1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 38 39 /* 40 * Start with fault_pending_wqh and fault_wqh so they're more likely 41 * to be in the same cacheline. 42 * 43 * Locking order: 44 * fd_wqh.lock 45 * fault_pending_wqh.lock 46 * fault_wqh.lock 47 * event_wqh.lock 48 * 49 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 50 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 51 * also taken in IRQ context. 52 */ 53 struct userfaultfd_ctx { 54 /* waitqueue head for the pending (i.e. not read) userfaults */ 55 wait_queue_head_t fault_pending_wqh; 56 /* waitqueue head for the userfaults */ 57 wait_queue_head_t fault_wqh; 58 /* waitqueue head for the pseudo fd to wakeup poll/read */ 59 wait_queue_head_t fd_wqh; 60 /* waitqueue head for events */ 61 wait_queue_head_t event_wqh; 62 /* a refile sequence protected by fault_pending_wqh lock */ 63 seqcount_spinlock_t refile_seq; 64 /* pseudo fd refcounting */ 65 refcount_t refcount; 66 /* userfaultfd syscall flags */ 67 unsigned int flags; 68 /* features requested from the userspace */ 69 unsigned int features; 70 /* released */ 71 bool released; 72 /* memory mappings are changing because of non-cooperative event */ 73 atomic_t mmap_changing; 74 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 75 struct mm_struct *mm; 76 }; 77 78 struct userfaultfd_fork_ctx { 79 struct userfaultfd_ctx *orig; 80 struct userfaultfd_ctx *new; 81 struct list_head list; 82 }; 83 84 struct userfaultfd_unmap_ctx { 85 struct userfaultfd_ctx *ctx; 86 unsigned long start; 87 unsigned long end; 88 struct list_head list; 89 }; 90 91 struct userfaultfd_wait_queue { 92 struct uffd_msg msg; 93 wait_queue_entry_t wq; 94 struct userfaultfd_ctx *ctx; 95 bool waken; 96 }; 97 98 struct userfaultfd_wake_range { 99 unsigned long start; 100 unsigned long len; 101 }; 102 103 /* internal indication that UFFD_API ioctl was successfully executed */ 104 #define UFFD_FEATURE_INITIALIZED (1u << 31) 105 106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 107 { 108 return ctx->features & UFFD_FEATURE_INITIALIZED; 109 } 110 111 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 112 int wake_flags, void *key) 113 { 114 struct userfaultfd_wake_range *range = key; 115 int ret; 116 struct userfaultfd_wait_queue *uwq; 117 unsigned long start, len; 118 119 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 120 ret = 0; 121 /* len == 0 means wake all */ 122 start = range->start; 123 len = range->len; 124 if (len && (start > uwq->msg.arg.pagefault.address || 125 start + len <= uwq->msg.arg.pagefault.address)) 126 goto out; 127 WRITE_ONCE(uwq->waken, true); 128 /* 129 * The Program-Order guarantees provided by the scheduler 130 * ensure uwq->waken is visible before the task is woken. 131 */ 132 ret = wake_up_state(wq->private, mode); 133 if (ret) { 134 /* 135 * Wake only once, autoremove behavior. 136 * 137 * After the effect of list_del_init is visible to the other 138 * CPUs, the waitqueue may disappear from under us, see the 139 * !list_empty_careful() in handle_userfault(). 140 * 141 * try_to_wake_up() has an implicit smp_mb(), and the 142 * wq->private is read before calling the extern function 143 * "wake_up_state" (which in turns calls try_to_wake_up). 144 */ 145 list_del_init(&wq->entry); 146 } 147 out: 148 return ret; 149 } 150 151 /** 152 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 153 * context. 154 * @ctx: [in] Pointer to the userfaultfd context. 155 */ 156 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 157 { 158 refcount_inc(&ctx->refcount); 159 } 160 161 /** 162 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 163 * context. 164 * @ctx: [in] Pointer to userfaultfd context. 165 * 166 * The userfaultfd context reference must have been previously acquired either 167 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 168 */ 169 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 170 { 171 if (refcount_dec_and_test(&ctx->refcount)) { 172 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 173 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 174 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 175 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 176 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 177 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 178 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 179 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 180 mmdrop(ctx->mm); 181 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 182 } 183 } 184 185 static inline void msg_init(struct uffd_msg *msg) 186 { 187 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 188 /* 189 * Must use memset to zero out the paddings or kernel data is 190 * leaked to userland. 191 */ 192 memset(msg, 0, sizeof(struct uffd_msg)); 193 } 194 195 static inline struct uffd_msg userfault_msg(unsigned long address, 196 unsigned long real_address, 197 unsigned int flags, 198 unsigned long reason, 199 unsigned int features) 200 { 201 struct uffd_msg msg; 202 203 msg_init(&msg); 204 msg.event = UFFD_EVENT_PAGEFAULT; 205 206 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 207 real_address : address; 208 209 /* 210 * These flags indicate why the userfault occurred: 211 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 212 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 213 * - Neither of these flags being set indicates a MISSING fault. 214 * 215 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 216 * fault. Otherwise, it was a read fault. 217 */ 218 if (flags & FAULT_FLAG_WRITE) 219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 220 if (reason & VM_UFFD_WP) 221 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 222 if (reason & VM_UFFD_MINOR) 223 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 224 if (features & UFFD_FEATURE_THREAD_ID) 225 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 226 return msg; 227 } 228 229 #ifdef CONFIG_HUGETLB_PAGE 230 /* 231 * Same functionality as userfaultfd_must_wait below with modifications for 232 * hugepmd ranges. 233 */ 234 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 235 struct vm_area_struct *vma, 236 unsigned long address, 237 unsigned long flags, 238 unsigned long reason) 239 { 240 struct mm_struct *mm = ctx->mm; 241 pte_t *ptep, pte; 242 bool ret = true; 243 244 mmap_assert_locked(mm); 245 246 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 247 248 if (!ptep) 249 goto out; 250 251 ret = false; 252 pte = huge_ptep_get(ptep); 253 254 /* 255 * Lockless access: we're in a wait_event so it's ok if it 256 * changes under us. PTE markers should be handled the same as none 257 * ptes here. 258 */ 259 if (huge_pte_none_mostly(pte)) 260 ret = true; 261 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 262 ret = true; 263 out: 264 return ret; 265 } 266 #else 267 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 268 struct vm_area_struct *vma, 269 unsigned long address, 270 unsigned long flags, 271 unsigned long reason) 272 { 273 return false; /* should never get here */ 274 } 275 #endif /* CONFIG_HUGETLB_PAGE */ 276 277 /* 278 * Verify the pagetables are still not ok after having reigstered into 279 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 280 * userfault that has already been resolved, if userfaultfd_read and 281 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 282 * threads. 