xref: /linux/fs/userfaultfd.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
35 
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
37 
38 #ifdef CONFIG_SYSCTL
39 static struct ctl_table vm_userfaultfd_table[] = {
40 	{
41 		.procname	= "unprivileged_userfaultfd",
42 		.data		= &sysctl_unprivileged_userfaultfd,
43 		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
44 		.mode		= 0644,
45 		.proc_handler	= proc_dointvec_minmax,
46 		.extra1		= SYSCTL_ZERO,
47 		.extra2		= SYSCTL_ONE,
48 	},
49 };
50 #endif
51 
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53 
54 struct userfaultfd_fork_ctx {
55 	struct userfaultfd_ctx *orig;
56 	struct userfaultfd_ctx *new;
57 	struct list_head list;
58 };
59 
60 struct userfaultfd_unmap_ctx {
61 	struct userfaultfd_ctx *ctx;
62 	unsigned long start;
63 	unsigned long end;
64 	struct list_head list;
65 };
66 
67 struct userfaultfd_wait_queue {
68 	struct uffd_msg msg;
69 	wait_queue_entry_t wq;
70 	struct userfaultfd_ctx *ctx;
71 	bool waken;
72 };
73 
74 struct userfaultfd_wake_range {
75 	unsigned long start;
76 	unsigned long len;
77 };
78 
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
81 
82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83 {
84 	return ctx->features & UFFD_FEATURE_INITIALIZED;
85 }
86 
87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88 {
89 	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
90 }
91 
92 /*
93  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
94  * meaningful when userfaultfd_wp()==true on the vma and when it's
95  * anonymous.
96  */
97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98 {
99 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
100 
101 	if (!ctx)
102 		return false;
103 
104 	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
105 }
106 
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 				     int wake_flags, void *key)
109 {
110 	struct userfaultfd_wake_range *range = key;
111 	int ret;
112 	struct userfaultfd_wait_queue *uwq;
113 	unsigned long start, len;
114 
115 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 	ret = 0;
117 	/* len == 0 means wake all */
118 	start = range->start;
119 	len = range->len;
120 	if (len && (start > uwq->msg.arg.pagefault.address ||
121 		    start + len <= uwq->msg.arg.pagefault.address))
122 		goto out;
123 	WRITE_ONCE(uwq->waken, true);
124 	/*
125 	 * The Program-Order guarantees provided by the scheduler
126 	 * ensure uwq->waken is visible before the task is woken.
127 	 */
128 	ret = wake_up_state(wq->private, mode);
129 	if (ret) {
130 		/*
131 		 * Wake only once, autoremove behavior.
132 		 *
133 		 * After the effect of list_del_init is visible to the other
134 		 * CPUs, the waitqueue may disappear from under us, see the
135 		 * !list_empty_careful() in handle_userfault().
136 		 *
137 		 * try_to_wake_up() has an implicit smp_mb(), and the
138 		 * wq->private is read before calling the extern function
139 		 * "wake_up_state" (which in turns calls try_to_wake_up).
140 		 */
141 		list_del_init(&wq->entry);
142 	}
143 out:
144 	return ret;
145 }
146 
147 /**
148  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to the userfaultfd context.
151  */
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154 	refcount_inc(&ctx->refcount);
155 }
156 
157 /**
158  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159  * context.
160  * @ctx: [in] Pointer to userfaultfd context.
161  *
162  * The userfaultfd context reference must have been previously acquired either
163  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164  */
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167 	if (refcount_dec_and_test(&ctx->refcount)) {
168 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 		mmdrop(ctx->mm);
177 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178 	}
179 }
180 
181 static inline void msg_init(struct uffd_msg *msg)
182 {
183 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 	/*
185 	 * Must use memset to zero out the paddings or kernel data is
186 	 * leaked to userland.
187 	 */
188 	memset(msg, 0, sizeof(struct uffd_msg));
189 }
190 
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 					    unsigned long real_address,
193 					    unsigned int flags,
194 					    unsigned long reason,
195 					    unsigned int features)
196 {
197 	struct uffd_msg msg;
198 
199 	msg_init(&msg);
200 	msg.event = UFFD_EVENT_PAGEFAULT;
201 
202 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
203 				    real_address : address;
204 
205 	/*
206 	 * These flags indicate why the userfault occurred:
207 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 	 * - Neither of these flags being set indicates a MISSING fault.
210 	 *
211 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 	 * fault. Otherwise, it was a read fault.
213 	 */
214 	if (flags & FAULT_FLAG_WRITE)
215 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
216 	if (reason & VM_UFFD_WP)
217 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 	if (reason & VM_UFFD_MINOR)
219 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
220 	if (features & UFFD_FEATURE_THREAD_ID)
221 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
222 	return msg;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE
226 /*
227  * Same functionality as userfaultfd_must_wait below with modifications for
228  * hugepmd ranges.
229  */
230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
231 					      struct vm_fault *vmf,
232 					      unsigned long reason)
233 {
234 	struct vm_area_struct *vma = vmf->vma;
235 	pte_t *ptep, pte;
236 	bool ret = true;
237 
238 	assert_fault_locked(vmf);
239 
240 	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
241 	if (!ptep)
242 		goto out;
243 
244 	ret = false;
245 	pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep);
246 
247 	/*
248 	 * Lockless access: we're in a wait_event so it's ok if it
249 	 * changes under us.  PTE markers should be handled the same as none
250 	 * ptes here.
251 	 */
252 	if (huge_pte_none_mostly(pte))
253 		ret = true;
254 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255 		ret = true;
256 out:
257 	return ret;
258 }
259 #else
260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261 					      struct vm_fault *vmf,
262 					      unsigned long reason)
263 {
264 	return false;	/* should never get here */
265 }
266 #endif /* CONFIG_HUGETLB_PAGE */
267 
268 /*
269  * Verify the pagetables are still not ok after having reigstered into
270  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
271  * userfault that has already been resolved, if userfaultfd_read_iter and
272  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
273  * threads.
274  */
275 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
276 					 struct vm_fault *vmf,
277 					 unsigned long reason)
278 {
279 	struct mm_struct *mm = ctx->mm;
280 	unsigned long address = vmf->address;
281 	pgd_t *pgd;
282 	p4d_t *p4d;
283 	pud_t *pud;
284 	pmd_t *pmd, _pmd;
285 	pte_t *pte;
286 	pte_t ptent;
287 	bool ret = true;
288 
289 	assert_fault_locked(vmf);
290 
291 	pgd = pgd_offset(mm, address);
292 	if (!pgd_present(*pgd))
293 		goto out;
294 	p4d = p4d_offset(pgd, address);
295 	if (!p4d_present(*p4d))
296 		goto out;
297 	pud = pud_offset(p4d, address);
298 	if (!pud_present(*pud))
299 		goto out;
300 	pmd = pmd_offset(pud, address);
301 again:
302 	_pmd = pmdp_get_lockless(pmd);
303 	if (pmd_none(_pmd))
304 		goto out;
305 
306 	ret = false;
307 	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
308 		goto out;
309 
310 	if (pmd_trans_huge(_pmd)) {
311 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
312 			ret = true;
313 		goto out;
314 	}
315 
316 	pte = pte_offset_map(pmd, address);
317 	if (!pte) {
318 		ret = true;
319 		goto again;
320 	}
321 	/*
322 	 * Lockless access: we're in a wait_event so it's ok if it
323 	 * changes under us.  PTE markers should be handled the same as none
324 	 * ptes here.
