1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/seq_file.h> 21 #include <linux/file.h> 22 #include <linux/bug.h> 23 #include <linux/anon_inodes.h> 24 #include <linux/syscalls.h> 25 #include <linux/userfaultfd_k.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ioctl.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 31 int sysctl_unprivileged_userfaultfd __read_mostly = 1; 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 * 44 * Locking order: 45 * fd_wqh.lock 46 * fault_pending_wqh.lock 47 * fault_wqh.lock 48 * event_wqh.lock 49 * 50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 52 * also taken in IRQ context. 53 */ 54 struct userfaultfd_ctx { 55 /* waitqueue head for the pending (i.e. not read) userfaults */ 56 wait_queue_head_t fault_pending_wqh; 57 /* waitqueue head for the userfaults */ 58 wait_queue_head_t fault_wqh; 59 /* waitqueue head for the pseudo fd to wakeup poll/read */ 60 wait_queue_head_t fd_wqh; 61 /* waitqueue head for events */ 62 wait_queue_head_t event_wqh; 63 /* a refile sequence protected by fault_pending_wqh lock */ 64 struct seqcount refile_seq; 65 /* pseudo fd refcounting */ 66 refcount_t refcount; 67 /* userfaultfd syscall flags */ 68 unsigned int flags; 69 /* features requested from the userspace */ 70 unsigned int features; 71 /* state machine */ 72 enum userfaultfd_state state; 73 /* released */ 74 bool released; 75 /* memory mappings are changing because of non-cooperative event */ 76 bool mmap_changing; 77 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 78 struct mm_struct *mm; 79 }; 80 81 struct userfaultfd_fork_ctx { 82 struct userfaultfd_ctx *orig; 83 struct userfaultfd_ctx *new; 84 struct list_head list; 85 }; 86 87 struct userfaultfd_unmap_ctx { 88 struct userfaultfd_ctx *ctx; 89 unsigned long start; 90 unsigned long end; 91 struct list_head list; 92 }; 93 94 struct userfaultfd_wait_queue { 95 struct uffd_msg msg; 96 wait_queue_entry_t wq; 97 struct userfaultfd_ctx *ctx; 98 bool waken; 99 }; 100 101 struct userfaultfd_wake_range { 102 unsigned long start; 103 unsigned long len; 104 }; 105 106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 107 int wake_flags, void *key) 108 { 109 struct userfaultfd_wake_range *range = key; 110 int ret; 111 struct userfaultfd_wait_queue *uwq; 112 unsigned long start, len; 113 114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 115 ret = 0; 116 /* len == 0 means wake all */ 117 start = range->start; 118 len = range->len; 119 if (len && (start > uwq->msg.arg.pagefault.address || 120 start + len <= uwq->msg.arg.pagefault.address)) 121 goto out; 122 WRITE_ONCE(uwq->waken, true); 123 /* 124 * The Program-Order guarantees provided by the scheduler 125 * ensure uwq->waken is visible before the task is woken. 126 */ 127 ret = wake_up_state(wq->private, mode); 128 if (ret) { 129 /* 130 * Wake only once, autoremove behavior. 131 * 132 * After the effect of list_del_init is visible to the other 133 * CPUs, the waitqueue may disappear from under us, see the 134 * !list_empty_careful() in handle_userfault(). 135 * 136 * try_to_wake_up() has an implicit smp_mb(), and the 137 * wq->private is read before calling the extern function 138 * "wake_up_state" (which in turns calls try_to_wake_up). 139 */ 140 list_del_init(&wq->entry); 141 } 142 out: 143 return ret; 144 } 145 146 /** 147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 148 * context. 149 * @ctx: [in] Pointer to the userfaultfd context. 150 */ 151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 152 { 153 refcount_inc(&ctx->refcount); 154 } 155 156 /** 157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 158 * context. 159 * @ctx: [in] Pointer to userfaultfd context. 160 * 161 * The userfaultfd context reference must have been previously acquired either 162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 163 */ 164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 165 { 166 if (refcount_dec_and_test(&ctx->refcount)) { 167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 175 mmdrop(ctx->mm); 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 177 } 178 } 179 180 static inline void msg_init(struct uffd_msg *msg) 181 { 182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 183 /* 184 * Must use memset to zero out the paddings or kernel data is 185 * leaked to userland. 186 */ 187 memset(msg, 0, sizeof(struct uffd_msg)); 188 } 189 190 static inline struct uffd_msg userfault_msg(unsigned long address, 191 unsigned int flags, 192 unsigned long reason, 193 unsigned int features) 194 { 195 struct uffd_msg msg; 196 msg_init(&msg); 197 msg.event = UFFD_EVENT_PAGEFAULT; 198 msg.arg.pagefault.address = address; 199 if (flags & FAULT_FLAG_WRITE) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 204 * was a read fault, otherwise if set it means it's 205 * a write fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 208 if (reason & VM_UFFD_WP) 209 /* 210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 213 * a missing fault, otherwise if set it means it's a 214 * write protect fault. 215 */ 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 217 if (features & UFFD_FEATURE_THREAD_ID) 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 219 return msg; 220 } 221 222 #ifdef CONFIG_HUGETLB_PAGE 223 /* 224 * Same functionality as userfaultfd_must_wait below with modifications for 225 * hugepmd ranges. 226 */ 227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 228 struct vm_area_struct *vma, 229 unsigned long address, 230 unsigned long flags, 231 unsigned long reason) 232 { 233 struct mm_struct *mm = ctx->mm; 234 pte_t *ptep, pte; 235 bool ret = true; 236 237 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 238 239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 240 241 if (!ptep) 242 goto out; 243 244 ret = false; 245 pte = huge_ptep_get(ptep); 246 247 /* 248 * Lockless access: we're in a wait_event so it's ok if it 249 * changes under us. 250 */ 251 if (huge_pte_none(pte)) 252 ret = true; 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 254 ret = true; 255 out: 256 return ret; 257 } 258 #else 259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 260 struct vm_area_struct *vma, 261 unsigned long address, 262 unsigned long flags, 263 unsigned long reason) 264 { 265 return false; /* should never get here */ 266 } 267 #endif /* CONFIG_HUGETLB_PAGE */ 268 269 /* 270 * Verify the pagetables are still not ok after having reigstered into 271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 272 * userfault that has already been resolved, if userfaultfd_read and 273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 274 * threads. 