1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* memory mappings are changing because of non-cooperative event */ 66 bool mmap_changing; 67 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 68 struct mm_struct *mm; 69 }; 70 71 struct userfaultfd_fork_ctx { 72 struct userfaultfd_ctx *orig; 73 struct userfaultfd_ctx *new; 74 struct list_head list; 75 }; 76 77 struct userfaultfd_unmap_ctx { 78 struct userfaultfd_ctx *ctx; 79 unsigned long start; 80 unsigned long end; 81 struct list_head list; 82 }; 83 84 struct userfaultfd_wait_queue { 85 struct uffd_msg msg; 86 wait_queue_entry_t wq; 87 struct userfaultfd_ctx *ctx; 88 bool waken; 89 }; 90 91 struct userfaultfd_wake_range { 92 unsigned long start; 93 unsigned long len; 94 }; 95 96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 97 int wake_flags, void *key) 98 { 99 struct userfaultfd_wake_range *range = key; 100 int ret; 101 struct userfaultfd_wait_queue *uwq; 102 unsigned long start, len; 103 104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 105 ret = 0; 106 /* len == 0 means wake all */ 107 start = range->start; 108 len = range->len; 109 if (len && (start > uwq->msg.arg.pagefault.address || 110 start + len <= uwq->msg.arg.pagefault.address)) 111 goto out; 112 WRITE_ONCE(uwq->waken, true); 113 /* 114 * The Program-Order guarantees provided by the scheduler 115 * ensure uwq->waken is visible before the task is woken. 116 */ 117 ret = wake_up_state(wq->private, mode); 118 if (ret) { 119 /* 120 * Wake only once, autoremove behavior. 121 * 122 * After the effect of list_del_init is visible to the other 123 * CPUs, the waitqueue may disappear from under us, see the 124 * !list_empty_careful() in handle_userfault(). 125 * 126 * try_to_wake_up() has an implicit smp_mb(), and the 127 * wq->private is read before calling the extern function 128 * "wake_up_state" (which in turns calls try_to_wake_up). 129 */ 130 list_del_init(&wq->entry); 131 } 132 out: 133 return ret; 134 } 135 136 /** 137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 138 * context. 139 * @ctx: [in] Pointer to the userfaultfd context. 140 */ 141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 142 { 143 if (!atomic_inc_not_zero(&ctx->refcount)) 144 BUG(); 145 } 146 147 /** 148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 149 * context. 150 * @ctx: [in] Pointer to userfaultfd context. 151 * 152 * The userfaultfd context reference must have been previously acquired either 153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 154 */ 155 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 156 { 157 if (atomic_dec_and_test(&ctx->refcount)) { 158 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 160 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 161 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 162 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 163 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 164 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 165 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 166 mmdrop(ctx->mm); 167 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 168 } 169 } 170 171 static inline void msg_init(struct uffd_msg *msg) 172 { 173 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 174 /* 175 * Must use memset to zero out the paddings or kernel data is 176 * leaked to userland. 177 */ 178 memset(msg, 0, sizeof(struct uffd_msg)); 179 } 180 181 static inline struct uffd_msg userfault_msg(unsigned long address, 182 unsigned int flags, 183 unsigned long reason, 184 unsigned int features) 185 { 186 struct uffd_msg msg; 187 msg_init(&msg); 188 msg.event = UFFD_EVENT_PAGEFAULT; 189 msg.arg.pagefault.address = address; 190 if (flags & FAULT_FLAG_WRITE) 191 /* 192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 195 * was a read fault, otherwise if set it means it's 196 * a write fault. 197 */ 198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 199 if (reason & VM_UFFD_WP) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 204 * a missing fault, otherwise if set it means it's a 205 * write protect fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 208 if (features & UFFD_FEATURE_THREAD_ID) 209 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 210 return msg; 211 } 212 213 #ifdef CONFIG_HUGETLB_PAGE 214 /* 215 * Same functionality as userfaultfd_must_wait below with modifications for 216 * hugepmd ranges. 217 */ 218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 219 struct vm_area_struct *vma, 220 unsigned long address, 221 unsigned long flags, 222 unsigned long reason) 223 { 224 struct mm_struct *mm = ctx->mm; 225 pte_t *pte; 226 bool ret = true; 227 228 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 229 230 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 231 if (!pte) 232 goto out; 233 234 ret = false; 235 236 /* 237 * Lockless access: we're in a wait_event so it's ok if it 238 * changes under us. 239 */ 240 if (huge_pte_none(*pte)) 241 ret = true; 242 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 243 ret = true; 244 out: 245 return ret; 246 } 247 #else 248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 249 struct vm_area_struct *vma, 250 unsigned long address, 251 unsigned long flags, 252 unsigned long reason) 253 { 254 return false; /* should never get here */ 255 } 256 #endif /* CONFIG_HUGETLB_PAGE */ 257 258 /* 259 * Verify the pagetables are still not ok after having reigstered into 260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 261 * userfault that has already been resolved, if userfaultfd_read and 262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 263 * threads. 264 */ 265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 266 unsigned long address, 267 unsigned long flags, 268 unsigned long reason) 269 { 270 struct mm_struct *mm = ctx->mm; 271 pgd_t *pgd; 272 p4d_t *p4d; 273 pud_t *pud; 274 pmd_t *pmd, _pmd; 275 pte_t *pte; 276 bool ret = true; 277 278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 279 280 pgd = pgd_offset(mm, address); 281 if (!pgd_present(*pgd)) 282 goto out; 283 p4d = p4d_offset(pgd, address); 284 if (!p4d_present(*p4d)) 285 goto out; 286 pud = pud_offset(p4d, address); 287 if (!pud_present(*pud)) 288 goto out; 289 pmd = pmd_offset(pud, address); 290 /* 291 * READ_ONCE must function as a barrier with narrower scope 292 * and it must be equivalent to: 293 * _pmd = *pmd; barrier(); 294 * 295 * This is to deal with the instability (as in 296 * pmd_trans_unstable) of the pmd. 297 */ 298 _pmd = READ_ONCE(*pmd); 299 if (pmd_none(_pmd)) 300 goto out; 301 302 ret = false; 303 if (!pmd_present(_pmd)) 304 goto out; 305 306 if (pmd_trans_huge(_pmd)) 307 goto out; 308 309 /* 310 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 311 * and use the standard pte_offset_map() instead of parsing _pmd. 312 */ 313 pte = pte_offset_map(pmd, address); 314 /* 315 * Lockless access: we're in a wait_event so it's ok if it 316 * changes under us. 317 */ 318 if (pte_none(*pte)) 319 ret = true; 320 pte_unmap(pte); 321 322 out: 323 return ret; 324 } 325 326 /* 327 * The locking rules involved in returning VM_FAULT_RETRY depending on 328 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 329 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 330 * recommendation in __lock_page_or_retry is not an understatement. 