325 	 */
326 	ptent = ptep_get(pte);
327 	if (pte_none_mostly(ptent))
328 		ret = true;
329 	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
330 		ret = true;
331 	pte_unmap(pte);
332 
333 out:
334 	return ret;
335 }
336 
337 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
338 {
339 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
340 		return TASK_INTERRUPTIBLE;
341 
342 	if (flags & FAULT_FLAG_KILLABLE)
343 		return TASK_KILLABLE;
344 
345 	return TASK_UNINTERRUPTIBLE;
346 }
347 
348 /*
349  * The locking rules involved in returning VM_FAULT_RETRY depending on
350  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
351  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
352  * recommendation in __lock_page_or_retry is not an understatement.
353  *
354  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
355  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
356  * not set.
357  *
358  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
359  * set, VM_FAULT_RETRY can still be returned if and only if there are
360  * fatal_signal_pending()s, and the mmap_lock must be released before
361  * returning it.
362  */
363 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
364 {
365 	struct vm_area_struct *vma = vmf->vma;
366 	struct mm_struct *mm = vma->vm_mm;
367 	struct userfaultfd_ctx *ctx;
368 	struct userfaultfd_wait_queue uwq;
369 	vm_fault_t ret = VM_FAULT_SIGBUS;
370 	bool must_wait;
371 	unsigned int blocking_state;
372 
373 	/*
374 	 * We don't do userfault handling for the final child pid update
375 	 * and when coredumping (faults triggered by get_dump_page()).
376 	 */
377 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
378 		goto out;
379 
380 	assert_fault_locked(vmf);
381 
382 	ctx = vma->vm_userfaultfd_ctx.ctx;
383 	if (!ctx)
384 		goto out;
385 
386 	BUG_ON(ctx->mm != mm);
387 
388 	/* Any unrecognized flag is a bug. */
389 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
390 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
391 	VM_BUG_ON(!reason || (reason & (reason - 1)));
392 
393 	if (ctx->features & UFFD_FEATURE_SIGBUS)
394 		goto out;
395 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
396 		goto out;
397 
398 	/*
399 	 * If it's already released don't get it. This avoids to loop
400 	 * in __get_user_pages if userfaultfd_release waits on the
401 	 * caller of handle_userfault to release the mmap_lock.
402 	 */
403 	if (unlikely(READ_ONCE(ctx->released))) {
404 		/*
405 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
406 		 * cooperative manager can close the uffd after the
407 		 * last UFFDIO_COPY, without risking to trigger an
408 		 * involuntary SIGBUS if the process was starting the
409 		 * userfaultfd while the userfaultfd was still armed
410 		 * (but after the last UFFDIO_COPY). If the uffd
411 		 * wasn't already closed when the userfault reached
412 		 * this point, that would normally be solved by
413 		 * userfaultfd_must_wait returning 'false'.
414 		 *
415 		 * If we were to return VM_FAULT_SIGBUS here, the non
416 		 * cooperative manager would be instead forced to
417 		 * always call UFFDIO_UNREGISTER before it can safely
418 		 * close the uffd.
419 		 */
420 		ret = VM_FAULT_NOPAGE;
421 		goto out;
422 	}
423 
424 	/*
425 	 * Check that we can return VM_FAULT_RETRY.
426 	 *
427 	 * NOTE: it should become possible to return VM_FAULT_RETRY
428 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
429 	 * -EBUSY failures, if the userfaultfd is to be extended for
430 	 * VM_UFFD_WP tracking and we intend to arm the userfault
431 	 * without first stopping userland access to the memory. For
432 	 * VM_UFFD_MISSING userfaults this is enough for now.
433 	 */
434 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
435 		/*
436 		 * Validate the invariant that nowait must allow retry
437 		 * to be sure not to return SIGBUS erroneously on
438 		 * nowait invocations.
439 		 */
440 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
441 #ifdef CONFIG_DEBUG_VM
442 		if (printk_ratelimit()) {
443 			printk(KERN_WARNING
444 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
445 			       vmf->flags);
446 			dump_stack();
447 		}
448 #endif
449 		goto out;
450 	}
451 
452 	/*
453 	 * Handle nowait, not much to do other than tell it to retry
454 	 * and wait.
455 	 */
456 	ret = VM_FAULT_RETRY;
457 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
458 		goto out;
459 
460 	/* take the reference before dropping the mmap_lock */
461 	userfaultfd_ctx_get(ctx);
462 
463 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
464 	uwq.wq.private = current;
465 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
466 				reason, ctx->features);
467 	uwq.ctx = ctx;
468 	uwq.waken = false;
469 
470 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
471 
472         /*
473          * Take the vma lock now, in order to safely call
474          * userfaultfd_huge_must_wait() later. Since acquiring the
475          * (sleepable) vma lock can modify the current task state, that
476          * must be before explicitly calling set_current_state().
477          */
478 	if (is_vm_hugetlb_page(vma))
479 		hugetlb_vma_lock_read(vma);
480 
481 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
482 	/*
483 	 * After the __add_wait_queue the uwq is visible to userland
484 	 * through poll/read().
485 	 */
486 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
487 	/*
488 	 * The smp_mb() after __set_current_state prevents the reads
489 	 * following the spin_unlock to happen before the list_add in
490 	 * __add_wait_queue.
491 	 */
492 	set_current_state(blocking_state);
493 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
494 
495 	if (!is_vm_hugetlb_page(vma))
496 		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
497 	else
498 		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
499 	if (is_vm_hugetlb_page(vma))
500 		hugetlb_vma_unlock_read(vma);
501 	release_fault_lock(vmf);
502 
503 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
504 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
505 		schedule();
506 	}
507 
508 	__set_current_state(TASK_RUNNING);
509 
510 	/*
511 	 * Here we race with the list_del; list_add in
512 	 * userfaultfd_ctx_read(), however because we don't ever run
513 	 * list_del_init() to refile across the two lists, the prev
514 	 * and next pointers will never point to self. list_add also
515 	 * would never let any of the two pointers to point to
516 	 * self. So list_empty_careful won't risk to see both pointers
517 	 * pointing to self at any time during the list refile. The
518 	 * only case where list_del_init() is called is the full
519 	 * removal in the wake function and there we don't re-list_add
520 	 * and it's fine not to block on the spinlock. The uwq on this
521 	 * kernel stack can be released after the list_del_init.