275 */ 276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 277 unsigned long address, 278 unsigned long flags, 279 unsigned long reason) 280 { 281 struct mm_struct *mm = ctx->mm; 282 pgd_t *pgd; 283 p4d_t *p4d; 284 pud_t *pud; 285 pmd_t *pmd, _pmd; 286 pte_t *pte; 287 bool ret = true; 288 289 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 290 291 pgd = pgd_offset(mm, address); 292 if (!pgd_present(*pgd)) 293 goto out; 294 p4d = p4d_offset(pgd, address); 295 if (!p4d_present(*p4d)) 296 goto out; 297 pud = pud_offset(p4d, address); 298 if (!pud_present(*pud)) 299 goto out; 300 pmd = pmd_offset(pud, address); 301 /* 302 * READ_ONCE must function as a barrier with narrower scope 303 * and it must be equivalent to: 304 * _pmd = *pmd; barrier(); 305 * 306 * This is to deal with the instability (as in 307 * pmd_trans_unstable) of the pmd. 308 */ 309 _pmd = READ_ONCE(*pmd); 310 if (pmd_none(_pmd)) 311 goto out; 312 313 ret = false; 314 if (!pmd_present(_pmd)) 315 goto out; 316 317 if (pmd_trans_huge(_pmd)) 318 goto out; 319 320 /* 321 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 322 * and use the standard pte_offset_map() instead of parsing _pmd. 323 */ 324 pte = pte_offset_map(pmd, address); 325 /* 326 * Lockless access: we're in a wait_event so it's ok if it 327 * changes under us. 328 */ 329 if (pte_none(*pte)) 330 ret = true; 331 pte_unmap(pte); 332 333 out: 334 return ret; 335 } 336 337 /* Should pair with userfaultfd_signal_pending() */ 338 static inline long userfaultfd_get_blocking_state(unsigned int flags) 339 { 340 if (flags & FAULT_FLAG_INTERRUPTIBLE) 341 return TASK_INTERRUPTIBLE; 342 343 if (flags & FAULT_FLAG_KILLABLE) 344 return TASK_KILLABLE; 345 346 return TASK_UNINTERRUPTIBLE; 347 } 348 349 /* Should pair with userfaultfd_get_blocking_state() */ 350 static inline bool userfaultfd_signal_pending(unsigned int flags) 351 { 352 if (flags & FAULT_FLAG_INTERRUPTIBLE) 353 return signal_pending(current); 354 355 if (flags & FAULT_FLAG_KILLABLE) 356 return fatal_signal_pending(current); 357 358 return false; 359 } 360 361 /* 362 * The locking rules involved in returning VM_FAULT_RETRY depending on 363 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 364 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 365 * recommendation in __lock_page_or_retry is not an understatement. 366 * 367 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 368 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 369 * not set. 370 * 371 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 372 * set, VM_FAULT_RETRY can still be returned if and only if there are 373 * fatal_signal_pending()s, and the mmap_sem must be released before 374 * returning it. 375 */ 376 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 377 { 378 struct mm_struct *mm = vmf->vma->vm_mm; 379 struct userfaultfd_ctx *ctx; 380 struct userfaultfd_wait_queue uwq; 381 vm_fault_t ret = VM_FAULT_SIGBUS; 382 bool must_wait; 383 long blocking_state; 384 385 /* 386 * We don't do userfault handling for the final child pid update. 387 * 388 * We also don't do userfault handling during 389 * coredumping. hugetlbfs has the special 390 * follow_hugetlb_page() to skip missing pages in the 391 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 392 * the no_page_table() helper in follow_page_mask(), but the 393 * shmem_vm_ops->fault method is invoked even during 394 * coredumping without mmap_sem and it ends up here. 395 */ 396 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 397 goto out; 398 399 /* 400 * Coredumping runs without mmap_sem so we can only check that 401 * the mmap_sem is held, if PF_DUMPCORE was not set. 402 */ 403 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 404 405 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 406 if (!ctx) 407 goto out; 408 409 BUG_ON(ctx->mm != mm); 410 411 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 412 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 413 414 if (ctx->features & UFFD_FEATURE_SIGBUS) 415 goto out; 416 417 /* 418 * If it's already released don't get it. This avoids to loop 419 * in __get_user_pages if userfaultfd_release waits on the 420 * caller of handle_userfault to release the mmap_sem. 421 */ 422 if (unlikely(READ_ONCE(ctx->released))) { 423 /* 424 * Don't return VM_FAULT_SIGBUS in this case, so a non 425 * cooperative manager can close the uffd after the 426 * last UFFDIO_COPY, without risking to trigger an 427 * involuntary SIGBUS if the process was starting the 428 * userfaultfd while the userfaultfd was still armed 429 * (but after the last UFFDIO_COPY). If the uffd 430 * wasn't already closed when the userfault reached 431 * this point, that would normally be solved by 432 * userfaultfd_must_wait returning 'false'. 433 * 434 * If we were to return VM_FAULT_SIGBUS here, the non 435 * cooperative manager would be instead forced to 436 * always call UFFDIO_UNREGISTER before it can safely 437 * close the uffd. 438 */ 439 ret = VM_FAULT_NOPAGE; 440 goto out; 441 } 442 443 /* 444 * Check that we can return VM_FAULT_RETRY. 445 * 446 * NOTE: it should become possible to return VM_FAULT_RETRY 447 * even if FAULT_FLAG_TRIED is set without leading to gup() 448 * -EBUSY failures, if the userfaultfd is to be extended for 449 * VM_UFFD_WP tracking and we intend to arm the userfault 450 * without first stopping userland access to the memory. For 451 * VM_UFFD_MISSING userfaults this is enough for now. 452 */ 453 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 454 /* 455 * Validate the invariant that nowait must allow retry 456 * to be sure not to return SIGBUS erroneously on 457 * nowait invocations. 458 */ 459 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 460 #ifdef CONFIG_DEBUG_VM 461 if (printk_ratelimit()) { 462 printk(KERN_WARNING 463 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 464 vmf->flags); 465 dump_stack(); 466 } 467 #endif 468 goto out; 469 } 470 471 /* 472 * Handle nowait, not much to do other than tell it to retry 473 * and wait. 474 */ 475 ret = VM_FAULT_RETRY; 476 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 477 goto out; 478 479 /* take the reference before dropping the mmap_sem */ 480 userfaultfd_ctx_get(ctx); 481 482 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 483 uwq.wq.private = current; 484 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 485 ctx->features); 486 uwq.ctx = ctx; 487 uwq.waken = false; 488 489 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 490 491 spin_lock_irq(&ctx->fault_pending_wqh.lock); 492 /* 493 * After the __add_wait_queue the uwq is visible to userland 494 * through poll/read(). 495 */ 496 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 497 /* 498 * The smp_mb() after __set_current_state prevents the reads 499 * following the spin_unlock to happen before the list_add in 500 * __add_wait_queue. 