xref: /linux/fs/userfaultfd.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* memory mappings are changing because of non-cooperative event */
66 	bool mmap_changing;
67 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
68 	struct mm_struct *mm;
69 };
70 
71 struct userfaultfd_fork_ctx {
72 	struct userfaultfd_ctx *orig;
73 	struct userfaultfd_ctx *new;
74 	struct list_head list;
75 };
76 
77 struct userfaultfd_unmap_ctx {
78 	struct userfaultfd_ctx *ctx;
79 	unsigned long start;
80 	unsigned long end;
81 	struct list_head list;
82 };
83 
84 struct userfaultfd_wait_queue {
85 	struct uffd_msg msg;
86 	wait_queue_entry_t wq;
87 	struct userfaultfd_ctx *ctx;
88 	bool waken;
89 };
90 
91 struct userfaultfd_wake_range {
92 	unsigned long start;
93 	unsigned long len;
94 };
95 
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97 				     int wake_flags, void *key)
98 {
99 	struct userfaultfd_wake_range *range = key;
100 	int ret;
101 	struct userfaultfd_wait_queue *uwq;
102 	unsigned long start, len;
103 
104 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105 	ret = 0;
106 	/* len == 0 means wake all */
107 	start = range->start;
108 	len = range->len;
109 	if (len && (start > uwq->msg.arg.pagefault.address ||
110 		    start + len <= uwq->msg.arg.pagefault.address))
111 		goto out;
112 	WRITE_ONCE(uwq->waken, true);
113 	/*
114 	 * The Program-Order guarantees provided by the scheduler
115 	 * ensure uwq->waken is visible before the task is woken.
116 	 */
117 	ret = wake_up_state(wq->private, mode);
118 	if (ret) {
119 		/*
120 		 * Wake only once, autoremove behavior.
121 		 *
122 		 * After the effect of list_del_init is visible to the other
123 		 * CPUs, the waitqueue may disappear from under us, see the
124 		 * !list_empty_careful() in handle_userfault().
125 		 *
126 		 * try_to_wake_up() has an implicit smp_mb(), and the
127 		 * wq->private is read before calling the extern function
128 		 * "wake_up_state" (which in turns calls try_to_wake_up).
129 		 */
130 		list_del_init(&wq->entry);
131 	}
132 out:
133 	return ret;
134 }
135 
136 /**
137  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138  * context.
139  * @ctx: [in] Pointer to the userfaultfd context.
140  */
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
142 {
143 	if (!atomic_inc_not_zero(&ctx->refcount))
144 		BUG();
145 }
146 
147 /**
148  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to userfaultfd context.
151  *
152  * The userfaultfd context reference must have been previously acquired either
153  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
154  */
155 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
156 {
157 	if (atomic_dec_and_test(&ctx->refcount)) {
158 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
159 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
160 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
161 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
162 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
163 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
164 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
165 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
166 		mmdrop(ctx->mm);
167 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
168 	}
169 }
170 
171 static inline void msg_init(struct uffd_msg *msg)
172 {
173 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
174 	/*
175 	 * Must use memset to zero out the paddings or kernel data is
176 	 * leaked to userland.
177 	 */
178 	memset(msg, 0, sizeof(struct uffd_msg));
179 }
180 
181 static inline struct uffd_msg userfault_msg(unsigned long address,
182 					    unsigned int flags,
183 					    unsigned long reason,
184 					    unsigned int features)
185 {
186 	struct uffd_msg msg;
187 	msg_init(&msg);
188 	msg.event = UFFD_EVENT_PAGEFAULT;
189 	msg.arg.pagefault.address = address;
190 	if (flags & FAULT_FLAG_WRITE)
191 		/*
192 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 		 * was a read fault, otherwise if set it means it's
196 		 * a write fault.
197 		 */
198 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 	if (reason & VM_UFFD_WP)
200 		/*
201 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 		 * a missing fault, otherwise if set it means it's a
205 		 * write protect fault.
206 		 */
207 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 	if (features & UFFD_FEATURE_THREAD_ID)
209 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
210 	return msg;
211 }
212 
213 #ifdef CONFIG_HUGETLB_PAGE
214 /*
215  * Same functionality as userfaultfd_must_wait below with modifications for
216  * hugepmd ranges.
217  */
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219 					 struct vm_area_struct *vma,
220 					 unsigned long address,
221 					 unsigned long flags,
222 					 unsigned long reason)
223 {
224 	struct mm_struct *mm = ctx->mm;
225 	pte_t *pte;
226 	bool ret = true;
227 
228 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
229 
230 	pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
231 	if (!pte)
232 		goto out;
233 
234 	ret = false;
235 
236 	/*
237 	 * Lockless access: we're in a wait_event so it's ok if it
238 	 * changes under us.
239 	 */
240 	if (huge_pte_none(*pte))
241 		ret = true;
242 	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
243 		ret = true;
244 out:
245 	return ret;
246 }
247 #else
248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
249 					 struct vm_area_struct *vma,
250 					 unsigned long address,
251 					 unsigned long flags,
252 					 unsigned long reason)
253 {
254 	return false;	/* should never get here */
255 }
256 #endif /* CONFIG_HUGETLB_PAGE */
257 
258 /*
259  * Verify the pagetables are still not ok after having reigstered into
260  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261  * userfault that has already been resolved, if userfaultfd_read and
262  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263  * threads.
264  */
265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 					 unsigned long address,
267 					 unsigned long flags,
268 					 unsigned long reason)
269 {
270 	struct mm_struct *mm = ctx->mm;
271 	pgd_t *pgd;
272 	p4d_t *p4d;
273 	pud_t *pud;
274 	pmd_t *pmd, _pmd;
275 	pte_t *pte;
276 	bool ret = true;
277 
278 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279 
280 	pgd = pgd_offset(mm, address);
281 	if (!pgd_present(*pgd))
282 		goto out;
283 	p4d = p4d_offset(pgd, address);
284 	if (!p4d_present(*p4d))
285 		goto out;
286 	pud = pud_offset(p4d, address);
287 	if (!pud_present(*pud))
288 		goto out;
289 	pmd = pmd_offset(pud, address);
290 	/*
291 	 * READ_ONCE must function as a barrier with narrower scope
292 	 * and it must be equivalent to:
293 	 *	_pmd = *pmd; barrier();
294 	 *
295 	 * This is to deal with the instability (as in
296 	 * pmd_trans_unstable) of the pmd.
297 	 */
298 	_pmd = READ_ONCE(*pmd);
299 	if (pmd_none(_pmd))
300 		goto out;
301 
302 	ret = false;
303 	if (!pmd_present(_pmd))
304 		goto out;
305 
306 	if (pmd_trans_huge(_pmd))
307 		goto out;
308 
309 	/*
310 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
311 	 * and use the standard pte_offset_map() instead of parsing _pmd.
312 	 */
313 	pte = pte_offset_map(pmd, address);
314 	/*
315 	 * Lockless access: we're in a wait_event so it's ok if it
316 	 * changes under us.
317 	 */
318 	if (pte_none(*pte))
319 		ret = true;
320 	pte_unmap(pte);
321 
322 out:
323 	return ret;
324 }
325 
326 /*
327  * The locking rules involved in returning VM_FAULT_RETRY depending on
328  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
329  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
330  * recommendation in __lock_page_or_retry is not an understatement.
331  *
332  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
333  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
334  * not set.
