vm_flags & vm_flags) == vm_flags)
1315 			goto skip;
1316 
1317 		if (vma->vm_start > start)
1318 			start = vma->vm_start;
1319 		vma_end = min(end, vma->vm_end);
1320 
1321 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1322 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1323 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1324 				 vma_policy(vma),
1325 				 ((struct vm_userfaultfd_ctx){ ctx }));
1326 		if (prev) {
1327 			vma = prev;
1328 			goto next;
1329 		}
1330 		if (vma->vm_start < start) {
1331 			ret = split_vma(mm, vma, start, 1);
1332 			if (ret)
1333 				break;
1334 		}
1335 		if (vma->vm_end > end) {
1336 			ret = split_vma(mm, vma, end, 0);
1337 			if (ret)
1338 				break;
1339 		}
1340 	next:
1341 		/*
1342 		 * In the vma_merge() successful mprotect-like case 8:
1343 		 * the next vma was merged into the current one and
1344 		 * the current one has not been updated yet.
1345 		 */
1346 		vma->vm_flags = new_flags;
1347 		vma->vm_userfaultfd_ctx.ctx = ctx;
1348 
1349 	skip:
1350 		prev = vma;
1351 		start = vma->vm_end;
1352 		vma = vma->vm_next;
1353 	} while (vma && vma->vm_start < end);
1354 out_unlock:
1355 	up_write(&mm->mmap_sem);
1356 	mmput(mm);
1357 	if (!ret) {
1358 		/*
1359 		 * Now that we scanned all vmas we can already tell
1360 		 * userland which ioctls methods are guaranteed to
1361 		 * succeed on this range.
1362 		 */
1363 		if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
1364 			     UFFD_API_RANGE_IOCTLS,
1365 			     &user_uffdio_register->ioctls))
1366 			ret = -EFAULT;
1367 	}
1368 out:
1369 	return ret;
1370 }
1371 
1372 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1373 				  unsigned long arg)
1374 {
1375 	struct mm_struct *mm = ctx->mm;
1376 	struct vm_area_struct *vma, *prev, *cur;
1377 	int ret;
1378 	struct uffdio_range uffdio_unregister;
1379 	unsigned long new_flags;
1380 	bool found;
1381 	unsigned long start, end, vma_end;
1382 	const void __user *buf = (void __user *)arg;
1383 
1384 	ret = -EFAULT;
1385 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1386 		goto out;
1387 
1388 	ret = validate_range(mm, uffdio_unregister.start,
1389 			     uffdio_unregister.len);
1390 	if (ret)
1391 		goto out;
1392 
1393 	start = uffdio_unregister.start;
1394 	end = start + uffdio_unregister.len;
1395 
1396 	ret = -ENOMEM;
1397 	if (!mmget_not_zero(mm))
1398 		goto out;
1399 
1400 	down_write(&mm->mmap_sem);
1401 	vma = find_vma_prev(mm, start, &prev);
1402 	if (!vma)
1403 		goto out_unlock;
1404 
1405 	/* check that there's at least one vma in the range */
1406 	ret = -EINVAL;
1407 	if (vma->vm_start >= end)
1408 		goto out_unlock;
1409 
1410 	/*
1411 	 * If the first vma contains huge pages, make sure start address
1412 	 * is aligned to huge page size.
1413 	 */
1414 	if (is_vm_hugetlb_page(vma)) {
1415 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1416 
1417 		if (start & (vma_hpagesize - 1))
1418 			goto out_unlock;
1419 	}
1420 
1421 	/*
1422 	 * Search for not compatible vmas.
1423 	 */
1424 	found = false;
1425 	ret = -EINVAL;
1426 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1427 		cond_resched();
1428 
1429 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1430 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1431 
1432 		/*
1433 		 * Check not compatible vmas, not strictly required
1434 		 * here as not compatible vmas cannot have an
1435 		 * userfaultfd_ctx registered on them, but this
1436 		 * provides for more strict behavior to notice
1437 		 * unregistration errors.
1438 		 */
1439 		if (!vma_can_userfault(cur))
1440 			goto out_unlock;
1441 
1442 		found = true;
1443 	}
1444 	BUG_ON(!found);
1445 
1446 	if (vma->vm_start < start)
1447 		prev = vma;
1448 
1449 	ret = 0;
1450 	do {
1451 		cond_resched();
1452 
1453 		BUG_ON(!vma_can_userfault(vma));
1454 
1455 		/*
1456 		 * Nothing to do: this vma is already registered into this
1457 		 * userfaultfd and with the right tracking mode too.