283 */ 284 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 285 unsigned long address, 286 unsigned long flags, 287 unsigned long reason) 288 { 289 struct mm_struct *mm = ctx->mm; 290 pgd_t *pgd; 291 p4d_t *p4d; 292 pud_t *pud; 293 pmd_t *pmd, _pmd; 294 pte_t *pte; 295 bool ret = true; 296 297 mmap_assert_locked(mm); 298 299 pgd = pgd_offset(mm, address); 300 if (!pgd_present(*pgd)) 301 goto out; 302 p4d = p4d_offset(pgd, address); 303 if (!p4d_present(*p4d)) 304 goto out; 305 pud = pud_offset(p4d, address); 306 if (!pud_present(*pud)) 307 goto out; 308 pmd = pmd_offset(pud, address); 309 /* 310 * READ_ONCE must function as a barrier with narrower scope 311 * and it must be equivalent to: 312 * _pmd = *pmd; barrier(); 313 * 314 * This is to deal with the instability (as in 315 * pmd_trans_unstable) of the pmd. 316 */ 317 _pmd = READ_ONCE(*pmd); 318 if (pmd_none(_pmd)) 319 goto out; 320 321 ret = false; 322 if (!pmd_present(_pmd)) 323 goto out; 324 325 if (pmd_trans_huge(_pmd)) { 326 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 327 ret = true; 328 goto out; 329 } 330 331 /* 332 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 333 * and use the standard pte_offset_map() instead of parsing _pmd. 334 */ 335 pte = pte_offset_map(pmd, address); 336 /* 337 * Lockless access: we're in a wait_event so it's ok if it 338 * changes under us. PTE markers should be handled the same as none 339 * ptes here. 340 */ 341 if (pte_none_mostly(*pte)) 342 ret = true; 343 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 344 ret = true; 345 pte_unmap(pte); 346 347 out: 348 return ret; 349 } 350 351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 352 { 353 if (flags & FAULT_FLAG_INTERRUPTIBLE) 354 return TASK_INTERRUPTIBLE; 355 356 if (flags & FAULT_FLAG_KILLABLE) 357 return TASK_KILLABLE; 358 359 return TASK_UNINTERRUPTIBLE; 360 } 361 362 /* 363 * The locking rules involved in returning VM_FAULT_RETRY depending on 364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 366 * recommendation in __lock_page_or_retry is not an understatement. 367 * 368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 370 * not set. 371 * 372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 373 * set, VM_FAULT_RETRY can still be returned if and only if there are 374 * fatal_signal_pending()s, and the mmap_lock must be released before 375 * returning it. 376 */ 377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 378 { 379 struct mm_struct *mm = vmf->vma->vm_mm; 380 struct userfaultfd_ctx *ctx; 381 struct userfaultfd_wait_queue uwq; 382 vm_fault_t ret = VM_FAULT_SIGBUS; 383 bool must_wait; 384 unsigned int blocking_state; 385 386 /* 387 * We don't do userfault handling for the final child pid update. 388 * 389 * We also don't do userfault handling during 390 * coredumping. hugetlbfs has the special 391 * follow_hugetlb_page() to skip missing pages in the 392 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 393 * the no_page_table() helper in follow_page_mask(), but the 394 * shmem_vm_ops->fault method is invoked even during 395 * coredumping without mmap_lock and it ends up here. 396 */ 397 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 398 goto out; 399 400 /* 401 * Coredumping runs without mmap_lock so we can only check that 402 * the mmap_lock is held, if PF_DUMPCORE was not set. 403 */ 404 mmap_assert_locked(mm); 405 406 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 407 if (!ctx) 408 goto out; 409 410 BUG_ON(ctx->mm != mm); 411 412 /* Any unrecognized flag is a bug. */ 413 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 414 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 415 VM_BUG_ON(!reason || (reason & (reason - 1))); 416 417 if (ctx->features & UFFD_FEATURE_SIGBUS) 418 goto out; 419 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 420 goto out; 421 422 /* 423 * If it's already released don't get it. This avoids to loop 424 * in __get_user_pages if userfaultfd_release waits on the 425 * caller of handle_userfault to release the mmap_lock. 426 */ 427 if (unlikely(READ_ONCE(ctx->released))) { 428 /* 429 * Don't return VM_FAULT_SIGBUS in this case, so a non 430 * cooperative manager can close the uffd after the 431 * last UFFDIO_COPY, without risking to trigger an 432 * involuntary SIGBUS if the process was starting the 433 * userfaultfd while the userfaultfd was still armed 434 * (but after the last UFFDIO_COPY). If the uffd 435 * wasn't already closed when the userfault reached 436 * this point, that would normally be solved by 437 * userfaultfd_must_wait returning 'false'. 438 * 439 * If we were to return VM_FAULT_SIGBUS here, the non 440 * cooperative manager would be instead forced to 441 * always call UFFDIO_UNREGISTER before it can safely 442 * close the uffd. 443 */ 444 ret = VM_FAULT_NOPAGE; 445 goto out; 446 } 447 448 /* 449 * Check that we can return VM_FAULT_RETRY. 450 * 451 * NOTE: it should become possible to return VM_FAULT_RETRY 452 * even if FAULT_FLAG_TRIED is set without leading to gup() 453 * -EBUSY failures, if the userfaultfd is to be extended for 454 * VM_UFFD_WP tracking and we intend to arm the userfault 455 * without first stopping userland access to the memory. For 456 * VM_UFFD_MISSING userfaults this is enough for now. 457 */ 458 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 459 /* 460 * Validate the invariant that nowait must allow retry 461 * to be sure not to return SIGBUS erroneously on 462 * nowait invocations. 463 */ 464 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 465 #ifdef CONFIG_DEBUG_VM 466 if (printk_ratelimit()) { 467 printk(KERN_WARNING 468 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 469 vmf->flags); 470 dump_stack(); 471 } 472 #endif 473 goto out; 474 } 475 476 /* 477 * Handle nowait, not much to do other than tell it to retry 478 * and wait. 479 */ 480 ret = VM_FAULT_RETRY; 481 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 482 goto out; 483 484 /* take the reference before dropping the mmap_lock */ 485 userfaultfd_ctx_get(ctx); 486 487 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 488 uwq.wq.private = current; 489 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 490 reason, ctx->features); 491 uwq.ctx = ctx; 492 uwq.waken = false; 493 494 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 495 496 spin_lock_irq(&ctx->fault_pending_wqh.lock); 497 /* 498 * After the __add_wait_queue the uwq is visible to userland 499 * through poll/read(). 500 */ 501 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 502 /* 503 * The smp_mb() after __set_current_state prevents the reads 504 * following the spin_unlock to happen before the list_add in 505 * __add_wait_queue. 506 */ 507 set_current_state(blocking_state); 508 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 509 510 if (!is_vm_hugetlb_page(vmf->vma)) 511 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 512 reason); 513 else 514 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 515 vmf->address, 516 vmf->flags, reason); 517 mmap_read_unlock(mm); 518 519 if (likely(must_wait && !READ_ONCE(ctx->released))) { 520 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 521 schedule(); 522 } 523 524 __set_current_state(TASK_RUNNING); 525 526 /* 527 * Here we race with the list_del; list_add in 528 * userfaultfd_ctx_read(), however because we don't ever run 529 * list_del_init() to refile across the two lists, the prev 530 * and next pointers will never point to self. list_add also 531 * would never let any of the two pointers to point to 532 * self. So list_empty_careful won't risk to see both pointers 533 * pointing to self at any time during the list refile. The 534 * only case where list_del_init() is called is the full 535 * removal in the wake function and there we don't re-list_add 536 * and it's fine not to block on the spinlock. The uwq on this 537 * kernel stack can be released after the list_del_init. 538 */ 539 if (!list_empty_careful(&uwq.wq.entry)) { 540 spin_lock_irq(&ctx->fault_pending_wqh.lock); 541 /* 542 * No need of list_del_init(), the uwq on the stack 543 * will be freed shortly anyway. 