335  *
336  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
337  * set, VM_FAULT_RETRY can still be returned if and only if there are
338  * fatal_signal_pending()s, and the mmap_sem must be released before
339  * returning it.
340  */
341 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
342 {
343 	struct mm_struct *mm = vmf->vma->vm_mm;
344 	struct userfaultfd_ctx *ctx;
345 	struct userfaultfd_wait_queue uwq;
346 	int ret;
347 	bool must_wait, return_to_userland;
348 	long blocking_state;
349 
350 	ret = VM_FAULT_SIGBUS;
351 
352 	/*
353 	 * We don't do userfault handling for the final child pid update.
354 	 *
355 	 * We also don't do userfault handling during
356 	 * coredumping. hugetlbfs has the special
357 	 * follow_hugetlb_page() to skip missing pages in the
358 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
359 	 * the no_page_table() helper in follow_page_mask(), but the
360 	 * shmem_vm_ops->fault method is invoked even during
361 	 * coredumping without mmap_sem and it ends up here.
362 	 */
363 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
364 		goto out;
365 
366 	/*
367 	 * Coredumping runs without mmap_sem so we can only check that
368 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
369 	 */
370 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
371 
372 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
373 	if (!ctx)
374 		goto out;
375 
376 	BUG_ON(ctx->mm != mm);
377 
378 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
379 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
380 
381 	if (ctx->features & UFFD_FEATURE_SIGBUS)
382 		goto out;
383 
384 	/*
385 	 * If it's already released don't get it. This avoids to loop
386 	 * in __get_user_pages if userfaultfd_release waits on the
387 	 * caller of handle_userfault to release the mmap_sem.
388 	 */
389 	if (unlikely(READ_ONCE(ctx->released))) {
390 		/*
391 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
392 		 * cooperative manager can close the uffd after the
393 		 * last UFFDIO_COPY, without risking to trigger an
394 		 * involuntary SIGBUS if the process was starting the
395 		 * userfaultfd while the userfaultfd was still armed
396 		 * (but after the last UFFDIO_COPY). If the uffd
397 		 * wasn't already closed when the userfault reached
398 		 * this point, that would normally be solved by
399 		 * userfaultfd_must_wait returning 'false'.
400 		 *
401 		 * If we were to return VM_FAULT_SIGBUS here, the non
402 		 * cooperative manager would be instead forced to
403 		 * always call UFFDIO_UNREGISTER before it can safely
404 		 * close the uffd.
405 		 */
406 		ret = VM_FAULT_NOPAGE;
407 		goto out;
408 	}
409 
410 	/*
411 	 * Check that we can return VM_FAULT_RETRY.
412 	 *
413 	 * NOTE: it should become possible to return VM_FAULT_RETRY
414 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
415 	 * -EBUSY failures, if the userfaultfd is to be extended for
416 	 * VM_UFFD_WP tracking and we intend to arm the userfault
417 	 * without first stopping userland access to the memory. For
418 	 * VM_UFFD_MISSING userfaults this is enough for now.
419 	 */
420 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
421 		/*
422 		 * Validate the invariant that nowait must allow retry
423 		 * to be sure not to return SIGBUS erroneously on
424 		 * nowait invocations.
425 		 */
426 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
427 #ifdef CONFIG_DEBUG_VM
428 		if (printk_ratelimit()) {
429 			printk(KERN_WARNING
430 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
431 			       vmf->flags);
432 			dump_stack();
433 		}
434 #endif
435 		goto out;
436 	}
437 
438 	/*
439 	 * Handle nowait, not much to do other than tell it to retry
440 	 * and wait.
441 	 */
442 	ret = VM_FAULT_RETRY;
443 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
444 		goto out;
445 
446 	/* take the reference before dropping the mmap_sem */
447 	userfaultfd_ctx_get(ctx);
448 
449 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
450 	uwq.wq.private = current;
451 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
452 			ctx->features);
453 	uwq.ctx = ctx;
454 	uwq.waken = false;
455 
456 	return_to_userland =
457 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
458 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
459 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
460 			 TASK_KILLABLE;
461 
462 	spin_lock(&ctx->fault_pending_wqh.lock);
463 	/*
464 	 * After the __add_wait_queue the uwq is visible to userland
465 	 * through poll/read().
466 	 */
467 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
468 	/*
469 	 * The smp_mb() after __set_current_state prevents the reads
470 	 * following the spin_unlock to happen before the list_add in
471 	 * __add_wait_queue.
472 	 */
473 	set_current_state(blocking_state);
474 	spin_unlock(&ctx->fault_pending_wqh.lock);
475 
476 	if (!is_vm_hugetlb_page(vmf->vma))
477 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
478 						  reason);
479 	else
480 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
481 						       vmf->address,
482 						       vmf->flags, reason);
483 	up_read(&mm->mmap_sem);
484 
485 	if (likely(must_wait && !READ_ONCE(ctx->released) &&
486 		   (return_to_userland ? !signal_pending(current) :
487 		    !fatal_signal_pending(current)))) {
488 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
489 		schedule();
490 		ret |= VM_FAULT_MAJOR;
491 
492 		/*
493 		 * False wakeups can orginate even from rwsem before
494 		 * up_read() however userfaults will wait either for a
495 		 * targeted wakeup on the specific uwq waitqueue from
496 		 * wake_userfault() or for signals or for uffd
497 		 * release.
498 		 */
499 		while (!READ_ONCE(uwq.waken)) {
500 			/*
501 			 * This needs the full smp_store_mb()
502 			 * guarantee as the state write must be
503 			 * visible to other CPUs before reading
504 			 * uwq.waken from other CPUs.
505 			 */
506 			set_current_state(blocking_state);
507 			if (READ_ONCE(uwq.waken) ||
508 			    READ_ONCE(ctx->released) ||
509 			    (return_to_userland ? signal_pending(current) :
510 			     fatal_signal_pending(current)))
511 				break;
512 			schedule();
513 		}
514 	}
515 
516 	__set_current_state(TASK_RUNNING);
517 
518 	if (return_to_userland) {
519 		if (signal_pending(current) &&
520 		    !fatal_signal_pending(current)) {
521 			/*
522 			 * If we got a SIGSTOP or SIGCONT and this is
523 			 * a normal userland page fault, just let
524 			 * userland return so the signal will be
525 			 * handled and gdb debugging works.  The page
526 			 * fault code immediately after we return from
527 			 * this function is going to release the
528 			 * mmap_sem and it's not depending on it
529 			 * (unlike gup would if we were not to return
530 			 * VM_FAULT_RETRY).
531 			 *
532 			 * If a fatal signal is pending we still take
533 			 * the streamlined VM_FAULT_RETRY failure path
534 			 * and there's no need to retake the mmap_sem
535 			 * in such case.
536 			 */
537 			down_read(&mm->mmap_sem);
538 			ret = VM_FAULT_NOPAGE;
539 		}
540 	}
541 
542 	/*
543 	 * Here we race with the list_del; list_add in
544 	 * userfaultfd_ctx_read(), however because we don't ever run
545 	 * list_del_init() to refile across the two lists, the prev
546 	 * and next pointers will never point to self. list_add also
547 	 * would never let any of the two pointers to point to
548 	 * self. So list_empty_careful won't risk to see both pointers
549 	 * pointing to self at any time during the list refile. The
550 	 * only case where list_del_init() is called is the full
551 	 * removal in the wake function and there we don't re-list_add
552 	 * and it's fine not to block on the spinlock. The uwq on this
553 	 * kernel stack can be released after the list_del_init.