331 * 332 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 333 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 334 * not set. 335 * 336 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 337 * set, VM_FAULT_RETRY can still be returned if and only if there are 338 * fatal_signal_pending()s, and the mmap_sem must be released before 339 * returning it. 340 */ 341 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 342 { 343 struct mm_struct *mm = vmf->vma->vm_mm; 344 struct userfaultfd_ctx *ctx; 345 struct userfaultfd_wait_queue uwq; 346 int ret; 347 bool must_wait, return_to_userland; 348 long blocking_state; 349 350 ret = VM_FAULT_SIGBUS; 351 352 /* 353 * We don't do userfault handling for the final child pid update. 354 * 355 * We also don't do userfault handling during 356 * coredumping. hugetlbfs has the special 357 * follow_hugetlb_page() to skip missing pages in the 358 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 359 * the no_page_table() helper in follow_page_mask(), but the 360 * shmem_vm_ops->fault method is invoked even during 361 * coredumping without mmap_sem and it ends up here. 362 */ 363 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 364 goto out; 365 366 /* 367 * Coredumping runs without mmap_sem so we can only check that 368 * the mmap_sem is held, if PF_DUMPCORE was not set. 369 */ 370 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 371 372 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 373 if (!ctx) 374 goto out; 375 376 BUG_ON(ctx->mm != mm); 377 378 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 379 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 380 381 if (ctx->features & UFFD_FEATURE_SIGBUS) 382 goto out; 383 384 /* 385 * If it's already released don't get it. This avoids to loop 386 * in __get_user_pages if userfaultfd_release waits on the 387 * caller of handle_userfault to release the mmap_sem. 388 */ 389 if (unlikely(READ_ONCE(ctx->released))) { 390 /* 391 * Don't return VM_FAULT_SIGBUS in this case, so a non 392 * cooperative manager can close the uffd after the 393 * last UFFDIO_COPY, without risking to trigger an 394 * involuntary SIGBUS if the process was starting the 395 * userfaultfd while the userfaultfd was still armed 396 * (but after the last UFFDIO_COPY). If the uffd 397 * wasn't already closed when the userfault reached 398 * this point, that would normally be solved by 399 * userfaultfd_must_wait returning 'false'. 400 * 401 * If we were to return VM_FAULT_SIGBUS here, the non 402 * cooperative manager would be instead forced to 403 * always call UFFDIO_UNREGISTER before it can safely 404 * close the uffd. 405 */ 406 ret = VM_FAULT_NOPAGE; 407 goto out; 408 } 409 410 /* 411 * Check that we can return VM_FAULT_RETRY. 412 * 413 * NOTE: it should become possible to return VM_FAULT_RETRY 414 * even if FAULT_FLAG_TRIED is set without leading to gup() 415 * -EBUSY failures, if the userfaultfd is to be extended for 416 * VM_UFFD_WP tracking and we intend to arm the userfault 417 * without first stopping userland access to the memory. For 418 * VM_UFFD_MISSING userfaults this is enough for now. 419 */ 420 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 421 /* 422 * Validate the invariant that nowait must allow retry 423 * to be sure not to return SIGBUS erroneously on 424 * nowait invocations. 425 */ 426 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 427 #ifdef CONFIG_DEBUG_VM 428 if (printk_ratelimit()) { 429 printk(KERN_WARNING 430 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 431 vmf->flags); 432 dump_stack(); 433 } 434 #endif 435 goto out; 436 } 437 438 /* 439 * Handle nowait, not much to do other than tell it to retry 440 * and wait. 441 */ 442 ret = VM_FAULT_RETRY; 443 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 444 goto out; 445 446 /* take the reference before dropping the mmap_sem */ 447 userfaultfd_ctx_get(ctx); 448 449 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 450 uwq.wq.private = current; 451 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 452 ctx->features); 453 uwq.ctx = ctx; 454 uwq.waken = false; 455 456 return_to_userland = 457 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 458 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 459 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 460 TASK_KILLABLE; 461 462 spin_lock(&ctx->fault_pending_wqh.lock); 463 /* 464 * After the __add_wait_queue the uwq is visible to userland 465 * through poll/read(). 466 */ 467 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 468 /* 469 * The smp_mb() after __set_current_state prevents the reads 470 * following the spin_unlock to happen before the list_add in 471 * __add_wait_queue. 472 */ 473 set_current_state(blocking_state); 474 spin_unlock(&ctx->fault_pending_wqh.lock); 475 476 if (!is_vm_hugetlb_page(vmf->vma)) 477 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 478 reason); 479 else 480 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 481 vmf->address, 482 vmf->flags, reason); 483 up_read(&mm->mmap_sem); 484 485 if (likely(must_wait && !READ_ONCE(ctx->released) && 486 (return_to_userland ? !signal_pending(current) : 487 !fatal_signal_pending(current)))) { 488 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 489 schedule(); 490 ret |= VM_FAULT_MAJOR; 491 492 /* 493 * False wakeups can orginate even from rwsem before 494 * up_read() however userfaults will wait either for a 495 * targeted wakeup on the specific uwq waitqueue from 496 * wake_userfault() or for signals or for uffd 497 * release. 