xref: /linux/fs/userfaultfd.c (revision d38c07afc356ddebaa3ed8ecb3f553340e05c969)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  *
44  * Locking order:
45  *	fd_wqh.lock
46  *		fault_pending_wqh.lock
47  *			fault_wqh.lock
48  *		event_wqh.lock
49  *
50  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52  * also taken in IRQ context.
53  */
54 struct userfaultfd_ctx {
55 	/* waitqueue head for the pending (i.e. not read) userfaults */
56 	wait_queue_head_t fault_pending_wqh;
57 	/* waitqueue head for the userfaults */
58 	wait_queue_head_t fault_wqh;
59 	/* waitqueue head for the pseudo fd to wakeup poll/read */
60 	wait_queue_head_t fd_wqh;
61 	/* waitqueue head for events */
62 	wait_queue_head_t event_wqh;
63 	/* a refile sequence protected by fault_pending_wqh lock */
64 	struct seqcount refile_seq;
65 	/* pseudo fd refcounting */
66 	refcount_t refcount;
67 	/* userfaultfd syscall flags */
68 	unsigned int flags;
69 	/* features requested from the userspace */
70 	unsigned int features;
71 	/* state machine */
72 	enum userfaultfd_state state;
73 	/* released */
74 	bool released;
75 	/* memory mappings are changing because of non-cooperative event */
76 	bool mmap_changing;
77 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
78 	struct mm_struct *mm;
79 };
80 
81 struct userfaultfd_fork_ctx {
82 	struct userfaultfd_ctx *orig;
83 	struct userfaultfd_ctx *new;
84 	struct list_head list;
85 };
86 
87 struct userfaultfd_unmap_ctx {
88 	struct userfaultfd_ctx *ctx;
89 	unsigned long start;
90 	unsigned long end;
91 	struct list_head list;
92 };
93 
94 struct userfaultfd_wait_queue {
95 	struct uffd_msg msg;
96 	wait_queue_entry_t wq;
97 	struct userfaultfd_ctx *ctx;
98 	bool waken;
99 };
100 
101 struct userfaultfd_wake_range {
102 	unsigned long start;
103 	unsigned long len;
104 };
105 
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 				     int wake_flags, void *key)
108 {
109 	struct userfaultfd_wake_range *range = key;
110 	int ret;
111 	struct userfaultfd_wait_queue *uwq;
112 	unsigned long start, len;
113 
114 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 	ret = 0;
116 	/* len == 0 means wake all */
117 	start = range->start;
118 	len = range->len;
119 	if (len && (start > uwq->msg.arg.pagefault.address ||
120 		    start + len <= uwq->msg.arg.pagefault.address))
121 		goto out;
122 	WRITE_ONCE(uwq->waken, true);
123 	/*
124 	 * The Program-Order guarantees provided by the scheduler
125 	 * ensure uwq->waken is visible before the task is woken.
126 	 */
127 	ret = wake_up_state(wq->private, mode);
128 	if (ret) {
129 		/*
130 		 * Wake only once, autoremove behavior.
131 		 *
132 		 * After the effect of list_del_init is visible to the other
133 		 * CPUs, the waitqueue may disappear from under us, see the
134 		 * !list_empty_careful() in handle_userfault().
135 		 *
136 		 * try_to_wake_up() has an implicit smp_mb(), and the
137 		 * wq->private is read before calling the extern function
138 		 * "wake_up_state" (which in turns calls try_to_wake_up).
139 		 */
140 		list_del_init(&wq->entry);
141 	}
142 out:
143 	return ret;
144 }
145 
146 /**
147  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to the userfaultfd context.
150  */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153 	refcount_inc(&ctx->refcount);
154 }
155 
156 /**
157  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158  * context.
159  * @ctx: [in] Pointer to userfaultfd context.
160  *
161  * The userfaultfd context reference must have been previously acquired either
162  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163  */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166 	if (refcount_dec_and_test(&ctx->refcount)) {
167 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175 		mmdrop(ctx->mm);
176 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177 	}
178 }
179 
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 	/*
184 	 * Must use memset to zero out the paddings or kernel data is
185 	 * leaked to userland.
186 	 */
187 	memset(msg, 0, sizeof(struct uffd_msg));
188 }
189 
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191 					    unsigned int flags,
192 					    unsigned long reason,
193 					    unsigned int features)
194 {
195 	struct uffd_msg msg;
196 	msg_init(&msg);
197 	msg.event = UFFD_EVENT_PAGEFAULT;
198 	msg.arg.pagefault.address = address;
199 	if (flags & FAULT_FLAG_WRITE)
200 		/*
201 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 		 * was a read fault, otherwise if set it means it's
205 		 * a write fault.
206 		 */
207 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 	if (reason & VM_UFFD_WP)
209 		/*
210 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 		 * a missing fault, otherwise if set it means it's a
214 		 * write protect fault.
215 		 */
216 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 	if (features & UFFD_FEATURE_THREAD_ID)
218 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219 	return msg;
220 }
221 
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 					 struct vm_area_struct *vma,
229 					 unsigned long address,
230 					 unsigned long flags,
231 					 unsigned long reason)
232 {
233 	struct mm_struct *mm = ctx->mm;
234 	pte_t *ptep, pte;
235 	bool ret = true;
236 
237 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
238 
239 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240 
241 	if (!ptep)
242 		goto out;
243 
244 	ret = false;
245 	pte = huge_ptep_get(ptep);
246 
247 	/*
248 	 * Lockless access: we're in a wait_event so it's ok if it
249 	 * changes under us.
250 	 */
251 	if (huge_pte_none(pte))
252 		ret = true;
253 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254 		ret = true;
255 out:
256 	return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 					 struct vm_area_struct *vma,
261 					 unsigned long address,
262 					 unsigned long flags,
263 					 unsigned long reason)
264 {
265 	return false;	/* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268 
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 					 unsigned long address,
278 					 unsigned long flags,
279 					 unsigned long reason)
280 {
281 	struct mm_struct *mm = ctx->mm;
282 	pgd_t *pgd;
283 	p4d_t *p4d;
284 	pud_t *pud;
285 	pmd_t *pmd, _pmd;
286 	pte_t *pte;
287 	bool ret = true;
288 
289 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290 
291 	pgd = pgd_offset(mm, address);
292 	if (!pgd_present(*pgd))
293 		goto out;
294 	p4d = p4d_offset(pgd, address);
295 	if (!p4d_present(*p4d))
296 		goto out;
297 	pud = pud_offset(p4d, address);
298 	if (!pud_present(*pud))
299 		goto out;
300 	pmd = pmd_offset(pud, address);
301 	/*
302 	 * READ_ONCE must function as a barrier with narrower scope
303 	 * and it must be equivalent to:
304 	 *	_pmd = *pmd; barrier();
305 	 *
306 	 * This is to deal with the instability (as in
307 	 * pmd_trans_unstable) of the pmd.
308 	 */
309 	_pmd = READ_ONCE(*pmd);
310 	if (pmd_none(_pmd))
311 		goto out;
312 
313 	ret = false;
314 	if (!pmd_present(_pmd))
315 		goto out;
316 
317 	if (pmd_trans_huge(_pmd))
318 		goto out;
319 
320 	/*
321 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322 	 * and use the standard pte_offset_map() instead of parsing _pmd.
323 	 */
324 	pte = pte_offset_map(pmd, address);
325 	/*
326 	 * Lockless access: we're in a wait_event so it's ok if it
327 	 * changes under us.