501 */ 502 set_current_state(blocking_state); 503 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 504 505 if (!is_vm_hugetlb_page(vmf->vma)) 506 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 507 reason); 508 else 509 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 510 vmf->address, 511 vmf->flags, reason); 512 up_read(&mm->mmap_sem); 513 514 if (likely(must_wait && !READ_ONCE(ctx->released) && 515 !userfaultfd_signal_pending(vmf->flags))) { 516 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 517 schedule(); 518 ret |= VM_FAULT_MAJOR; 519 520 /* 521 * False wakeups can orginate even from rwsem before 522 * up_read() however userfaults will wait either for a 523 * targeted wakeup on the specific uwq waitqueue from 524 * wake_userfault() or for signals or for uffd 525 * release. 526 */ 527 while (!READ_ONCE(uwq.waken)) { 528 /* 529 * This needs the full smp_store_mb() 530 * guarantee as the state write must be 531 * visible to other CPUs before reading 532 * uwq.waken from other CPUs. 533 */ 534 set_current_state(blocking_state); 535 if (READ_ONCE(uwq.waken) || 536 READ_ONCE(ctx->released) || 537 userfaultfd_signal_pending(vmf->flags)) 538 break; 539 schedule(); 540 } 541 } 542 543 __set_current_state(TASK_RUNNING); 544 545 /* 546 * Here we race with the list_del; list_add in 547 * userfaultfd_ctx_read(), however because we don't ever run 548 * list_del_init() to refile across the two lists, the prev 549 * and next pointers will never point to self. list_add also 550 * would never let any of the two pointers to point to 551 * self. So list_empty_careful won't risk to see both pointers 552 * pointing to self at any time during the list refile. The 553 * only case where list_del_init() is called is the full 554 * removal in the wake function and there we don't re-list_add 555 * and it's fine not to block on the spinlock. The uwq on this 556 * kernel stack can be released after the list_del_init. 557 */ 558 if (!list_empty_careful(&uwq.wq.entry)) { 559 spin_lock_irq(&ctx->fault_pending_wqh.lock); 560 /* 561 * No need of list_del_init(), the uwq on the stack 562 * will be freed shortly anyway. 563 */ 564 list_del(&uwq.wq.entry); 565 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 566 } 567 568 /* 569 * ctx may go away after this if the userfault pseudo fd is 570 * already released. 571 */ 572 userfaultfd_ctx_put(ctx); 573 574 out: 575 return ret; 576 } 577 578 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 579 struct userfaultfd_wait_queue *ewq) 580 { 581 struct userfaultfd_ctx *release_new_ctx; 582 583 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 584 goto out; 585 586 ewq->ctx = ctx; 587 init_waitqueue_entry(&ewq->wq, current); 588 release_new_ctx = NULL; 589 590 spin_lock_irq(&ctx->event_wqh.lock); 591 /* 592 * After the __add_wait_queue the uwq is visible to userland 593 * through poll/read(). 594 */ 595 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 596 for (;;) { 597 set_current_state(TASK_KILLABLE); 598 if (ewq->msg.event == 0) 599 break; 600 if (READ_ONCE(ctx->released) || 601 fatal_signal_pending(current)) { 602 /* 603 * &ewq->wq may be queued in fork_event, but 604 * __remove_wait_queue ignores the head 605 * parameter. It would be a problem if it 606 * didn't. 607 */ 608 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 609 if (ewq->msg.event == UFFD_EVENT_FORK) { 610 struct userfaultfd_ctx *new; 611 612 new = (struct userfaultfd_ctx *) 613 (unsigned long) 614 ewq->msg.arg.reserved.reserved1; 615 release_new_ctx = new; 616 } 617 break; 618 } 619 620 spin_unlock_irq(&ctx->event_wqh.lock); 621 622 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 623 schedule(); 624 625 spin_lock_irq(&ctx->event_wqh.lock); 626 } 627 __set_current_state(TASK_RUNNING); 628 spin_unlock_irq(&ctx->event_wqh.lock); 629 630 if (release_new_ctx) { 631 struct vm_area_struct *vma; 632 struct mm_struct *mm = release_new_ctx->mm; 633 634 /* the various vma->vm_userfaultfd_ctx still points to it */ 635 down_write(&mm->mmap_sem); 636 /* no task can run (and in turn coredump) yet */ 637 VM_WARN_ON(!mmget_still_valid(mm)); 638 for (vma = mm->mmap; vma; vma = vma->vm_next) 639 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 641 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 642 } 643 up_write(&mm->mmap_sem); 644 645 userfaultfd_ctx_put(release_new_ctx); 646 } 647 648 /* 649 * ctx may go away after this if the userfault pseudo fd is 650 * already released. 651 */ 652 out: 653 WRITE_ONCE(ctx->mmap_changing, false); 654 userfaultfd_ctx_put(ctx); 655 } 656 657 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 658 struct userfaultfd_wait_queue *ewq) 659 { 660 ewq->msg.event = 0; 661 wake_up_locked(&ctx->event_wqh); 662 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 663 } 664 665 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 666 { 667 struct userfaultfd_ctx *ctx = NULL, *octx; 668 struct userfaultfd_fork_ctx *fctx; 669 670 octx = vma->vm_userfaultfd_ctx.ctx; 671 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 672 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 673 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 674 return 0; 675 } 676 677 list_for_each_entry(fctx, fcs, list) 678 if (fctx->orig == octx) { 679 ctx = fctx->new; 680 break; 681 } 682 683 if (!ctx) { 684 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 685 if (!fctx) 686 return -ENOMEM; 687 688 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 689 if (!ctx) { 690 kfree(fctx); 691 return -ENOMEM; 692 } 693 694 refcount_set(&ctx->refcount, 1); 695 ctx->flags = octx->flags; 696 ctx->state = UFFD_STATE_RUNNING; 697 ctx->features = octx->features; 698 ctx->released = false; 699 ctx->mmap_changing = false; 700 ctx->mm = vma->vm_mm; 701 mmgrab(ctx->mm); 702 703 userfaultfd_ctx_get(octx); 704 WRITE_ONCE(octx->mmap_changing, true); 705 fctx->orig = octx; 706 fctx->new = ctx; 707 list_add_tail(&fctx->list, fcs); 708 } 709 710 vma->vm_userfaultfd_ctx.ctx = ctx; 711 return 0; 712 } 713 714 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 715 { 716 struct userfaultfd_ctx *ctx = fctx->orig; 717 struct userfaultfd_wait_queue ewq; 718 719 msg_init(&ewq.msg); 720 721 ewq.msg.event = UFFD_EVENT_FORK; 722 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 723 724 userfaultfd_event_wait_completion(ctx, &ewq); 725 } 726 727 void dup_userfaultfd_complete(struct list_head *fcs) 728 { 729 struct userfaultfd_fork_ctx *fctx, *n; 730 731 list_for_each_entry_safe(fctx, n, fcs, list) { 732 dup_fctx(fctx); 733 list_del(&fctx->list); 734 kfree(fctx); 735 } 736 } 737 738 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 739 struct vm_userfaultfd_ctx *vm_ctx) 740 { 741 struct userfaultfd_ctx *ctx; 742 743 ctx = vma->vm_userfaultfd_ctx.ctx; 744 745 if (!ctx) 746 return; 747 748 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 749 vm_ctx->ctx = ctx; 750 userfaultfd_ctx_get(ctx); 751 WRITE_ONCE(ctx->mmap_changing, true); 752 } else { 753 /* Drop uffd context if remap feature not enabled */ 754 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 755 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 756 } 757 } 758 759 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 760 unsigned long from, unsigned long