498 */ 499 while (!READ_ONCE(uwq.waken)) { 500 /* 501 * This needs the full smp_store_mb() 502 * guarantee as the state write must be 503 * visible to other CPUs before reading 504 * uwq.waken from other CPUs. 505 */ 506 set_current_state(blocking_state); 507 if (READ_ONCE(uwq.waken) || 508 READ_ONCE(ctx->released) || 509 (return_to_userland ? signal_pending(current) : 510 fatal_signal_pending(current))) 511 break; 512 schedule(); 513 } 514 } 515 516 __set_current_state(TASK_RUNNING); 517 518 if (return_to_userland) { 519 if (signal_pending(current) && 520 !fatal_signal_pending(current)) { 521 /* 522 * If we got a SIGSTOP or SIGCONT and this is 523 * a normal userland page fault, just let 524 * userland return so the signal will be 525 * handled and gdb debugging works. The page 526 * fault code immediately after we return from 527 * this function is going to release the 528 * mmap_sem and it's not depending on it 529 * (unlike gup would if we were not to return 530 * VM_FAULT_RETRY). 531 * 532 * If a fatal signal is pending we still take 533 * the streamlined VM_FAULT_RETRY failure path 534 * and there's no need to retake the mmap_sem 535 * in such case. 536 */ 537 down_read(&mm->mmap_sem); 538 ret = VM_FAULT_NOPAGE; 539 } 540 } 541 542 /* 543 * Here we race with the list_del; list_add in 544 * userfaultfd_ctx_read(), however because we don't ever run 545 * list_del_init() to refile across the two lists, the prev 546 * and next pointers will never point to self. list_add also 547 * would never let any of the two pointers to point to 548 * self. So list_empty_careful won't risk to see both pointers 549 * pointing to self at any time during the list refile. The 550 * only case where list_del_init() is called is the full 551 * removal in the wake function and there we don't re-list_add 552 * and it's fine not to block on the spinlock. The uwq on this 553 * kernel stack can be released after the list_del_init. 554 */ 555 if (!list_empty_careful(&uwq.wq.entry)) { 556 spin_lock(&ctx->fault_pending_wqh.lock); 557 /* 558 * No need of list_del_init(), the uwq on the stack 559 * will be freed shortly anyway. 560 */ 561 list_del(&uwq.wq.entry); 562 spin_unlock(&ctx->fault_pending_wqh.lock); 563 } 564 565 /* 566 * ctx may go away after this if the userfault pseudo fd is 567 * already released. 568 */ 569 userfaultfd_ctx_put(ctx); 570 571 out: 572 return ret; 573 } 574 575 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 576 struct userfaultfd_wait_queue *ewq) 577 { 578 struct userfaultfd_ctx *release_new_ctx; 579 580 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 581 goto out; 582 583 ewq->ctx = ctx; 584 init_waitqueue_entry(&ewq->wq, current); 585 release_new_ctx = NULL; 586 587 spin_lock(&ctx->event_wqh.lock); 588 /* 589 * After the __add_wait_queue the uwq is visible to userland 590 * through poll/read(). 591 */ 592 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 593 for (;;) { 594 set_current_state(TASK_KILLABLE); 595 if (ewq->msg.event == 0) 596 break; 597 if (READ_ONCE(ctx->released) || 598 fatal_signal_pending(current)) { 599 /* 600 * &ewq->wq may be queued in fork_event, but 601 * __remove_wait_queue ignores the head 602 * parameter. It would be a problem if it 603 * didn't. 604 */ 605 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 606 if (ewq->msg.event == UFFD_EVENT_FORK) { 607 struct userfaultfd_ctx *new; 608 609 new = (struct userfaultfd_ctx *) 610 (unsigned long) 611 ewq->msg.arg.reserved.reserved1; 612 release_new_ctx = new; 613 } 614 break; 615 } 616 617 spin_unlock(&ctx->event_wqh.lock); 618 619 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 620 schedule(); 621 622 spin_lock(&ctx->event_wqh.lock); 623 } 624 __set_current_state(TASK_RUNNING); 625 spin_unlock(&ctx->event_wqh.lock); 626 627 if (release_new_ctx) { 628 struct vm_area_struct *vma; 629 struct mm_struct *mm = release_new_ctx->mm; 630 631 /* the various vma->vm_userfaultfd_ctx still points to it */ 632 down_write(&mm->mmap_sem); 633 for (vma = mm->mmap; vma; vma = vma->vm_next) 634 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) 635 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 636 up_write(&mm->mmap_sem); 637 638 userfaultfd_ctx_put(release_new_ctx); 639 } 640 641 /* 642 * ctx may go away after this if the userfault pseudo fd is 643 * already released. 644 */ 645 out: 646 WRITE_ONCE(ctx->mmap_changing, false); 647 userfaultfd_ctx_put(ctx); 648 } 649 650 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 651 struct userfaultfd_wait_queue *ewq) 652 { 653 ewq->msg.event = 0; 654 wake_up_locked(&ctx->event_wqh); 655 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 656 } 657 658 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 659 { 660 struct userfaultfd_ctx *ctx = NULL, *octx; 661 struct userfaultfd_fork_ctx *fctx; 662 663 octx = vma->vm_userfaultfd_ctx.ctx; 664 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 666 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 667 return 0; 668 } 669 670 list_for_each_entry(fctx, fcs, list) 671 if (fctx->orig == octx) { 672 ctx = fctx->new; 673 break; 674 } 675 676 if (!ctx) { 677 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 678 if (!fctx) 679 return -ENOMEM; 680 681 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 682 if (!ctx) { 683 kfree(fctx); 684 return -ENOMEM; 685 } 686 687 atomic_set(&ctx->refcount, 1); 688 ctx->flags = octx->flags; 689 ctx->state = UFFD_STATE_RUNNING; 690 ctx->features = octx->features; 691 ctx->released = false; 692 ctx->mmap_changing = false; 693 ctx->mm = vma->vm_mm; 694 mmgrab(ctx->mm); 695 696 userfaultfd_ctx_get(octx); 697 WRITE_ONCE(octx->mmap_changing, true); 698 fctx->orig = octx; 699 fctx->new = ctx; 700 list_add_tail(&fctx->list, fcs); 701 } 702 703 vma->vm_userfaultfd_ctx.ctx = ctx; 704 return 0; 705 } 706 707 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 708 { 709 struct userfaultfd_ctx *ctx = fctx->orig; 710 struct userfaultfd_wait_queue ewq; 711 712 msg_init(&ewq.msg); 713 714 ewq.msg.event = UFFD_EVENT_FORK; 715 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 716 717 userfaultfd_event_wait_completion(ctx, &ewq); 718 } 719 720 void dup_userfaultfd_complete(struct list_head *fcs) 721 { 722 struct userfaultfd_fork_ctx *fctx, *n; 723 724 list_for_each_entry_safe(fctx, n, fcs, list) { 725 dup_fctx(fctx); 726 list_del(&fctx->list); 727 kfree(fctx); 728 } 729 } 730 731 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 732 struct vm_userfaultfd_ctx *vm_ctx) 733 { 734 struct userfaultfd_ctx *ctx; 735 736 ctx = vma->vm_userfaultfd_ctx.ctx; 737 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 738 vm_ctx->ctx = ctx; 739 userfaultfd_ctx_get(ctx); 740 WRITE_ONCE(ctx->mmap_changing, true); 741 } 742 } 743 744 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 745 unsigned long from, unsigned long to, 746 unsigned long len) 747 { 748 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 749 struct userfaultfd_wait_queue ewq; 750 751 if (!ctx) 752 return; 753 754 if (to & ~PAGE_MASK) { 755 userfaultfd_ctx_put(ctx); 756 return; 757 } 758 759 msg_init(&ewq.msg); 