328 	 */
329 	if (pte_none(*pte))
330 		ret = true;
331 	pte_unmap(pte);
332 
333 out:
334 	return ret;
335 }
336 
337 /* Should pair with userfaultfd_signal_pending() */
338 static inline long userfaultfd_get_blocking_state(unsigned int flags)
339 {
340 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
341 		return TASK_INTERRUPTIBLE;
342 
343 	if (flags & FAULT_FLAG_KILLABLE)
344 		return TASK_KILLABLE;
345 
346 	return TASK_UNINTERRUPTIBLE;
347 }
348 
349 /* Should pair with userfaultfd_get_blocking_state() */
350 static inline bool userfaultfd_signal_pending(unsigned int flags)
351 {
352 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
353 		return signal_pending(current);
354 
355 	if (flags & FAULT_FLAG_KILLABLE)
356 		return fatal_signal_pending(current);
357 
358 	return false;
359 }
360 
361 /*
362  * The locking rules involved in returning VM_FAULT_RETRY depending on
363  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
364  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
365  * recommendation in __lock_page_or_retry is not an understatement.
366  *
367  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
368  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
369  * not set.
370  *
371  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
372  * set, VM_FAULT_RETRY can still be returned if and only if there are
373  * fatal_signal_pending()s, and the mmap_sem must be released before
374  * returning it.
375  */
376 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
377 {
378 	struct mm_struct *mm = vmf->vma->vm_mm;
379 	struct userfaultfd_ctx *ctx;
380 	struct userfaultfd_wait_queue uwq;
381 	vm_fault_t ret = VM_FAULT_SIGBUS;
382 	bool must_wait;
383 	long blocking_state;
384 
385 	/*
386 	 * We don't do userfault handling for the final child pid update.
387 	 *
388 	 * We also don't do userfault handling during
389 	 * coredumping. hugetlbfs has the special
390 	 * follow_hugetlb_page() to skip missing pages in the
391 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
392 	 * the no_page_table() helper in follow_page_mask(), but the
393 	 * shmem_vm_ops->fault method is invoked even during
394 	 * coredumping without mmap_sem and it ends up here.
395 	 */
396 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
397 		goto out;
398 
399 	/*
400 	 * Coredumping runs without mmap_sem so we can only check that
401 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
402 	 */
403 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
404 
405 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
406 	if (!ctx)
407 		goto out;
408 
409 	BUG_ON(ctx->mm != mm);
410 
411 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
412 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
413 
414 	if (ctx->features & UFFD_FEATURE_SIGBUS)
415 		goto out;
416 
417 	/*
418 	 * If it's already released don't get it. This avoids to loop
419 	 * in __get_user_pages if userfaultfd_release waits on the
420 	 * caller of handle_userfault to release the mmap_sem.
421 	 */
422 	if (unlikely(READ_ONCE(ctx->released))) {
423 		/*
424 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
425 		 * cooperative manager can close the uffd after the
426 		 * last UFFDIO_COPY, without risking to trigger an
427 		 * involuntary SIGBUS if the process was starting the
428 		 * userfaultfd while the userfaultfd was still armed
429 		 * (but after the last UFFDIO_COPY). If the uffd
430 		 * wasn't already closed when the userfault reached
431 		 * this point, that would normally be solved by
432 		 * userfaultfd_must_wait returning 'false'.
433 		 *
434 		 * If we were to return VM_FAULT_SIGBUS here, the non
435 		 * cooperative manager would be instead forced to
436 		 * always call UFFDIO_UNREGISTER before it can safely
437 		 * close the uffd.
438 		 */
439 		ret = VM_FAULT_NOPAGE;
440 		goto out;
441 	}
442 
443 	/*
444 	 * Check that we can return VM_FAULT_RETRY.
445 	 *
446 	 * NOTE: it should become possible to return VM_FAULT_RETRY
447 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
448 	 * -EBUSY failures, if the userfaultfd is to be extended for
449 	 * VM_UFFD_WP tracking and we intend to arm the userfault
450 	 * without first stopping userland access to the memory. For
451 	 * VM_UFFD_MISSING userfaults this is enough for now.
452 	 */
453 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
454 		/*
455 		 * Validate the invariant that nowait must allow retry
456 		 * to be sure not to return SIGBUS erroneously on
457 		 * nowait invocations.
458 		 */
459 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
460 #ifdef CONFIG_DEBUG_VM
461 		if (printk_ratelimit()) {
462 			printk(KERN_WARNING
463 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464 			       vmf->flags);
465 			dump_stack();
466 		}
467 #endif
468 		goto out;
469 	}
470 
471 	/*
472 	 * Handle nowait, not much to do other than tell it to retry
473 	 * and wait.
474 	 */
475 	ret = VM_FAULT_RETRY;
476 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
477 		goto out;
478 
479 	/* take the reference before dropping the mmap_sem */
480 	userfaultfd_ctx_get(ctx);
481 
482 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483 	uwq.wq.private = current;
484 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485 			ctx->features);
486 	uwq.ctx = ctx;
487 	uwq.waken = false;
488 
489 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
490 
491 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
492 	/*
493 	 * After the __add_wait_queue the uwq is visible to userland
494 	 * through poll/read().
495 	 */
496 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497 	/*
498 	 * The smp_mb() after __set_current_state prevents the reads
499 	 * following the spin_unlock to happen before the list_add in
500 	 * __add_wait_queue.
501 	 */
502 	set_current_state(blocking_state);
503 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
504 
505 	if (!is_vm_hugetlb_page(vmf->vma))
506 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507 						  reason);
508 	else
509 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510 						       vmf->address,
511 						       vmf->flags, reason);
512 	up_read(&mm->mmap_sem);
513 
514 	if (likely(must_wait && !READ_ONCE(ctx->released) &&
515 		   !userfaultfd_signal_pending(vmf->flags))) {
516 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
517 		schedule();
518 		ret |= VM_FAULT_MAJOR;
519 
520 		/*
521 		 * False wakeups can orginate even from rwsem before
522 		 * up_read() however userfaults will wait either for a
523 		 * targeted wakeup on the specific uwq waitqueue from
524 		 * wake_userfault() or for signals or for uffd
525 		 * release.
526 		 */
527 		while (!READ_ONCE(uwq.waken)) {
528 			/*
529 			 * This needs the full smp_store_mb()
530 			 * guarantee as the state write must be
531 			 * visible to other CPUs before reading
532 			 * uwq.waken from other CPUs.
533 			 */
534 			set_current_state(blocking_state);
535 			if (READ_ONCE(uwq.waken) ||
536 			    READ_ONCE(ctx->released) ||
537 			    userfaultfd_signal_pending(vmf->flags))
538 				break;
539 			schedule();
540 		}
541 	}
542 
543 	__set_current_state(TASK_RUNNING);
544 
545 	/*
546 	 * Here we race with the list_del; list_add in
547 	 * userfaultfd_ctx_read(), however because we don't ever run
548 	 * list_del_init() to refile across the two lists, the prev
549 	 * and next pointers will never point to self. list_add also
550 	 * would never let any of the two pointers to point to
551 	 * self. So list_empty_careful won't risk to see both pointers
552 	 * pointing to self at any time during the list refile. The
553 	 * only case where list_del_init() is called is the full
554 	 * removal in the wake function and there we don't re-list_add
555 	 * and it's fine not to block on the spinlock. The uwq on this
556 	 * kernel stack can be released after the list_del_init.