554 	 */
555 	if (!list_empty_careful(&uwq.wq.entry)) {
556 		spin_lock(&ctx->fault_pending_wqh.lock);
557 		/*
558 		 * No need of list_del_init(), the uwq on the stack
559 		 * will be freed shortly anyway.
560 		 */
561 		list_del(&uwq.wq.entry);
562 		spin_unlock(&ctx->fault_pending_wqh.lock);
563 	}
564 
565 	/*
566 	 * ctx may go away after this if the userfault pseudo fd is
567 	 * already released.
568 	 */
569 	userfaultfd_ctx_put(ctx);
570 
571 out:
572 	return ret;
573 }
574 
575 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
576 					      struct userfaultfd_wait_queue *ewq)
577 {
578 	struct userfaultfd_ctx *release_new_ctx;
579 
580 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
581 		goto out;
582 
583 	ewq->ctx = ctx;
584 	init_waitqueue_entry(&ewq->wq, current);
585 	release_new_ctx = NULL;
586 
587 	spin_lock(&ctx->event_wqh.lock);
588 	/*
589 	 * After the __add_wait_queue the uwq is visible to userland
590 	 * through poll/read().
591 	 */
592 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
593 	for (;;) {
594 		set_current_state(TASK_KILLABLE);
595 		if (ewq->msg.event == 0)
596 			break;
597 		if (READ_ONCE(ctx->released) ||
598 		    fatal_signal_pending(current)) {
599 			/*
600 			 * &ewq->wq may be queued in fork_event, but
601 			 * __remove_wait_queue ignores the head
602 			 * parameter. It would be a problem if it
603 			 * didn't.
604 			 */
605 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
606 			if (ewq->msg.event == UFFD_EVENT_FORK) {
607 				struct userfaultfd_ctx *new;
608 
609 				new = (struct userfaultfd_ctx *)
610 					(unsigned long)
611 					ewq->msg.arg.reserved.reserved1;
612 				release_new_ctx = new;
613 			}
614 			break;
615 		}
616 
617 		spin_unlock(&ctx->event_wqh.lock);
618 
619 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
620 		schedule();
621 
622 		spin_lock(&ctx->event_wqh.lock);
623 	}
624 	__set_current_state(TASK_RUNNING);
625 	spin_unlock(&ctx->event_wqh.lock);
626 
627 	if (release_new_ctx) {
628 		struct vm_area_struct *vma;
629 		struct mm_struct *mm = release_new_ctx->mm;
630 
631 		/* the various vma->vm_userfaultfd_ctx still points to it */
632 		down_write(&mm->mmap_sem);
633 		for (vma = mm->mmap; vma; vma = vma->vm_next)
634 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
635 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
636 		up_write(&mm->mmap_sem);
637 
638 		userfaultfd_ctx_put(release_new_ctx);
639 	}
640 
641 	/*
642 	 * ctx may go away after this if the userfault pseudo fd is
643 	 * already released.
644 	 */
645 out:
646 	WRITE_ONCE(ctx->mmap_changing, false);
647 	userfaultfd_ctx_put(ctx);
648 }
649 
650 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
651 				       struct userfaultfd_wait_queue *ewq)
652 {
653 	ewq->msg.event = 0;
654 	wake_up_locked(&ctx->event_wqh);
655 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
656 }
657 
658 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
659 {
660 	struct userfaultfd_ctx *ctx = NULL, *octx;
661 	struct userfaultfd_fork_ctx *fctx;
662 
663 	octx = vma->vm_userfaultfd_ctx.ctx;
664 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
666 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
667 		return 0;
668 	}
669 
670 	list_for_each_entry(fctx, fcs, list)
671 		if (fctx->orig == octx) {
672 			ctx = fctx->new;
673 			break;
674 		}
675 
676 	if (!ctx) {
677 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
678 		if (!fctx)
679 			return -ENOMEM;
680 
681 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
682 		if (!ctx) {
683 			kfree(fctx);
684 			return -ENOMEM;
685 		}
686 
687 		atomic_set(&ctx->refcount, 1);
688 		ctx->flags = octx->flags;
689 		ctx->state = UFFD_STATE_RUNNING;
690 		ctx->features = octx->features;
691 		ctx->released = false;
692 		ctx->mmap_changing = false;
693 		ctx->mm = vma->vm_mm;
694 		mmgrab(ctx->mm);
695 
696 		userfaultfd_ctx_get(octx);
697 		WRITE_ONCE(octx->mmap_changing, true);
698 		fctx->orig = octx;
699 		fctx->new = ctx;
700 		list_add_tail(&fctx->list, fcs);
701 	}
702 
703 	vma->vm_userfaultfd_ctx.ctx = ctx;
704 	return 0;
705 }
706 
707 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
708 {
709 	struct userfaultfd_ctx *ctx = fctx->orig;
710 	struct userfaultfd_wait_queue ewq;
711 
712 	msg_init(&ewq.msg);
713 
714 	ewq.msg.event = UFFD_EVENT_FORK;
715 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
716 
717 	userfaultfd_event_wait_completion(ctx, &ewq);
718 }
719 
720 void dup_userfaultfd_complete(struct list_head *fcs)
721 {
722 	struct userfaultfd_fork_ctx *fctx, *n;
723 
724 	list_for_each_entry_safe(fctx, n, fcs, list) {
725 		dup_fctx(fctx);
726 		list_del(&fctx->list);
727 		kfree(fctx);
728 	}
729 }
730 
731 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
732 			     struct vm_userfaultfd_ctx *vm_ctx)
733 {
734 	struct userfaultfd_ctx *ctx;
735 
736 	ctx = vma->vm_userfaultfd_ctx.ctx;
737 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
738 		vm_ctx->ctx = ctx;
739 		userfaultfd_ctx_get(ctx);
740 		WRITE_ONCE(ctx->mmap_changing, true);
741 	}
742 }
743 
744 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
745 				 unsigned long from, unsigned long to,
746 				 unsigned long len)
747 {
748 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
749 	struct userfaultfd_wait_queue ewq;
750 
751 	if (!ctx)
752 		return;
753 
754 	if (to & ~PAGE_MASK) {
755 		userfaultfd_ctx_put(ctx);
756 		return;
757 	}
758 
759 	msg_init(&ewq.msg);
760 
761 	ewq.msg.event = UFFD_EVENT_REMAP;
762 	ewq.msg.arg.remap.from = from;
763 	ewq.msg.arg.remap.to = to;
764 	ewq.msg.arg.remap.len = len;
765 
766 	userfaultfd_event_wait_completion(ctx, &ewq);
767 }
768 
769 bool userfaultfd_remove(struct vm_area_struct *vma,
770 			unsigned long start, unsigned long end)
771 {
772 	struct mm_struct *mm = vma->vm_mm;
773 	struct userfaultfd_ctx *ctx;
774 	struct userfaultfd_wait_queue ewq;
775 
776 	ctx = vma->vm_userfaultfd_ctx.ctx;
777 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
778 		return true;
779 
780 	userfaultfd_ctx_get(ctx);
781 	WRITE_ONCE(ctx->mmap_changing, true);
782 	up_read(&mm->mmap_sem);
783 
784 	msg_init(&ewq.msg);
785 
786 	ewq.msg.event = UFFD_EVENT_REMOVE;
787 	ewq.msg.arg.remove.start = start;
788 	ewq.msg.arg.remove.end = end;
789 
790 	userfaultfd_event_wait_completion(ctx, &ewq);
791 
792 	return false;
793 }
794 
795 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
796 			  unsigned long start, unsigned long end)
797 {
798 	struct userfaultfd_unmap_ctx *unmap_ctx;
799 
800 	list_for_each_entry(unmap_ctx, unmaps, list)
801 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
802 		    unmap_ctx->end == end)