522 	 */
523 	if (!list_empty_careful(&uwq.wq.entry)) {
524 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
525 		/*
526 		 * No need of list_del_init(), the uwq on the stack
527 		 * will be freed shortly anyway.
528 		 */
529 		list_del(&uwq.wq.entry);
530 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
531 	}
532 
533 	/*
534 	 * ctx may go away after this if the userfault pseudo fd is
535 	 * already released.
536 	 */
537 	userfaultfd_ctx_put(ctx);
538 
539 out:
540 	return ret;
541 }
542 
543 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
544 					      struct userfaultfd_wait_queue *ewq)
545 {
546 	struct userfaultfd_ctx *release_new_ctx;
547 
548 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
549 		goto out;
550 
551 	ewq->ctx = ctx;
552 	init_waitqueue_entry(&ewq->wq, current);
553 	release_new_ctx = NULL;
554 
555 	spin_lock_irq(&ctx->event_wqh.lock);
556 	/*
557 	 * After the __add_wait_queue the uwq is visible to userland
558 	 * through poll/read().
559 	 */
560 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
561 	for (;;) {
562 		set_current_state(TASK_KILLABLE);
563 		if (ewq->msg.event == 0)
564 			break;
565 		if (READ_ONCE(ctx->released) ||
566 		    fatal_signal_pending(current)) {
567 			/*
568 			 * &ewq->wq may be queued in fork_event, but
569 			 * __remove_wait_queue ignores the head
570 			 * parameter. It would be a problem if it
571 			 * didn't.
572 			 */
573 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
574 			if (ewq->msg.event == UFFD_EVENT_FORK) {
575 				struct userfaultfd_ctx *new;
576 
577 				new = (struct userfaultfd_ctx *)
578 					(unsigned long)
579 					ewq->msg.arg.reserved.reserved1;
580 				release_new_ctx = new;
581 			}
582 			break;
583 		}
584 
585 		spin_unlock_irq(&ctx->event_wqh.lock);
586 
587 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
588 		schedule();
589 
590 		spin_lock_irq(&ctx->event_wqh.lock);
591 	}
592 	__set_current_state(TASK_RUNNING);
593 	spin_unlock_irq(&ctx->event_wqh.lock);
594 
595 	if (release_new_ctx) {
596 		userfaultfd_release_new(release_new_ctx);
597 		userfaultfd_ctx_put(release_new_ctx);
598 	}
599 
600 	/*
601 	 * ctx may go away after this if the userfault pseudo fd is
602 	 * already released.
603 	 */
604 out:
605 	atomic_dec(&ctx->mmap_changing);
606 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
607 	userfaultfd_ctx_put(ctx);
608 }
609 
610 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
611 				       struct userfaultfd_wait_queue *ewq)
612 {
613 	ewq->msg.event = 0;
614 	wake_up_locked(&ctx->event_wqh);
615 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
616 }
617 
618 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
619 {
620 	struct userfaultfd_ctx *ctx = NULL, *octx;
621 	struct userfaultfd_fork_ctx *fctx;
622 
623 	octx = vma->vm_userfaultfd_ctx.ctx;
624 	if (!octx)
625 		return 0;
626 
627 	if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
628 		userfaultfd_reset_ctx(vma);
629 		return 0;
630 	}
631 
632 	list_for_each_entry(fctx, fcs, list)
633 		if (fctx->orig == octx) {
634 			ctx = fctx->new;
635 			break;
636 		}
637 
638 	if (!ctx) {
639 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
640 		if (!fctx)
641 			return -ENOMEM;
642 
643 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
644 		if (!ctx) {
645 			kfree(fctx);
646 			return -ENOMEM;
647 		}
648 
649 		refcount_set(&ctx->refcount, 1);
650 		ctx->flags = octx->flags;
651 		ctx->features = octx->features;
652 		ctx->released = false;
653 		init_rwsem(&ctx->map_changing_lock);
654 		atomic_set(&ctx->mmap_changing, 0);
655 		ctx->mm = vma->vm_mm;
656 		mmgrab(ctx->mm);
657 
658 		userfaultfd_ctx_get(octx);
659 		down_write(&octx->map_changing_lock);
660 		atomic_inc(&octx->mmap_changing);
661 		up_write(&octx->map_changing_lock);
662 		fctx->orig = octx;
663 		fctx->new = ctx;
664 		list_add_tail(&fctx->list, fcs);
665 	}
666 
667 	vma->vm_userfaultfd_ctx.ctx = ctx;
668 	return 0;
669 }
670 
671 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
672 {
673 	struct userfaultfd_ctx *ctx = fctx->orig;
674 	struct userfaultfd_wait_queue ewq;
675 
676 	msg_init(&ewq.msg);
677 
678 	ewq.msg.event = UFFD_EVENT_FORK;
679 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
680 
681 	userfaultfd_event_wait_completion(ctx, &ewq);
682 }
683 
684 void dup_userfaultfd_complete(struct list_head *fcs)
685 {
686 	struct userfaultfd_fork_ctx *fctx, *n;
687 
688 	list_for_each_entry_safe(fctx, n, fcs, list) {
689 		dup_fctx(fctx);
690 		list_del(&fctx->list);
691 		kfree(fctx);
692 	}
693 }
694 
695 void dup_userfaultfd_fail(struct list_head *fcs)
696 {
697 	struct userfaultfd_fork_ctx *fctx, *n;
698 
699 	/*
700 	 * An error has occurred on fork, we will tear memory down, but have
701 	 * allocated memory for fctx's and raised reference counts for both the
702 	 * original and child contexts (and on the mm for each as a result).
703 	 *
704 	 * These would ordinarily be taken care of by a user handling the event,
705 	 * but we are no longer doing so, so manually clean up here.
706 	 *
707 	 * mm tear down will take care of cleaning up VMA contexts.