to, 761 unsigned long len) 762 { 763 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 764 struct userfaultfd_wait_queue ewq; 765 766 if (!ctx) 767 return; 768 769 if (to & ~PAGE_MASK) { 770 userfaultfd_ctx_put(ctx); 771 return; 772 } 773 774 msg_init(&ewq.msg); 775 776 ewq.msg.event = UFFD_EVENT_REMAP; 777 ewq.msg.arg.remap.from = from; 778 ewq.msg.arg.remap.to = to; 779 ewq.msg.arg.remap.len = len; 780 781 userfaultfd_event_wait_completion(ctx, &ewq); 782 } 783 784 bool userfaultfd_remove(struct vm_area_struct *vma, 785 unsigned long start, unsigned long end) 786 { 787 struct mm_struct *mm = vma->vm_mm; 788 struct userfaultfd_ctx *ctx; 789 struct userfaultfd_wait_queue ewq; 790 791 ctx = vma->vm_userfaultfd_ctx.ctx; 792 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 793 return true; 794 795 userfaultfd_ctx_get(ctx); 796 WRITE_ONCE(ctx->mmap_changing, true); 797 up_read(&mm->mmap_sem); 798 799 msg_init(&ewq.msg); 800 801 ewq.msg.event = UFFD_EVENT_REMOVE; 802 ewq.msg.arg.remove.start = start; 803 ewq.msg.arg.remove.end = end; 804 805 userfaultfd_event_wait_completion(ctx, &ewq); 806 807 return false; 808 } 809 810 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 811 unsigned long start, unsigned long end) 812 { 813 struct userfaultfd_unmap_ctx *unmap_ctx; 814 815 list_for_each_entry(unmap_ctx, unmaps, list) 816 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 817 unmap_ctx->end == end) 818 return true; 819 820 return false; 821 } 822 823 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 824 unsigned long start, unsigned long end, 825 struct list_head *unmaps) 826 { 827 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 828 struct userfaultfd_unmap_ctx *unmap_ctx; 829 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 830 831 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 832 has_unmap_ctx(ctx, unmaps, start, end)) 833 continue; 834 835 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 836 if (!unmap_ctx) 837 return -ENOMEM; 838 839 userfaultfd_ctx_get(ctx); 840 WRITE_ONCE(ctx->mmap_changing, true); 841 unmap_ctx->ctx = ctx; 842 unmap_ctx->start = start; 843 unmap_ctx->end = end; 844 list_add_tail(&unmap_ctx->list, unmaps); 845 } 846 847 return 0; 848 } 849 850 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 851 { 852 struct userfaultfd_unmap_ctx *ctx, *n; 853 struct userfaultfd_wait_queue ewq; 854 855 list_for_each_entry_safe(ctx, n, uf, list) { 856 msg_init(&ewq.msg); 857 858 ewq.msg.event = UFFD_EVENT_UNMAP; 859 ewq.msg.arg.remove.start = ctx->start; 860 ewq.msg.arg.remove.end = ctx->end; 861 862 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 863 864 list_del(&ctx->list); 865 kfree(ctx); 866 } 867 } 868 869 static int userfaultfd_release(struct inode *inode, struct file *file) 870 { 871 struct userfaultfd_ctx *ctx = file->private_data; 872 struct mm_struct *mm = ctx->mm; 873 struct vm_area_struct *vma, *prev; 874 /* len == 0 means wake all */ 875 struct userfaultfd_wake_range range = { .len = 0, }; 876 unsigned long new_flags; 877 bool still_valid; 878 879 WRITE_ONCE(ctx->released, true); 880 881 if (!mmget_not_zero(mm)) 882 goto wakeup; 883 884 /* 885 * Flush page faults out of all CPUs. NOTE: all page faults 886 * must be retried without returning VM_FAULT_SIGBUS if 887 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 888 * changes while handle_userfault released the mmap_sem. So 889 * it's critical that released is set to true (above), before 890 * taking the mmap_sem for writing. 891 */ 892 down_write(&mm->mmap_sem); 893 still_valid = mmget_still_valid(mm); 894 prev = NULL; 895 for (vma = mm->mmap; vma; vma = vma->vm_next) { 896 cond_resched(); 897 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 898 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 899 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 900 prev = vma; 901 continue; 902 } 903 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 904 if (still_valid) { 905 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 906 new_flags, vma->anon_vma, 907 vma->vm_file, vma->vm_pgoff, 908 vma_policy(vma), 909 NULL_VM_UFFD_CTX); 910 if (prev) 911 vma = prev; 912 else 913 prev = vma; 914 } 915 vma->vm_flags = new_flags; 916 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 917 } 918 up_write(&mm->mmap_sem); 919 mmput(mm); 920 wakeup: 921 /* 922 * After no new page faults can wait on this fault_*wqh, flush 923 * the last page faults that may have been already waiting on 924 * the fault_*wqh. 925 */ 926 spin_lock_irq(&ctx->fault_pending_wqh.lock); 927 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 928 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 929 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 930 931 /* Flush pending events that may still wait on event_wqh */ 932 wake_up_all(&ctx->event_wqh); 933 934 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 935 userfaultfd_ctx_put(ctx); 936 return 0; 937 } 938 939 /* fault_pending_wqh.lock must be hold by the caller */ 940 static inline struct userfaultfd_wait_queue *find_userfault_in( 941 wait_queue_head_t *wqh) 942 { 943 wait_queue_entry_t *wq; 944 struct userfaultfd_wait_queue *uwq; 945 946 lockdep_assert_held(&wqh->lock); 947 948 uwq = NULL; 949 if (!waitqueue_active(wqh)) 950 goto out; 951 /* walk in reverse to provide FIFO behavior to read userfaults */ 952 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 953 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 954 out: 955 return uwq; 956 } 957 958 static inline struct userfaultfd_wait_queue *find_userfault( 959 struct userfaultfd_ctx *ctx) 960 { 961 return find_userfault_in(&ctx->fault_pending_wqh); 962 } 963 964 static inline struct userfaultfd_wait_queue *find_userfault_evt( 965 struct userfaultfd_ctx *ctx) 966 { 967 return find_userfault_in(&ctx->event_wqh); 968 } 969 970 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 971 { 972 struct userfaultfd_ctx *ctx = file->private_data; 973 __poll_t ret; 974 975 poll_wait(file, &ctx->fd_wqh, wait); 976 977 switch (ctx->state) { 978 case UFFD_STATE_WAIT_API: 979 return EPOLLERR; 980 case UFFD_STATE_RUNNING: 981 /* 982 * poll() never guarantees that read won't block. 983 * userfaults can be waken before they're read(). 984 */ 985 if (unlikely(!(file->f_flags & O_NONBLOCK))) 986 return EPOLLERR; 987 /* 988 * lockless access to see if there are pending faults 989 * __pollwait last action is the add_wait_queue but 990 * the spin_unlock would allow the waitqueue_active to 991 * pass above the actual list_add inside 992 * add_wait_queue critical section. So use a full 993 * memory barrier to serialize the list_add write of 994 * add_wait_queue() with the waitqueue_active read 995 * below. 