1458 		 */
1459 		if (!vma->vm_userfaultfd_ctx.ctx)
1460 			goto skip;
1461 
1462 		if (vma->vm_start > start)
1463 			start = vma->vm_start;
1464 		vma_end = min(end, vma->vm_end);
1465 
1466 		if (userfaultfd_missing(vma)) {
1467 			/*
1468 			 * Wake any concurrent pending userfault while
1469 			 * we unregister, so they will not hang
1470 			 * permanently and it avoids userland to call
1471 			 * UFFDIO_WAKE explicitly.
1472 			 */
1473 			struct userfaultfd_wake_range range;
1474 			range.start = start;
1475 			range.len = vma_end - start;
1476 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1477 		}
1478 
1479 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1480 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1481 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1482 				 vma_policy(vma),
1483 				 NULL_VM_UFFD_CTX);
1484 		if (prev) {
1485 			vma = prev;
1486 			goto next;
1487 		}
1488 		if (vma->vm_start < start) {
1489 			ret = split_vma(mm, vma, start, 1);
1490 			if (ret)
1491 				break;
1492 		}
1493 		if (vma->vm_end > end) {
1494 			ret = split_vma(mm, vma, end, 0);
1495 			if (ret)
1496 				break;
1497 		}
1498 	next:
1499 		/*
1500 		 * In the vma_merge() successful mprotect-like case 8:
1501 		 * the next vma was merged into the current one and
1502 		 * the current one has not been updated yet.
1503 		 */
1504 		vma->vm_flags = new_flags;
1505 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1506 
1507 	skip:
1508 		prev = vma;
1509 		start = vma->vm_end;
1510 		vma = vma->vm_next;
1511 	} while (vma && vma->vm_start < end);
1512 out_unlock:
1513 	up_write(&mm->mmap_sem);
1514 	mmput(mm);
1515 out:
1516 	return ret;
1517 }
1518 
1519 /*
1520  * userfaultfd_wake may be used in combination with the
1521  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1522  */
1523 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1524 			    unsigned long arg)
1525 {
1526 	int ret;
1527 	struct uffdio_range uffdio_wake;
1528 	struct userfaultfd_wake_range range;
1529 	const void __user *buf = (void __user *)arg;
1530 
1531 	ret = -EFAULT;
1532 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1533 		goto out;
1534 
1535 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1536 	if (ret)
1537 		goto out;
1538 
1539 	range.start = uffdio_wake.start;
1540 	range.len = uffdio_wake.len;
1541 
1542 	/*
1543 	 * len == 0 means wake all and we don't want to wake all here,
1544 	 * so check it again to be sure.
1545 	 */
1546 	VM_BUG_ON(!range.len);
1547 
1548 	wake_userfault(ctx, &range);
1549 	ret = 0;
1550 
1551 out:
1552 	return ret;
1553 }
1554 
1555 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1556 			    unsigned long arg)
1557 {
1558 	__s64 ret;
1559 	struct uffdio_copy uffdio_copy;
1560 	struct uffdio_copy __user *user_uffdio_copy;
1561 	struct userfaultfd_wake_range range;
1562 
1563 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1564 
1565 	ret = -EFAULT;
1566 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1567 			   /* don't copy "copy" last field */
1568 			   sizeof(uffdio_copy)-sizeof(__s64)))
1569 		goto out;
1570 
1571 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1572 	if (ret)
1573 		goto out;
1574 	/*
1575 	 * double check for wraparound just in case. copy_from_user()
1576 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1577 	 * in the userland range.