760 761 ewq.msg.event = UFFD_EVENT_REMAP; 762 ewq.msg.arg.remap.from = from; 763 ewq.msg.arg.remap.to = to; 764 ewq.msg.arg.remap.len = len; 765 766 userfaultfd_event_wait_completion(ctx, &ewq); 767 } 768 769 bool userfaultfd_remove(struct vm_area_struct *vma, 770 unsigned long start, unsigned long end) 771 { 772 struct mm_struct *mm = vma->vm_mm; 773 struct userfaultfd_ctx *ctx; 774 struct userfaultfd_wait_queue ewq; 775 776 ctx = vma->vm_userfaultfd_ctx.ctx; 777 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 778 return true; 779 780 userfaultfd_ctx_get(ctx); 781 WRITE_ONCE(ctx->mmap_changing, true); 782 up_read(&mm->mmap_sem); 783 784 msg_init(&ewq.msg); 785 786 ewq.msg.event = UFFD_EVENT_REMOVE; 787 ewq.msg.arg.remove.start = start; 788 ewq.msg.arg.remove.end = end; 789 790 userfaultfd_event_wait_completion(ctx, &ewq); 791 792 return false; 793 } 794 795 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 796 unsigned long start, unsigned long end) 797 { 798 struct userfaultfd_unmap_ctx *unmap_ctx; 799 800 list_for_each_entry(unmap_ctx, unmaps, list) 801 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 802 unmap_ctx->end == end) 803 return true; 804 805 return false; 806 } 807 808 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 809 unsigned long start, unsigned long end, 810 struct list_head *unmaps) 811 { 812 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 813 struct userfaultfd_unmap_ctx *unmap_ctx; 814 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 815 816 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 817 has_unmap_ctx(ctx, unmaps, start, end)) 818 continue; 819 820 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 821 if (!unmap_ctx) 822 return -ENOMEM; 823 824 userfaultfd_ctx_get(ctx); 825 WRITE_ONCE(ctx->mmap_changing, true); 826 unmap_ctx->ctx = ctx; 827 unmap_ctx->start = start; 828 unmap_ctx->end = end; 829 list_add_tail(&unmap_ctx->list, unmaps); 830 } 831 832 return 0; 833 } 834 835 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 836 { 837 struct userfaultfd_unmap_ctx *ctx, *n; 838 struct userfaultfd_wait_queue ewq; 839 840 list_for_each_entry_safe(ctx, n, uf, list) { 841 msg_init(&ewq.msg); 842 843 ewq.msg.event = UFFD_EVENT_UNMAP; 844 ewq.msg.arg.remove.start = ctx->start; 845 ewq.msg.arg.remove.end = ctx->end; 846 847 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 848 849 list_del(&ctx->list); 850 kfree(ctx); 851 } 852 } 853 854 static int userfaultfd_release(struct inode *inode, struct file *file) 855 { 856 struct userfaultfd_ctx *ctx = file->private_data; 857 struct mm_struct *mm = ctx->mm; 858 struct vm_area_struct *vma, *prev; 859 /* len == 0 means wake all */ 860 struct userfaultfd_wake_range range = { .len = 0, }; 861 unsigned long new_flags; 862 863 WRITE_ONCE(ctx->released, true); 864 865 if (!mmget_not_zero(mm)) 866 goto wakeup; 867 868 /* 869 * Flush page faults out of all CPUs. NOTE: all page faults 870 * must be retried without returning VM_FAULT_SIGBUS if 871 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 872 * changes while handle_userfault released the mmap_sem. So 873 * it's critical that released is set to true (above), before 874 * taking the mmap_sem for writing. 875 */ 876 down_write(&mm->mmap_sem); 877 prev = NULL; 878 for (vma = mm->mmap; vma; vma = vma->vm_next) { 879 cond_resched(); 880 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 881 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 882 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 883 prev = vma; 884 continue; 885 } 886 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 887 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 888 new_flags, vma->anon_vma, 889 vma->vm_file, vma->vm_pgoff, 890 vma_policy(vma), 891 NULL_VM_UFFD_CTX); 892 if (prev) 893 vma = prev; 894 else 895 prev = vma; 896 vma->vm_flags = new_flags; 897 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 898 } 899 up_write(&mm->mmap_sem); 900 mmput(mm); 901 wakeup: 902 /* 903 * After no new page faults can wait on this fault_*wqh, flush 904 * the last page faults that may have been already waiting on 905 * the fault_*wqh. 906 */ 907 spin_lock(&ctx->fault_pending_wqh.lock); 908 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 909 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 910 spin_unlock(&ctx->fault_pending_wqh.lock); 911 912 /* Flush pending events that may still wait on event_wqh */ 913 wake_up_all(&ctx->event_wqh); 914 915 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 916 userfaultfd_ctx_put(ctx); 917 return 0; 918 } 919 920 /* fault_pending_wqh.lock must be hold by the caller */ 921 static inline struct userfaultfd_wait_queue *find_userfault_in( 922 wait_queue_head_t *wqh) 923 { 924 wait_queue_entry_t *wq; 925 struct userfaultfd_wait_queue *uwq; 926 927 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 928 929 uwq = NULL; 930 if (!waitqueue_active(wqh)) 931 goto out; 932 /* walk in reverse to provide FIFO behavior to read userfaults */ 933 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 934 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 935 out: 936 return uwq; 937 } 938 939 static inline struct userfaultfd_wait_queue *find_userfault( 940 struct userfaultfd_ctx *ctx) 941 { 942 return find_userfault_in(&ctx->fault_pending_wqh); 943 } 944 945 static inline struct userfaultfd_wait_queue *find_userfault_evt( 946 struct userfaultfd_ctx *ctx) 947 { 948 return find_userfault_in(&ctx->event_wqh); 949 } 950 951 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 952 { 953 struct userfaultfd_ctx *ctx = file->private_data; 954 __poll_t ret; 955 956 poll_wait(file, &ctx->fd_wqh, wait); 957 958 switch (ctx->state) { 959 case UFFD_STATE_WAIT_API: 960 return EPOLLERR; 961 case UFFD_STATE_RUNNING: 962 /* 963 * poll() never guarantees that read won't block. 964 * userfaults can be waken before they're read(). 965 */ 966 if (unlikely(!(file->f_flags & O_NONBLOCK))) 967 return EPOLLERR; 968 /* 969 * lockless access to see if there are pending faults 970 * __pollwait last action is the add_wait_queue but 971 * the spin_unlock would allow the waitqueue_active to 972 * pass above the actual list_add inside 973 * add_wait_queue critical section. So use a full 974 * memory barrier to serialize the list_add write of 975 * add_wait_queue() with the waitqueue_active read 976 * below. 