996 */ 997 ret = 0; 998 smp_mb(); 999 if (waitqueue_active(&ctx->fault_pending_wqh)) 1000 ret = EPOLLIN; 1001 else if (waitqueue_active(&ctx->event_wqh)) 1002 ret = EPOLLIN; 1003 1004 return ret; 1005 default: 1006 WARN_ON_ONCE(1); 1007 return EPOLLERR; 1008 } 1009 } 1010 1011 static const struct file_operations userfaultfd_fops; 1012 1013 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 1014 struct userfaultfd_ctx *new, 1015 struct uffd_msg *msg) 1016 { 1017 int fd; 1018 1019 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1020 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1021 if (fd < 0) 1022 return fd; 1023 1024 msg->arg.reserved.reserved1 = 0; 1025 msg->arg.fork.ufd = fd; 1026 return 0; 1027 } 1028 1029 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1030 struct uffd_msg *msg) 1031 { 1032 ssize_t ret; 1033 DECLARE_WAITQUEUE(wait, current); 1034 struct userfaultfd_wait_queue *uwq; 1035 /* 1036 * Handling fork event requires sleeping operations, so 1037 * we drop the event_wqh lock, then do these ops, then 1038 * lock it back and wake up the waiter. While the lock is 1039 * dropped the ewq may go away so we keep track of it 1040 * carefully. 1041 */ 1042 LIST_HEAD(fork_event); 1043 struct userfaultfd_ctx *fork_nctx = NULL; 1044 1045 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1046 spin_lock_irq(&ctx->fd_wqh.lock); 1047 __add_wait_queue(&ctx->fd_wqh, &wait); 1048 for (;;) { 1049 set_current_state(TASK_INTERRUPTIBLE); 1050 spin_lock(&ctx->fault_pending_wqh.lock); 1051 uwq = find_userfault(ctx); 1052 if (uwq) { 1053 /* 1054 * Use a seqcount to repeat the lockless check 1055 * in wake_userfault() to avoid missing 1056 * wakeups because during the refile both 1057 * waitqueue could become empty if this is the 1058 * only userfault. 1059 */ 1060 write_seqcount_begin(&ctx->refile_seq); 1061 1062 /* 1063 * The fault_pending_wqh.lock prevents the uwq 1064 * to disappear from under us. 1065 * 1066 * Refile this userfault from 1067 * fault_pending_wqh to fault_wqh, it's not 1068 * pending anymore after we read it. 1069 * 1070 * Use list_del() by hand (as 1071 * userfaultfd_wake_function also uses 1072 * list_del_init() by hand) to be sure nobody 1073 * changes __remove_wait_queue() to use 1074 * list_del_init() in turn breaking the 1075 * !list_empty_careful() check in 1076 * handle_userfault(). The uwq->wq.head list 1077 * must never be empty at any time during the 1078 * refile, or the waitqueue could disappear 1079 * from under us. The "wait_queue_head_t" 1080 * parameter of __remove_wait_queue() is unused 1081 * anyway. 1082 */ 1083 list_del(&uwq->wq.entry); 1084 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1085 1086 write_seqcount_end(&ctx->refile_seq); 1087 1088 /* careful to always initialize msg if ret == 0 */ 1089 *msg = uwq->msg; 1090 spin_unlock(&ctx->fault_pending_wqh.lock); 1091 ret = 0; 1092 break; 1093 } 1094 spin_unlock(&ctx->fault_pending_wqh.lock); 1095 1096 spin_lock(&ctx->event_wqh.lock); 1097 uwq = find_userfault_evt(ctx); 1098 if (uwq) { 1099 *msg = uwq->msg; 1100 1101 if (uwq->msg.event == UFFD_EVENT_FORK) { 1102 fork_nctx = (struct userfaultfd_ctx *) 1103 (unsigned long) 1104 uwq->msg.arg.reserved.reserved1; 1105 list_move(&uwq->wq.entry, &fork_event); 1106 /* 1107 * fork_nctx can be freed as soon as 1108 * we drop the lock, unless we take a 1109 * reference on it. 1110 */ 1111 userfaultfd_ctx_get(fork_nctx); 1112 spin_unlock(&ctx->event_wqh.lock); 1113 ret = 0; 1114 break; 1115 } 1116 1117 userfaultfd_event_complete(ctx, uwq); 1118 spin_unlock(&ctx->event_wqh.lock); 1119 ret = 0; 1120 break; 1121 } 1122 spin_unlock(&ctx->event_wqh.lock); 1123 1124 if (signal_pending(current)) { 1125 ret = -ERESTARTSYS; 1126 break; 1127 } 1128 if (no_wait) { 1129 ret = -EAGAIN; 1130 break; 1131 } 1132 spin_unlock_irq(&ctx->fd_wqh.lock); 1133 schedule(); 1134 spin_lock_irq(&ctx->fd_wqh.lock); 1135 } 1136 __remove_wait_queue(&ctx->fd_wqh, &wait); 1137 __set_current_state(TASK_RUNNING); 1138 spin_unlock_irq(&ctx->fd_wqh.lock); 1139 1140 if (!ret && msg->event == UFFD_EVENT_FORK) { 1141 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1142 spin_lock_irq(&ctx->event_wqh.lock); 1143 if (!list_empty(&fork_event)) { 1144 /* 1145 * The fork thread didn't abort, so we can 1146 * drop the temporary refcount. 1147 */ 1148 userfaultfd_ctx_put(fork_nctx); 1149 1150 uwq = list_first_entry(&fork_event, 1151 typeof(*uwq), 1152 wq.entry); 1153 /* 1154 * If fork_event list wasn't empty and in turn 1155 * the event wasn't already released by fork 1156 * (the event is allocated on fork kernel 1157 * stack), put the event back to its place in 1158 * the event_wq. fork_event head will be freed 1159 * as soon as we return so the event cannot 1160 * stay queued there no matter the current 1161 * "ret" value. 1162 */ 1163 list_del(&uwq->wq.entry); 1164 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1165 1166 /* 1167 * Leave the event in the waitqueue and report 1168 * error to userland if we failed to resolve 1169 * the userfault fork. 1170 */ 1171 if (likely(!ret)) 1172 userfaultfd_event_complete(ctx, uwq); 1173 } else { 1174 /* 1175 * Here the fork thread aborted and the 1176 * refcount from the fork thread on fork_nctx 1177 * has already been released. We still hold 1178 * the reference we took before releasing the 1179 * lock above. If resolve_userfault_fork 1180 * failed we've to drop it because the 1181 * fork_nctx has to be freed in such case. If 1182 * it succeeded we'll hold it because the new 1183 * uffd references it. 1184 */ 1185 if (ret) 1186 userfaultfd_ctx_put(fork_nctx); 1187 } 1188 spin_unlock_irq(&ctx->event_wqh.lock); 1189 } 1190 1191 return ret; 1192 } 1193 1194 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1195 size_t count, loff_t *ppos) 1196 { 1197 struct userfaultfd_ctx *ctx = file->private_data; 1198 ssize_t _ret, ret = 0; 1199 struct uffd_msg msg; 1200 int no_wait = file->f_flags & O_NONBLOCK; 1201 1202 if (ctx->state == UFFD_STATE_WAIT_API) 1203 return -EINVAL; 1204 1205 for (;;) { 1206 if (count < sizeof(msg)) 1207 return ret ? ret : -EINVAL; 1208 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1209 if (_ret < 0) 1210 return ret ? ret : _ret; 1211 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1212 return ret ? ret : -EFAULT; 1213 ret += sizeof(msg); 1214 buf += sizeof(msg); 1215 count -= sizeof(msg); 1216 /* 1217 * Allow to read more than one fault at time but only 1218 * block if waiting for the very first one. 1219 */ 1220 no_wait = O_NONBLOCK; 1221 } 1222 } 1223 1224 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1225 struct userfaultfd_wake_range *range) 1226 { 1227 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1228 /* wake all in the range and autoremove */ 1229 if (waitqueue_active(&ctx->fault_pending_wqh)) 1230 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1231 range); 1232 if (waitqueue_active(&ctx->fault_wqh)) 1233 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1234 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1235 } 1236 1237 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1238 struct userfaultfd_wake_range *range) 1239 { 1240 unsigned seq; 1241 bool need_wakeup; 1242 1243 /* 1244 * To be sure waitqueue_active() is not reordered by the CPU 1245 * before the pagetable update, use an explicit SMP memory 1246 * barrier here. PT lock release or up_read(mmap_sem) still 1247 * have release semantics that can allow the 1248 * waitqueue_active() to be reordered before the pte update. 