544 */ 545 list_del(&uwq.wq.entry); 546 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 547 } 548 549 /* 550 * ctx may go away after this if the userfault pseudo fd is 551 * already released. 552 */ 553 userfaultfd_ctx_put(ctx); 554 555 out: 556 return ret; 557 } 558 559 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 560 struct userfaultfd_wait_queue *ewq) 561 { 562 struct userfaultfd_ctx *release_new_ctx; 563 564 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 565 goto out; 566 567 ewq->ctx = ctx; 568 init_waitqueue_entry(&ewq->wq, current); 569 release_new_ctx = NULL; 570 571 spin_lock_irq(&ctx->event_wqh.lock); 572 /* 573 * After the __add_wait_queue the uwq is visible to userland 574 * through poll/read(). 575 */ 576 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 577 for (;;) { 578 set_current_state(TASK_KILLABLE); 579 if (ewq->msg.event == 0) 580 break; 581 if (READ_ONCE(ctx->released) || 582 fatal_signal_pending(current)) { 583 /* 584 * &ewq->wq may be queued in fork_event, but 585 * __remove_wait_queue ignores the head 586 * parameter. It would be a problem if it 587 * didn't. 588 */ 589 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 590 if (ewq->msg.event == UFFD_EVENT_FORK) { 591 struct userfaultfd_ctx *new; 592 593 new = (struct userfaultfd_ctx *) 594 (unsigned long) 595 ewq->msg.arg.reserved.reserved1; 596 release_new_ctx = new; 597 } 598 break; 599 } 600 601 spin_unlock_irq(&ctx->event_wqh.lock); 602 603 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 604 schedule(); 605 606 spin_lock_irq(&ctx->event_wqh.lock); 607 } 608 __set_current_state(TASK_RUNNING); 609 spin_unlock_irq(&ctx->event_wqh.lock); 610 611 if (release_new_ctx) { 612 struct vm_area_struct *vma; 613 struct mm_struct *mm = release_new_ctx->mm; 614 VMA_ITERATOR(vmi, mm, 0); 615 616 /* the various vma->vm_userfaultfd_ctx still points to it */ 617 mmap_write_lock(mm); 618 for_each_vma(vmi, vma) { 619 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 620 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 621 vma->vm_flags &= ~__VM_UFFD_FLAGS; 622 } 623 } 624 mmap_write_unlock(mm); 625 626 userfaultfd_ctx_put(release_new_ctx); 627 } 628 629 /* 630 * ctx may go away after this if the userfault pseudo fd is 631 * already released. 632 */ 633 out: 634 atomic_dec(&ctx->mmap_changing); 635 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 636 userfaultfd_ctx_put(ctx); 637 } 638 639 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 640 struct userfaultfd_wait_queue *ewq) 641 { 642 ewq->msg.event = 0; 643 wake_up_locked(&ctx->event_wqh); 644 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 645 } 646 647 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 648 { 649 struct userfaultfd_ctx *ctx = NULL, *octx; 650 struct userfaultfd_fork_ctx *fctx; 651 652 octx = vma->vm_userfaultfd_ctx.ctx; 653 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 654 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 655 vma->vm_flags &= ~__VM_UFFD_FLAGS; 656 return 0; 657 } 658 659 list_for_each_entry(fctx, fcs, list) 660 if (fctx->orig == octx) { 661 ctx = fctx->new; 662 break; 663 } 664 665 if (!ctx) { 666 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 667 if (!fctx) 668 return -ENOMEM; 669 670 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 671 if (!ctx) { 672 kfree(fctx); 673 return -ENOMEM; 674 } 675 676 refcount_set(&ctx->refcount, 1); 677 ctx->flags = octx->flags; 678 ctx->features = octx->features; 679 ctx->released = false; 680 atomic_set(&ctx->mmap_changing, 0); 681 ctx->mm = vma->vm_mm; 682 mmgrab(ctx->mm); 683 684 userfaultfd_ctx_get(octx); 685 atomic_inc(&octx->mmap_changing); 686 fctx->orig = octx; 687 fctx->new = ctx; 688 list_add_tail(&fctx->list, fcs); 689 } 690 691 vma->vm_userfaultfd_ctx.ctx = ctx; 692 return 0; 693 } 694 695 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 696 { 697 struct userfaultfd_ctx *ctx = fctx->orig; 698 struct userfaultfd_wait_queue ewq; 699 700 msg_init(&ewq.msg); 701 702 ewq.msg.event = UFFD_EVENT_FORK; 703 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 704 705 userfaultfd_event_wait_completion(ctx, &ewq); 706 } 707 708 void dup_userfaultfd_complete(struct list_head *fcs) 709 { 710 struct userfaultfd_fork_ctx *fctx, *n; 711 712 list_for_each_entry_safe(fctx, n, fcs, list) { 713 dup_fctx(fctx); 714 list_del(&fctx->list); 715 kfree(fctx); 716 } 717 } 718 719 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 720 struct vm_userfaultfd_ctx *vm_ctx) 721 { 722 struct userfaultfd_ctx *ctx; 723 724 ctx = vma->vm_userfaultfd_ctx.ctx; 725 726 if (!ctx) 727 return; 728 729 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 730 vm_ctx->ctx = ctx; 731 userfaultfd_ctx_get(ctx); 732 atomic_inc(&ctx->mmap_changing); 733 } else { 734 /* Drop uffd context if remap feature not enabled */ 735 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 736 vma->vm_flags &= ~__VM_UFFD_FLAGS; 737 } 738 } 739 740 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 741 unsigned long from, unsigned long to, 742 unsigned long len) 743 { 744 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 745 struct userfaultfd_wait_queue ewq; 746 747 if (!ctx) 748 return; 749 750 if (to & ~PAGE_MASK) { 751 userfaultfd_ctx_put(ctx); 752 return; 753 } 754 755 msg_init(&ewq.msg); 756 757 ewq.msg.event = UFFD_EVENT_REMAP; 758 ewq.msg.arg.remap.from = from; 759 ewq.msg.arg.remap.to = to; 760 ewq.msg.arg.remap.len = len; 761 762 userfaultfd_event_wait_completion(ctx, &ewq); 763 } 764 765 bool userfaultfd_remove(struct vm_area_struct *vma, 766 unsigned long start, unsigned long end) 767 { 768 struct mm_struct *mm = vma->vm_mm; 769 struct userfaultfd_ctx *ctx; 770 struct userfaultfd_wait_queue ewq; 771 772 ctx = vma->vm_userfaultfd_ctx.ctx; 773 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 774 return true; 775 776 userfaultfd_ctx_get(ctx); 777 atomic_inc(&ctx->mmap_changing); 778 mmap_read_unlock(mm); 779 780 msg_init(&ewq.msg); 781 782 ewq.msg.event = UFFD_EVENT_REMOVE; 783 ewq.msg.arg.remove.start = start; 784 ewq.msg.arg.remove.end = end; 785 786 userfaultfd_event_wait_completion(ctx, &ewq); 787 788 return false; 789 } 790 791 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 792 unsigned long start, unsigned long end) 793 { 794 struct userfaultfd_unmap_ctx *unmap_ctx; 795 796 list_for_each_entry(unmap_ctx, unmaps, list) 797 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 798 unmap_ctx->end == end) 799 return true; 800 801 return false; 802 } 803 804 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start, 805 unsigned long end, struct list_head *unmaps) 806 { 807 VMA_ITERATOR(vmi, mm, start); 808 struct vm_area_struct *vma; 809 810 for_each_vma_range(vmi, vma, end) { 811 struct userfaultfd_unmap_ctx *unmap_ctx; 812 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 813 814 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 815 has_unmap_ctx(ctx, unmaps, start, end)) 816 continue; 817 818 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 819 if (!unmap_ctx) 820 return -ENOMEM; 821 822 userfaultfd_ctx_get(ctx); 823 atomic_inc(&ctx->mmap_changing); 824 unmap_ctx->ctx = ctx; 825 unmap_ctx->start = start; 826 unmap_ctx->end = end; 827 list_add_tail(&unmap_ctx->list, unmaps); 828 } 829 830 return 0; 831 } 832 833 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 834 { 835 struct userfaultfd_unmap_ctx *ctx, *n; 836 struct userfaultfd_wait_queue ewq; 837 838 list_for_each_entry_safe(ctx, n, uf, list) { 839 msg_init(&ewq.msg); 840 841 ewq.msg.event = UFFD_EVENT_UNMAP; 842 ewq.msg.arg.remove.start = ctx->start; 843 ewq.msg.arg.remove.end = ctx->end; 844 845 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 846 847 list_del(&ctx->list); 848 kfree(ctx); 849 } 850 } 851 852 static int userfaultfd_release(struct inode *inode, struct file *file) 853 { 854 struct userfaultfd_ctx *ctx = file->private_data; 855 struct mm_struct *mm = ctx->mm; 856 struct vm_area_struct *vma, *prev; 857 /* len == 0 means wake all */ 858 struct userfaultfd_wake_range range = { .len = 0, }; 859 unsigned long new_flags; 860 MA_STATE(mas, &mm->mm_mt, 0, 0); 861 862 WRITE_ONCE(ctx->released, true); 863 864 if (!mmget_not_zero(mm)) 865 goto wakeup; 866 867 /* 868 * Flush page faults out of all CPUs. NOTE: all page faults 869 * must be retried without returning VM_FAULT_SIGBUS if 870 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 871 * changes while handle_userfault released the mmap_lock. So 872 * it's critical that released is set to true (above), before 873 * taking the mmap_lock for writing. 