803 			return true;
804 
805 	return false;
806 }
807 
808 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
809 			   unsigned long start, unsigned long end,
810 			   struct list_head *unmaps)
811 {
812 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
813 		struct userfaultfd_unmap_ctx *unmap_ctx;
814 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
815 
816 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
817 		    has_unmap_ctx(ctx, unmaps, start, end))
818 			continue;
819 
820 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
821 		if (!unmap_ctx)
822 			return -ENOMEM;
823 
824 		userfaultfd_ctx_get(ctx);
825 		WRITE_ONCE(ctx->mmap_changing, true);
826 		unmap_ctx->ctx = ctx;
827 		unmap_ctx->start = start;
828 		unmap_ctx->end = end;
829 		list_add_tail(&unmap_ctx->list, unmaps);
830 	}
831 
832 	return 0;
833 }
834 
835 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
836 {
837 	struct userfaultfd_unmap_ctx *ctx, *n;
838 	struct userfaultfd_wait_queue ewq;
839 
840 	list_for_each_entry_safe(ctx, n, uf, list) {
841 		msg_init(&ewq.msg);
842 
843 		ewq.msg.event = UFFD_EVENT_UNMAP;
844 		ewq.msg.arg.remove.start = ctx->start;
845 		ewq.msg.arg.remove.end = ctx->end;
846 
847 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
848 
849 		list_del(&ctx->list);
850 		kfree(ctx);
851 	}
852 }
853 
854 static int userfaultfd_release(struct inode *inode, struct file *file)
855 {
856 	struct userfaultfd_ctx *ctx = file->private_data;
857 	struct mm_struct *mm = ctx->mm;
858 	struct vm_area_struct *vma, *prev;
859 	/* len == 0 means wake all */
860 	struct userfaultfd_wake_range range = { .len = 0, };
861 	unsigned long new_flags;
862 
863 	WRITE_ONCE(ctx->released, true);
864 
865 	if (!mmget_not_zero(mm))
866 		goto wakeup;
867 
868 	/*
869 	 * Flush page faults out of all CPUs. NOTE: all page faults
870 	 * must be retried without returning VM_FAULT_SIGBUS if
871 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
872 	 * changes while handle_userfault released the mmap_sem. So
873 	 * it's critical that released is set to true (above), before
874 	 * taking the mmap_sem for writing.
875 	 */
876 	down_write(&mm->mmap_sem);
877 	prev = NULL;
878 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
879 		cond_resched();
880 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
881 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
882 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
883 			prev = vma;
884 			continue;
885 		}
886 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
887 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
888 				 new_flags, vma->anon_vma,
889 				 vma->vm_file, vma->vm_pgoff,
890 				 vma_policy(vma),
891 				 NULL_VM_UFFD_CTX);
892 		if (prev)
893 			vma = prev;
894 		else
895 			prev = vma;
896 		vma->vm_flags = new_flags;
897 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
898 	}
899 	up_write(&mm->mmap_sem);
900 	mmput(mm);
901 wakeup:
902 	/*
903 	 * After no new page faults can wait on this fault_*wqh, flush
904 	 * the last page faults that may have been already waiting on
905 	 * the fault_*wqh.
906 	 */
907 	spin_lock(&ctx->fault_pending_wqh.lock);
908 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
909 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
910 	spin_unlock(&ctx->fault_pending_wqh.lock);
911 
912 	/* Flush pending events that may still wait on event_wqh */
913 	wake_up_all(&ctx->event_wqh);
914 
915 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
916 	userfaultfd_ctx_put(ctx);
917 	return 0;
918 }
919 
920 /* fault_pending_wqh.lock must be hold by the caller */
921 static inline struct userfaultfd_wait_queue *find_userfault_in(
922 		wait_queue_head_t *wqh)
923 {
924 	wait_queue_entry_t *wq;
925 	struct userfaultfd_wait_queue *uwq;
926 
927 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
928 
929 	uwq = NULL;
930 	if (!waitqueue_active(wqh))
931 		goto out;
932 	/* walk in reverse to provide FIFO behavior to read userfaults */
933 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
934 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
935 out:
936 	return uwq;
937 }
938 
939 static inline struct userfaultfd_wait_queue *find_userfault(
940 		struct userfaultfd_ctx *ctx)
941 {
942 	return find_userfault_in(&ctx->fault_pending_wqh);
943 }
944 
945 static inline struct userfaultfd_wait_queue *find_userfault_evt(
946 		struct userfaultfd_ctx *ctx)
947 {
948 	return find_userfault_in(&ctx->event_wqh);
949 }
950 
951 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
952 {
953 	struct userfaultfd_ctx *ctx = file->private_data;
954 	__poll_t ret;
955 
956 	poll_wait(file, &ctx->fd_wqh, wait);
957 
958 	switch (ctx->state) {
959 	case UFFD_STATE_WAIT_API:
960 		return EPOLLERR;
961 	case UFFD_STATE_RUNNING:
962 		/*
963 		 * poll() never guarantees that read won't block.
964 		 * userfaults can be waken before they're read().
965 		 */
966 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
967 			return EPOLLERR;
968 		/*
969 		 * lockless access to see if there are pending faults
970 		 * __pollwait last action is the add_wait_queue but
971 		 * the spin_unlock would allow the waitqueue_active to
972 		 * pass above the actual list_add inside
973 		 * add_wait_queue critical section. So use a full
974 		 * memory barrier to serialize the list_add write of
975 		 * add_wait_queue() with the waitqueue_active read
976 		 * below.
977 		 */
978 		ret = 0;
979 		smp_mb();
980 		if (waitqueue_active(&ctx->fault_pending_wqh))
981 			ret = EPOLLIN;
982 		else if (waitqueue_active(&ctx->event_wqh))
983 			ret = EPOLLIN;
984 
985 		return ret;
986 	default:
987 		WARN_ON_ONCE(1);
988 		return EPOLLERR;
989 	}
990 }
991 
992 static const struct file_operations userfaultfd_fops;
993 
994 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
995 				  struct userfaultfd_ctx *new,
996 				  struct uffd_msg *msg)
997 {
998 	int fd;
999 
1000 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1001 			      O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1002 	if (fd < 0)
1003 		return fd;
1004 
1005 	msg->arg.reserved.reserved1 = 0;
1006 	msg->arg.fork.ufd = fd;
1007 	return 0;
1008 }
1009 
1010 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1011 				    struct uffd_msg *msg)
1012 {
1013 	ssize_t ret;
1014 	DECLARE_WAITQUEUE(wait, current);
1015 	struct userfaultfd_wait_queue *uwq;
1016 	/*
1017 	 * Handling fork event requires sleeping operations, so
1018 	 * we drop the event_wqh lock, then do these ops, then
1019 	 * lock it back and wake up the waiter. While the lock is
1020 	 * dropped the ewq may go away so we keep track of it
1021 	 * carefully.