1578 	 */
1579 	ret = -EINVAL;
1580 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1581 		goto out;
1582 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1583 		goto out;
1584 	if (mmget_not_zero(ctx->mm)) {
1585 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1586 				   uffdio_copy.len);
1587 		mmput(ctx->mm);
1588 	} else {
1589 		return -ENOSPC;
1590 	}
1591 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1592 		return -EFAULT;
1593 	if (ret < 0)
1594 		goto out;
1595 	BUG_ON(!ret);
1596 	/* len == 0 would wake all */
1597 	range.len = ret;
1598 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1599 		range.start = uffdio_copy.dst;
1600 		wake_userfault(ctx, &range);
1601 	}
1602 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1603 out:
1604 	return ret;
1605 }
1606 
1607 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1608 				unsigned long arg)
1609 {
1610 	__s64 ret;
1611 	struct uffdio_zeropage uffdio_zeropage;
1612 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1613 	struct userfaultfd_wake_range range;
1614 
1615 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1616 
1617 	ret = -EFAULT;
1618 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1619 			   /* don't copy "zeropage" last field */
1620 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1621 		goto out;
1622 
1623 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1624 			     uffdio_zeropage.range.len);
1625 	if (ret)
1626 		goto out;
1627 	ret = -EINVAL;
1628 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1629 		goto out;
1630 
1631 	if (mmget_not_zero(ctx->mm)) {
1632 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1633 				     uffdio_zeropage.range.len);
1634 		mmput(ctx->mm);
1635 	}
1636 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1637 		return -EFAULT;
1638 	if (ret < 0)
1639 		goto out;
1640 	/* len == 0 would wake all */
1641 	BUG_ON(!ret);
1642 	range.len = ret;
1643 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1644 		range.start = uffdio_zeropage.range.start;
1645 		wake_userfault(ctx, &range);
1646 	}
1647 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1648 out:
1649 	return ret;
1650 }
1651 
1652 static inline unsigned int uffd_ctx_features(__u64 user_features)
1653 {
1654 	/*
1655 	 * For the current set of features the bits just coincide
1656 	 */
1657 	return (unsigned int)user_features;
1658 }
1659 
1660 /*
1661  * userland asks for a certain API version and we return which bits
1662  * and ioctl commands are implemented in this kernel for such API
1663  * version or -EINVAL if unknown.
1664  */
1665 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1666 			   unsigned long arg)
1667 {
1668 	struct uffdio_api uffdio_api;
1669 	void __user *buf = (void __user *)arg;
1670 	int ret;
1671 	__u64 features;
1672 
1673 	ret = -EINVAL;
1674 	if (ctx->state != UFFD_STATE_WAIT_API)
1675 		goto out;
1676 	ret = -EFAULT;
1677 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1678 		goto out;
1679 	features = uffdio_api.features;
1680 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1681 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1682 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1683 			goto out;
1684 		ret = -EINVAL;
1685 		goto out;
1686 	}
1687 	/* report all available features and ioctls to userland */
1688 	uffdio_api.features = UFFD_API_FEATURES;
1689 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1690 	ret = -EFAULT;
1691 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1692 		goto out;
1693 	ctx->state = UFFD_STATE_RUNNING;
1694 	/* only enable the requested features for this uffd context */
1695 	ctx->features = uffd_ctx_features(features);
1696 	ret = 0;
1697 out:
1698 	return ret;
1699 }
1700 
1701 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1702 			      unsigned long arg)
1703 {
1704 	int ret = -EINVAL;
1705 	struct userfaultfd_ctx *ctx = file->private_data;
1706 
1707 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1708 		return -EINVAL;
1709 
1710 	switch(cmd) {
1711 	case UFFDIO_API:
1712 		ret = userfaultfd_api(ctx, arg);
1713 		break;
1714 	case UFFDIO_REGISTER:
1715 		ret = userfaultfd_register(ctx, arg);
1716 		break;
1717 	case UFFDIO_UNREGISTER:
1718 		ret = userfaultfd_unregister(ctx, arg);
1719 		break;
1720 	case UFFDIO_WAKE:
1721 		ret = userfaultfd_wake(ctx, arg);
1722 		break;
1723 	case UFFDIO_COPY:
1724 		ret = userfaultfd_copy(ctx, arg);
1725 		break;
1726 	case UFFDIO_ZEROPAGE:
1727 		ret = userfaultfd_zeropage(ctx, arg);
1728 		break;
1729 	}
1730 	return ret;
1731 }
1732 
1733 #ifdef CONFIG_PROC_FS
1734 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1735 {
1736 	struct userfaultfd_ctx *ctx = f->private_data;
1737 	wait_queue_t *wq;
1738 	struct userfaultfd_wait_queue *uwq;
1739 	unsigned long pending = 0, total = 0;
1740 
1741 	spin_lock(&ctx->fault_pending_wqh.lock);
1742 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1743 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1744 		pending++;
1745 		total++;
1746 	}
1747 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1748 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1749 		total++;
1750 	}
1751 	spin_unlock(&ctx->fault_pending_wqh.lock);
1752 
1753 	/*
1754 	 * If more protocols will be added, there will be all shown
1755 	 * separated by a space. Like this:
1756 	 *	protocols: aa:... bb:...