557 	 */
558 	if (!list_empty_careful(&uwq.wq.entry)) {
559 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
560 		/*
561 		 * No need of list_del_init(), the uwq on the stack
562 		 * will be freed shortly anyway.
563 		 */
564 		list_del(&uwq.wq.entry);
565 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
566 	}
567 
568 	/*
569 	 * ctx may go away after this if the userfault pseudo fd is
570 	 * already released.
571 	 */
572 	userfaultfd_ctx_put(ctx);
573 
574 out:
575 	return ret;
576 }
577 
578 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
579 					      struct userfaultfd_wait_queue *ewq)
580 {
581 	struct userfaultfd_ctx *release_new_ctx;
582 
583 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
584 		goto out;
585 
586 	ewq->ctx = ctx;
587 	init_waitqueue_entry(&ewq->wq, current);
588 	release_new_ctx = NULL;
589 
590 	spin_lock_irq(&ctx->event_wqh.lock);
591 	/*
592 	 * After the __add_wait_queue the uwq is visible to userland
593 	 * through poll/read().
594 	 */
595 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
596 	for (;;) {
597 		set_current_state(TASK_KILLABLE);
598 		if (ewq->msg.event == 0)
599 			break;
600 		if (READ_ONCE(ctx->released) ||
601 		    fatal_signal_pending(current)) {
602 			/*
603 			 * &ewq->wq may be queued in fork_event, but
604 			 * __remove_wait_queue ignores the head
605 			 * parameter. It would be a problem if it
606 			 * didn't.
607 			 */
608 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
609 			if (ewq->msg.event == UFFD_EVENT_FORK) {
610 				struct userfaultfd_ctx *new;
611 
612 				new = (struct userfaultfd_ctx *)
613 					(unsigned long)
614 					ewq->msg.arg.reserved.reserved1;
615 				release_new_ctx = new;
616 			}
617 			break;
618 		}
619 
620 		spin_unlock_irq(&ctx->event_wqh.lock);
621 
622 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
623 		schedule();
624 
625 		spin_lock_irq(&ctx->event_wqh.lock);
626 	}
627 	__set_current_state(TASK_RUNNING);
628 	spin_unlock_irq(&ctx->event_wqh.lock);
629 
630 	if (release_new_ctx) {
631 		struct vm_area_struct *vma;
632 		struct mm_struct *mm = release_new_ctx->mm;
633 
634 		/* the various vma->vm_userfaultfd_ctx still points to it */
635 		down_write(&mm->mmap_sem);
636 		/* no task can run (and in turn coredump) yet */
637 		VM_WARN_ON(!mmget_still_valid(mm));
638 		for (vma = mm->mmap; vma; vma = vma->vm_next)
639 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
640 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
641 				vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
642 			}
643 		up_write(&mm->mmap_sem);
644 
645 		userfaultfd_ctx_put(release_new_ctx);
646 	}
647 
648 	/*
649 	 * ctx may go away after this if the userfault pseudo fd is
650 	 * already released.
651 	 */
652 out:
653 	WRITE_ONCE(ctx->mmap_changing, false);
654 	userfaultfd_ctx_put(ctx);
655 }
656 
657 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
658 				       struct userfaultfd_wait_queue *ewq)
659 {
660 	ewq->msg.event = 0;
661 	wake_up_locked(&ctx->event_wqh);
662 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
663 }
664 
665 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
666 {
667 	struct userfaultfd_ctx *ctx = NULL, *octx;
668 	struct userfaultfd_fork_ctx *fctx;
669 
670 	octx = vma->vm_userfaultfd_ctx.ctx;
671 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
672 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
673 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
674 		return 0;
675 	}
676 
677 	list_for_each_entry(fctx, fcs, list)
678 		if (fctx->orig == octx) {
679 			ctx = fctx->new;
680 			break;
681 		}
682 
683 	if (!ctx) {
684 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
685 		if (!fctx)
686 			return -ENOMEM;
687 
688 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
689 		if (!ctx) {
690 			kfree(fctx);
691 			return -ENOMEM;
692 		}
693 
694 		refcount_set(&ctx->refcount, 1);
695 		ctx->flags = octx->flags;
696 		ctx->state = UFFD_STATE_RUNNING;
697 		ctx->features = octx->features;
698 		ctx->released = false;
699 		ctx->mmap_changing = false;
700 		ctx->mm = vma->vm_mm;
701 		mmgrab(ctx->mm);
702 
703 		userfaultfd_ctx_get(octx);
704 		WRITE_ONCE(octx->mmap_changing, true);
705 		fctx->orig = octx;
706 		fctx->new = ctx;
707 		list_add_tail(&fctx->list, fcs);
708 	}
709 
710 	vma->vm_userfaultfd_ctx.ctx = ctx;
711 	return 0;
712 }
713 
714 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
715 {
716 	struct userfaultfd_ctx *ctx = fctx->orig;
717 	struct userfaultfd_wait_queue ewq;
718 
719 	msg_init(&ewq.msg);
720 
721 	ewq.msg.event = UFFD_EVENT_FORK;
722 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
723 
724 	userfaultfd_event_wait_completion(ctx, &ewq);
725 }
726 
727 void dup_userfaultfd_complete(struct list_head *fcs)
728 {
729 	struct userfaultfd_fork_ctx *fctx, *n;
730 
731 	list_for_each_entry_safe(fctx, n, fcs, list) {
732 		dup_fctx(fctx);
733 		list_del(&fctx->list);
734 		kfree(fctx);
735 	}
736 }
737 
738 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
739 			     struct vm_userfaultfd_ctx *vm_ctx)
740 {
741 	struct userfaultfd_ctx *ctx;
742 
743 	ctx = vma->vm_userfaultfd_ctx.ctx;
744 
745 	if (!ctx)
746 		return;
747 
748 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
749 		vm_ctx->ctx = ctx;
750 		userfaultfd_ctx_get(ctx);
751 		WRITE_ONCE(ctx->mmap_changing, true);
752 	} else {
753 		/* Drop uffd context if remap feature not enabled */
754 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
755 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
756 	}
757 }
758 
759 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
760 				 unsigned long from, unsigned long to,
761 				 unsigned long len)
762 {
763 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
764 	struct userfaultfd_wait_queue ewq;
765 
766 	if (!ctx)
767 		return;
768 
769 	if (to & ~PAGE_MASK) {
770 		userfaultfd_ctx_put(ctx);
771 		return;
772 	}
773 
774 	msg_init(&ewq.msg);
775 
776 	ewq.msg.event = UFFD_EVENT_REMAP;
777 	ewq.msg.arg.remap.from = from;
778 	ewq.msg.arg.remap.to = to;
779 	ewq.msg.arg.remap.len = len;
780 
781 	userfaultfd_event_wait_completion(ctx, &ewq);
782 }
783 
784 bool userfaultfd_remove(struct vm_area_struct *vma,
785 			unsigned long start, unsigned long end)
786 {
787 	struct mm_struct *mm = vma->vm_mm;
788 	struct userfaultfd_ctx *ctx;
789 	struct userfaultfd_wait_queue ewq;
790 
791 	ctx = vma->vm_userfaultfd_ctx.ctx;
792 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
793 		return true;
794 
795 	userfaultfd_ctx_get(ctx);
796 	WRITE_ONCE(ctx->mmap_changing, true);
797 	up_read(&mm->mmap_sem);
798 
799 	msg_init(&ewq.msg);
800 
801 	ewq.msg.event = UFFD_EVENT_REMOVE;
802 	ewq.msg.arg.remove.start = start;
803 	ewq.msg.arg.remove.end = end;
804 
805 	userfaultfd_event_wait_completion(ctx, &ewq);
806 
807 	return false;
808 }
809 
810 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
811 			  unsigned long start, unsigned long end)
812 {