1022 	 */
1023 	LIST_HEAD(fork_event);
1024 	struct userfaultfd_ctx *fork_nctx = NULL;
1025 
1026 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1027 	spin_lock(&ctx->fd_wqh.lock);
1028 	__add_wait_queue(&ctx->fd_wqh, &wait);
1029 	for (;;) {
1030 		set_current_state(TASK_INTERRUPTIBLE);
1031 		spin_lock(&ctx->fault_pending_wqh.lock);
1032 		uwq = find_userfault(ctx);
1033 		if (uwq) {
1034 			/*
1035 			 * Use a seqcount to repeat the lockless check
1036 			 * in wake_userfault() to avoid missing
1037 			 * wakeups because during the refile both
1038 			 * waitqueue could become empty if this is the
1039 			 * only userfault.
1040 			 */
1041 			write_seqcount_begin(&ctx->refile_seq);
1042 
1043 			/*
1044 			 * The fault_pending_wqh.lock prevents the uwq
1045 			 * to disappear from under us.
1046 			 *
1047 			 * Refile this userfault from
1048 			 * fault_pending_wqh to fault_wqh, it's not
1049 			 * pending anymore after we read it.
1050 			 *
1051 			 * Use list_del() by hand (as
1052 			 * userfaultfd_wake_function also uses
1053 			 * list_del_init() by hand) to be sure nobody
1054 			 * changes __remove_wait_queue() to use
1055 			 * list_del_init() in turn breaking the
1056 			 * !list_empty_careful() check in
1057 			 * handle_userfault(). The uwq->wq.head list
1058 			 * must never be empty at any time during the
1059 			 * refile, or the waitqueue could disappear
1060 			 * from under us. The "wait_queue_head_t"
1061 			 * parameter of __remove_wait_queue() is unused
1062 			 * anyway.
1063 			 */
1064 			list_del(&uwq->wq.entry);
1065 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1066 
1067 			write_seqcount_end(&ctx->refile_seq);
1068 
1069 			/* careful to always initialize msg if ret == 0 */
1070 			*msg = uwq->msg;
1071 			spin_unlock(&ctx->fault_pending_wqh.lock);
1072 			ret = 0;
1073 			break;
1074 		}
1075 		spin_unlock(&ctx->fault_pending_wqh.lock);
1076 
1077 		spin_lock(&ctx->event_wqh.lock);
1078 		uwq = find_userfault_evt(ctx);
1079 		if (uwq) {
1080 			*msg = uwq->msg;
1081 
1082 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1083 				fork_nctx = (struct userfaultfd_ctx *)
1084 					(unsigned long)
1085 					uwq->msg.arg.reserved.reserved1;
1086 				list_move(&uwq->wq.entry, &fork_event);
1087 				/*
1088 				 * fork_nctx can be freed as soon as
1089 				 * we drop the lock, unless we take a
1090 				 * reference on it.
1091 				 */
1092 				userfaultfd_ctx_get(fork_nctx);
1093 				spin_unlock(&ctx->event_wqh.lock);
1094 				ret = 0;
1095 				break;
1096 			}
1097 
1098 			userfaultfd_event_complete(ctx, uwq);
1099 			spin_unlock(&ctx->event_wqh.lock);
1100 			ret = 0;
1101 			break;
1102 		}
1103 		spin_unlock(&ctx->event_wqh.lock);
1104 
1105 		if (signal_pending(current)) {
1106 			ret = -ERESTARTSYS;
1107 			break;
1108 		}
1109 		if (no_wait) {
1110 			ret = -EAGAIN;
1111 			break;
1112 		}
1113 		spin_unlock(&ctx->fd_wqh.lock);
1114 		schedule();
1115 		spin_lock(&ctx->fd_wqh.lock);
1116 	}
1117 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1118 	__set_current_state(TASK_RUNNING);
1119 	spin_unlock(&ctx->fd_wqh.lock);
1120 
1121 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1122 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1123 		spin_lock(&ctx->event_wqh.lock);
1124 		if (!list_empty(&fork_event)) {
1125 			/*
1126 			 * The fork thread didn't abort, so we can
1127 			 * drop the temporary refcount.
1128 			 */
1129 			userfaultfd_ctx_put(fork_nctx);
1130 
1131 			uwq = list_first_entry(&fork_event,
1132 					       typeof(*uwq),
1133 					       wq.entry);
1134 			/*
1135 			 * If fork_event list wasn't empty and in turn
1136 			 * the event wasn't already released by fork
1137 			 * (the event is allocated on fork kernel
1138 			 * stack), put the event back to its place in
1139 			 * the event_wq. fork_event head will be freed
1140 			 * as soon as we return so the event cannot
1141 			 * stay queued there no matter the current
1142 			 * "ret" value.
1143 			 */
1144 			list_del(&uwq->wq.entry);
1145 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1146 
1147 			/*
1148 			 * Leave the event in the waitqueue and report
1149 			 * error to userland if we failed to resolve
1150 			 * the userfault fork.
1151 			 */
1152 			if (likely(!ret))
1153 				userfaultfd_event_complete(ctx, uwq);
1154 		} else {
1155 			/*
1156 			 * Here the fork thread aborted and the
1157 			 * refcount from the fork thread on fork_nctx
1158 			 * has already been released. We still hold
1159 			 * the reference we took before releasing the
1160 			 * lock above. If resolve_userfault_fork
1161 			 * failed we've to drop it because the
1162 			 * fork_nctx has to be freed in such case. If
1163 			 * it succeeded we'll hold it because the new
1164 			 * uffd references it.
1165 			 */
1166 			if (ret)
1167 				userfaultfd_ctx_put(fork_nctx);
1168 		}
1169 		spin_unlock(&ctx->event_wqh.lock);
1170 	}
1171 
1172 	return ret;
1173 }
1174 
1175 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1176 				size_t count, loff_t *ppos)
1177 {
1178 	struct userfaultfd_ctx *ctx = file->private_data;
1179 	ssize_t _ret, ret = 0;
1180 	struct uffd_msg msg;
1181 	int no_wait = file->f_flags & O_NONBLOCK;
1182 
1183 	if (ctx->state == UFFD_STATE_WAIT_API)
1184 		return -EINVAL;
1185 
1186 	for (;;) {
1187 		if (count < sizeof(msg))
1188 			return ret ? ret : -EINVAL;
1189 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1190 		if (_ret < 0)
1191 			return ret ? ret : _ret;
1192 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1193 			return ret ? ret : -EFAULT;
1194 		ret += sizeof(msg);
1195 		buf += sizeof(msg);
1196 		count -= sizeof(msg);
1197 		/*
1198 		 * Allow to read more than one fault at time but only
1199 		 * block if waiting for the very first one.
1200 		 */
1201 		no_wait = O_NONBLOCK;
1202 	}
1203 }
1204 
1205 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1206 			     struct userfaultfd_wake_range *range)
1207 {
1208 	spin_lock(&ctx->fault_pending_wqh.lock);
1209 	/* wake all in the range and autoremove */
1210 	if (waitqueue_active(&ctx->fault_pending_wqh))
1211 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1212 				     range);
1213 	if (waitqueue_active(&ctx->fault_wqh))
1214 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1215 	spin_unlock(&ctx->fault_pending_wqh.lock);
1216 }
1217 
1218 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1219 					   struct userfaultfd_wake_range *range)
1220 {
1221 	unsigned seq;
1222 	bool need_wakeup;
1223 
1224 	/*
1225 	 * To be sure waitqueue_active() is not reordered by the CPU
1226 	 * before the pagetable update, use an explicit SMP memory
1227 	 * barrier here. PT lock release or up_read(mmap_sem) still
1228 	 * have release semantics that can allow the
1229 	 * waitqueue_active() to be reordered before the pte update.