1757 	 */
1758 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1759 		   pending, total, UFFD_API, ctx->features,
1760 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1761 }
1762 #endif
1763 
1764 static const struct file_operations userfaultfd_fops = {
1765 #ifdef CONFIG_PROC_FS
1766 	.show_fdinfo	= userfaultfd_show_fdinfo,
1767 #endif
1768 	.release	= userfaultfd_release,
1769 	.poll		= userfaultfd_poll,
1770 	.read		= userfaultfd_read,
1771 	.unlocked_ioctl = userfaultfd_ioctl,
1772 	.compat_ioctl	= userfaultfd_ioctl,
1773 	.llseek		= noop_llseek,
1774 };
1775 
1776 static void init_once_userfaultfd_ctx(void *mem)
1777 {
1778 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1779 
1780 	init_waitqueue_head(&ctx->fault_pending_wqh);
1781 	init_waitqueue_head(&ctx->fault_wqh);
1782 	init_waitqueue_head(&ctx->event_wqh);
1783 	init_waitqueue_head(&ctx->fd_wqh);
1784 	seqcount_init(&ctx->refile_seq);
1785 }
1786 
1787 /**
1788  * userfaultfd_file_create - Creates a userfaultfd file pointer.
1789  * @flags: Flags for the userfaultfd file.
1790  *
1791  * This function creates a userfaultfd file pointer, w/out installing
1792  * it into the fd table. This is useful when the userfaultfd file is
1793  * used during the initialization of data structures that require
1794  * extra setup after the userfaultfd creation. So the userfaultfd
1795  * creation is split into the file pointer creation phase, and the
1796  * file descriptor installation phase.  In this way races with
1797  * userspace closing the newly installed file descriptor can be
1798  * avoided.  Returns a userfaultfd file pointer, or a proper error
1799  * pointer.
1800  */
1801 static struct file *userfaultfd_file_create(int flags)
1802 {
1803 	struct file *file;
1804 	struct userfaultfd_ctx *ctx;
1805 
1806 	BUG_ON(!current->mm);
1807 
1808 	/* Check the UFFD_* constants for consistency.  */
1809 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1810 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1811 
1812 	file = ERR_PTR(-EINVAL);
1813 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1814 		goto out;
1815 
1816 	file = ERR_PTR(-ENOMEM);
1817 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1818 	if (!ctx)
1819 		goto out;
1820 
1821 	atomic_set(&ctx->refcount, 1);
1822 	ctx->flags = flags;
1823 	ctx->features = 0;
1824 	ctx->state = UFFD_STATE_WAIT_API;
1825 	ctx->released = false;
1826 	ctx->mm = current->mm;
1827 	/* prevent the mm struct to be freed */
1828 	mmgrab(ctx->mm);
1829 
1830 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1831 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1832 	if (IS_ERR(file)) {
1833 		mmdrop(ctx->mm);
1834 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1835 	}
1836 out:
1837 	return file;
1838 }
1839 
1840 SYSCALL_DEFINE1(userfaultfd, int, flags)
1841 {
1842 	int fd, error;
1843 	struct file *file;
1844 
1845 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1846 	if (error < 0)
1847 		return error;
1848 	fd = error;
1849 
1850 	file = userfaultfd_file_create(flags);
1851 	if (IS_ERR(file)) {
1852 		error = PTR_ERR(file);
1853 		goto err_put_unused_fd;
1854 	}
1855 	fd_install(fd, file);
1856 
1857 	return fd;
1858 
1859 err_put_unused_fd:
1860 	put_unused_fd(fd);
1861 
1862 	return error;
1863 }
1864 
1865 static int __init userfaultfd_init(void)
1866 {
1867 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1868 						sizeof(struct userfaultfd_ctx),
1869 						0,
1870 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1871 						init_once_userfaultfd_ctx);
1872 	return 0;
1873 }
1874 __initcall(userfaultfd_init);
1875