813 	struct userfaultfd_unmap_ctx *unmap_ctx;
814 
815 	list_for_each_entry(unmap_ctx, unmaps, list)
816 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
817 		    unmap_ctx->end == end)
818 			return true;
819 
820 	return false;
821 }
822 
823 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
824 			   unsigned long start, unsigned long end,
825 			   struct list_head *unmaps)
826 {
827 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
828 		struct userfaultfd_unmap_ctx *unmap_ctx;
829 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
830 
831 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
832 		    has_unmap_ctx(ctx, unmaps, start, end))
833 			continue;
834 
835 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
836 		if (!unmap_ctx)
837 			return -ENOMEM;
838 
839 		userfaultfd_ctx_get(ctx);
840 		WRITE_ONCE(ctx->mmap_changing, true);
841 		unmap_ctx->ctx = ctx;
842 		unmap_ctx->start = start;
843 		unmap_ctx->end = end;
844 		list_add_tail(&unmap_ctx->list, unmaps);
845 	}
846 
847 	return 0;
848 }
849 
850 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
851 {
852 	struct userfaultfd_unmap_ctx *ctx, *n;
853 	struct userfaultfd_wait_queue ewq;
854 
855 	list_for_each_entry_safe(ctx, n, uf, list) {
856 		msg_init(&ewq.msg);
857 
858 		ewq.msg.event = UFFD_EVENT_UNMAP;
859 		ewq.msg.arg.remove.start = ctx->start;
860 		ewq.msg.arg.remove.end = ctx->end;
861 
862 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
863 
864 		list_del(&ctx->list);
865 		kfree(ctx);
866 	}
867 }
868 
869 static int userfaultfd_release(struct inode *inode, struct file *file)
870 {
871 	struct userfaultfd_ctx *ctx = file->private_data;
872 	struct mm_struct *mm = ctx->mm;
873 	struct vm_area_struct *vma, *prev;
874 	/* len == 0 means wake all */
875 	struct userfaultfd_wake_range range = { .len = 0, };
876 	unsigned long new_flags;
877 	bool still_valid;
878 
879 	WRITE_ONCE(ctx->released, true);
880 
881 	if (!mmget_not_zero(mm))
882 		goto wakeup;
883 
884 	/*
885 	 * Flush page faults out of all CPUs. NOTE: all page faults
886 	 * must be retried without returning VM_FAULT_SIGBUS if
887 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
888 	 * changes while handle_userfault released the mmap_sem. So
889 	 * it's critical that released is set to true (above), before
890 	 * taking the mmap_sem for writing.
891 	 */
892 	down_write(&mm->mmap_sem);
893 	still_valid = mmget_still_valid(mm);
894 	prev = NULL;
895 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
896 		cond_resched();
897 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
898 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
899 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
900 			prev = vma;
901 			continue;
902 		}
903 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
904 		if (still_valid) {
905 			prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
906 					 new_flags, vma->anon_vma,
907 					 vma->vm_file, vma->vm_pgoff,
908 					 vma_policy(vma),
909 					 NULL_VM_UFFD_CTX);
910 			if (prev)
911 				vma = prev;
912 			else
913 				prev = vma;
914 		}
915 		vma->vm_flags = new_flags;
916 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
917 	}
918 	up_write(&mm->mmap_sem);
919 	mmput(mm);
920 wakeup:
921 	/*
922 	 * After no new page faults can wait on this fault_*wqh, flush
923 	 * the last page faults that may have been already waiting on
924 	 * the fault_*wqh.
925 	 */
926 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
927 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
928 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
929 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
930 
931 	/* Flush pending events that may still wait on event_wqh */
932 	wake_up_all(&ctx->event_wqh);
933 
934 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
935 	userfaultfd_ctx_put(ctx);
936 	return 0;
937 }
938 
939 /* fault_pending_wqh.lock must be hold by the caller */
940 static inline struct userfaultfd_wait_queue *find_userfault_in(
941 		wait_queue_head_t *wqh)
942 {
943 	wait_queue_entry_t *wq;
944 	struct userfaultfd_wait_queue *uwq;
945 
946 	lockdep_assert_held(&wqh->lock);
947 
948 	uwq = NULL;
949 	if (!waitqueue_active(wqh))
950 		goto out;
951 	/* walk in reverse to provide FIFO behavior to read userfaults */
952 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
953 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
954 out:
955 	return uwq;
956 }
957 
958 static inline struct userfaultfd_wait_queue *find_userfault(
959 		struct userfaultfd_ctx *ctx)
960 {
961 	return find_userfault_in(&ctx->fault_pending_wqh);
962 }
963 
964 static inline struct userfaultfd_wait_queue *find_userfault_evt(
965 		struct userfaultfd_ctx *ctx)
966 {
967 	return find_userfault_in(&ctx->event_wqh);
968 }
969 
970 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
971 {
972 	struct userfaultfd_ctx *ctx = file->private_data;
973 	__poll_t ret;
974 
975 	poll_wait(file, &ctx->fd_wqh, wait);
976 
977 	switch (ctx->state) {
978 	case UFFD_STATE_WAIT_API:
979 		return EPOLLERR;
980 	case UFFD_STATE_RUNNING:
981 		/*
982 		 * poll() never guarantees that read won't block.
983 		 * userfaults can be waken before they're read().
984 		 */
985 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
986 			return EPOLLERR;
987 		/*
988 		 * lockless access to see if there are pending faults
989 		 * __pollwait last action is the add_wait_queue but
990 		 * the spin_unlock would allow the waitqueue_active to
991 		 * pass above the actual list_add inside
992 		 * add_wait_queue critical section. So use a full
993 		 * memory barrier to serialize the list_add write of
994 		 * add_wait_queue() with the waitqueue_active read
995 		 * below.
996 		 */
997 		ret = 0;
998 		smp_mb();
999 		if (waitqueue_active(&ctx->fault_pending_wqh))
1000 			ret = EPOLLIN;
1001 		else if (waitqueue_active(&ctx->event_wqh))
1002 			ret = EPOLLIN;
1003 
1004 		return ret;
1005 	default:
1006 		WARN_ON_ONCE(1);
1007 		return EPOLLERR;
1008 	}
1009 }
1010 
1011 static const struct file_operations userfaultfd_fops;
1012 
1013 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1014 				  struct userfaultfd_ctx *new,
1015 				  struct uffd_msg *msg)
1016 {
1017 	int fd;
1018 
1019 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1020 			      O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1021 	if (fd < 0)
1022 		return fd;
1023 
1024 	msg->arg.reserved.reserved1 = 0;
1025 	msg->arg.fork.ufd = fd;
1026 	return 0;
1027 }
1028 
1029 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1030 				    struct uffd_msg *msg)
1031 {
1032 	ssize_t ret;
1033 	DECLARE_WAITQUEUE(wait, current);
1034 	struct userfaultfd_wait_queue *uwq;
1035 	/*
1036 	 * Handling fork event requires sleeping operations, so
1037 	 * we drop the event_wqh lock, then do these ops, then
1038 	 * lock it back and wake up the waiter. While the lock is
1039 	 * dropped the ewq may go away so we keep track of it
1040 	 * carefully.