1230 	 */
1231 	smp_mb();
1232 
1233 	/*
1234 	 * Use waitqueue_active because it's very frequent to
1235 	 * change the address space atomically even if there are no
1236 	 * userfaults yet. So we take the spinlock only when we're
1237 	 * sure we've userfaults to wake.
1238 	 */
1239 	do {
1240 		seq = read_seqcount_begin(&ctx->refile_seq);
1241 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1242 			waitqueue_active(&ctx->fault_wqh);
1243 		cond_resched();
1244 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1245 	if (need_wakeup)
1246 		__wake_userfault(ctx, range);
1247 }
1248 
1249 static __always_inline int validate_range(struct mm_struct *mm,
1250 					  __u64 start, __u64 len)
1251 {
1252 	__u64 task_size = mm->task_size;
1253 
1254 	if (start & ~PAGE_MASK)
1255 		return -EINVAL;
1256 	if (len & ~PAGE_MASK)
1257 		return -EINVAL;
1258 	if (!len)
1259 		return -EINVAL;
1260 	if (start < mmap_min_addr)
1261 		return -EINVAL;
1262 	if (start >= task_size)
1263 		return -EINVAL;
1264 	if (len > task_size - start)
1265 		return -EINVAL;
1266 	return 0;
1267 }
1268 
1269 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1270 {
1271 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1272 		vma_is_shmem(vma);
1273 }
1274 
1275 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1276 				unsigned long arg)
1277 {
1278 	struct mm_struct *mm = ctx->mm;
1279 	struct vm_area_struct *vma, *prev, *cur;
1280 	int ret;
1281 	struct uffdio_register uffdio_register;
1282 	struct uffdio_register __user *user_uffdio_register;
1283 	unsigned long vm_flags, new_flags;
1284 	bool found;
1285 	bool basic_ioctls;
1286 	unsigned long start, end, vma_end;
1287 
1288 	user_uffdio_register = (struct uffdio_register __user *) arg;
1289 
1290 	ret = -EFAULT;
1291 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1292 			   sizeof(uffdio_register)-sizeof(__u64)))
1293 		goto out;
1294 
1295 	ret = -EINVAL;
1296 	if (!uffdio_register.mode)
1297 		goto out;
1298 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1299 				     UFFDIO_REGISTER_MODE_WP))
1300 		goto out;
1301 	vm_flags = 0;
1302 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303 		vm_flags |= VM_UFFD_MISSING;
1304 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305 		vm_flags |= VM_UFFD_WP;
1306 		/*
1307 		 * FIXME: remove the below error constraint by
1308 		 * implementing the wprotect tracking mode.
1309 		 */
1310 		ret = -EINVAL;
1311 		goto out;
1312 	}
1313 
1314 	ret = validate_range(mm, uffdio_register.range.start,
1315 			     uffdio_register.range.len);
1316 	if (ret)
1317 		goto out;
1318 
1319 	start = uffdio_register.range.start;
1320 	end = start + uffdio_register.range.len;
1321 
1322 	ret = -ENOMEM;
1323 	if (!mmget_not_zero(mm))
1324 		goto out;
1325 
1326 	down_write(&mm->mmap_sem);
1327 	vma = find_vma_prev(mm, start, &prev);
1328 	if (!vma)
1329 		goto out_unlock;
1330 
1331 	/* check that there's at least one vma in the range */
1332 	ret = -EINVAL;
1333 	if (vma->vm_start >= end)
1334 		goto out_unlock;
1335 
1336 	/*
1337 	 * If the first vma contains huge pages, make sure start address
1338 	 * is aligned to huge page size.
1339 	 */
1340 	if (is_vm_hugetlb_page(vma)) {
1341 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1342 
1343 		if (start & (vma_hpagesize - 1))
1344 			goto out_unlock;
1345 	}
1346 
1347 	/*
1348 	 * Search for not compatible vmas.
1349 	 */
1350 	found = false;
1351 	basic_ioctls = false;
1352 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1353 		cond_resched();
1354 
1355 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1356 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1357 
1358 		/* check not compatible vmas */
1359 		ret = -EINVAL;
1360 		if (!vma_can_userfault(cur))
1361 			goto out_unlock;
1362 		/*
1363 		 * If this vma contains ending address, and huge pages
1364 		 * check alignment.
1365 		 */
1366 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367 		    end > cur->vm_start) {
1368 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1369 
1370 			ret = -EINVAL;
1371 
1372 			if (end & (vma_hpagesize - 1))
1373 				goto out_unlock;
1374 		}
1375 
1376 		/*
1377 		 * Check that this vma isn't already owned by a
1378 		 * different userfaultfd. We can't allow more than one
1379 		 * userfaultfd to own a single vma simultaneously or we
1380 		 * wouldn't know which one to deliver the userfaults to.
1381 		 */
1382 		ret = -EBUSY;
1383 		if (cur->vm_userfaultfd_ctx.ctx &&
1384 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1385 			goto out_unlock;
1386 
1387 		/*
1388 		 * Note vmas containing huge pages
1389 		 */
1390 		if (is_vm_hugetlb_page(cur))
1391 			basic_ioctls = true;
1392 
1393 		found = true;
1394 	}
1395 	BUG_ON(!found);
1396 
1397 	if (vma->vm_start < start)
1398 		prev = vma;
1399 
1400 	ret = 0;
1401 	do {
1402 		cond_resched();
1403 
1404 		BUG_ON(!vma_can_userfault(vma));
1405 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1406 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1407 
1408 		/*
1409 		 * Nothing to do: this vma is already registered into this
1410 		 * userfaultfd and with the right tracking mode too.
1411 		 */
1412 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1413 		    (vma->vm_flags & vm_flags) == vm_flags)
1414 			goto skip;
1415 
1416 		if (vma->vm_start > start)
1417 			start = vma->vm_start;
1418 		vma_end = min(end, vma->vm_end);
1419 
1420 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1421 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1422 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1423 				 vma_policy(vma),
1424 				 ((struct vm_userfaultfd_ctx){ ctx }));
1425 		if (prev) {
1426 			vma = prev;
1427 			goto next;
1428 		}
1429 		if (vma->vm_start < start) {
1430 			ret = split_vma(mm, vma, start, 1);
1431 			if (ret)
1432 				break;
1433 		}
1434 		if (vma->vm_end > end) {
1435 			ret = split_vma(mm, vma, end, 0);
1436 			if (ret)
1437 				break;
1438 		}
1439 	next:
1440 		/*
1441 		 * In the vma_merge() successful mprotect-like case 8:
1442 		 * the next vma was merged into the current one and
1443 		 * the current one has not been updated yet.
1444 		 */
1445 		vma->vm_flags = new_flags;
1446 		vma->vm_userfaultfd_ctx.ctx = ctx;
1447 
1448 	skip:
1449 		prev = vma;
1450 		start = vma->vm_end;
1451 		vma = vma->vm_next;
1452 	} while (vma && vma->vm_start < end);
1453 out_unlock:
1454 	up_write(&mm->mmap_sem);
1455 	mmput(mm);
1456 	if (!ret) {
1457 		/*
1458 		 * Now that we scanned all vmas we can already tell
1459 		 * userland which ioctls methods are guaranteed to
1460 		 * succeed on this range.