977 */ 978 ret = 0; 979 smp_mb(); 980 if (waitqueue_active(&ctx->fault_pending_wqh)) 981 ret = EPOLLIN; 982 else if (waitqueue_active(&ctx->event_wqh)) 983 ret = EPOLLIN; 984 985 return ret; 986 default: 987 WARN_ON_ONCE(1); 988 return EPOLLERR; 989 } 990 } 991 992 static const struct file_operations userfaultfd_fops; 993 994 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 995 struct userfaultfd_ctx *new, 996 struct uffd_msg *msg) 997 { 998 int fd; 999 1000 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1001 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1002 if (fd < 0) 1003 return fd; 1004 1005 msg->arg.reserved.reserved1 = 0; 1006 msg->arg.fork.ufd = fd; 1007 return 0; 1008 } 1009 1010 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1011 struct uffd_msg *msg) 1012 { 1013 ssize_t ret; 1014 DECLARE_WAITQUEUE(wait, current); 1015 struct userfaultfd_wait_queue *uwq; 1016 /* 1017 * Handling fork event requires sleeping operations, so 1018 * we drop the event_wqh lock, then do these ops, then 1019 * lock it back and wake up the waiter. While the lock is 1020 * dropped the ewq may go away so we keep track of it 1021 * carefully. 1022 */ 1023 LIST_HEAD(fork_event); 1024 struct userfaultfd_ctx *fork_nctx = NULL; 1025 1026 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1027 spin_lock(&ctx->fd_wqh.lock); 1028 __add_wait_queue(&ctx->fd_wqh, &wait); 1029 for (;;) { 1030 set_current_state(TASK_INTERRUPTIBLE); 1031 spin_lock(&ctx->fault_pending_wqh.lock); 1032 uwq = find_userfault(ctx); 1033 if (uwq) { 1034 /* 1035 * Use a seqcount to repeat the lockless check 1036 * in wake_userfault() to avoid missing 1037 * wakeups because during the refile both 1038 * waitqueue could become empty if this is the 1039 * only userfault. 1040 */ 1041 write_seqcount_begin(&ctx->refile_seq); 1042 1043 /* 1044 * The fault_pending_wqh.lock prevents the uwq 1045 * to disappear from under us. 1046 * 1047 * Refile this userfault from 1048 * fault_pending_wqh to fault_wqh, it's not 1049 * pending anymore after we read it. 1050 * 1051 * Use list_del() by hand (as 1052 * userfaultfd_wake_function also uses 1053 * list_del_init() by hand) to be sure nobody 1054 * changes __remove_wait_queue() to use 1055 * list_del_init() in turn breaking the 1056 * !list_empty_careful() check in 1057 * handle_userfault(). The uwq->wq.head list 1058 * must never be empty at any time during the 1059 * refile, or the waitqueue could disappear 1060 * from under us. The "wait_queue_head_t" 1061 * parameter of __remove_wait_queue() is unused 1062 * anyway. 1063 */ 1064 list_del(&uwq->wq.entry); 1065 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1066 1067 write_seqcount_end(&ctx->refile_seq); 1068 1069 /* careful to always initialize msg if ret == 0 */ 1070 *msg = uwq->msg; 1071 spin_unlock(&ctx->fault_pending_wqh.lock); 1072 ret = 0; 1073 break; 1074 } 1075 spin_unlock(&ctx->fault_pending_wqh.lock); 1076 1077 spin_lock(&ctx->event_wqh.lock); 1078 uwq = find_userfault_evt(ctx); 1079 if (uwq) { 1080 *msg = uwq->msg; 1081 1082 if (uwq->msg.event == UFFD_EVENT_FORK) { 1083 fork_nctx = (struct userfaultfd_ctx *) 1084 (unsigned long) 1085 uwq->msg.arg.reserved.reserved1; 1086 list_move(&uwq->wq.entry, &fork_event); 1087 /* 1088 * fork_nctx can be freed as soon as 1089 * we drop the lock, unless we take a 1090 * reference on it. 1091 */ 1092 userfaultfd_ctx_get(fork_nctx); 1093 spin_unlock(&ctx->event_wqh.lock); 1094 ret = 0; 1095 break; 1096 } 1097 1098 userfaultfd_event_complete(ctx, uwq); 1099 spin_unlock(&ctx->event_wqh.lock); 1100 ret = 0; 1101 break; 1102 } 1103 spin_unlock(&ctx->event_wqh.lock); 1104 1105 if (signal_pending(current)) { 1106 ret = -ERESTARTSYS; 1107 break; 1108 } 1109 if (no_wait) { 1110 ret = -EAGAIN; 1111 break; 1112 } 1113 spin_unlock(&ctx->fd_wqh.lock); 1114 schedule(); 1115 spin_lock(&ctx->fd_wqh.lock); 1116 } 1117 __remove_wait_queue(&ctx->fd_wqh, &wait); 1118 __set_current_state(TASK_RUNNING); 1119 spin_unlock(&ctx->fd_wqh.lock); 1120 1121 if (!ret && msg->event == UFFD_EVENT_FORK) { 1122 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1123 spin_lock(&ctx->event_wqh.lock); 1124 if (!list_empty(&fork_event)) { 1125 /* 1126 * The fork thread didn't abort, so we can 1127 * drop the temporary refcount. 1128 */ 1129 userfaultfd_ctx_put(fork_nctx); 1130 1131 uwq = list_first_entry(&fork_event, 1132 typeof(*uwq), 1133 wq.entry); 1134 /* 1135 * If fork_event list wasn't empty and in turn 1136 * the event wasn't already released by fork 1137 * (the event is allocated on fork kernel 1138 * stack), put the event back to its place in 1139 * the event_wq. fork_event head will be freed 1140 * as soon as we return so the event cannot 1141 * stay queued there no matter the current 1142 * "ret" value. 1143 */ 1144 list_del(&uwq->wq.entry); 1145 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1146 1147 /* 1148 * Leave the event in the waitqueue and report 1149 * error to userland if we failed to resolve 1150 * the userfault fork. 1151 */ 1152 if (likely(!ret)) 1153 userfaultfd_event_complete(ctx, uwq); 1154 } else { 1155 /* 1156 * Here the fork thread aborted and the 1157 * refcount from the fork thread on fork_nctx 1158 * has already been released. We still hold 1159 * the reference we took before releasing the 1160 * lock above. If resolve_userfault_fork 1161 * failed we've to drop it because the 1162 * fork_nctx has to be freed in such case. If 1163 * it succeeded we'll hold it because the new 1164 * uffd references it. 1165 */ 1166 if (ret) 1167 userfaultfd_ctx_put(fork_nctx); 1168 } 1169 spin_unlock(&ctx->event_wqh.lock); 1170 } 1171 1172 return ret; 1173 } 1174 1175 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1176 size_t count, loff_t *ppos) 1177 { 1178 struct userfaultfd_ctx *ctx = file->private_data; 1179 ssize_t _ret, ret = 0; 1180 struct uffd_msg msg; 1181 int no_wait = file->f_flags & O_NONBLOCK; 1182 1183 if (ctx->state == UFFD_STATE_WAIT_API) 1184 return -EINVAL; 1185 1186 for (;;) { 1187 if (count < sizeof(msg)) 1188 return ret ? ret : -EINVAL; 1189 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1190 if (_ret < 0) 1191 return ret ? ret : _ret; 1192 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1193 return ret ? ret : -EFAULT; 1194 ret += sizeof(msg); 1195 buf += sizeof(msg); 1196 count -= sizeof(msg); 1197 /* 1198 * Allow to read more than one fault at time but only 1199 * block if waiting for the very first one. 1200 */ 1201 no_wait = O_NONBLOCK; 1202 } 1203 } 1204 1205 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1206 struct userfaultfd_wake_range *range) 1207 { 1208 spin_lock(&ctx->fault_pending_wqh.lock); 1209 /* wake all in the range and autoremove */ 1210 if (waitqueue_active(&ctx->fault_pending_wqh)) 1211 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1212 range); 1213 if (waitqueue_active(&ctx->fault_wqh)) 1214 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1215 spin_unlock(&ctx->fault_pending_wqh.lock); 1216 } 1217 1218 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1219 struct userfaultfd_wake_range *range) 1220 { 1221 unsigned seq; 1222 bool need_wakeup; 1223 1224 /* 1225 * To be sure waitqueue_active() is not reordered by the CPU 1226 * before the pagetable update, use an explicit SMP memory 1227 * barrier here. PT lock release or up_read(mmap_sem) still 1228 * have release semantics that can allow the 1229 * waitqueue_active() to be reordered before the pte update. 