708 	 */
709 	list_for_each_entry_safe(fctx, n, fcs, list) {
710 		struct userfaultfd_ctx *octx = fctx->orig;
711 		struct userfaultfd_ctx *ctx = fctx->new;
712 
713 		atomic_dec(&octx->mmap_changing);
714 		VM_BUG_ON(atomic_read(&octx->mmap_changing) < 0);
715 		userfaultfd_ctx_put(octx);
716 		userfaultfd_ctx_put(ctx);
717 
718 		list_del(&fctx->list);
719 		kfree(fctx);
720 	}
721 }
722 
723 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
724 			     struct vm_userfaultfd_ctx *vm_ctx)
725 {
726 	struct userfaultfd_ctx *ctx;
727 
728 	ctx = vma->vm_userfaultfd_ctx.ctx;
729 
730 	if (!ctx)
731 		return;
732 
733 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
734 		vm_ctx->ctx = ctx;
735 		userfaultfd_ctx_get(ctx);
736 		down_write(&ctx->map_changing_lock);
737 		atomic_inc(&ctx->mmap_changing);
738 		up_write(&ctx->map_changing_lock);
739 	} else {
740 		/* Drop uffd context if remap feature not enabled */
741 		userfaultfd_reset_ctx(vma);
742 	}
743 }
744 
745 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
746 				 unsigned long from, unsigned long to,
747 				 unsigned long len)
748 {
749 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
750 	struct userfaultfd_wait_queue ewq;
751 
752 	if (!ctx)
753 		return;
754 
755 	if (to & ~PAGE_MASK) {
756 		userfaultfd_ctx_put(ctx);
757 		return;
758 	}
759 
760 	msg_init(&ewq.msg);
761 
762 	ewq.msg.event = UFFD_EVENT_REMAP;
763 	ewq.msg.arg.remap.from = from;
764 	ewq.msg.arg.remap.to = to;
765 	ewq.msg.arg.remap.len = len;
766 
767 	userfaultfd_event_wait_completion(ctx, &ewq);
768 }
769 
770 bool userfaultfd_remove(struct vm_area_struct *vma,
771 			unsigned long start, unsigned long end)
772 {
773 	struct mm_struct *mm = vma->vm_mm;
774 	struct userfaultfd_ctx *ctx;
775 	struct userfaultfd_wait_queue ewq;
776 
777 	ctx = vma->vm_userfaultfd_ctx.ctx;
778 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
779 		return true;
780 
781 	userfaultfd_ctx_get(ctx);
782 	down_write(&ctx->map_changing_lock);
783 	atomic_inc(&ctx->mmap_changing);
784 	up_write(&ctx->map_changing_lock);
785 	mmap_read_unlock(mm);
786 
787 	msg_init(&ewq.msg);
788 
789 	ewq.msg.event = UFFD_EVENT_REMOVE;
790 	ewq.msg.arg.remove.start = start;
791 	ewq.msg.arg.remove.end = end;
792 
793 	userfaultfd_event_wait_completion(ctx, &ewq);
794 
795 	return false;
796 }
797 
798 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
799 			  unsigned long start, unsigned long end)
800 {
801 	struct userfaultfd_unmap_ctx *unmap_ctx;
802 
803 	list_for_each_entry(unmap_ctx, unmaps, list)
804 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
805 		    unmap_ctx->end == end)
806 			return true;
807 
808 	return false;
809 }
810 
811 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
812 			   unsigned long end, struct list_head *unmaps)
813 {
814 	struct userfaultfd_unmap_ctx *unmap_ctx;
815 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
816 
817 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
818 	    has_unmap_ctx(ctx, unmaps, start, end))
819 		return 0;
820 
821 	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
822 	if (!unmap_ctx)
823 		return -ENOMEM;
824 
825 	userfaultfd_ctx_get(ctx);
826 	down_write(&ctx->map_changing_lock);
827 	atomic_inc(&ctx->mmap_changing);
828 	up_write(&ctx->map_changing_lock);
829 	unmap_ctx->ctx = ctx;
830 	unmap_ctx->start = start;
831 	unmap_ctx->end = end;
832 	list_add_tail(&unmap_ctx->list, unmaps);
833 
834 	return 0;
835 }
836 
837 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
838 {
839 	struct userfaultfd_unmap_ctx *ctx, *n;
840 	struct userfaultfd_wait_queue ewq;
841 
842 	list_for_each_entry_safe(ctx, n, uf, list) {
843 		msg_init(&ewq.msg);
844 
845 		ewq.msg.event = UFFD_EVENT_UNMAP;
846 		ewq.msg.arg.remove.start = ctx->start;
847 		ewq.msg.arg.remove.end = ctx->end;
848 
849 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
850 
851 		list_del(&ctx->list);
852 		kfree(ctx);
853 	}
854 }
855 
856 static int userfaultfd_release(struct inode *inode, struct file *file)
857 {
858 	struct userfaultfd_ctx *ctx = file->private_data;
859 	struct mm_struct *mm = ctx->mm;
860 	/* len == 0 means wake all */
861 	struct userfaultfd_wake_range range = { .len = 0, };
862 
863 	WRITE_ONCE(ctx->released, true);
864 
865 	userfaultfd_release_all(mm, ctx);
866 
867 	/*
868 	 * After no new page faults can wait on this fault_*wqh, flush
869 	 * the last page faults that may have been already waiting on
870 	 * the fault_*wqh.
871 	 */
872 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
873 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
874 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
875 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
876 
877 	/* Flush pending events that may still wait on event_wqh */
878 	wake_up_all(&ctx->event_wqh);
879 
880 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
881 	userfaultfd_ctx_put(ctx);
882 	return 0;
883 }
884 
885 /* fault_pending_wqh.lock must be hold by the caller */
886 static inline struct userfaultfd_wait_queue *find_userfault_in(
887 		wait_queue_head_t *wqh)
888 {
889 	wait_queue_entry_t *wq;
890 	struct userfaultfd_wait_queue *uwq;
891 
892 	lockdep_assert_held(&wqh->lock);
893 
894 	uwq = NULL;
895 	if (!waitqueue_active(wqh))
896 		goto out;
897 	/* walk in reverse to provide FIFO behavior to read userfaults */
898 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
899 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
900 out:
901 	return uwq;
902 }
903 
904 static inline struct userfaultfd_wait_queue *find_userfault(
905 		struct userfaultfd_ctx *ctx)
906 {
907 	return find_userfault_in(&ctx->fault_pending_wqh);
908 }
909 
910 static inline struct userfaultfd_wait_queue *find_userfault_evt(
911 		struct userfaultfd_ctx *ctx)
912 {
913 	return find_userfault_in(&ctx->event_wqh);
914 }
915 
916 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
917 {
918 	struct userfaultfd_ctx *ctx = file->private_data;
919 	__poll_t ret;
920 
921 	poll_wait(file, &ctx->fd_wqh, wait);
922 
923 	if (!userfaultfd_is_initialized(ctx))
924 		return EPOLLERR;
925 
926 	/*
927 	 * poll() never guarantees that read won't block.
928 	 * userfaults can be waken before they're read().
929 	 */
930 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
931 		return EPOLLERR;
932 	/*
933 	 * lockless access to see if there are pending faults
934 	 * __pollwait last action is the add_wait_queue but
935 	 * the spin_unlock would allow the waitqueue_active to
936 	 * pass above the actual list_add inside
937 	 * add_wait_queue critical section. So use a full
938 	 * memory barrier to serialize the list_add write of
939 	 * add_wait_queue() with the waitqueue_active read
940 	 * below.