874 */ 875 mmap_write_lock(mm); 876 prev = NULL; 877 mas_for_each(&mas, vma, ULONG_MAX) { 878 cond_resched(); 879 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 880 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 881 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 882 prev = vma; 883 continue; 884 } 885 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 886 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 887 new_flags, vma->anon_vma, 888 vma->vm_file, vma->vm_pgoff, 889 vma_policy(vma), 890 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 891 if (prev) { 892 mas_pause(&mas); 893 vma = prev; 894 } else { 895 prev = vma; 896 } 897 898 vma->vm_flags = new_flags; 899 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 900 } 901 mmap_write_unlock(mm); 902 mmput(mm); 903 wakeup: 904 /* 905 * After no new page faults can wait on this fault_*wqh, flush 906 * the last page faults that may have been already waiting on 907 * the fault_*wqh. 908 */ 909 spin_lock_irq(&ctx->fault_pending_wqh.lock); 910 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 911 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 912 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 913 914 /* Flush pending events that may still wait on event_wqh */ 915 wake_up_all(&ctx->event_wqh); 916 917 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 918 userfaultfd_ctx_put(ctx); 919 return 0; 920 } 921 922 /* fault_pending_wqh.lock must be hold by the caller */ 923 static inline struct userfaultfd_wait_queue *find_userfault_in( 924 wait_queue_head_t *wqh) 925 { 926 wait_queue_entry_t *wq; 927 struct userfaultfd_wait_queue *uwq; 928 929 lockdep_assert_held(&wqh->lock); 930 931 uwq = NULL; 932 if (!waitqueue_active(wqh)) 933 goto out; 934 /* walk in reverse to provide FIFO behavior to read userfaults */ 935 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 936 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 937 out: 938 return uwq; 939 } 940 941 static inline struct userfaultfd_wait_queue *find_userfault( 942 struct userfaultfd_ctx *ctx) 943 { 944 return find_userfault_in(&ctx->fault_pending_wqh); 945 } 946 947 static inline struct userfaultfd_wait_queue *find_userfault_evt( 948 struct userfaultfd_ctx *ctx) 949 { 950 return find_userfault_in(&ctx->event_wqh); 951 } 952 953 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 954 { 955 struct userfaultfd_ctx *ctx = file->private_data; 956 __poll_t ret; 957 958 poll_wait(file, &ctx->fd_wqh, wait); 959 960 if (!userfaultfd_is_initialized(ctx)) 961 return EPOLLERR; 962 963 /* 964 * poll() never guarantees that read won't block. 965 * userfaults can be waken before they're read(). 966 */ 967 if (unlikely(!(file->f_flags & O_NONBLOCK))) 968 return EPOLLERR; 969 /* 970 * lockless access to see if there are pending faults 971 * __pollwait last action is the add_wait_queue but 972 * the spin_unlock would allow the waitqueue_active to 973 * pass above the actual list_add inside 974 * add_wait_queue critical section. So use a full 975 * memory barrier to serialize the list_add write of 976 * add_wait_queue() with the waitqueue_active read 977 * below. 978 */ 979 ret = 0; 980 smp_mb(); 981 if (waitqueue_active(&ctx->fault_pending_wqh)) 982 ret = EPOLLIN; 983 else if (waitqueue_active(&ctx->event_wqh)) 984 ret = EPOLLIN; 985 986 return ret; 987 } 988 989 static const struct file_operations userfaultfd_fops; 990 991 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 992 struct inode *inode, 993 struct uffd_msg *msg) 994 { 995 int fd; 996 997 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 998 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 999 if (fd < 0) 1000 return fd; 1001 1002 msg->arg.reserved.reserved1 = 0; 1003 msg->arg.fork.ufd = fd; 1004 return 0; 1005 } 1006 1007 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1008 struct uffd_msg *msg, struct inode *inode) 1009 { 1010 ssize_t ret; 1011 DECLARE_WAITQUEUE(wait, current); 1012 struct userfaultfd_wait_queue *uwq; 1013 /* 1014 * Handling fork event requires sleeping operations, so 1015 * we drop the event_wqh lock, then do these ops, then 1016 * lock it back and wake up the waiter. While the lock is 1017 * dropped the ewq may go away so we keep track of it 1018 * carefully. 1019 */ 1020 LIST_HEAD(fork_event); 1021 struct userfaultfd_ctx *fork_nctx = NULL; 1022 1023 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1024 spin_lock_irq(&ctx->fd_wqh.lock); 1025 __add_wait_queue(&ctx->fd_wqh, &wait); 1026 for (;;) { 1027 set_current_state(TASK_INTERRUPTIBLE); 1028 spin_lock(&ctx->fault_pending_wqh.lock); 1029 uwq = find_userfault(ctx); 1030 if (uwq) { 1031 /* 1032 * Use a seqcount to repeat the lockless check 1033 * in wake_userfault() to avoid missing 1034 * wakeups because during the refile both 1035 * waitqueue could become empty if this is the 1036 * only userfault. 1037 */ 1038 write_seqcount_begin(&ctx->refile_seq); 1039 1040 /* 1041 * The fault_pending_wqh.lock prevents the uwq 1042 * to disappear from under us. 1043 * 1044 * Refile this userfault from 1045 * fault_pending_wqh to fault_wqh, it's not 1046 * pending anymore after we read it. 1047 * 1048 * Use list_del() by hand (as 1049 * userfaultfd_wake_function also uses 1050 * list_del_init() by hand) to be sure nobody 1051 * changes __remove_wait_queue() to use 1052 * list_del_init() in turn breaking the 1053 * !list_empty_careful() check in 1054 * handle_userfault(). The uwq->wq.head list 1055 * must never be empty at any time during the 1056 * refile, or the waitqueue could disappear 1057 * from under us. The "wait_queue_head_t" 1058 * parameter of __remove_wait_queue() is unused 1059 * anyway. 1060 */ 1061 list_del(&uwq->wq.entry); 1062 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1063 1064 write_seqcount_end(&ctx->refile_seq); 1065 1066 /* careful to always initialize msg if ret == 0 */ 1067 *msg = uwq->msg; 1068 spin_unlock(&ctx->fault_pending_wqh.lock); 1069 ret = 0; 1070 break; 1071 } 1072 spin_unlock(&ctx->fault_pending_wqh.lock); 1073 1074 spin_lock(&ctx->event_wqh.lock); 1075 uwq = find_userfault_evt(ctx); 1076 if (uwq) { 1077 *msg = uwq->msg; 1078 1079 if (uwq->msg.event == UFFD_EVENT_FORK) { 1080 fork_nctx = (struct userfaultfd_ctx *) 1081 (unsigned long) 1082 uwq->msg.arg.reserved.reserved1; 1083 list_move(&uwq->wq.entry, &fork_event); 1084 /* 1085 * fork_nctx can be freed as soon as 1086 * we drop the lock, unless we take a 1087 * reference on it. 1088 */ 1089 userfaultfd_ctx_get(fork_nctx); 1090 spin_unlock(&ctx->event_wqh.lock); 1091 ret = 0; 1092 break; 1093 } 1094 1095 userfaultfd_event_complete(ctx, uwq); 1096 spin_unlock(&ctx->event_wqh.lock); 1097 ret = 0; 1098 break; 1099 } 1100 spin_unlock(&ctx->event_wqh.lock); 1101 1102 if (signal_pending(current)) { 1103 ret = -ERESTARTSYS; 1104 break; 1105 } 1106 if (no_wait) { 1107 ret = -EAGAIN; 1108 break; 1109 } 1110 spin_unlock_irq(&ctx->fd_wqh.lock); 1111 schedule(); 1112 spin_lock_irq(&ctx->fd_wqh.lock); 1113 } 1114 __remove_wait_queue(&ctx->fd_wqh, &wait); 1115 __set_current_state(TASK_RUNNING); 1116 spin_unlock_irq(&ctx->fd_wqh.lock); 1117 1118 if (!ret && msg->event == UFFD_EVENT_FORK) { 1119 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1120 spin_lock_irq(&ctx->event_wqh.lock); 1121 if (!list_empty(&fork_event)) { 1122 /* 1123 * The fork thread didn't abort, so we can 1124 * drop the temporary refcount. 