1230 */ 1231 smp_mb(); 1232 1233 /* 1234 * Use waitqueue_active because it's very frequent to 1235 * change the address space atomically even if there are no 1236 * userfaults yet. So we take the spinlock only when we're 1237 * sure we've userfaults to wake. 1238 */ 1239 do { 1240 seq = read_seqcount_begin(&ctx->refile_seq); 1241 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1242 waitqueue_active(&ctx->fault_wqh); 1243 cond_resched(); 1244 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1245 if (need_wakeup) 1246 __wake_userfault(ctx, range); 1247 } 1248 1249 static __always_inline int validate_range(struct mm_struct *mm, 1250 __u64 start, __u64 len) 1251 { 1252 __u64 task_size = mm->task_size; 1253 1254 if (start & ~PAGE_MASK) 1255 return -EINVAL; 1256 if (len & ~PAGE_MASK) 1257 return -EINVAL; 1258 if (!len) 1259 return -EINVAL; 1260 if (start < mmap_min_addr) 1261 return -EINVAL; 1262 if (start >= task_size) 1263 return -EINVAL; 1264 if (len > task_size - start) 1265 return -EINVAL; 1266 return 0; 1267 } 1268 1269 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1270 { 1271 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1272 vma_is_shmem(vma); 1273 } 1274 1275 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1276 unsigned long arg) 1277 { 1278 struct mm_struct *mm = ctx->mm; 1279 struct vm_area_struct *vma, *prev, *cur; 1280 int ret; 1281 struct uffdio_register uffdio_register; 1282 struct uffdio_register __user *user_uffdio_register; 1283 unsigned long vm_flags, new_flags; 1284 bool found; 1285 bool basic_ioctls; 1286 unsigned long start, end, vma_end; 1287 1288 user_uffdio_register = (struct uffdio_register __user *) arg; 1289 1290 ret = -EFAULT; 1291 if (copy_from_user(&uffdio_register, user_uffdio_register, 1292 sizeof(uffdio_register)-sizeof(__u64))) 1293 goto out; 1294 1295 ret = -EINVAL; 1296 if (!uffdio_register.mode) 1297 goto out; 1298 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1299 UFFDIO_REGISTER_MODE_WP)) 1300 goto out; 1301 vm_flags = 0; 1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1303 vm_flags |= VM_UFFD_MISSING; 1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1305 vm_flags |= VM_UFFD_WP; 1306 /* 1307 * FIXME: remove the below error constraint by 1308 * implementing the wprotect tracking mode. 1309 */ 1310 ret = -EINVAL; 1311 goto out; 1312 } 1313 1314 ret = validate_range(mm, uffdio_register.range.start, 1315 uffdio_register.range.len); 1316 if (ret) 1317 goto out; 1318 1319 start = uffdio_register.range.start; 1320 end = start + uffdio_register.range.len; 1321 1322 ret = -ENOMEM; 1323 if (!mmget_not_zero(mm)) 1324 goto out; 1325 1326 down_write(&mm->mmap_sem); 1327 vma = find_vma_prev(mm, start, &prev); 1328 if (!vma) 1329 goto out_unlock; 1330 1331 /* check that there's at least one vma in the range */ 1332 ret = -EINVAL; 1333 if (vma->vm_start >= end) 1334 goto out_unlock; 1335 1336 /* 1337 * If the first vma contains huge pages, make sure start address 1338 * is aligned to huge page size. 1339 */ 1340 if (is_vm_hugetlb_page(vma)) { 1341 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1342 1343 if (start & (vma_hpagesize - 1)) 1344 goto out_unlock; 1345 } 1346 1347 /* 1348 * Search for not compatible vmas. 1349 */ 1350 found = false; 1351 basic_ioctls = false; 1352 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1353 cond_resched(); 1354 1355 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1356 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1357 1358 /* check not compatible vmas */ 1359 ret = -EINVAL; 1360 if (!vma_can_userfault(cur)) 1361 goto out_unlock; 1362 /* 1363 * If this vma contains ending address, and huge pages 1364 * check alignment. 1365 */ 1366 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1367 end > cur->vm_start) { 1368 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1369 1370 ret = -EINVAL; 1371 1372 if (end & (vma_hpagesize - 1)) 1373 goto out_unlock; 1374 } 1375 1376 /* 1377 * Check that this vma isn't already owned by a 1378 * different userfaultfd. We can't allow more than one 1379 * userfaultfd to own a single vma simultaneously or we 1380 * wouldn't know which one to deliver the userfaults to. 1381 */ 1382 ret = -EBUSY; 1383 if (cur->vm_userfaultfd_ctx.ctx && 1384 cur->vm_userfaultfd_ctx.ctx != ctx) 1385 goto out_unlock; 1386 1387 /* 1388 * Note vmas containing huge pages 1389 */ 1390 if (is_vm_hugetlb_page(cur)) 1391 basic_ioctls = true; 1392 1393 found = true; 1394 } 1395 BUG_ON(!found); 1396 1397 if (vma->vm_start < start) 1398 prev = vma; 1399 1400 ret = 0; 1401 do { 1402 cond_resched(); 1403 1404 BUG_ON(!vma_can_userfault(vma)); 1405 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1406 vma->vm_userfaultfd_ctx.ctx != ctx); 1407 1408 /* 1409 * Nothing to do: this vma is already registered into this 1410 * userfaultfd and with the right tracking mode too. 1411 */ 1412 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1413 (vma->vm_flags & vm_flags) == vm_flags) 1414 goto skip; 1415 1416 if (vma->vm_start > start) 1417 start = vma->vm_start; 1418 vma_end = min(end, vma->vm_end); 1419 1420 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1421 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1422 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1423 vma_policy(vma), 1424 ((struct vm_userfaultfd_ctx){ ctx })); 1425 if (prev) { 1426 vma = prev; 1427 goto next; 1428 } 1429 if (vma->vm_start < start) { 1430 ret = split_vma(mm, vma, start, 1); 1431 if (ret) 1432 break; 1433 } 1434 if (vma->vm_end > end) { 1435 ret = split_vma(mm, vma, end, 0); 1436 if (ret) 1437 break; 1438 } 1439 next: 1440 /* 1441 * In the vma_merge() successful mprotect-like case 8: 1442 * the next vma was merged into the current one and 1443 * the current one has not been updated yet. 1444 */ 1445 vma->vm_flags = new_flags; 1446 vma->vm_userfaultfd_ctx.ctx = ctx; 1447 1448 skip: 1449 prev = vma; 1450 start = vma->vm_end; 1451 vma = vma->vm_next; 1452 } while (vma && vma->vm_start < end); 1453 out_unlock: 1454 up_write(&mm->mmap_sem); 1455 mmput(mm); 1456 if (!ret) { 1457 /* 1458 * Now that we scanned all vmas we can already tell 1459 * userland which ioctls methods are guaranteed to 1460 * succeed on this range. 