941 	 */
942 	ret = 0;
943 	smp_mb();
944 	if (waitqueue_active(&ctx->fault_pending_wqh))
945 		ret = EPOLLIN;
946 	else if (waitqueue_active(&ctx->event_wqh))
947 		ret = EPOLLIN;
948 
949 	return ret;
950 }
951 
952 static const struct file_operations userfaultfd_fops;
953 
954 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
955 				  struct inode *inode,
956 				  struct uffd_msg *msg)
957 {
958 	int fd;
959 
960 	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
961 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
962 	if (fd < 0)
963 		return fd;
964 
965 	msg->arg.reserved.reserved1 = 0;
966 	msg->arg.fork.ufd = fd;
967 	return 0;
968 }
969 
970 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
971 				    struct uffd_msg *msg, struct inode *inode)
972 {
973 	ssize_t ret;
974 	DECLARE_WAITQUEUE(wait, current);
975 	struct userfaultfd_wait_queue *uwq;
976 	/*
977 	 * Handling fork event requires sleeping operations, so
978 	 * we drop the event_wqh lock, then do these ops, then
979 	 * lock it back and wake up the waiter. While the lock is
980 	 * dropped the ewq may go away so we keep track of it
981 	 * carefully.
982 	 */
983 	LIST_HEAD(fork_event);
984 	struct userfaultfd_ctx *fork_nctx = NULL;
985 
986 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
987 	spin_lock_irq(&ctx->fd_wqh.lock);
988 	__add_wait_queue(&ctx->fd_wqh, &wait);
989 	for (;;) {
990 		set_current_state(TASK_INTERRUPTIBLE);
991 		spin_lock(&ctx->fault_pending_wqh.lock);
992 		uwq = find_userfault(ctx);
993 		if (uwq) {
994 			/*
995 			 * Use a seqcount to repeat the lockless check
996 			 * in wake_userfault() to avoid missing
997 			 * wakeups because during the refile both
998 			 * waitqueue could become empty if this is the
999 			 * only userfault.
1000 			 */
1001 			write_seqcount_begin(&ctx->refile_seq);
1002 
1003 			/*
1004 			 * The fault_pending_wqh.lock prevents the uwq
1005 			 * to disappear from under us.
1006 			 *
1007 			 * Refile this userfault from
1008 			 * fault_pending_wqh to fault_wqh, it's not
1009 			 * pending anymore after we read it.
1010 			 *
1011 			 * Use list_del() by hand (as
1012 			 * userfaultfd_wake_function also uses
1013 			 * list_del_init() by hand) to be sure nobody
1014 			 * changes __remove_wait_queue() to use
1015 			 * list_del_init() in turn breaking the
1016 			 * !list_empty_careful() check in
1017 			 * handle_userfault(). The uwq->wq.head list
1018 			 * must never be empty at any time during the
1019 			 * refile, or the waitqueue could disappear
1020 			 * from under us. The "wait_queue_head_t"
1021 			 * parameter of __remove_wait_queue() is unused
1022 			 * anyway.
1023 			 */
1024 			list_del(&uwq->wq.entry);
1025 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1026 
1027 			write_seqcount_end(&ctx->refile_seq);
1028 
1029 			/* careful to always initialize msg if ret == 0 */
1030 			*msg = uwq->msg;
1031 			spin_unlock(&ctx->fault_pending_wqh.lock);
1032 			ret = 0;
1033 			break;
1034 		}
1035 		spin_unlock(&ctx->fault_pending_wqh.lock);
1036 
1037 		spin_lock(&ctx->event_wqh.lock);
1038 		uwq = find_userfault_evt(ctx);
1039 		if (uwq) {
1040 			*msg = uwq->msg;
1041 
1042 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1043 				fork_nctx = (struct userfaultfd_ctx *)
1044 					(unsigned long)
1045 					uwq->msg.arg.reserved.reserved1;
1046 				list_move(&uwq->wq.entry, &fork_event);
1047 				/*
1048 				 * fork_nctx can be freed as soon as
1049 				 * we drop the lock, unless we take a
1050 				 * reference on it.
1051 				 */
1052 				userfaultfd_ctx_get(fork_nctx);
1053 				spin_unlock(&ctx->event_wqh.lock);
1054 				ret = 0;
1055 				break;
1056 			}
1057 
1058 			userfaultfd_event_complete(ctx, uwq);
1059 			spin_unlock(&ctx->event_wqh.lock);
1060 			ret = 0;
1061 			break;
1062 		}
1063 		spin_unlock(&ctx->event_wqh.lock);
1064 
1065 		if (signal_pending(current)) {
1066 			ret = -ERESTARTSYS;
1067 			break;
1068 		}
1069 		if (no_wait) {
1070 			ret = -EAGAIN;
1071 			break;
1072 		}
1073 		spin_unlock_irq(&ctx->fd_wqh.lock);
1074 		schedule();
1075 		spin_lock_irq(&ctx->fd_wqh.lock);
1076 	}
1077 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1078 	__set_current_state(TASK_RUNNING);
1079 	spin_unlock_irq(&ctx->fd_wqh.lock);
1080 
1081 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1082 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1083 		spin_lock_irq(&ctx->event_wqh.lock);
1084 		if (!list_empty(&fork_event)) {
1085 			/*
1086 			 * The fork thread didn't abort, so we can
1087 			 * drop the temporary refcount.
1088 			 */
1089 			userfaultfd_ctx_put(fork_nctx);
1090 
1091 			uwq = list_first_entry(&fork_event,
1092 					       typeof(*uwq),
1093 					       wq.entry);
1094 			/*
1095 			 * If fork_event list wasn't empty and in turn
1096 			 * the event wasn't already released by fork
1097 			 * (the event is allocated on fork kernel
1098 			 * stack), put the event back to its place in
1099 			 * the event_wq. fork_event head will be freed
1100 			 * as soon as we return so the event cannot
1101 			 * stay queued there no matter the current
1102 			 * "ret" value.
1103 			 */
1104 			list_del(&uwq->wq.entry);
1105 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1106 
1107 			/*
1108 			 * Leave the event in the waitqueue and report
1109 			 * error to userland if we failed to resolve
1110 			 * the userfault fork.
1111 			 */
1112 			if (likely(!ret))
1113 				userfaultfd_event_complete(ctx, uwq);
1114 		} else {
1115 			/*
1116 			 * Here the fork thread aborted and the
1117 			 * refcount from the fork thread on fork_nctx
1118 			 * has already been released. We still hold
1119 			 * the reference we took before releasing the
1120 			 * lock above. If resolve_userfault_fork
1121 			 * failed we've to drop it because the
1122 			 * fork_nctx has to be freed in such case. If
1123 			 * it succeeded we'll hold it because the new
1124 			 * uffd references it.