1249 */ 1250 smp_mb(); 1251 1252 /* 1253 * Use waitqueue_active because it's very frequent to 1254 * change the address space atomically even if there are no 1255 * userfaults yet. So we take the spinlock only when we're 1256 * sure we've userfaults to wake. 1257 */ 1258 do { 1259 seq = read_seqcount_begin(&ctx->refile_seq); 1260 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1261 waitqueue_active(&ctx->fault_wqh); 1262 cond_resched(); 1263 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1264 if (need_wakeup) 1265 __wake_userfault(ctx, range); 1266 } 1267 1268 static __always_inline int validate_range(struct mm_struct *mm, 1269 __u64 *start, __u64 len) 1270 { 1271 __u64 task_size = mm->task_size; 1272 1273 *start = untagged_addr(*start); 1274 1275 if (*start & ~PAGE_MASK) 1276 return -EINVAL; 1277 if (len & ~PAGE_MASK) 1278 return -EINVAL; 1279 if (!len) 1280 return -EINVAL; 1281 if (*start < mmap_min_addr) 1282 return -EINVAL; 1283 if (*start >= task_size) 1284 return -EINVAL; 1285 if (len > task_size - *start) 1286 return -EINVAL; 1287 return 0; 1288 } 1289 1290 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1291 { 1292 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1293 vma_is_shmem(vma); 1294 } 1295 1296 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1297 unsigned long arg) 1298 { 1299 struct mm_struct *mm = ctx->mm; 1300 struct vm_area_struct *vma, *prev, *cur; 1301 int ret; 1302 struct uffdio_register uffdio_register; 1303 struct uffdio_register __user *user_uffdio_register; 1304 unsigned long vm_flags, new_flags; 1305 bool found; 1306 bool basic_ioctls; 1307 unsigned long start, end, vma_end; 1308 1309 user_uffdio_register = (struct uffdio_register __user *) arg; 1310 1311 ret = -EFAULT; 1312 if (copy_from_user(&uffdio_register, user_uffdio_register, 1313 sizeof(uffdio_register)-sizeof(__u64))) 1314 goto out; 1315 1316 ret = -EINVAL; 1317 if (!uffdio_register.mode) 1318 goto out; 1319 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1320 UFFDIO_REGISTER_MODE_WP)) 1321 goto out; 1322 vm_flags = 0; 1323 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1324 vm_flags |= VM_UFFD_MISSING; 1325 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1326 vm_flags |= VM_UFFD_WP; 1327 /* 1328 * FIXME: remove the below error constraint by 1329 * implementing the wprotect tracking mode. 1330 */ 1331 ret = -EINVAL; 1332 goto out; 1333 } 1334 1335 ret = validate_range(mm, &uffdio_register.range.start, 1336 uffdio_register.range.len); 1337 if (ret) 1338 goto out; 1339 1340 start = uffdio_register.range.start; 1341 end = start + uffdio_register.range.len; 1342 1343 ret = -ENOMEM; 1344 if (!mmget_not_zero(mm)) 1345 goto out; 1346 1347 down_write(&mm->mmap_sem); 1348 if (!mmget_still_valid(mm)) 1349 goto out_unlock; 1350 vma = find_vma_prev(mm, start, &prev); 1351 if (!vma) 1352 goto out_unlock; 1353 1354 /* check that there's at least one vma in the range */ 1355 ret = -EINVAL; 1356 if (vma->vm_start >= end) 1357 goto out_unlock; 1358 1359 /* 1360 * If the first vma contains huge pages, make sure start address 1361 * is aligned to huge page size. 1362 */ 1363 if (is_vm_hugetlb_page(vma)) { 1364 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1365 1366 if (start & (vma_hpagesize - 1)) 1367 goto out_unlock; 1368 } 1369 1370 /* 1371 * Search for not compatible vmas. 1372 */ 1373 found = false; 1374 basic_ioctls = false; 1375 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1376 cond_resched(); 1377 1378 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1379 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1380 1381 /* check not compatible vmas */ 1382 ret = -EINVAL; 1383 if (!vma_can_userfault(cur)) 1384 goto out_unlock; 1385 1386 /* 1387 * UFFDIO_COPY will fill file holes even without 1388 * PROT_WRITE. This check enforces that if this is a 1389 * MAP_SHARED, the process has write permission to the backing 1390 * file. If VM_MAYWRITE is set it also enforces that on a 1391 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1392 * F_WRITE_SEAL can be taken until the vma is destroyed. 1393 */ 1394 ret = -EPERM; 1395 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1396 goto out_unlock; 1397 1398 /* 1399 * If this vma contains ending address, and huge pages 1400 * check alignment. 1401 */ 1402 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1403 end > cur->vm_start) { 1404 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1405 1406 ret = -EINVAL; 1407 1408 if (end & (vma_hpagesize - 1)) 1409 goto out_unlock; 1410 } 1411 1412 /* 1413 * Check that this vma isn't already owned by a 1414 * different userfaultfd. We can't allow more than one 1415 * userfaultfd to own a single vma simultaneously or we 1416 * wouldn't know which one to deliver the userfaults to. 1417 */ 1418 ret = -EBUSY; 1419 if (cur->vm_userfaultfd_ctx.ctx && 1420 cur->vm_userfaultfd_ctx.ctx != ctx) 1421 goto out_unlock; 1422 1423 /* 1424 * Note vmas containing huge pages 1425 */ 1426 if (is_vm_hugetlb_page(cur)) 1427 basic_ioctls = true; 1428 1429 found = true; 1430 } 1431 BUG_ON(!found); 1432 1433 if (vma->vm_start < start) 1434 prev = vma; 1435 1436 ret = 0; 1437 do { 1438 cond_resched(); 1439 1440 BUG_ON(!vma_can_userfault(vma)); 1441 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1442 vma->vm_userfaultfd_ctx.ctx != ctx); 1443 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1444 1445 /* 1446 * Nothing to do: this vma is already registered into this 1447 * userfaultfd and with the right tracking mode too. 1448 */ 1449 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1450 (vma->vm_flags & vm_flags) == vm_flags) 1451 goto skip; 1452 1453 if (vma->vm_start > start) 1454 start = vma->vm_start; 1455 vma_end = min(end, vma->vm_end); 1456 1457 new_flags = (vma->vm_flags & 1458 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; 1459 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1460 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1461 vma_policy(vma), 1462 ((struct vm_userfaultfd_ctx){ ctx })); 1463 if (prev) { 1464 vma = prev; 1465 goto next; 1466 } 1467 if (vma->vm_start < start) { 1468 ret = split_vma(mm, vma, start, 1); 1469 if (ret) 1470 break; 1471 } 1472 if (vma->vm_end > end) { 1473 ret = split_vma(mm, vma, end, 0); 1474 if (ret) 1475 break; 1476 } 1477 next: 1478 /* 1479 * In the vma_merge() successful mprotect-like case 8: 1480 * the next vma was merged into the current one and 1481 * the current one has not been updated yet. 1482 */ 1483 vma->vm_flags = new_flags; 1484 vma->vm_userfaultfd_ctx.ctx = ctx; 1485 1486 skip: 1487 prev = vma; 1488 start = vma->vm_end; 1489 vma = vma->vm_next; 1490 } while (vma && vma->vm_start < end); 1491 out_unlock: 1492 up_write(&mm->mmap_sem); 1493 mmput(mm); 1494 if (!ret) { 1495 /* 1496 * Now that we scanned all vmas we can already tell 1497 * userland which ioctls methods are guaranteed to 1498 * succeed on this range. 