1461 */ 1462 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1463 UFFD_API_RANGE_IOCTLS, 1464 &user_uffdio_register->ioctls)) 1465 ret = -EFAULT; 1466 } 1467 out: 1468 return ret; 1469 } 1470 1471 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1472 unsigned long arg) 1473 { 1474 struct mm_struct *mm = ctx->mm; 1475 struct vm_area_struct *vma, *prev, *cur; 1476 int ret; 1477 struct uffdio_range uffdio_unregister; 1478 unsigned long new_flags; 1479 bool found; 1480 unsigned long start, end, vma_end; 1481 const void __user *buf = (void __user *)arg; 1482 1483 ret = -EFAULT; 1484 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1485 goto out; 1486 1487 ret = validate_range(mm, uffdio_unregister.start, 1488 uffdio_unregister.len); 1489 if (ret) 1490 goto out; 1491 1492 start = uffdio_unregister.start; 1493 end = start + uffdio_unregister.len; 1494 1495 ret = -ENOMEM; 1496 if (!mmget_not_zero(mm)) 1497 goto out; 1498 1499 down_write(&mm->mmap_sem); 1500 vma = find_vma_prev(mm, start, &prev); 1501 if (!vma) 1502 goto out_unlock; 1503 1504 /* check that there's at least one vma in the range */ 1505 ret = -EINVAL; 1506 if (vma->vm_start >= end) 1507 goto out_unlock; 1508 1509 /* 1510 * If the first vma contains huge pages, make sure start address 1511 * is aligned to huge page size. 1512 */ 1513 if (is_vm_hugetlb_page(vma)) { 1514 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1515 1516 if (start & (vma_hpagesize - 1)) 1517 goto out_unlock; 1518 } 1519 1520 /* 1521 * Search for not compatible vmas. 1522 */ 1523 found = false; 1524 ret = -EINVAL; 1525 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1526 cond_resched(); 1527 1528 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1529 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1530 1531 /* 1532 * Check not compatible vmas, not strictly required 1533 * here as not compatible vmas cannot have an 1534 * userfaultfd_ctx registered on them, but this 1535 * provides for more strict behavior to notice 1536 * unregistration errors. 1537 */ 1538 if (!vma_can_userfault(cur)) 1539 goto out_unlock; 1540 1541 found = true; 1542 } 1543 BUG_ON(!found); 1544 1545 if (vma->vm_start < start) 1546 prev = vma; 1547 1548 ret = 0; 1549 do { 1550 cond_resched(); 1551 1552 BUG_ON(!vma_can_userfault(vma)); 1553 1554 /* 1555 * Nothing to do: this vma is already registered into this 1556 * userfaultfd and with the right tracking mode too. 1557 */ 1558 if (!vma->vm_userfaultfd_ctx.ctx) 1559 goto skip; 1560 1561 if (vma->vm_start > start) 1562 start = vma->vm_start; 1563 vma_end = min(end, vma->vm_end); 1564 1565 if (userfaultfd_missing(vma)) { 1566 /* 1567 * Wake any concurrent pending userfault while 1568 * we unregister, so they will not hang 1569 * permanently and it avoids userland to call 1570 * UFFDIO_WAKE explicitly. 1571 */ 1572 struct userfaultfd_wake_range range; 1573 range.start = start; 1574 range.len = vma_end - start; 1575 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1576 } 1577 1578 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1579 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1580 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1581 vma_policy(vma), 1582 NULL_VM_UFFD_CTX); 1583 if (prev) { 1584 vma = prev; 1585 goto next; 1586 } 1587 if (vma->vm_start < start) { 1588 ret = split_vma(mm, vma, start, 1); 1589 if (ret) 1590 break; 1591 } 1592 if (vma->vm_end > end) { 1593 ret = split_vma(mm, vma, end, 0); 1594 if (ret) 1595 break; 1596 } 1597 next: 1598 /* 1599 * In the vma_merge() successful mprotect-like case 8: 1600 * the next vma was merged into the current one and 1601 * the current one has not been updated yet. 1602 */ 1603 vma->vm_flags = new_flags; 1604 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1605 1606 skip: 1607 prev = vma; 1608 start = vma->vm_end; 1609 vma = vma->vm_next; 1610 } while (vma && vma->vm_start < end); 1611 out_unlock: 1612 up_write(&mm->mmap_sem); 1613 mmput(mm); 1614 out: 1615 return ret; 1616 } 1617 1618 /* 1619 * userfaultfd_wake may be used in combination with the 1620 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1621 */ 1622 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1623 unsigned long arg) 1624 { 1625 int ret; 1626 struct uffdio_range uffdio_wake; 1627 struct userfaultfd_wake_range range; 1628 const void __user *buf = (void __user *)arg; 1629 1630 ret = -EFAULT; 1631 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1632 goto out; 1633 1634 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1635 if (ret) 1636 goto out; 1637 1638 range.start = uffdio_wake.start; 1639 range.len = uffdio_wake.len; 1640 1641 /* 1642 * len == 0 means wake all and we don't want to wake all here, 1643 * so check it again to be sure. 1644 */ 1645 VM_BUG_ON(!range.len); 1646 1647 wake_userfault(ctx, &range); 1648 ret = 0; 1649 1650 out: 1651 return ret; 1652 } 1653 1654 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1655 unsigned long arg) 1656 { 1657 __s64 ret; 1658 struct uffdio_copy uffdio_copy; 1659 struct uffdio_copy __user *user_uffdio_copy; 1660 struct userfaultfd_wake_range range; 1661 1662 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1663 1664 ret = -EAGAIN; 1665 if (READ_ONCE(ctx->mmap_changing)) 1666 goto out; 1667 1668 ret = -EFAULT; 1669 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1670 /* don't copy "copy" last field */ 1671 sizeof(uffdio_copy)-sizeof(__s64))) 1672 goto out; 1673 1674 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1675 if (ret) 1676 goto out; 1677 /* 1678 * double check for wraparound just in case. copy_from_user() 1679 * will later check uffdio_copy.src + uffdio_copy.len to fit 1680 * in the userland range. 