1125 */ 1126 userfaultfd_ctx_put(fork_nctx); 1127 1128 uwq = list_first_entry(&fork_event, 1129 typeof(*uwq), 1130 wq.entry); 1131 /* 1132 * If fork_event list wasn't empty and in turn 1133 * the event wasn't already released by fork 1134 * (the event is allocated on fork kernel 1135 * stack), put the event back to its place in 1136 * the event_wq. fork_event head will be freed 1137 * as soon as we return so the event cannot 1138 * stay queued there no matter the current 1139 * "ret" value. 1140 */ 1141 list_del(&uwq->wq.entry); 1142 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1143 1144 /* 1145 * Leave the event in the waitqueue and report 1146 * error to userland if we failed to resolve 1147 * the userfault fork. 1148 */ 1149 if (likely(!ret)) 1150 userfaultfd_event_complete(ctx, uwq); 1151 } else { 1152 /* 1153 * Here the fork thread aborted and the 1154 * refcount from the fork thread on fork_nctx 1155 * has already been released. We still hold 1156 * the reference we took before releasing the 1157 * lock above. If resolve_userfault_fork 1158 * failed we've to drop it because the 1159 * fork_nctx has to be freed in such case. If 1160 * it succeeded we'll hold it because the new 1161 * uffd references it. 1162 */ 1163 if (ret) 1164 userfaultfd_ctx_put(fork_nctx); 1165 } 1166 spin_unlock_irq(&ctx->event_wqh.lock); 1167 } 1168 1169 return ret; 1170 } 1171 1172 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1173 size_t count, loff_t *ppos) 1174 { 1175 struct userfaultfd_ctx *ctx = file->private_data; 1176 ssize_t _ret, ret = 0; 1177 struct uffd_msg msg; 1178 int no_wait = file->f_flags & O_NONBLOCK; 1179 struct inode *inode = file_inode(file); 1180 1181 if (!userfaultfd_is_initialized(ctx)) 1182 return -EINVAL; 1183 1184 for (;;) { 1185 if (count < sizeof(msg)) 1186 return ret ? ret : -EINVAL; 1187 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1188 if (_ret < 0) 1189 return ret ? ret : _ret; 1190 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1191 return ret ? ret : -EFAULT; 1192 ret += sizeof(msg); 1193 buf += sizeof(msg); 1194 count -= sizeof(msg); 1195 /* 1196 * Allow to read more than one fault at time but only 1197 * block if waiting for the very first one. 1198 */ 1199 no_wait = O_NONBLOCK; 1200 } 1201 } 1202 1203 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1204 struct userfaultfd_wake_range *range) 1205 { 1206 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1207 /* wake all in the range and autoremove */ 1208 if (waitqueue_active(&ctx->fault_pending_wqh)) 1209 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1210 range); 1211 if (waitqueue_active(&ctx->fault_wqh)) 1212 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1213 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1214 } 1215 1216 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1217 struct userfaultfd_wake_range *range) 1218 { 1219 unsigned seq; 1220 bool need_wakeup; 1221 1222 /* 1223 * To be sure waitqueue_active() is not reordered by the CPU 1224 * before the pagetable update, use an explicit SMP memory 1225 * barrier here. PT lock release or mmap_read_unlock(mm) still 1226 * have release semantics that can allow the 1227 * waitqueue_active() to be reordered before the pte update. 1228 */ 1229 smp_mb(); 1230 1231 /* 1232 * Use waitqueue_active because it's very frequent to 1233 * change the address space atomically even if there are no 1234 * userfaults yet. So we take the spinlock only when we're 1235 * sure we've userfaults to wake. 1236 */ 1237 do { 1238 seq = read_seqcount_begin(&ctx->refile_seq); 1239 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1240 waitqueue_active(&ctx->fault_wqh); 1241 cond_resched(); 1242 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1243 if (need_wakeup) 1244 __wake_userfault(ctx, range); 1245 } 1246 1247 static __always_inline int validate_range(struct mm_struct *mm, 1248 __u64 start, __u64 len) 1249 { 1250 __u64 task_size = mm->task_size; 1251 1252 if (start & ~PAGE_MASK) 1253 return -EINVAL; 1254 if (len & ~PAGE_MASK) 1255 return -EINVAL; 1256 if (!len) 1257 return -EINVAL; 1258 if (start < mmap_min_addr) 1259 return -EINVAL; 1260 if (start >= task_size) 1261 return -EINVAL; 1262 if (len > task_size - start) 1263 return -EINVAL; 1264 return 0; 1265 } 1266 1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1268 unsigned long arg) 1269 { 1270 struct mm_struct *mm = ctx->mm; 1271 struct vm_area_struct *vma, *prev, *cur; 1272 int ret; 1273 struct uffdio_register uffdio_register; 1274 struct uffdio_register __user *user_uffdio_register; 1275 unsigned long vm_flags, new_flags; 1276 bool found; 1277 bool basic_ioctls; 1278 unsigned long start, end, vma_end; 1279 MA_STATE(mas, &mm->mm_mt, 0, 0); 1280 1281 user_uffdio_register = (struct uffdio_register __user *) arg; 1282 1283 ret = -EFAULT; 1284 if (copy_from_user(&uffdio_register, user_uffdio_register, 1285 sizeof(uffdio_register)-sizeof(__u64))) 1286 goto out; 1287 1288 ret = -EINVAL; 1289 if (!uffdio_register.mode) 1290 goto out; 1291 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1292 goto out; 1293 vm_flags = 0; 1294 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1295 vm_flags |= VM_UFFD_MISSING; 1296 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1297 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1298 goto out; 1299 #endif 1300 vm_flags |= VM_UFFD_WP; 1301 } 1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1303 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1304 goto out; 1305 #endif 1306 vm_flags |= VM_UFFD_MINOR; 1307 } 1308 1309 ret = validate_range(mm, uffdio_register.range.start, 1310 uffdio_register.range.len); 1311 if (ret) 1312 goto out; 1313 1314 start = uffdio_register.range.start; 1315 end = start + uffdio_register.range.len; 1316 1317 ret = -ENOMEM; 1318 if (!mmget_not_zero(mm)) 1319 goto out; 1320 1321 mmap_write_lock(mm); 1322 mas_set(&mas, start); 1323 vma = mas_find(&mas, ULONG_MAX); 1324 if (!vma) 1325 goto out_unlock; 1326 1327 /* check that there's at least one vma in the range */ 1328 ret = -EINVAL; 1329 if (vma->vm_start >= end) 1330 goto out_unlock; 1331 1332 /* 1333 * If the first vma contains huge pages, make sure start address 1334 * is aligned to huge page size. 1335 */ 1336 if (is_vm_hugetlb_page(vma)) { 1337 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1338 1339 if (start & (vma_hpagesize - 1)) 1340 goto out_unlock; 1341 } 1342 1343 /* 1344 * Search for not compatible vmas. 1345 */ 1346 found = false; 1347 basic_ioctls = false; 1348 for (cur = vma; cur; cur = mas_next(&mas, end - 1)) { 1349 cond_resched(); 1350 1351 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1352 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1353 1354 /* check not compatible vmas */ 1355 ret = -EINVAL; 1356 if (!vma_can_userfault(cur, vm_flags)) 1357 goto out_unlock; 1358 1359 /* 1360 * UFFDIO_COPY will fill file holes even without 1361 * PROT_WRITE. This check enforces that if this is a 1362 * MAP_SHARED, the process has write permission to the backing 1363 * file. If VM_MAYWRITE is set it also enforces that on a 1364 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1365 * F_WRITE_SEAL can be taken until the vma is destroyed. 