1041 	 */
1042 	LIST_HEAD(fork_event);
1043 	struct userfaultfd_ctx *fork_nctx = NULL;
1044 
1045 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1046 	spin_lock_irq(&ctx->fd_wqh.lock);
1047 	__add_wait_queue(&ctx->fd_wqh, &wait);
1048 	for (;;) {
1049 		set_current_state(TASK_INTERRUPTIBLE);
1050 		spin_lock(&ctx->fault_pending_wqh.lock);
1051 		uwq = find_userfault(ctx);
1052 		if (uwq) {
1053 			/*
1054 			 * Use a seqcount to repeat the lockless check
1055 			 * in wake_userfault() to avoid missing
1056 			 * wakeups because during the refile both
1057 			 * waitqueue could become empty if this is the
1058 			 * only userfault.
1059 			 */
1060 			write_seqcount_begin(&ctx->refile_seq);
1061 
1062 			/*
1063 			 * The fault_pending_wqh.lock prevents the uwq
1064 			 * to disappear from under us.
1065 			 *
1066 			 * Refile this userfault from
1067 			 * fault_pending_wqh to fault_wqh, it's not
1068 			 * pending anymore after we read it.
1069 			 *
1070 			 * Use list_del() by hand (as
1071 			 * userfaultfd_wake_function also uses
1072 			 * list_del_init() by hand) to be sure nobody
1073 			 * changes __remove_wait_queue() to use
1074 			 * list_del_init() in turn breaking the
1075 			 * !list_empty_careful() check in
1076 			 * handle_userfault(). The uwq->wq.head list
1077 			 * must never be empty at any time during the
1078 			 * refile, or the waitqueue could disappear
1079 			 * from under us. The "wait_queue_head_t"
1080 			 * parameter of __remove_wait_queue() is unused
1081 			 * anyway.
1082 			 */
1083 			list_del(&uwq->wq.entry);
1084 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1085 
1086 			write_seqcount_end(&ctx->refile_seq);
1087 
1088 			/* careful to always initialize msg if ret == 0 */
1089 			*msg = uwq->msg;
1090 			spin_unlock(&ctx->fault_pending_wqh.lock);
1091 			ret = 0;
1092 			break;
1093 		}
1094 		spin_unlock(&ctx->fault_pending_wqh.lock);
1095 
1096 		spin_lock(&ctx->event_wqh.lock);
1097 		uwq = find_userfault_evt(ctx);
1098 		if (uwq) {
1099 			*msg = uwq->msg;
1100 
1101 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1102 				fork_nctx = (struct userfaultfd_ctx *)
1103 					(unsigned long)
1104 					uwq->msg.arg.reserved.reserved1;
1105 				list_move(&uwq->wq.entry, &fork_event);
1106 				/*
1107 				 * fork_nctx can be freed as soon as
1108 				 * we drop the lock, unless we take a
1109 				 * reference on it.
1110 				 */
1111 				userfaultfd_ctx_get(fork_nctx);
1112 				spin_unlock(&ctx->event_wqh.lock);
1113 				ret = 0;
1114 				break;
1115 			}
1116 
1117 			userfaultfd_event_complete(ctx, uwq);
1118 			spin_unlock(&ctx->event_wqh.lock);
1119 			ret = 0;
1120 			break;
1121 		}
1122 		spin_unlock(&ctx->event_wqh.lock);
1123 
1124 		if (signal_pending(current)) {
1125 			ret = -ERESTARTSYS;
1126 			break;
1127 		}
1128 		if (no_wait) {
1129 			ret = -EAGAIN;
1130 			break;
1131 		}
1132 		spin_unlock_irq(&ctx->fd_wqh.lock);
1133 		schedule();
1134 		spin_lock_irq(&ctx->fd_wqh.lock);
1135 	}
1136 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1137 	__set_current_state(TASK_RUNNING);
1138 	spin_unlock_irq(&ctx->fd_wqh.lock);
1139 
1140 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1141 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1142 		spin_lock_irq(&ctx->event_wqh.lock);
1143 		if (!list_empty(&fork_event)) {
1144 			/*
1145 			 * The fork thread didn't abort, so we can
1146 			 * drop the temporary refcount.
1147 			 */
1148 			userfaultfd_ctx_put(fork_nctx);
1149 
1150 			uwq = list_first_entry(&fork_event,
1151 					       typeof(*uwq),
1152 					       wq.entry);
1153 			/*
1154 			 * If fork_event list wasn't empty and in turn
1155 			 * the event wasn't already released by fork
1156 			 * (the event is allocated on fork kernel
1157 			 * stack), put the event back to its place in
1158 			 * the event_wq. fork_event head will be freed
1159 			 * as soon as we return so the event cannot
1160 			 * stay queued there no matter the current
1161 			 * "ret" value.
1162 			 */
1163 			list_del(&uwq->wq.entry);
1164 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1165 
1166 			/*
1167 			 * Leave the event in the waitqueue and report
1168 			 * error to userland if we failed to resolve
1169 			 * the userfault fork.
1170 			 */
1171 			if (likely(!ret))
1172 				userfaultfd_event_complete(ctx, uwq);
1173 		} else {
1174 			/*
1175 			 * Here the fork thread aborted and the
1176 			 * refcount from the fork thread on fork_nctx
1177 			 * has already been released. We still hold
1178 			 * the reference we took before releasing the
1179 			 * lock above. If resolve_userfault_fork
1180 			 * failed we've to drop it because the
1181 			 * fork_nctx has to be freed in such case. If
1182 			 * it succeeded we'll hold it because the new
1183 			 * uffd references it.
1184 			 */
1185 			if (ret)
1186 				userfaultfd_ctx_put(fork_nctx);
1187 		}
1188 		spin_unlock_irq(&ctx->event_wqh.lock);
1189 	}
1190 
1191 	return ret;
1192 }
1193 
1194 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1195 				size_t count, loff_t *ppos)
1196 {
1197 	struct userfaultfd_ctx *ctx = file->private_data;
1198 	ssize_t _ret, ret = 0;
1199 	struct uffd_msg msg;
1200 	int no_wait = file->f_flags & O_NONBLOCK;
1201 
1202 	if (ctx->state == UFFD_STATE_WAIT_API)
1203 		return -EINVAL;
1204 
1205 	for (;;) {
1206 		if (count < sizeof(msg))
1207 			return ret ? ret : -EINVAL;
1208 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1209 		if (_ret < 0)
1210 			return ret ? ret : _ret;
1211 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1212 			return ret ? ret : -EFAULT;
1213 		ret += sizeof(msg);
1214 		buf += sizeof(msg);
1215 		count -= sizeof(msg);
1216 		/*
1217 		 * Allow to read more than one fault at time but only
1218 		 * block if waiting for the very first one.
1219 		 */
1220 		no_wait = O_NONBLOCK;
1221 	}
1222 }
1223 
1224 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1225 			     struct userfaultfd_wake_range *range)
1226 {
1227 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1228 	/* wake all in the range and autoremove */
1229 	if (waitqueue_active(&ctx->fault_pending_wqh))
1230 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1231 				     range);
1232 	if (waitqueue_active(&ctx->fault_wqh))
1233 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1234 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1235 }
1236 
1237 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1238 					   struct userfaultfd_wake_range *range)
1239 {
1240 	unsigned seq;
1241 	bool need_wakeup;
1242 
1243 	/*
1244 	 * To be sure waitqueue_active() is not reordered by the CPU
1245 	 * before the pagetable update, use an explicit SMP memory
1246 	 * barrier here. PT lock release or up_read(mmap_sem) still
1247 	 * have release semantics that can allow the
1248 	 * waitqueue_active() to be reordered before the pte update.