1461 		 */
1462 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1463 			     UFFD_API_RANGE_IOCTLS,
1464 			     &user_uffdio_register->ioctls))
1465 			ret = -EFAULT;
1466 	}
1467 out:
1468 	return ret;
1469 }
1470 
1471 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1472 				  unsigned long arg)
1473 {
1474 	struct mm_struct *mm = ctx->mm;
1475 	struct vm_area_struct *vma, *prev, *cur;
1476 	int ret;
1477 	struct uffdio_range uffdio_unregister;
1478 	unsigned long new_flags;
1479 	bool found;
1480 	unsigned long start, end, vma_end;
1481 	const void __user *buf = (void __user *)arg;
1482 
1483 	ret = -EFAULT;
1484 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1485 		goto out;
1486 
1487 	ret = validate_range(mm, uffdio_unregister.start,
1488 			     uffdio_unregister.len);
1489 	if (ret)
1490 		goto out;
1491 
1492 	start = uffdio_unregister.start;
1493 	end = start + uffdio_unregister.len;
1494 
1495 	ret = -ENOMEM;
1496 	if (!mmget_not_zero(mm))
1497 		goto out;
1498 
1499 	down_write(&mm->mmap_sem);
1500 	vma = find_vma_prev(mm, start, &prev);
1501 	if (!vma)
1502 		goto out_unlock;
1503 
1504 	/* check that there's at least one vma in the range */
1505 	ret = -EINVAL;
1506 	if (vma->vm_start >= end)
1507 		goto out_unlock;
1508 
1509 	/*
1510 	 * If the first vma contains huge pages, make sure start address
1511 	 * is aligned to huge page size.
1512 	 */
1513 	if (is_vm_hugetlb_page(vma)) {
1514 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1515 
1516 		if (start & (vma_hpagesize - 1))
1517 			goto out_unlock;
1518 	}
1519 
1520 	/*
1521 	 * Search for not compatible vmas.
1522 	 */
1523 	found = false;
1524 	ret = -EINVAL;
1525 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1526 		cond_resched();
1527 
1528 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1529 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1530 
1531 		/*
1532 		 * Check not compatible vmas, not strictly required
1533 		 * here as not compatible vmas cannot have an
1534 		 * userfaultfd_ctx registered on them, but this
1535 		 * provides for more strict behavior to notice
1536 		 * unregistration errors.
1537 		 */
1538 		if (!vma_can_userfault(cur))
1539 			goto out_unlock;
1540 
1541 		found = true;
1542 	}
1543 	BUG_ON(!found);
1544 
1545 	if (vma->vm_start < start)
1546 		prev = vma;
1547 
1548 	ret = 0;
1549 	do {
1550 		cond_resched();
1551 
1552 		BUG_ON(!vma_can_userfault(vma));
1553 
1554 		/*
1555 		 * Nothing to do: this vma is already registered into this
1556 		 * userfaultfd and with the right tracking mode too.
1557 		 */
1558 		if (!vma->vm_userfaultfd_ctx.ctx)
1559 			goto skip;
1560 
1561 		if (vma->vm_start > start)
1562 			start = vma->vm_start;
1563 		vma_end = min(end, vma->vm_end);
1564 
1565 		if (userfaultfd_missing(vma)) {
1566 			/*
1567 			 * Wake any concurrent pending userfault while
1568 			 * we unregister, so they will not hang
1569 			 * permanently and it avoids userland to call
1570 			 * UFFDIO_WAKE explicitly.
1571 			 */
1572 			struct userfaultfd_wake_range range;
1573 			range.start = start;
1574 			range.len = vma_end - start;
1575 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1576 		}
1577 
1578 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1579 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1580 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1581 				 vma_policy(vma),
1582 				 NULL_VM_UFFD_CTX);
1583 		if (prev) {
1584 			vma = prev;
1585 			goto next;
1586 		}
1587 		if (vma->vm_start < start) {
1588 			ret = split_vma(mm, vma, start, 1);
1589 			if (ret)
1590 				break;
1591 		}
1592 		if (vma->vm_end > end) {
1593 			ret = split_vma(mm, vma, end, 0);
1594 			if (ret)
1595 				break;
1596 		}
1597 	next:
1598 		/*
1599 		 * In the vma_merge() successful mprotect-like case 8:
1600 		 * the next vma was merged into the current one and
1601 		 * the current one has not been updated yet.
1602 		 */
1603 		vma->vm_flags = new_flags;
1604 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1605 
1606 	skip:
1607 		prev = vma;
1608 		start = vma->vm_end;
1609 		vma = vma->vm_next;
1610 	} while (vma && vma->vm_start < end);
1611 out_unlock:
1612 	up_write(&mm->mmap_sem);
1613 	mmput(mm);
1614 out:
1615 	return ret;
1616 }
1617 
1618 /*
1619  * userfaultfd_wake may be used in combination with the
1620  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1621  */
1622 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1623 			    unsigned long arg)
1624 {
1625 	int ret;
1626 	struct uffdio_range uffdio_wake;
1627 	struct userfaultfd_wake_range range;
1628 	const void __user *buf = (void __user *)arg;
1629 
1630 	ret = -EFAULT;
1631 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1632 		goto out;
1633 
1634 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1635 	if (ret)
1636 		goto out;
1637 
1638 	range.start = uffdio_wake.start;
1639 	range.len = uffdio_wake.len;
1640 
1641 	/*
1642 	 * len == 0 means wake all and we don't want to wake all here,
1643 	 * so check it again to be sure.
1644 	 */
1645 	VM_BUG_ON(!range.len);
1646 
1647 	wake_userfault(ctx, &range);
1648 	ret = 0;
1649 
1650 out:
1651 	return ret;
1652 }
1653 
1654 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1655 			    unsigned long arg)
1656 {
1657 	__s64 ret;
1658 	struct uffdio_copy uffdio_copy;
1659 	struct uffdio_copy __user *user_uffdio_copy;
1660 	struct userfaultfd_wake_range range;
1661 
1662 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1663 
1664 	ret = -EAGAIN;
1665 	if (READ_ONCE(ctx->mmap_changing))
1666 		goto out;
1667 
1668 	ret = -EFAULT;
1669 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1670 			   /* don't copy "copy" last field */
1671 			   sizeof(uffdio_copy)-sizeof(__s64)))
1672 		goto out;
1673 
1674 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1675 	if (ret)
1676 		goto out;
1677 	/*
1678 	 * double check for wraparound just in case. copy_from_user()
1679 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1680 	 * in the userland range.