1499 */ 1500 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1501 UFFD_API_RANGE_IOCTLS, 1502 &user_uffdio_register->ioctls)) 1503 ret = -EFAULT; 1504 } 1505 out: 1506 return ret; 1507 } 1508 1509 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1510 unsigned long arg) 1511 { 1512 struct mm_struct *mm = ctx->mm; 1513 struct vm_area_struct *vma, *prev, *cur; 1514 int ret; 1515 struct uffdio_range uffdio_unregister; 1516 unsigned long new_flags; 1517 bool found; 1518 unsigned long start, end, vma_end; 1519 const void __user *buf = (void __user *)arg; 1520 1521 ret = -EFAULT; 1522 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1523 goto out; 1524 1525 ret = validate_range(mm, &uffdio_unregister.start, 1526 uffdio_unregister.len); 1527 if (ret) 1528 goto out; 1529 1530 start = uffdio_unregister.start; 1531 end = start + uffdio_unregister.len; 1532 1533 ret = -ENOMEM; 1534 if (!mmget_not_zero(mm)) 1535 goto out; 1536 1537 down_write(&mm->mmap_sem); 1538 if (!mmget_still_valid(mm)) 1539 goto out_unlock; 1540 vma = find_vma_prev(mm, start, &prev); 1541 if (!vma) 1542 goto out_unlock; 1543 1544 /* check that there's at least one vma in the range */ 1545 ret = -EINVAL; 1546 if (vma->vm_start >= end) 1547 goto out_unlock; 1548 1549 /* 1550 * If the first vma contains huge pages, make sure start address 1551 * is aligned to huge page size. 1552 */ 1553 if (is_vm_hugetlb_page(vma)) { 1554 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1555 1556 if (start & (vma_hpagesize - 1)) 1557 goto out_unlock; 1558 } 1559 1560 /* 1561 * Search for not compatible vmas. 1562 */ 1563 found = false; 1564 ret = -EINVAL; 1565 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1566 cond_resched(); 1567 1568 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1569 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1570 1571 /* 1572 * Check not compatible vmas, not strictly required 1573 * here as not compatible vmas cannot have an 1574 * userfaultfd_ctx registered on them, but this 1575 * provides for more strict behavior to notice 1576 * unregistration errors. 1577 */ 1578 if (!vma_can_userfault(cur)) 1579 goto out_unlock; 1580 1581 found = true; 1582 } 1583 BUG_ON(!found); 1584 1585 if (vma->vm_start < start) 1586 prev = vma; 1587 1588 ret = 0; 1589 do { 1590 cond_resched(); 1591 1592 BUG_ON(!vma_can_userfault(vma)); 1593 1594 /* 1595 * Nothing to do: this vma is already registered into this 1596 * userfaultfd and with the right tracking mode too. 1597 */ 1598 if (!vma->vm_userfaultfd_ctx.ctx) 1599 goto skip; 1600 1601 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1602 1603 if (vma->vm_start > start) 1604 start = vma->vm_start; 1605 vma_end = min(end, vma->vm_end); 1606 1607 if (userfaultfd_missing(vma)) { 1608 /* 1609 * Wake any concurrent pending userfault while 1610 * we unregister, so they will not hang 1611 * permanently and it avoids userland to call 1612 * UFFDIO_WAKE explicitly. 1613 */ 1614 struct userfaultfd_wake_range range; 1615 range.start = start; 1616 range.len = vma_end - start; 1617 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1618 } 1619 1620 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1621 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1622 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1623 vma_policy(vma), 1624 NULL_VM_UFFD_CTX); 1625 if (prev) { 1626 vma = prev; 1627 goto next; 1628 } 1629 if (vma->vm_start < start) { 1630 ret = split_vma(mm, vma, start, 1); 1631 if (ret) 1632 break; 1633 } 1634 if (vma->vm_end > end) { 1635 ret = split_vma(mm, vma, end, 0); 1636 if (ret) 1637 break; 1638 } 1639 next: 1640 /* 1641 * In the vma_merge() successful mprotect-like case 8: 1642 * the next vma was merged into the current one and 1643 * the current one has not been updated yet. 1644 */ 1645 vma->vm_flags = new_flags; 1646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1647 1648 skip: 1649 prev = vma; 1650 start = vma->vm_end; 1651 vma = vma->vm_next; 1652 } while (vma && vma->vm_start < end); 1653 out_unlock: 1654 up_write(&mm->mmap_sem); 1655 mmput(mm); 1656 out: 1657 return ret; 1658 } 1659 1660 /* 1661 * userfaultfd_wake may be used in combination with the 1662 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1663 */ 1664 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1665 unsigned long arg) 1666 { 1667 int ret; 1668 struct uffdio_range uffdio_wake; 1669 struct userfaultfd_wake_range range; 1670 const void __user *buf = (void __user *)arg; 1671 1672 ret = -EFAULT; 1673 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1674 goto out; 1675 1676 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); 1677 if (ret) 1678 goto out; 1679 1680 range.start = uffdio_wake.start; 1681 range.len = uffdio_wake.len; 1682 1683 /* 1684 * len == 0 means wake all and we don't want to wake all here, 1685 * so check it again to be sure. 1686 */ 1687 VM_BUG_ON(!range.len); 1688 1689 wake_userfault(ctx, &range); 1690 ret = 0; 1691 1692 out: 1693 return ret; 1694 } 1695 1696 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1697 unsigned long arg) 1698 { 1699 __s64 ret; 1700 struct uffdio_copy uffdio_copy; 1701 struct uffdio_copy __user *user_uffdio_copy; 1702 struct userfaultfd_wake_range range; 1703 1704 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1705 1706 ret = -EAGAIN; 1707 if (READ_ONCE(ctx->mmap_changing)) 1708 goto out; 1709 1710 ret = -EFAULT; 1711 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1712 /* don't copy "copy" last field */ 1713 sizeof(uffdio_copy)-sizeof(__s64))) 1714 goto out; 1715 1716 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); 1717 if (ret) 1718 goto out; 1719 /* 1720 * double check for wraparound just in case. copy_from_user() 1721 * will later check uffdio_copy.src + uffdio_copy.len to fit 1722 * in the userland range. 