1125 			 */
1126 			if (ret)
1127 				userfaultfd_ctx_put(fork_nctx);
1128 		}
1129 		spin_unlock_irq(&ctx->event_wqh.lock);
1130 	}
1131 
1132 	return ret;
1133 }
1134 
1135 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1136 {
1137 	struct file *file = iocb->ki_filp;
1138 	struct userfaultfd_ctx *ctx = file->private_data;
1139 	ssize_t _ret, ret = 0;
1140 	struct uffd_msg msg;
1141 	struct inode *inode = file_inode(file);
1142 	bool no_wait;
1143 
1144 	if (!userfaultfd_is_initialized(ctx))
1145 		return -EINVAL;
1146 
1147 	no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1148 	for (;;) {
1149 		if (iov_iter_count(to) < sizeof(msg))
1150 			return ret ? ret : -EINVAL;
1151 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1152 		if (_ret < 0)
1153 			return ret ? ret : _ret;
1154 		_ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1155 		if (_ret)
1156 			return ret ? ret : -EFAULT;
1157 		ret += sizeof(msg);
1158 		/*
1159 		 * Allow to read more than one fault at time but only
1160 		 * block if waiting for the very first one.
1161 		 */
1162 		no_wait = true;
1163 	}
1164 }
1165 
1166 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1167 			     struct userfaultfd_wake_range *range)
1168 {
1169 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1170 	/* wake all in the range and autoremove */
1171 	if (waitqueue_active(&ctx->fault_pending_wqh))
1172 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1173 				     range);
1174 	if (waitqueue_active(&ctx->fault_wqh))
1175 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1176 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1177 }
1178 
1179 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1180 					   struct userfaultfd_wake_range *range)
1181 {
1182 	unsigned seq;
1183 	bool need_wakeup;
1184 
1185 	/*
1186 	 * To be sure waitqueue_active() is not reordered by the CPU
1187 	 * before the pagetable update, use an explicit SMP memory
1188 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1189 	 * have release semantics that can allow the
1190 	 * waitqueue_active() to be reordered before the pte update.
1191 	 */
1192 	smp_mb();
1193 
1194 	/*
1195 	 * Use waitqueue_active because it's very frequent to
1196 	 * change the address space atomically even if there are no
1197 	 * userfaults yet. So we take the spinlock only when we're
1198 	 * sure we've userfaults to wake.
1199 	 */
1200 	do {
1201 		seq = read_seqcount_begin(&ctx->refile_seq);
1202 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1203 			waitqueue_active(&ctx->fault_wqh);
1204 		cond_resched();
1205 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1206 	if (need_wakeup)
1207 		__wake_userfault(ctx, range);
1208 }
1209 
1210 static __always_inline int validate_unaligned_range(
1211 	struct mm_struct *mm, __u64 start, __u64 len)
1212 {
1213 	__u64 task_size = mm->task_size;
1214 
1215 	if (len & ~PAGE_MASK)
1216 		return -EINVAL;
1217 	if (!len)
1218 		return -EINVAL;
1219 	if (start < mmap_min_addr)
1220 		return -EINVAL;
1221 	if (start >= task_size)
1222 		return -EINVAL;
1223 	if (len > task_size - start)
1224 		return -EINVAL;
1225 	if (start + len <= start)
1226 		return -EINVAL;
1227 	return 0;
1228 }
1229 
1230 static __always_inline int validate_range(struct mm_struct *mm,
1231 					  __u64 start, __u64 len)
1232 {
1233 	if (start & ~PAGE_MASK)
1234 		return -EINVAL;
1235 
1236 	return validate_unaligned_range(mm, start, len);
1237 }
1238 
1239 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1240 				unsigned long arg)
1241 {
1242 	struct mm_struct *mm = ctx->mm;
1243 	struct vm_area_struct *vma, *cur;
1244 	int ret;
1245 	struct uffdio_register uffdio_register;
1246 	struct uffdio_register __user *user_uffdio_register;
1247 	unsigned long vm_flags;
1248 	bool found;
1249 	bool basic_ioctls;
1250 	unsigned long start, end;
1251 	struct vma_iterator vmi;
1252 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1253 
1254 	user_uffdio_register = (struct uffdio_register __user *) arg;
1255 
1256 	ret = -EFAULT;
1257 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1258 			   sizeof(uffdio_register)-sizeof(__u64)))
1259 		goto out;
1260 
1261 	ret = -EINVAL;
1262 	if (!uffdio_register.mode)
1263 		goto out;
1264 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1265 		goto out;
1266 	vm_flags = 0;
1267 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1268 		vm_flags |= VM_UFFD_MISSING;
1269 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1270 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1271 		goto out;
1272 #endif
1273 		vm_flags |= VM_UFFD_WP;
1274 	}
1275 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1276 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1277 		goto out;
1278 #endif
1279 		vm_flags |= VM_UFFD_MINOR;
1280 	}
1281 
1282 	ret = validate_range(mm, uffdio_register.range.start,
1283 			     uffdio_register.range.len);
1284 	if (ret)
1285 		goto out;
1286 
1287 	start = uffdio_register.range.start;
1288 	end = start + uffdio_register.range.len;
1289 
1290 	ret = -ENOMEM;
1291 	if (!mmget_not_zero(mm))
1292 		goto out;
1293 
1294 	ret = -EINVAL;
1295 	mmap_write_lock(mm);
1296 	vma_iter_init(&vmi, mm, start);
1297 	vma = vma_find(&vmi, end);
1298 	if (!vma)
1299 		goto out_unlock;
1300 
1301 	/*
1302 	 * If the first vma contains huge pages, make sure start address
1303 	 * is aligned to huge page size.
1304 	 */
1305 	if (is_vm_hugetlb_page(vma)) {
1306 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1307 
1308 		if (start & (vma_hpagesize - 1))
1309 			goto out_unlock;
1310 	}
1311 
1312 	/*
1313 	 * Search for not compatible vmas.
1314 	 */
1315 	found = false;
1316 	basic_ioctls = false;
1317 	cur = vma;
1318 	do {
1319 		cond_resched();
1320 
1321 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1322 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1323 
1324 		/* check not compatible vmas */
1325 		ret = -EINVAL;
1326 		if (!vma_can_userfault(cur, vm_flags, wp_async))
1327 			goto out_unlock;
1328 
1329 		/*
1330 		 * UFFDIO_COPY will fill file holes even without
1331 		 * PROT_WRITE. This check enforces that if this is a
1332 		 * MAP_SHARED, the process has write permission to the backing
1333 		 * file. If VM_MAYWRITE is set it also enforces that on a
1334 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1335 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1336 		 */
1337 		ret = -EPERM;
1338 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1339 			goto out_unlock;
1340 
1341 		/*
1342 		 * If this vma contains ending address, and huge pages
1343 		 * check alignment.