1681 	 */
1682 	ret = -EINVAL;
1683 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1684 		goto out;
1685 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1686 		goto out;
1687 	if (mmget_not_zero(ctx->mm)) {
1688 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1689 				   uffdio_copy.len, &ctx->mmap_changing);
1690 		mmput(ctx->mm);
1691 	} else {
1692 		return -ESRCH;
1693 	}
1694 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1695 		return -EFAULT;
1696 	if (ret < 0)
1697 		goto out;
1698 	BUG_ON(!ret);
1699 	/* len == 0 would wake all */
1700 	range.len = ret;
1701 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1702 		range.start = uffdio_copy.dst;
1703 		wake_userfault(ctx, &range);
1704 	}
1705 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1706 out:
1707 	return ret;
1708 }
1709 
1710 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1711 				unsigned long arg)
1712 {
1713 	__s64 ret;
1714 	struct uffdio_zeropage uffdio_zeropage;
1715 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1716 	struct userfaultfd_wake_range range;
1717 
1718 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1719 
1720 	ret = -EAGAIN;
1721 	if (READ_ONCE(ctx->mmap_changing))
1722 		goto out;
1723 
1724 	ret = -EFAULT;
1725 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1726 			   /* don't copy "zeropage" last field */
1727 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1728 		goto out;
1729 
1730 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1731 			     uffdio_zeropage.range.len);
1732 	if (ret)
1733 		goto out;
1734 	ret = -EINVAL;
1735 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1736 		goto out;
1737 
1738 	if (mmget_not_zero(ctx->mm)) {
1739 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1740 				     uffdio_zeropage.range.len,
1741 				     &ctx->mmap_changing);
1742 		mmput(ctx->mm);
1743 	} else {
1744 		return -ESRCH;
1745 	}
1746 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1747 		return -EFAULT;
1748 	if (ret < 0)
1749 		goto out;
1750 	/* len == 0 would wake all */
1751 	BUG_ON(!ret);
1752 	range.len = ret;
1753 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1754 		range.start = uffdio_zeropage.range.start;
1755 		wake_userfault(ctx, &range);
1756 	}
1757 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1758 out:
1759 	return ret;
1760 }
1761 
1762 static inline unsigned int uffd_ctx_features(__u64 user_features)
1763 {
1764 	/*
1765 	 * For the current set of features the bits just coincide
1766 	 */
1767 	return (unsigned int)user_features;
1768 }
1769 
1770 /*
1771  * userland asks for a certain API version and we return which bits
1772  * and ioctl commands are implemented in this kernel for such API
1773  * version or -EINVAL if unknown.
1774  */
1775 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1776 			   unsigned long arg)
1777 {
1778 	struct uffdio_api uffdio_api;
1779 	void __user *buf = (void __user *)arg;
1780 	int ret;
1781 	__u64 features;
1782 
1783 	ret = -EINVAL;
1784 	if (ctx->state != UFFD_STATE_WAIT_API)
1785 		goto out;
1786 	ret = -EFAULT;
1787 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1788 		goto out;
1789 	features = uffdio_api.features;
1790 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1791 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1792 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1793 			goto out;
1794 		ret = -EINVAL;
1795 		goto out;
1796 	}
1797 	/* report all available features and ioctls to userland */
1798 	uffdio_api.features = UFFD_API_FEATURES;
1799 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1800 	ret = -EFAULT;
1801 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1802 		goto out;
1803 	ctx->state = UFFD_STATE_RUNNING;
1804 	/* only enable the requested features for this uffd context */
1805 	ctx->features = uffd_ctx_features(features);
1806 	ret = 0;
1807 out:
1808 	return ret;
1809 }
1810 
1811 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1812 			      unsigned long arg)
1813 {
1814 	int ret = -EINVAL;
1815 	struct userfaultfd_ctx *ctx = file->private_data;
1816 
1817 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1818 		return -EINVAL;
1819 
1820 	switch(cmd) {
1821 	case UFFDIO_API:
1822 		ret = userfaultfd_api(ctx, arg);
1823 		break;
1824 	case UFFDIO_REGISTER:
1825 		ret = userfaultfd_register(ctx, arg);
1826 		break;
1827 	case UFFDIO_UNREGISTER:
1828 		ret = userfaultfd_unregister(ctx, arg);
1829 		break;
1830 	case UFFDIO_WAKE:
1831 		ret = userfaultfd_wake(ctx, arg);
1832 		break;
1833 	case UFFDIO_COPY:
1834 		ret = userfaultfd_copy(ctx, arg);
1835 		break;
1836 	case UFFDIO_ZEROPAGE:
1837 		ret = userfaultfd_zeropage(ctx, arg);
1838 		break;
1839 	}
1840 	return ret;
1841 }
1842 
1843 #ifdef CONFIG_PROC_FS
1844 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1845 {
1846 	struct userfaultfd_ctx *ctx = f->private_data;
1847 	wait_queue_entry_t *wq;
1848 	struct userfaultfd_wait_queue *uwq;
1849 	unsigned long pending = 0, total = 0;
1850 
1851 	spin_lock(&ctx->fault_pending_wqh.lock);
1852 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1853 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1854 		pending++;
1855 		total++;
1856 	}
1857 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1858 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1859 		total++;
1860 	}
1861 	spin_unlock(&ctx->fault_pending_wqh.lock);
1862 
1863 	/*
1864 	 * If more protocols will be added, there will be all shown
1865 	 * separated by a space. Like this:
1866 	 *	protocols: aa:... bb:...
1867 	 */
1868 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1869 		   pending, total, UFFD_API, ctx->features,
1870 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1871 }
1872 #endif
1873 
1874 static const struct file_operations userfaultfd_fops = {
1875 #ifdef CONFIG_PROC_FS
1876 	.show_fdinfo	= userfaultfd_show_fdinfo,
1877 #endif
1878 	.release	= userfaultfd_release,
1879 	.poll		= userfaultfd_poll,
1880 	.read		= userfaultfd_read,
1881 	.unlocked_ioctl = userfaultfd_ioctl,
1882 	.compat_ioctl	= userfaultfd_ioctl,
1883 	.llseek		= noop_llseek,
1884 };
1885 
1886 static void init_once_userfaultfd_ctx(void *mem)
1887 {
1888 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1889 
1890 	init_waitqueue_head(&ctx->fault_pending_wqh);
1891 	init_waitqueue_head(&ctx->fault_wqh);
1892 	init_waitqueue_head(&ctx->event_wqh);
1893 	init_waitqueue_head(&ctx->fd_wqh);
1894 	seqcount_init(&ctx->refile_seq);
1895 }
1896 
1897 SYSCALL_DEFINE1(userfaultfd, int, flags)
1898 {
1899 	struct userfaultfd_ctx *ctx;
1900 	int fd;
1901 
1902 	BUG_ON(!current->mm);
1903 
1904 	/* Check the UFFD_* constants for consistency.  */
1905 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1906 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1907 
1908 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1909 		return -EINVAL;
1910 
1911 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1912 	if (!ctx)
1913 		return -ENOMEM;
1914 
1915 	atomic_set(&ctx->refcount, 1);
1916 	ctx->flags = flags;
1917 	ctx->features = 0;
1918 	ctx->state = UFFD_STATE_WAIT_API;
1919 	ctx->released = false;
1920 	ctx->mmap_changing = false;
1921 	ctx->mm = current->mm;
1922 	/* prevent the mm struct to be freed */
1923 	mmgrab(ctx->mm);
1924 
1925 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1926 			      O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1927 	if (fd < 0) {
1928 		mmdrop(ctx->mm);
1929 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1930 	}
1931 	return fd;
1932 }
1933 
1934 static int __init userfaultfd_init(void)
1935 {
1936 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1937 						sizeof(struct userfaultfd_ctx),
1938 						0,
1939 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1940 						init_once_userfaultfd_ctx);
1941 	return 0;
1942 }
1943 __initcall(userfaultfd_init);
1944