1723 */ 1724 ret = -EINVAL; 1725 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1726 goto out; 1727 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1728 goto out; 1729 if (mmget_not_zero(ctx->mm)) { 1730 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1731 uffdio_copy.len, &ctx->mmap_changing); 1732 mmput(ctx->mm); 1733 } else { 1734 return -ESRCH; 1735 } 1736 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1737 return -EFAULT; 1738 if (ret < 0) 1739 goto out; 1740 BUG_ON(!ret); 1741 /* len == 0 would wake all */ 1742 range.len = ret; 1743 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1744 range.start = uffdio_copy.dst; 1745 wake_userfault(ctx, &range); 1746 } 1747 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1748 out: 1749 return ret; 1750 } 1751 1752 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1753 unsigned long arg) 1754 { 1755 __s64 ret; 1756 struct uffdio_zeropage uffdio_zeropage; 1757 struct uffdio_zeropage __user *user_uffdio_zeropage; 1758 struct userfaultfd_wake_range range; 1759 1760 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1761 1762 ret = -EAGAIN; 1763 if (READ_ONCE(ctx->mmap_changing)) 1764 goto out; 1765 1766 ret = -EFAULT; 1767 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1768 /* don't copy "zeropage" last field */ 1769 sizeof(uffdio_zeropage)-sizeof(__s64))) 1770 goto out; 1771 1772 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, 1773 uffdio_zeropage.range.len); 1774 if (ret) 1775 goto out; 1776 ret = -EINVAL; 1777 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1778 goto out; 1779 1780 if (mmget_not_zero(ctx->mm)) { 1781 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1782 uffdio_zeropage.range.len, 1783 &ctx->mmap_changing); 1784 mmput(ctx->mm); 1785 } else { 1786 return -ESRCH; 1787 } 1788 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1789 return -EFAULT; 1790 if (ret < 0) 1791 goto out; 1792 /* len == 0 would wake all */ 1793 BUG_ON(!ret); 1794 range.len = ret; 1795 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1796 range.start = uffdio_zeropage.range.start; 1797 wake_userfault(ctx, &range); 1798 } 1799 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1800 out: 1801 return ret; 1802 } 1803 1804 static inline unsigned int uffd_ctx_features(__u64 user_features) 1805 { 1806 /* 1807 * For the current set of features the bits just coincide 1808 */ 1809 return (unsigned int)user_features; 1810 } 1811 1812 /* 1813 * userland asks for a certain API version and we return which bits 1814 * and ioctl commands are implemented in this kernel for such API 1815 * version or -EINVAL if unknown. 1816 */ 1817 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1818 unsigned long arg) 1819 { 1820 struct uffdio_api uffdio_api; 1821 void __user *buf = (void __user *)arg; 1822 int ret; 1823 __u64 features; 1824 1825 ret = -EINVAL; 1826 if (ctx->state != UFFD_STATE_WAIT_API) 1827 goto out; 1828 ret = -EFAULT; 1829 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1830 goto out; 1831 features = uffdio_api.features; 1832 ret = -EINVAL; 1833 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1834 goto err_out; 1835 ret = -EPERM; 1836 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1837 goto err_out; 1838 /* report all available features and ioctls to userland */ 1839 uffdio_api.features = UFFD_API_FEATURES; 1840 uffdio_api.ioctls = UFFD_API_IOCTLS; 1841 ret = -EFAULT; 1842 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1843 goto out; 1844 ctx->state = UFFD_STATE_RUNNING; 1845 /* only enable the requested features for this uffd context */ 1846 ctx->features = uffd_ctx_features(features); 1847 ret = 0; 1848 out: 1849 return ret; 1850 err_out: 1851 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1852 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1853 ret = -EFAULT; 1854 goto out; 1855 } 1856 1857 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1858 unsigned long arg) 1859 { 1860 int ret = -EINVAL; 1861 struct userfaultfd_ctx *ctx = file->private_data; 1862 1863 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1864 return -EINVAL; 1865 1866 switch(cmd) { 1867 case UFFDIO_API: 1868 ret = userfaultfd_api(ctx, arg); 1869 break; 1870 case UFFDIO_REGISTER: 1871 ret = userfaultfd_register(ctx, arg); 1872 break; 1873 case UFFDIO_UNREGISTER: 1874 ret = userfaultfd_unregister(ctx, arg); 1875 break; 1876 case UFFDIO_WAKE: 1877 ret = userfaultfd_wake(ctx, arg); 1878 break; 1879 case UFFDIO_COPY: 1880 ret = userfaultfd_copy(ctx, arg); 1881 break; 1882 case UFFDIO_ZEROPAGE: 1883 ret = userfaultfd_zeropage(ctx, arg); 1884 break; 1885 } 1886 return ret; 1887 } 1888 1889 #ifdef CONFIG_PROC_FS 1890 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1891 { 1892 struct userfaultfd_ctx *ctx = f->private_data; 1893 wait_queue_entry_t *wq; 1894 unsigned long pending = 0, total = 0; 1895 1896 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1897 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1898 pending++; 1899 total++; 1900 } 1901 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1902 total++; 1903 } 1904 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1905 1906 /* 1907 * If more protocols will be added, there will be all shown 1908 * separated by a space. Like this: 1909 * protocols: aa:... bb:... 1910 */ 1911 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1912 pending, total, UFFD_API, ctx->features, 1913 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1914 } 1915 #endif 1916 1917 static const struct file_operations userfaultfd_fops = { 1918 #ifdef CONFIG_PROC_FS 1919 .show_fdinfo = userfaultfd_show_fdinfo, 1920 #endif 1921 .release = userfaultfd_release, 1922 .poll = userfaultfd_poll, 1923 .read = userfaultfd_read, 1924 .unlocked_ioctl = userfaultfd_ioctl, 1925 .compat_ioctl = compat_ptr_ioctl, 1926 .llseek = noop_llseek, 1927 }; 1928 1929 static void init_once_userfaultfd_ctx(void *mem) 1930 { 1931 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1932 1933 init_waitqueue_head(&ctx->fault_pending_wqh); 1934 init_waitqueue_head(&ctx->fault_wqh); 1935 init_waitqueue_head(&ctx->event_wqh); 1936 init_waitqueue_head(&ctx->fd_wqh); 1937 seqcount_init(&ctx->refile_seq); 1938 } 1939 1940 SYSCALL_DEFINE1(userfaultfd, int, flags) 1941 { 1942 struct userfaultfd_ctx *ctx; 1943 int fd; 1944 1945 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) 1946 return -EPERM; 1947 1948 BUG_ON(!current->mm); 1949 1950 /* Check the UFFD_* constants for consistency. */ 1951 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1952 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1953 1954 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1955 return -EINVAL; 1956 1957 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1958 if (!ctx) 1959 return -ENOMEM; 1960 1961 refcount_set(&ctx->refcount, 1); 1962 ctx->flags = flags; 1963 ctx->features = 0; 1964 ctx->state = UFFD_STATE_WAIT_API; 1965 ctx->released = false; 1966 ctx->mmap_changing = false; 1967 ctx->mm = current->mm; 1968 /* prevent the mm struct to be freed */ 1969 mmgrab(ctx->mm); 1970 1971 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1972 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1973 if (fd < 0) { 1974 mmdrop(ctx->mm); 1975 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1976 } 1977 return fd; 1978 } 1979 1980 static int __init userfaultfd_init(void) 1981 { 1982 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1983 sizeof(struct userfaultfd_ctx), 1984 0, 1985 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1986 init_once_userfaultfd_ctx); 1987 return 0; 1988 } 1989 __initcall(userfaultfd_init); 1990