1681 */ 1682 ret = -EINVAL; 1683 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1684 goto out; 1685 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1686 goto out; 1687 if (mmget_not_zero(ctx->mm)) { 1688 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1689 uffdio_copy.len, &ctx->mmap_changing); 1690 mmput(ctx->mm); 1691 } else { 1692 return -ESRCH; 1693 } 1694 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1695 return -EFAULT; 1696 if (ret < 0) 1697 goto out; 1698 BUG_ON(!ret); 1699 /* len == 0 would wake all */ 1700 range.len = ret; 1701 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1702 range.start = uffdio_copy.dst; 1703 wake_userfault(ctx, &range); 1704 } 1705 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1706 out: 1707 return ret; 1708 } 1709 1710 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1711 unsigned long arg) 1712 { 1713 __s64 ret; 1714 struct uffdio_zeropage uffdio_zeropage; 1715 struct uffdio_zeropage __user *user_uffdio_zeropage; 1716 struct userfaultfd_wake_range range; 1717 1718 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1719 1720 ret = -EAGAIN; 1721 if (READ_ONCE(ctx->mmap_changing)) 1722 goto out; 1723 1724 ret = -EFAULT; 1725 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1726 /* don't copy "zeropage" last field */ 1727 sizeof(uffdio_zeropage)-sizeof(__s64))) 1728 goto out; 1729 1730 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1731 uffdio_zeropage.range.len); 1732 if (ret) 1733 goto out; 1734 ret = -EINVAL; 1735 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1736 goto out; 1737 1738 if (mmget_not_zero(ctx->mm)) { 1739 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1740 uffdio_zeropage.range.len, 1741 &ctx->mmap_changing); 1742 mmput(ctx->mm); 1743 } else { 1744 return -ESRCH; 1745 } 1746 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1747 return -EFAULT; 1748 if (ret < 0) 1749 goto out; 1750 /* len == 0 would wake all */ 1751 BUG_ON(!ret); 1752 range.len = ret; 1753 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1754 range.start = uffdio_zeropage.range.start; 1755 wake_userfault(ctx, &range); 1756 } 1757 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1758 out: 1759 return ret; 1760 } 1761 1762 static inline unsigned int uffd_ctx_features(__u64 user_features) 1763 { 1764 /* 1765 * For the current set of features the bits just coincide 1766 */ 1767 return (unsigned int)user_features; 1768 } 1769 1770 /* 1771 * userland asks for a certain API version and we return which bits 1772 * and ioctl commands are implemented in this kernel for such API 1773 * version or -EINVAL if unknown. 1774 */ 1775 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1776 unsigned long arg) 1777 { 1778 struct uffdio_api uffdio_api; 1779 void __user *buf = (void __user *)arg; 1780 int ret; 1781 __u64 features; 1782 1783 ret = -EINVAL; 1784 if (ctx->state != UFFD_STATE_WAIT_API) 1785 goto out; 1786 ret = -EFAULT; 1787 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1788 goto out; 1789 features = uffdio_api.features; 1790 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1791 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1792 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1793 goto out; 1794 ret = -EINVAL; 1795 goto out; 1796 } 1797 /* report all available features and ioctls to userland */ 1798 uffdio_api.features = UFFD_API_FEATURES; 1799 uffdio_api.ioctls = UFFD_API_IOCTLS; 1800 ret = -EFAULT; 1801 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1802 goto out; 1803 ctx->state = UFFD_STATE_RUNNING; 1804 /* only enable the requested features for this uffd context */ 1805 ctx->features = uffd_ctx_features(features); 1806 ret = 0; 1807 out: 1808 return ret; 1809 } 1810 1811 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1812 unsigned long arg) 1813 { 1814 int ret = -EINVAL; 1815 struct userfaultfd_ctx *ctx = file->private_data; 1816 1817 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1818 return -EINVAL; 1819 1820 switch(cmd) { 1821 case UFFDIO_API: 1822 ret = userfaultfd_api(ctx, arg); 1823 break; 1824 case UFFDIO_REGISTER: 1825 ret = userfaultfd_register(ctx, arg); 1826 break; 1827 case UFFDIO_UNREGISTER: 1828 ret = userfaultfd_unregister(ctx, arg); 1829 break; 1830 case UFFDIO_WAKE: 1831 ret = userfaultfd_wake(ctx, arg); 1832 break; 1833 case UFFDIO_COPY: 1834 ret = userfaultfd_copy(ctx, arg); 1835 break; 1836 case UFFDIO_ZEROPAGE: 1837 ret = userfaultfd_zeropage(ctx, arg); 1838 break; 1839 } 1840 return ret; 1841 } 1842 1843 #ifdef CONFIG_PROC_FS 1844 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1845 { 1846 struct userfaultfd_ctx *ctx = f->private_data; 1847 wait_queue_entry_t *wq; 1848 struct userfaultfd_wait_queue *uwq; 1849 unsigned long pending = 0, total = 0; 1850 1851 spin_lock(&ctx->fault_pending_wqh.lock); 1852 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1853 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1854 pending++; 1855 total++; 1856 } 1857 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1858 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1859 total++; 1860 } 1861 spin_unlock(&ctx->fault_pending_wqh.lock); 1862 1863 /* 1864 * If more protocols will be added, there will be all shown 1865 * separated by a space. Like this: 1866 * protocols: aa:... bb:... 1867 */ 1868 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1869 pending, total, UFFD_API, ctx->features, 1870 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1871 } 1872 #endif 1873 1874 static const struct file_operations userfaultfd_fops = { 1875 #ifdef CONFIG_PROC_FS 1876 .show_fdinfo = userfaultfd_show_fdinfo, 1877 #endif 1878 .release = userfaultfd_release, 1879 .poll = userfaultfd_poll, 1880 .read = userfaultfd_read, 1881 .unlocked_ioctl = userfaultfd_ioctl, 1882 .compat_ioctl = userfaultfd_ioctl, 1883 .llseek = noop_llseek, 1884 }; 1885 1886 static void init_once_userfaultfd_ctx(void *mem) 1887 { 1888 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1889 1890 init_waitqueue_head(&ctx->fault_pending_wqh); 1891 init_waitqueue_head(&ctx->fault_wqh); 1892 init_waitqueue_head(&ctx->event_wqh); 1893 init_waitqueue_head(&ctx->fd_wqh); 1894 seqcount_init(&ctx->refile_seq); 1895 } 1896 1897 SYSCALL_DEFINE1(userfaultfd, int, flags) 1898 { 1899 struct userfaultfd_ctx *ctx; 1900 int fd; 1901 1902 BUG_ON(!current->mm); 1903 1904 /* Check the UFFD_* constants for consistency. */ 1905 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1906 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1907 1908 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1909 return -EINVAL; 1910 1911 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1912 if (!ctx) 1913 return -ENOMEM; 1914 1915 atomic_set(&ctx->refcount, 1); 1916 ctx->flags = flags; 1917 ctx->features = 0; 1918 ctx->state = UFFD_STATE_WAIT_API; 1919 ctx->released = false; 1920 ctx->mmap_changing = false; 1921 ctx->mm = current->mm; 1922 /* prevent the mm struct to be freed */ 1923 mmgrab(ctx->mm); 1924 1925 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1926 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1927 if (fd < 0) { 1928 mmdrop(ctx->mm); 1929 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1930 } 1931 return fd; 1932 } 1933 1934 static int __init userfaultfd_init(void) 1935 { 1936 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1937 sizeof(struct userfaultfd_ctx), 1938 0, 1939 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1940 init_once_userfaultfd_ctx); 1941 return 0; 1942 } 1943 __initcall(userfaultfd_init); 1944