1344 		 */
1345 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1346 		    end > cur->vm_start) {
1347 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1348 
1349 			ret = -EINVAL;
1350 
1351 			if (end & (vma_hpagesize - 1))
1352 				goto out_unlock;
1353 		}
1354 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1355 			goto out_unlock;
1356 
1357 		/*
1358 		 * Check that this vma isn't already owned by a
1359 		 * different userfaultfd. We can't allow more than one
1360 		 * userfaultfd to own a single vma simultaneously or we
1361 		 * wouldn't know which one to deliver the userfaults to.
1362 		 */
1363 		ret = -EBUSY;
1364 		if (cur->vm_userfaultfd_ctx.ctx &&
1365 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1366 			goto out_unlock;
1367 
1368 		/*
1369 		 * Note vmas containing huge pages
1370 		 */
1371 		if (is_vm_hugetlb_page(cur))
1372 			basic_ioctls = true;
1373 
1374 		found = true;
1375 	} for_each_vma_range(vmi, cur, end);
1376 	BUG_ON(!found);
1377 
1378 	ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end,
1379 					 wp_async);
1380 
1381 out_unlock:
1382 	mmap_write_unlock(mm);
1383 	mmput(mm);
1384 	if (!ret) {
1385 		__u64 ioctls_out;
1386 
1387 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1388 		    UFFD_API_RANGE_IOCTLS;
1389 
1390 		/*
1391 		 * Declare the WP ioctl only if the WP mode is
1392 		 * specified and all checks passed with the range
1393 		 */
1394 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1395 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1396 
1397 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1398 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1399 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1400 
1401 		/*
1402 		 * Now that we scanned all vmas we can already tell
1403 		 * userland which ioctls methods are guaranteed to
1404 		 * succeed on this range.
1405 		 */
1406 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1407 			ret = -EFAULT;
1408 	}
1409 out:
1410 	return ret;
1411 }
1412 
1413 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1414 				  unsigned long arg)
1415 {
1416 	struct mm_struct *mm = ctx->mm;
1417 	struct vm_area_struct *vma, *prev, *cur;
1418 	int ret;
1419 	struct uffdio_range uffdio_unregister;
1420 	bool found;
1421 	unsigned long start, end, vma_end;
1422 	const void __user *buf = (void __user *)arg;
1423 	struct vma_iterator vmi;
1424 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1425 
1426 	ret = -EFAULT;
1427 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1428 		goto out;
1429 
1430 	ret = validate_range(mm, uffdio_unregister.start,
1431 			     uffdio_unregister.len);
1432 	if (ret)
1433 		goto out;
1434 
1435 	start = uffdio_unregister.start;
1436 	end = start + uffdio_unregister.len;
1437 
1438 	ret = -ENOMEM;
1439 	if (!mmget_not_zero(mm))
1440 		goto out;
1441 
1442 	mmap_write_lock(mm);
1443 	ret = -EINVAL;
1444 	vma_iter_init(&vmi, mm, start);
1445 	vma = vma_find(&vmi, end);
1446 	if (!vma)
1447 		goto out_unlock;
1448 
1449 	/*
1450 	 * If the first vma contains huge pages, make sure start address
1451 	 * is aligned to huge page size.
1452 	 */
1453 	if (is_vm_hugetlb_page(vma)) {
1454 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1455 
1456 		if (start & (vma_hpagesize - 1))
1457 			goto out_unlock;
1458 	}
1459 
1460 	/*
1461 	 * Search for not compatible vmas.
1462 	 */
1463 	found = false;
1464 	cur = vma;
1465 	do {
1466 		cond_resched();
1467 
1468 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1469 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1470 
1471 		/*
1472 		 * Check not compatible vmas, not strictly required
1473 		 * here as not compatible vmas cannot have an
1474 		 * userfaultfd_ctx registered on them, but this
1475 		 * provides for more strict behavior to notice
1476 		 * unregistration errors.
1477 		 */
1478 		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1479 			goto out_unlock;
1480 
1481 		found = true;
1482 	} for_each_vma_range(vmi, cur, end);
1483 	BUG_ON(!found);
1484 
1485 	vma_iter_set(&vmi, start);
1486 	prev = vma_prev(&vmi);
1487 	if (vma->vm_start < start)
1488 		prev = vma;
1489 
1490 	ret = 0;
1491 	for_each_vma_range(vmi, vma, end) {
1492 		cond_resched();
1493 
1494 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1495 
1496 		/*
1497 		 * Nothing to do: this vma is already registered into this
1498 		 * userfaultfd and with the right tracking mode too.
1499 		 */
1500 		if (!vma->vm_userfaultfd_ctx.ctx)
1501 			goto skip;
1502 
1503 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1504 
1505 		if (vma->vm_start > start)
1506 			start = vma->vm_start;
1507 		vma_end = min(end, vma->vm_end);
1508 
1509 		if (userfaultfd_missing(vma)) {
1510 			/*
1511 			 * Wake any concurrent pending userfault while
1512 			 * we unregister, so they will not hang
1513 			 * permanently and it avoids userland to call
1514 			 * UFFDIO_WAKE explicitly.
1515 			 */
1516 			struct userfaultfd_wake_range range;
1517 			range.start = start;
1518 			range.len = vma_end - start;
1519 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1520 		}
1521 
1522 		vma = userfaultfd_clear_vma(&vmi, prev, vma,
1523 					    start, vma_end);
1524 		if (IS_ERR(vma)) {
1525 			ret = PTR_ERR(vma);
1526 			break;
1527 		}
1528 
1529 	skip:
1530 		prev = vma;
1531 		start = vma->vm_end;
1532 	}
1533 
1534 out_unlock:
1535 	mmap_write_unlock(mm);
1536 	mmput(mm);
1537 out:
1538 	return ret;
1539 }
1540 
1541 /*
1542  * userfaultfd_wake may be used in combination with the
1543  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1544  */
1545 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1546 			    unsigned long arg)
1547 {
1548 	int ret;
1549 	struct uffdio_range uffdio_wake;
1550 	struct userfaultfd_wake_range range;
1551 	const void __user *buf = (void __user *)arg;
1552 
1553 	ret = -EFAULT;
1554 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1555 		goto out;
1556 
1557 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1558 	if (ret)
1559 		goto out;
1560 
1561 	range.start = uffdio_wake.start;
1562 	range.len = uffdio_wake.len;
1563 
1564 	/*
1565 	 * len == 0 means wake all and we don't want to wake all here,
1566 	 * so check it again to be sure.