1366 */ 1367 ret = -EPERM; 1368 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1369 goto out_unlock; 1370 1371 /* 1372 * If this vma contains ending address, and huge pages 1373 * check alignment. 1374 */ 1375 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1376 end > cur->vm_start) { 1377 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1378 1379 ret = -EINVAL; 1380 1381 if (end & (vma_hpagesize - 1)) 1382 goto out_unlock; 1383 } 1384 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1385 goto out_unlock; 1386 1387 /* 1388 * Check that this vma isn't already owned by a 1389 * different userfaultfd. We can't allow more than one 1390 * userfaultfd to own a single vma simultaneously or we 1391 * wouldn't know which one to deliver the userfaults to. 1392 */ 1393 ret = -EBUSY; 1394 if (cur->vm_userfaultfd_ctx.ctx && 1395 cur->vm_userfaultfd_ctx.ctx != ctx) 1396 goto out_unlock; 1397 1398 /* 1399 * Note vmas containing huge pages 1400 */ 1401 if (is_vm_hugetlb_page(cur)) 1402 basic_ioctls = true; 1403 1404 found = true; 1405 } 1406 BUG_ON(!found); 1407 1408 mas_set(&mas, start); 1409 prev = mas_prev(&mas, 0); 1410 if (prev != vma) 1411 mas_next(&mas, ULONG_MAX); 1412 1413 ret = 0; 1414 do { 1415 cond_resched(); 1416 1417 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1418 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1419 vma->vm_userfaultfd_ctx.ctx != ctx); 1420 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1421 1422 /* 1423 * Nothing to do: this vma is already registered into this 1424 * userfaultfd and with the right tracking mode too. 1425 */ 1426 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1427 (vma->vm_flags & vm_flags) == vm_flags) 1428 goto skip; 1429 1430 if (vma->vm_start > start) 1431 start = vma->vm_start; 1432 vma_end = min(end, vma->vm_end); 1433 1434 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1435 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1436 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1437 vma_policy(vma), 1438 ((struct vm_userfaultfd_ctx){ ctx }), 1439 anon_vma_name(vma)); 1440 if (prev) { 1441 /* vma_merge() invalidated the mas */ 1442 mas_pause(&mas); 1443 vma = prev; 1444 goto next; 1445 } 1446 if (vma->vm_start < start) { 1447 ret = split_vma(mm, vma, start, 1); 1448 if (ret) 1449 break; 1450 /* split_vma() invalidated the mas */ 1451 mas_pause(&mas); 1452 } 1453 if (vma->vm_end > end) { 1454 ret = split_vma(mm, vma, end, 0); 1455 if (ret) 1456 break; 1457 /* split_vma() invalidated the mas */ 1458 mas_pause(&mas); 1459 } 1460 next: 1461 /* 1462 * In the vma_merge() successful mprotect-like case 8: 1463 * the next vma was merged into the current one and 1464 * the current one has not been updated yet. 1465 */ 1466 vma->vm_flags = new_flags; 1467 vma->vm_userfaultfd_ctx.ctx = ctx; 1468 1469 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1470 hugetlb_unshare_all_pmds(vma); 1471 1472 skip: 1473 prev = vma; 1474 start = vma->vm_end; 1475 vma = mas_next(&mas, end - 1); 1476 } while (vma); 1477 out_unlock: 1478 mmap_write_unlock(mm); 1479 mmput(mm); 1480 if (!ret) { 1481 __u64 ioctls_out; 1482 1483 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1484 UFFD_API_RANGE_IOCTLS; 1485 1486 /* 1487 * Declare the WP ioctl only if the WP mode is 1488 * specified and all checks passed with the range 1489 */ 1490 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1491 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1492 1493 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1494 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1495 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1496 1497 /* 1498 * Now that we scanned all vmas we can already tell 1499 * userland which ioctls methods are guaranteed to 1500 * succeed on this range. 1501 */ 1502 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1503 ret = -EFAULT; 1504 } 1505 out: 1506 return ret; 1507 } 1508 1509 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1510 unsigned long arg) 1511 { 1512 struct mm_struct *mm = ctx->mm; 1513 struct vm_area_struct *vma, *prev, *cur; 1514 int ret; 1515 struct uffdio_range uffdio_unregister; 1516 unsigned long new_flags; 1517 bool found; 1518 unsigned long start, end, vma_end; 1519 const void __user *buf = (void __user *)arg; 1520 MA_STATE(mas, &mm->mm_mt, 0, 0); 1521 1522 ret = -EFAULT; 1523 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1524 goto out; 1525 1526 ret = validate_range(mm, uffdio_unregister.start, 1527 uffdio_unregister.len); 1528 if (ret) 1529 goto out; 1530 1531 start = uffdio_unregister.start; 1532 end = start + uffdio_unregister.len; 1533 1534 ret = -ENOMEM; 1535 if (!mmget_not_zero(mm)) 1536 goto out; 1537 1538 mmap_write_lock(mm); 1539 mas_set(&mas, start); 1540 vma = mas_find(&mas, ULONG_MAX); 1541 if (!vma) 1542 goto out_unlock; 1543 1544 /* check that there's at least one vma in the range */ 1545 ret = -EINVAL; 1546 if (vma->vm_start >= end) 1547 goto out_unlock; 1548 1549 /* 1550 * If the first vma contains huge pages, make sure start address 1551 * is aligned to huge page size. 1552 */ 1553 if (is_vm_hugetlb_page(vma)) { 1554 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1555 1556 if (start & (vma_hpagesize - 1)) 1557 goto out_unlock; 1558 } 1559 1560 /* 1561 * Search for not compatible vmas. 1562 */ 1563 found = false; 1564 ret = -EINVAL; 1565 for (cur = vma; cur; cur = mas_next(&mas, end - 1)) { 1566 cond_resched(); 1567 1568 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1569 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1570 1571 /* 1572 * Check not compatible vmas, not strictly required 1573 * here as not compatible vmas cannot have an 1574 * userfaultfd_ctx registered on them, but this 1575 * provides for more strict behavior to notice 1576 * unregistration errors. 1577 */ 1578 if (!vma_can_userfault(cur, cur->vm_flags)) 1579 goto out_unlock; 1580 1581 found = true; 1582 } 1583 BUG_ON(!found); 1584 1585 mas_set(&mas, start); 1586 prev = mas_prev(&mas, 0); 1587 if (prev != vma) 1588 mas_next(&mas, ULONG_MAX); 1589 1590 ret = 0; 1591 do { 1592 cond_resched(); 1593 1594 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1595 1596 /* 1597 * Nothing to do: this vma is already registered into this 1598 * userfaultfd and with the right tracking mode too. 1599 */ 1600 if (!vma->vm_userfaultfd_ctx.ctx) 1601 goto skip; 1602 1603 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1604 1605 if (vma->vm_start > start) 1606 start = vma->vm_start; 1607 vma_end = min(end, vma->vm_end); 1608 1609 if (userfaultfd_missing(vma)) { 1610 /* 1611 * Wake any concurrent pending userfault while 1612 * we unregister, so they will not hang 1613 * permanently and it avoids userland to call 1614 * UFFDIO_WAKE explicitly. 