1249 	 */
1250 	smp_mb();
1251 
1252 	/*
1253 	 * Use waitqueue_active because it's very frequent to
1254 	 * change the address space atomically even if there are no
1255 	 * userfaults yet. So we take the spinlock only when we're
1256 	 * sure we've userfaults to wake.
1257 	 */
1258 	do {
1259 		seq = read_seqcount_begin(&ctx->refile_seq);
1260 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1261 			waitqueue_active(&ctx->fault_wqh);
1262 		cond_resched();
1263 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1264 	if (need_wakeup)
1265 		__wake_userfault(ctx, range);
1266 }
1267 
1268 static __always_inline int validate_range(struct mm_struct *mm,
1269 					  __u64 *start, __u64 len)
1270 {
1271 	__u64 task_size = mm->task_size;
1272 
1273 	*start = untagged_addr(*start);
1274 
1275 	if (*start & ~PAGE_MASK)
1276 		return -EINVAL;
1277 	if (len & ~PAGE_MASK)
1278 		return -EINVAL;
1279 	if (!len)
1280 		return -EINVAL;
1281 	if (*start < mmap_min_addr)
1282 		return -EINVAL;
1283 	if (*start >= task_size)
1284 		return -EINVAL;
1285 	if (len > task_size - *start)
1286 		return -EINVAL;
1287 	return 0;
1288 }
1289 
1290 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1291 {
1292 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1293 		vma_is_shmem(vma);
1294 }
1295 
1296 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1297 				unsigned long arg)
1298 {
1299 	struct mm_struct *mm = ctx->mm;
1300 	struct vm_area_struct *vma, *prev, *cur;
1301 	int ret;
1302 	struct uffdio_register uffdio_register;
1303 	struct uffdio_register __user *user_uffdio_register;
1304 	unsigned long vm_flags, new_flags;
1305 	bool found;
1306 	bool basic_ioctls;
1307 	unsigned long start, end, vma_end;
1308 
1309 	user_uffdio_register = (struct uffdio_register __user *) arg;
1310 
1311 	ret = -EFAULT;
1312 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1313 			   sizeof(uffdio_register)-sizeof(__u64)))
1314 		goto out;
1315 
1316 	ret = -EINVAL;
1317 	if (!uffdio_register.mode)
1318 		goto out;
1319 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1320 				     UFFDIO_REGISTER_MODE_WP))
1321 		goto out;
1322 	vm_flags = 0;
1323 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1324 		vm_flags |= VM_UFFD_MISSING;
1325 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1326 		vm_flags |= VM_UFFD_WP;
1327 		/*
1328 		 * FIXME: remove the below error constraint by
1329 		 * implementing the wprotect tracking mode.
1330 		 */
1331 		ret = -EINVAL;
1332 		goto out;
1333 	}
1334 
1335 	ret = validate_range(mm, &uffdio_register.range.start,
1336 			     uffdio_register.range.len);
1337 	if (ret)
1338 		goto out;
1339 
1340 	start = uffdio_register.range.start;
1341 	end = start + uffdio_register.range.len;
1342 
1343 	ret = -ENOMEM;
1344 	if (!mmget_not_zero(mm))
1345 		goto out;
1346 
1347 	down_write(&mm->mmap_sem);
1348 	if (!mmget_still_valid(mm))
1349 		goto out_unlock;
1350 	vma = find_vma_prev(mm, start, &prev);
1351 	if (!vma)
1352 		goto out_unlock;
1353 
1354 	/* check that there's at least one vma in the range */
1355 	ret = -EINVAL;
1356 	if (vma->vm_start >= end)
1357 		goto out_unlock;
1358 
1359 	/*
1360 	 * If the first vma contains huge pages, make sure start address
1361 	 * is aligned to huge page size.
1362 	 */
1363 	if (is_vm_hugetlb_page(vma)) {
1364 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1365 
1366 		if (start & (vma_hpagesize - 1))
1367 			goto out_unlock;
1368 	}
1369 
1370 	/*
1371 	 * Search for not compatible vmas.
1372 	 */
1373 	found = false;
1374 	basic_ioctls = false;
1375 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1376 		cond_resched();
1377 
1378 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1379 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1380 
1381 		/* check not compatible vmas */
1382 		ret = -EINVAL;
1383 		if (!vma_can_userfault(cur))
1384 			goto out_unlock;
1385 
1386 		/*
1387 		 * UFFDIO_COPY will fill file holes even without
1388 		 * PROT_WRITE. This check enforces that if this is a
1389 		 * MAP_SHARED, the process has write permission to the backing
1390 		 * file. If VM_MAYWRITE is set it also enforces that on a
1391 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1392 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1393 		 */
1394 		ret = -EPERM;
1395 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1396 			goto out_unlock;
1397 
1398 		/*
1399 		 * If this vma contains ending address, and huge pages
1400 		 * check alignment.
1401 		 */
1402 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1403 		    end > cur->vm_start) {
1404 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1405 
1406 			ret = -EINVAL;
1407 
1408 			if (end & (vma_hpagesize - 1))
1409 				goto out_unlock;
1410 		}
1411 
1412 		/*
1413 		 * Check that this vma isn't already owned by a
1414 		 * different userfaultfd. We can't allow more than one
1415 		 * userfaultfd to own a single vma simultaneously or we
1416 		 * wouldn't know which one to deliver the userfaults to.
1417 		 */
1418 		ret = -EBUSY;
1419 		if (cur->vm_userfaultfd_ctx.ctx &&
1420 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1421 			goto out_unlock;
1422 
1423 		/*
1424 		 * Note vmas containing huge pages
1425 		 */
1426 		if (is_vm_hugetlb_page(cur))
1427 			basic_ioctls = true;
1428 
1429 		found = true;
1430 	}
1431 	BUG_ON(!found);
1432 
1433 	if (vma->vm_start < start)
1434 		prev = vma;
1435 
1436 	ret = 0;
1437 	do {
1438 		cond_resched();
1439 
1440 		BUG_ON(!vma_can_userfault(vma));
1441 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1443 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1444 
1445 		/*
1446 		 * Nothing to do: this vma is already registered into this
1447 		 * userfaultfd and with the right tracking mode too.
1448 		 */
1449 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450 		    (vma->vm_flags & vm_flags) == vm_flags)
1451 			goto skip;
1452 
1453 		if (vma->vm_start > start)
1454 			start = vma->vm_start;
1455 		vma_end = min(end, vma->vm_end);
1456 
1457 		new_flags = (vma->vm_flags &
1458 			     ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1459 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1460 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1461 				 vma_policy(vma),
1462 				 ((struct vm_userfaultfd_ctx){ ctx }));
1463 		if (prev) {
1464 			vma = prev;
1465 			goto next;
1466 		}
1467 		if (vma->vm_start < start) {
1468 			ret = split_vma(mm, vma, start, 1);
1469 			if (ret)
1470 				break;
1471 		}
1472 		if (vma->vm_end > end) {
1473 			ret = split_vma(mm, vma, end, 0);
1474 			if (ret)
1475 				break;
1476 		}
1477 	next:
1478 		/*
1479 		 * In the vma_merge() successful mprotect-like case 8:
1480 		 * the next vma was merged into the current one and
1481 		 * the current one has not been updated yet.