1615 */ 1616 struct userfaultfd_wake_range range; 1617 range.start = start; 1618 range.len = vma_end - start; 1619 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1620 } 1621 1622 /* Reset ptes for the whole vma range if wr-protected */ 1623 if (userfaultfd_wp(vma)) 1624 uffd_wp_range(mm, vma, start, vma_end - start, false); 1625 1626 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1627 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1628 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1629 vma_policy(vma), 1630 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1631 if (prev) { 1632 vma = prev; 1633 mas_pause(&mas); 1634 goto next; 1635 } 1636 if (vma->vm_start < start) { 1637 ret = split_vma(mm, vma, start, 1); 1638 if (ret) 1639 break; 1640 mas_pause(&mas); 1641 } 1642 if (vma->vm_end > end) { 1643 ret = split_vma(mm, vma, end, 0); 1644 if (ret) 1645 break; 1646 mas_pause(&mas); 1647 } 1648 next: 1649 /* 1650 * In the vma_merge() successful mprotect-like case 8: 1651 * the next vma was merged into the current one and 1652 * the current one has not been updated yet. 1653 */ 1654 vma->vm_flags = new_flags; 1655 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1656 1657 skip: 1658 prev = vma; 1659 start = vma->vm_end; 1660 vma = mas_next(&mas, end - 1); 1661 } while (vma); 1662 out_unlock: 1663 mmap_write_unlock(mm); 1664 mmput(mm); 1665 out: 1666 return ret; 1667 } 1668 1669 /* 1670 * userfaultfd_wake may be used in combination with the 1671 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1672 */ 1673 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1674 unsigned long arg) 1675 { 1676 int ret; 1677 struct uffdio_range uffdio_wake; 1678 struct userfaultfd_wake_range range; 1679 const void __user *buf = (void __user *)arg; 1680 1681 ret = -EFAULT; 1682 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1683 goto out; 1684 1685 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1686 if (ret) 1687 goto out; 1688 1689 range.start = uffdio_wake.start; 1690 range.len = uffdio_wake.len; 1691 1692 /* 1693 * len == 0 means wake all and we don't want to wake all here, 1694 * so check it again to be sure. 1695 */ 1696 VM_BUG_ON(!range.len); 1697 1698 wake_userfault(ctx, &range); 1699 ret = 0; 1700 1701 out: 1702 return ret; 1703 } 1704 1705 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1706 unsigned long arg) 1707 { 1708 __s64 ret; 1709 struct uffdio_copy uffdio_copy; 1710 struct uffdio_copy __user *user_uffdio_copy; 1711 struct userfaultfd_wake_range range; 1712 1713 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1714 1715 ret = -EAGAIN; 1716 if (atomic_read(&ctx->mmap_changing)) 1717 goto out; 1718 1719 ret = -EFAULT; 1720 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1721 /* don't copy "copy" last field */ 1722 sizeof(uffdio_copy)-sizeof(__s64))) 1723 goto out; 1724 1725 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1726 if (ret) 1727 goto out; 1728 /* 1729 * double check for wraparound just in case. copy_from_user() 1730 * will later check uffdio_copy.src + uffdio_copy.len to fit 1731 * in the userland range. 1732 */ 1733 ret = -EINVAL; 1734 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1735 goto out; 1736 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1737 goto out; 1738 if (mmget_not_zero(ctx->mm)) { 1739 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1740 uffdio_copy.len, &ctx->mmap_changing, 1741 uffdio_copy.mode); 1742 mmput(ctx->mm); 1743 } else { 1744 return -ESRCH; 1745 } 1746 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1747 return -EFAULT; 1748 if (ret < 0) 1749 goto out; 1750 BUG_ON(!ret); 1751 /* len == 0 would wake all */ 1752 range.len = ret; 1753 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1754 range.start = uffdio_copy.dst; 1755 wake_userfault(ctx, &range); 1756 } 1757 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1758 out: 1759 return ret; 1760 } 1761 1762 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1763 unsigned long arg) 1764 { 1765 __s64 ret; 1766 struct uffdio_zeropage uffdio_zeropage; 1767 struct uffdio_zeropage __user *user_uffdio_zeropage; 1768 struct userfaultfd_wake_range range; 1769 1770 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1771 1772 ret = -EAGAIN; 1773 if (atomic_read(&ctx->mmap_changing)) 1774 goto out; 1775 1776 ret = -EFAULT; 1777 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1778 /* don't copy "zeropage" last field */ 1779 sizeof(uffdio_zeropage)-sizeof(__s64))) 1780 goto out; 1781 1782 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1783 uffdio_zeropage.range.len); 1784 if (ret) 1785 goto out; 1786 ret = -EINVAL; 1787 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1788 goto out; 1789 1790 if (mmget_not_zero(ctx->mm)) { 1791 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1792 uffdio_zeropage.range.len, 1793 &ctx->mmap_changing); 1794 mmput(ctx->mm); 1795 } else { 1796 return -ESRCH; 1797 } 1798 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1799 return -EFAULT; 1800 if (ret < 0) 1801 goto out; 1802 /* len == 0 would wake all */ 1803 BUG_ON(!ret); 1804 range.len = ret; 1805 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1806 range.start = uffdio_zeropage.range.start; 1807 wake_userfault(ctx, &range); 1808 } 1809 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1810 out: 1811 return ret; 1812 } 1813 1814 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1815 unsigned long arg) 1816 { 1817 int ret; 1818 struct uffdio_writeprotect uffdio_wp; 1819 struct uffdio_writeprotect __user *user_uffdio_wp; 1820 struct userfaultfd_wake_range range; 1821 bool mode_wp, mode_dontwake; 1822 1823 if (atomic_read(&ctx->mmap_changing)) 1824 return -EAGAIN; 1825 1826 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1827 1828 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1829 sizeof(struct uffdio_writeprotect))) 1830 return -EFAULT; 1831 1832 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1833 uffdio_wp.range.len); 1834 if (ret) 1835 return ret; 1836 1837 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1838 UFFDIO_WRITEPROTECT_MODE_WP)) 1839 return -EINVAL; 1840 1841 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1842 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1843 1844 if (mode_wp && mode_dontwake) 1845 return -EINVAL; 1846 1847 if (mmget_not_zero(ctx->mm)) { 1848 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1849 uffdio_wp.range.len, mode_wp, 1850 &ctx->mmap_changing); 1851 mmput(ctx->mm); 1852 } else { 1853 return -ESRCH; 1854 } 1855 1856 if (ret) 1857 return ret; 1858 1859 if (!mode_wp && !mode_dontwake) { 1860 range.start = uffdio_wp.range.start; 1861 range.len = uffdio_wp.range.len; 1862 wake_userfault(ctx, &range); 1863 } 1864 return ret; 1865 } 1866 1867 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1868 { 1869 __s64 ret; 1870 struct uffdio_continue uffdio_continue; 1871 struct uffdio_continue __user *user_uffdio_continue; 1872 struct userfaultfd_wake_range range; 1873 1874 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1875 1876 ret = -EAGAIN; 1877 if (atomic_read(&ctx->mmap_changing)) 1878 goto out; 1879 1880 ret = -EFAULT; 1881 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1882 /* don't copy the output fields */ 1883 sizeof(uffdio_continue) - (sizeof(__s64)))) 1884 goto out; 1885 1886 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1887 uffdio_continue.range.len); 1888 if (ret) 1889 goto out; 1890 1891 ret = -EINVAL; 1892 /* double check for wraparound just in case. */ 1893 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1894 uffdio_continue.range.start) { 1895 goto out; 1896 } 1897 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) 1898 goto out; 1899 1900 if (mmget_not_zero(ctx->mm)) { 1901 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, 1902 uffdio_continue.range.len, 1903 &ctx->mmap_changing); 1904 mmput(ctx->mm); 1905 } else { 1906 return -ESRCH; 1907 } 1908 1909 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1910 return -EFAULT; 1911 if (ret < 0) 1912 goto out; 1913 1914 /* len == 0 would wake all */ 1915 BUG_ON(!ret); 1916 range.len = ret; 1917 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1918 range.start = uffdio_continue.range.start; 1919 wake_userfault(ctx, &range); 1920 } 1921 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1922 1923 out: 1924 return ret; 1925 } 1926 1927 static inline unsigned int uffd_ctx_features(__u64 user_features) 1928 { 1929 /* 1930 * For the current set of features the bits just coincide. Set 1931 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1932 */ 1933 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1934 } 1935 1936 /* 1937 * userland asks for a certain API version and we return which bits 1938 * and ioctl commands are implemented in this kernel for such API 1939 * version or -EINVAL if unknown. 