1482 		 */
1483 		vma->vm_flags = new_flags;
1484 		vma->vm_userfaultfd_ctx.ctx = ctx;
1485 
1486 	skip:
1487 		prev = vma;
1488 		start = vma->vm_end;
1489 		vma = vma->vm_next;
1490 	} while (vma && vma->vm_start < end);
1491 out_unlock:
1492 	up_write(&mm->mmap_sem);
1493 	mmput(mm);
1494 	if (!ret) {
1495 		/*
1496 		 * Now that we scanned all vmas we can already tell
1497 		 * userland which ioctls methods are guaranteed to
1498 		 * succeed on this range.
1499 		 */
1500 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1501 			     UFFD_API_RANGE_IOCTLS,
1502 			     &user_uffdio_register->ioctls))
1503 			ret = -EFAULT;
1504 	}
1505 out:
1506 	return ret;
1507 }
1508 
1509 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1510 				  unsigned long arg)
1511 {
1512 	struct mm_struct *mm = ctx->mm;
1513 	struct vm_area_struct *vma, *prev, *cur;
1514 	int ret;
1515 	struct uffdio_range uffdio_unregister;
1516 	unsigned long new_flags;
1517 	bool found;
1518 	unsigned long start, end, vma_end;
1519 	const void __user *buf = (void __user *)arg;
1520 
1521 	ret = -EFAULT;
1522 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1523 		goto out;
1524 
1525 	ret = validate_range(mm, &uffdio_unregister.start,
1526 			     uffdio_unregister.len);
1527 	if (ret)
1528 		goto out;
1529 
1530 	start = uffdio_unregister.start;
1531 	end = start + uffdio_unregister.len;
1532 
1533 	ret = -ENOMEM;
1534 	if (!mmget_not_zero(mm))
1535 		goto out;
1536 
1537 	down_write(&mm->mmap_sem);
1538 	if (!mmget_still_valid(mm))
1539 		goto out_unlock;
1540 	vma = find_vma_prev(mm, start, &prev);
1541 	if (!vma)
1542 		goto out_unlock;
1543 
1544 	/* check that there's at least one vma in the range */
1545 	ret = -EINVAL;
1546 	if (vma->vm_start >= end)
1547 		goto out_unlock;
1548 
1549 	/*
1550 	 * If the first vma contains huge pages, make sure start address
1551 	 * is aligned to huge page size.
1552 	 */
1553 	if (is_vm_hugetlb_page(vma)) {
1554 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1555 
1556 		if (start & (vma_hpagesize - 1))
1557 			goto out_unlock;
1558 	}
1559 
1560 	/*
1561 	 * Search for not compatible vmas.
1562 	 */
1563 	found = false;
1564 	ret = -EINVAL;
1565 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1566 		cond_resched();
1567 
1568 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1569 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1570 
1571 		/*
1572 		 * Check not compatible vmas, not strictly required
1573 		 * here as not compatible vmas cannot have an
1574 		 * userfaultfd_ctx registered on them, but this
1575 		 * provides for more strict behavior to notice
1576 		 * unregistration errors.
1577 		 */
1578 		if (!vma_can_userfault(cur))
1579 			goto out_unlock;
1580 
1581 		found = true;
1582 	}
1583 	BUG_ON(!found);
1584 
1585 	if (vma->vm_start < start)
1586 		prev = vma;
1587 
1588 	ret = 0;
1589 	do {
1590 		cond_resched();
1591 
1592 		BUG_ON(!vma_can_userfault(vma));
1593 
1594 		/*
1595 		 * Nothing to do: this vma is already registered into this
1596 		 * userfaultfd and with the right tracking mode too.
1597 		 */
1598 		if (!vma->vm_userfaultfd_ctx.ctx)
1599 			goto skip;
1600 
1601 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1602 
1603 		if (vma->vm_start > start)
1604 			start = vma->vm_start;
1605 		vma_end = min(end, vma->vm_end);
1606 
1607 		if (userfaultfd_missing(vma)) {
1608 			/*
1609 			 * Wake any concurrent pending userfault while
1610 			 * we unregister, so they will not hang
1611 			 * permanently and it avoids userland to call
1612 			 * UFFDIO_WAKE explicitly.
1613 			 */
1614 			struct userfaultfd_wake_range range;
1615 			range.start = start;
1616 			range.len = vma_end - start;
1617 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1618 		}
1619 
1620 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1621 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1622 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1623 				 vma_policy(vma),
1624 				 NULL_VM_UFFD_CTX);
1625 		if (prev) {
1626 			vma = prev;
1627 			goto next;
1628 		}
1629 		if (vma->vm_start < start) {
1630 			ret = split_vma(mm, vma, start, 1);
1631 			if (ret)
1632 				break;
1633 		}
1634 		if (vma->vm_end > end) {
1635 			ret = split_vma(mm, vma, end, 0);
1636 			if (ret)
1637 				break;
1638 		}
1639 	next:
1640 		/*
1641 		 * In the vma_merge() successful mprotect-like case 8:
1642 		 * the next vma was merged into the current one and
1643 		 * the current one has not been updated yet.
1644 		 */
1645 		vma->vm_flags = new_flags;
1646 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1647 
1648 	skip:
1649 		prev = vma;
1650 		start = vma->vm_end;
1651 		vma = vma->vm_next;
1652 	} while (vma && vma->vm_start < end);
1653 out_unlock:
1654 	up_write(&mm->mmap_sem);
1655 	mmput(mm);
1656 out:
1657 	return ret;
1658 }
1659 
1660 /*
1661  * userfaultfd_wake may be used in combination with the
1662  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1663  */
1664 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1665 			    unsigned long arg)
1666 {
1667 	int ret;
1668 	struct uffdio_range uffdio_wake;
1669 	struct userfaultfd_wake_range range;
1670 	const void __user *buf = (void __user *)arg;
1671 
1672 	ret = -EFAULT;
1673 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1674 		goto out;
1675 
1676 	ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1677 	if (ret)
1678 		goto out;
1679 
1680 	range.start = uffdio_wake.start;
1681 	range.len = uffdio_wake.len;
1682 
1683 	/*
1684 	 * len == 0 means wake all and we don't want to wake all here,
1685 	 * so check it again to be sure.
1686 	 */
1687 	VM_BUG_ON(!range.len);
1688 
1689 	wake_userfault(ctx, &range);
1690 	ret = 0;
1691 
1692 out:
1693 	return ret;
1694 }
1695 
1696 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1697 			    unsigned long arg)
1698 {
1699 	__s64 ret;
1700 	struct uffdio_copy uffdio_copy;
1701 	struct uffdio_copy __user *user_uffdio_copy;
1702 	struct userfaultfd_wake_range range;
1703 
1704 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1705 
1706 	ret = -EAGAIN;
1707 	if (READ_ONCE(ctx->mmap_changing))
1708 		goto out;
1709 
1710 	ret = -EFAULT;
1711 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1712 			   /* don't copy "copy" last field */
1713 			   sizeof(uffdio_copy)-sizeof(__s64)))
1714 		goto out;
1715 
1716 	ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1717 	if (ret)
1718 		goto out;
1719 	/*
1720 	 * double check for wraparound just in case. copy_from_user()
1721 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1722 	 * in the userland range.