1940 */ 1941 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1942 unsigned long arg) 1943 { 1944 struct uffdio_api uffdio_api; 1945 void __user *buf = (void __user *)arg; 1946 unsigned int ctx_features; 1947 int ret; 1948 __u64 features; 1949 1950 ret = -EFAULT; 1951 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1952 goto out; 1953 /* Ignore unsupported features (userspace built against newer kernel) */ 1954 features = uffdio_api.features & UFFD_API_FEATURES; 1955 ret = -EPERM; 1956 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1957 goto err_out; 1958 /* report all available features and ioctls to userland */ 1959 uffdio_api.features = UFFD_API_FEATURES; 1960 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1961 uffdio_api.features &= 1962 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1963 #endif 1964 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1965 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1966 #endif 1967 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1968 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 1969 #endif 1970 uffdio_api.ioctls = UFFD_API_IOCTLS; 1971 ret = -EFAULT; 1972 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1973 goto out; 1974 1975 /* only enable the requested features for this uffd context */ 1976 ctx_features = uffd_ctx_features(features); 1977 ret = -EINVAL; 1978 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 1979 goto err_out; 1980 1981 ret = 0; 1982 out: 1983 return ret; 1984 err_out: 1985 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1986 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1987 ret = -EFAULT; 1988 goto out; 1989 } 1990 1991 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1992 unsigned long arg) 1993 { 1994 int ret = -EINVAL; 1995 struct userfaultfd_ctx *ctx = file->private_data; 1996 1997 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 1998 return -EINVAL; 1999 2000 switch(cmd) { 2001 case UFFDIO_API: 2002 ret = userfaultfd_api(ctx, arg); 2003 break; 2004 case UFFDIO_REGISTER: 2005 ret = userfaultfd_register(ctx, arg); 2006 break; 2007 case UFFDIO_UNREGISTER: 2008 ret = userfaultfd_unregister(ctx, arg); 2009 break; 2010 case UFFDIO_WAKE: 2011 ret = userfaultfd_wake(ctx, arg); 2012 break; 2013 case UFFDIO_COPY: 2014 ret = userfaultfd_copy(ctx, arg); 2015 break; 2016 case UFFDIO_ZEROPAGE: 2017 ret = userfaultfd_zeropage(ctx, arg); 2018 break; 2019 case UFFDIO_WRITEPROTECT: 2020 ret = userfaultfd_writeprotect(ctx, arg); 2021 break; 2022 case UFFDIO_CONTINUE: 2023 ret = userfaultfd_continue(ctx, arg); 2024 break; 2025 } 2026 return ret; 2027 } 2028 2029 #ifdef CONFIG_PROC_FS 2030 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2031 { 2032 struct userfaultfd_ctx *ctx = f->private_data; 2033 wait_queue_entry_t *wq; 2034 unsigned long pending = 0, total = 0; 2035 2036 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2037 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2038 pending++; 2039 total++; 2040 } 2041 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2042 total++; 2043 } 2044 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2045 2046 /* 2047 * If more protocols will be added, there will be all shown 2048 * separated by a space. Like this: 2049 * protocols: aa:... bb:... 2050 */ 2051 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2052 pending, total, UFFD_API, ctx->features, 2053 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2054 } 2055 #endif 2056 2057 static const struct file_operations userfaultfd_fops = { 2058 #ifdef CONFIG_PROC_FS 2059 .show_fdinfo = userfaultfd_show_fdinfo, 2060 #endif 2061 .release = userfaultfd_release, 2062 .poll = userfaultfd_poll, 2063 .read = userfaultfd_read, 2064 .unlocked_ioctl = userfaultfd_ioctl, 2065 .compat_ioctl = compat_ptr_ioctl, 2066 .llseek = noop_llseek, 2067 }; 2068 2069 static void init_once_userfaultfd_ctx(void *mem) 2070 { 2071 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2072 2073 init_waitqueue_head(&ctx->fault_pending_wqh); 2074 init_waitqueue_head(&ctx->fault_wqh); 2075 init_waitqueue_head(&ctx->event_wqh); 2076 init_waitqueue_head(&ctx->fd_wqh); 2077 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2078 } 2079 2080 static int new_userfaultfd(int flags) 2081 { 2082 struct userfaultfd_ctx *ctx; 2083 int fd; 2084 2085 BUG_ON(!current->mm); 2086 2087 /* Check the UFFD_* constants for consistency. */ 2088 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2089 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2090 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2091 2092 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2093 return -EINVAL; 2094 2095 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2096 if (!ctx) 2097 return -ENOMEM; 2098 2099 refcount_set(&ctx->refcount, 1); 2100 ctx->flags = flags; 2101 ctx->features = 0; 2102 ctx->released = false; 2103 atomic_set(&ctx->mmap_changing, 0); 2104 ctx->mm = current->mm; 2105 /* prevent the mm struct to be freed */ 2106 mmgrab(ctx->mm); 2107 2108 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2109 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2110 if (fd < 0) { 2111 mmdrop(ctx->mm); 2112 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2113 } 2114 return fd; 2115 } 2116 2117 static inline bool userfaultfd_syscall_allowed(int flags) 2118 { 2119 /* Userspace-only page faults are always allowed */ 2120 if (flags & UFFD_USER_MODE_ONLY) 2121 return true; 2122 2123 /* 2124 * The user is requesting a userfaultfd which can handle kernel faults. 2125 * Privileged users are always allowed to do this. 2126 */ 2127 if (capable(CAP_SYS_PTRACE)) 2128 return true; 2129 2130 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2131 return sysctl_unprivileged_userfaultfd; 2132 } 2133 2134 SYSCALL_DEFINE1(userfaultfd, int, flags) 2135 { 2136 if (!userfaultfd_syscall_allowed(flags)) 2137 return -EPERM; 2138 2139 return new_userfaultfd(flags); 2140 } 2141 2142 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2143 { 2144 if (cmd != USERFAULTFD_IOC_NEW) 2145 return -EINVAL; 2146 2147 return new_userfaultfd(flags); 2148 } 2149 2150 static const struct file_operations userfaultfd_dev_fops = { 2151 .unlocked_ioctl = userfaultfd_dev_ioctl, 2152 .compat_ioctl = userfaultfd_dev_ioctl, 2153 .owner = THIS_MODULE, 2154 .llseek = noop_llseek, 2155 }; 2156 2157 static struct miscdevice userfaultfd_misc = { 2158 .minor = MISC_DYNAMIC_MINOR, 2159 .name = "userfaultfd", 2160 .fops = &userfaultfd_dev_fops 2161 }; 2162 2163 static int __init userfaultfd_init(void) 2164 { 2165 int ret; 2166 2167 ret = misc_register(&userfaultfd_misc); 2168 if (ret) 2169 return ret; 2170 2171 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2172 sizeof(struct userfaultfd_ctx), 2173 0, 2174 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2175 init_once_userfaultfd_ctx); 2176 return 0; 2177 } 2178 __initcall(userfaultfd_init); 2179