1723 	 */
1724 	ret = -EINVAL;
1725 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1726 		goto out;
1727 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1728 		goto out;
1729 	if (mmget_not_zero(ctx->mm)) {
1730 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1731 				   uffdio_copy.len, &ctx->mmap_changing);
1732 		mmput(ctx->mm);
1733 	} else {
1734 		return -ESRCH;
1735 	}
1736 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1737 		return -EFAULT;
1738 	if (ret < 0)
1739 		goto out;
1740 	BUG_ON(!ret);
1741 	/* len == 0 would wake all */
1742 	range.len = ret;
1743 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1744 		range.start = uffdio_copy.dst;
1745 		wake_userfault(ctx, &range);
1746 	}
1747 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1748 out:
1749 	return ret;
1750 }
1751 
1752 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1753 				unsigned long arg)
1754 {
1755 	__s64 ret;
1756 	struct uffdio_zeropage uffdio_zeropage;
1757 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1758 	struct userfaultfd_wake_range range;
1759 
1760 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1761 
1762 	ret = -EAGAIN;
1763 	if (READ_ONCE(ctx->mmap_changing))
1764 		goto out;
1765 
1766 	ret = -EFAULT;
1767 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1768 			   /* don't copy "zeropage" last field */
1769 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1770 		goto out;
1771 
1772 	ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1773 			     uffdio_zeropage.range.len);
1774 	if (ret)
1775 		goto out;
1776 	ret = -EINVAL;
1777 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1778 		goto out;
1779 
1780 	if (mmget_not_zero(ctx->mm)) {
1781 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1782 				     uffdio_zeropage.range.len,
1783 				     &ctx->mmap_changing);
1784 		mmput(ctx->mm);
1785 	} else {
1786 		return -ESRCH;
1787 	}
1788 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1789 		return -EFAULT;
1790 	if (ret < 0)
1791 		goto out;
1792 	/* len == 0 would wake all */
1793 	BUG_ON(!ret);
1794 	range.len = ret;
1795 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1796 		range.start = uffdio_zeropage.range.start;
1797 		wake_userfault(ctx, &range);
1798 	}
1799 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1800 out:
1801 	return ret;
1802 }
1803 
1804 static inline unsigned int uffd_ctx_features(__u64 user_features)
1805 {
1806 	/*
1807 	 * For the current set of features the bits just coincide
1808 	 */
1809 	return (unsigned int)user_features;
1810 }
1811 
1812 /*
1813  * userland asks for a certain API version and we return which bits
1814  * and ioctl commands are implemented in this kernel for such API
1815  * version or -EINVAL if unknown.
1816  */
1817 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1818 			   unsigned long arg)
1819 {
1820 	struct uffdio_api uffdio_api;
1821 	void __user *buf = (void __user *)arg;
1822 	int ret;
1823 	__u64 features;
1824 
1825 	ret = -EINVAL;
1826 	if (ctx->state != UFFD_STATE_WAIT_API)
1827 		goto out;
1828 	ret = -EFAULT;
1829 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1830 		goto out;
1831 	features = uffdio_api.features;
1832 	ret = -EINVAL;
1833 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1834 		goto err_out;
1835 	ret = -EPERM;
1836 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1837 		goto err_out;
1838 	/* report all available features and ioctls to userland */
1839 	uffdio_api.features = UFFD_API_FEATURES;
1840 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1841 	ret = -EFAULT;
1842 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1843 		goto out;
1844 	ctx->state = UFFD_STATE_RUNNING;
1845 	/* only enable the requested features for this uffd context */
1846 	ctx->features = uffd_ctx_features(features);
1847 	ret = 0;
1848 out:
1849 	return ret;
1850 err_out:
1851 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1852 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1853 		ret = -EFAULT;
1854 	goto out;
1855 }
1856 
1857 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1858 			      unsigned long arg)
1859 {
1860 	int ret = -EINVAL;
1861 	struct userfaultfd_ctx *ctx = file->private_data;
1862 
1863 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1864 		return -EINVAL;
1865 
1866 	switch(cmd) {
1867 	case UFFDIO_API:
1868 		ret = userfaultfd_api(ctx, arg);
1869 		break;
1870 	case UFFDIO_REGISTER:
1871 		ret = userfaultfd_register(ctx, arg);
1872 		break;
1873 	case UFFDIO_UNREGISTER:
1874 		ret = userfaultfd_unregister(ctx, arg);
1875 		break;
1876 	case UFFDIO_WAKE:
1877 		ret = userfaultfd_wake(ctx, arg);
1878 		break;
1879 	case UFFDIO_COPY:
1880 		ret = userfaultfd_copy(ctx, arg);
1881 		break;
1882 	case UFFDIO_ZEROPAGE:
1883 		ret = userfaultfd_zeropage(ctx, arg);
1884 		break;
1885 	}
1886 	return ret;
1887 }
1888 
1889 #ifdef CONFIG_PROC_FS
1890 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1891 {
1892 	struct userfaultfd_ctx *ctx = f->private_data;
1893 	wait_queue_entry_t *wq;
1894 	unsigned long pending = 0, total = 0;
1895 
1896 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1897 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1898 		pending++;
1899 		total++;
1900 	}
1901 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1902 		total++;
1903 	}
1904 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1905 
1906 	/*
1907 	 * If more protocols will be added, there will be all shown
1908 	 * separated by a space. Like this:
1909 	 *	protocols: aa:... bb:...
1910 	 */
1911 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1912 		   pending, total, UFFD_API, ctx->features,
1913 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1914 }
1915 #endif
1916 
1917 static const struct file_operations userfaultfd_fops = {
1918 #ifdef CONFIG_PROC_FS
1919 	.show_fdinfo	= userfaultfd_show_fdinfo,
1920 #endif
1921 	.release	= userfaultfd_release,
1922 	.poll		= userfaultfd_poll,
1923 	.read		= userfaultfd_read,
1924 	.unlocked_ioctl = userfaultfd_ioctl,
1925 	.compat_ioctl	= compat_ptr_ioctl,
1926 	.llseek		= noop_llseek,
1927 };
1928 
1929 static void init_once_userfaultfd_ctx(void *mem)
1930 {
1931 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1932 
1933 	init_waitqueue_head(&ctx->fault_pending_wqh);
1934 	init_waitqueue_head(&ctx->fault_wqh);
1935 	init_waitqueue_head(&ctx->event_wqh);
1936 	init_waitqueue_head(&ctx->fd_wqh);
1937 	seqcount_init(&ctx->refile_seq);
1938 }
1939 
1940 SYSCALL_DEFINE1(userfaultfd, int, flags)
1941 {
1942 	struct userfaultfd_ctx *ctx;
1943 	int fd;
1944 
1945 	if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1946 		return -EPERM;
1947 
1948 	BUG_ON(!current->mm);
1949 
1950 	/* Check the UFFD_* constants for consistency.  */
1951 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1952 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1953 
1954 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1955 		return -EINVAL;
1956 
1957 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1958 	if (!ctx)
1959 		return -ENOMEM;
1960 
1961 	refcount_set(&ctx->refcount, 1);
1962 	ctx->flags = flags;
1963 	ctx->features = 0;
1964 	ctx->state = UFFD_STATE_WAIT_API;
1965 	ctx->released = false;
1966 	ctx->mmap_changing = false;
1967 	ctx->mm = current->mm;
1968 	/* prevent the mm struct to be freed */
1969 	mmgrab(ctx->mm);
1970 
1971 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1972 			      O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1973 	if (fd < 0) {
1974 		mmdrop(ctx->mm);
1975 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1976 	}
1977 	return fd;
1978 }
1979 
1980 static int __init userfaultfd_init(void)
1981 {
1982 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1983 						sizeof(struct userfaultfd_ctx),
1984 						0,
1985 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1986 						init_once_userfaultfd_ctx);
1987 	return 0;
1988 }
1989 __initcall(userfaultfd_init);
1990