1567 	 */
1568 	VM_BUG_ON(!range.len);
1569 
1570 	wake_userfault(ctx, &range);
1571 	ret = 0;
1572 
1573 out:
1574 	return ret;
1575 }
1576 
1577 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1578 			    unsigned long arg)
1579 {
1580 	__s64 ret;
1581 	struct uffdio_copy uffdio_copy;
1582 	struct uffdio_copy __user *user_uffdio_copy;
1583 	struct userfaultfd_wake_range range;
1584 	uffd_flags_t flags = 0;
1585 
1586 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1587 
1588 	ret = -EAGAIN;
1589 	if (atomic_read(&ctx->mmap_changing))
1590 		goto out;
1591 
1592 	ret = -EFAULT;
1593 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1594 			   /* don't copy "copy" last field */
1595 			   sizeof(uffdio_copy)-sizeof(__s64)))
1596 		goto out;
1597 
1598 	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1599 				       uffdio_copy.len);
1600 	if (ret)
1601 		goto out;
1602 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1603 	if (ret)
1604 		goto out;
1605 
1606 	ret = -EINVAL;
1607 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1608 		goto out;
1609 	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1610 		flags |= MFILL_ATOMIC_WP;
1611 	if (mmget_not_zero(ctx->mm)) {
1612 		ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1613 					uffdio_copy.len, flags);
1614 		mmput(ctx->mm);
1615 	} else {
1616 		return -ESRCH;
1617 	}
1618 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1619 		return -EFAULT;
1620 	if (ret < 0)
1621 		goto out;
1622 	BUG_ON(!ret);
1623 	/* len == 0 would wake all */
1624 	range.len = ret;
1625 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1626 		range.start = uffdio_copy.dst;
1627 		wake_userfault(ctx, &range);
1628 	}
1629 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1630 out:
1631 	return ret;
1632 }
1633 
1634 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1635 				unsigned long arg)
1636 {
1637 	__s64 ret;
1638 	struct uffdio_zeropage uffdio_zeropage;
1639 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1640 	struct userfaultfd_wake_range range;
1641 
1642 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1643 
1644 	ret = -EAGAIN;
1645 	if (atomic_read(&ctx->mmap_changing))
1646 		goto out;
1647 
1648 	ret = -EFAULT;
1649 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1650 			   /* don't copy "zeropage" last field */
1651 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1652 		goto out;
1653 
1654 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1655 			     uffdio_zeropage.range.len);
1656 	if (ret)
1657 		goto out;
1658 	ret = -EINVAL;
1659 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1660 		goto out;
1661 
1662 	if (mmget_not_zero(ctx->mm)) {
1663 		ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1664 					   uffdio_zeropage.range.len);
1665 		mmput(ctx->mm);
1666 	} else {
1667 		return -ESRCH;
1668 	}
1669 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1670 		return -EFAULT;
1671 	if (ret < 0)
1672 		goto out;
1673 	/* len == 0 would wake all */
1674 	BUG_ON(!ret);
1675 	range.len = ret;
1676 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1677 		range.start = uffdio_zeropage.range.start;
1678 		wake_userfault(ctx, &range);
1679 	}
1680 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1681 out:
1682 	return ret;
1683 }
1684 
1685 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1686 				    unsigned long arg)
1687 {
1688 	int ret;
1689 	struct uffdio_writeprotect uffdio_wp;
1690 	struct uffdio_writeprotect __user *user_uffdio_wp;
1691 	struct userfaultfd_wake_range range;
1692 	bool mode_wp, mode_dontwake;
1693 
1694 	if (atomic_read(&ctx->mmap_changing))
1695 		return -EAGAIN;
1696 
1697 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1698 
1699 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1700 			   sizeof(struct uffdio_writeprotect)))
1701 		return -EFAULT;
1702 
1703 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1704 			     uffdio_wp.range.len);
1705 	if (ret)
1706 		return ret;
1707 
1708 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1709 			       UFFDIO_WRITEPROTECT_MODE_WP))
1710 		return -EINVAL;
1711 
1712 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1713 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1714 
1715 	if (mode_wp && mode_dontwake)
1716 		return -EINVAL;
1717 
1718 	if (mmget_not_zero(ctx->mm)) {
1719 		ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1720 					  uffdio_wp.range.len, mode_wp);
1721 		mmput(ctx->mm);
1722 	} else {
1723 		return -ESRCH;
1724 	}
1725 
1726 	if (ret)
1727 		return ret;
1728 
1729 	if (!mode_wp && !mode_dontwake) {
1730 		range.start = uffdio_wp.range.start;
1731 		range.len = uffdio_wp.range.len;
1732 		wake_userfault(ctx, &range);
1733 	}
1734 	return ret;
1735 }
1736 
1737 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1738 {
1739 	__s64 ret;
1740 	struct uffdio_continue uffdio_continue;
1741 	struct uffdio_continue __user *user_uffdio_continue;
1742 	struct userfaultfd_wake_range range;
1743 	uffd_flags_t flags = 0;
1744 
1745 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1746 
1747 	ret = -EAGAIN;
1748 	if (atomic_read(&ctx->mmap_changing))
1749 		goto out;
1750 
1751 	ret = -EFAULT;
1752 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1753 			   /* don't copy the output fields */
1754 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1755 		goto out;
1756 
1757 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1758 			     uffdio_continue.range.len);
1759 	if (ret)
1760 		goto out;
1761 
1762 	ret = -EINVAL;
1763 	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1764 				     UFFDIO_CONTINUE_MODE_WP))
1765 		goto out;
1766 	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1767 		flags |= MFILL_ATOMIC_WP;
1768 
1769 	if (mmget_not_zero(ctx->mm)) {
1770 		ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1771 					    uffdio_continue.range.len, flags);
1772 		mmput(ctx->mm);
1773 	} else {
1774 		return -ESRCH;
1775 	}
1776 
1777 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1778 		return -EFAULT;
1779 	if (ret < 0)
1780 		goto out;
1781 
1782 	/* len == 0 would wake all */
1783 	BUG_ON(!ret);
1784 	range.len = ret;
1785 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1786 		range.start = uffdio_continue.range.start;
1787 		wake_userfault(ctx, &range);
1788 	}
1789 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1790 
1791 out:
1792 	return ret;
1793 }
1794 
1795 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1796 {
1797 	__s64 ret;
1798 	struct uffdio_poison uffdio_poison;
1799 	struct uffdio_poison __user *user_uffdio_poison;
1800 	struct userfaultfd_wake_range range;
1801 
1802 	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1803 
1804 	ret = -EAGAIN;
1805 	if (atomic_read(&ctx->mmap_changing))
1806 		goto out;
1807 
1808 	ret = -EFAULT;
1809 	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1810 			   /* don't copy the output fields */
1811 			   sizeof(uffdio_poison) - (sizeof(__s64))))
1812 		goto out;
1813 
1814 	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1815 			     uffdio_poison.range.len);
1816 	if (ret)
1817 		goto out;
1818 
1819 	ret = -EINVAL;
1820 	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1821 		goto out;
1822 
1823 	if (mmget_not_zero(ctx->mm)) {
1824 		ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1825 					  uffdio_poison.range.len, 0);
1826 		mmput(ctx->mm);
1827 	} else {
1828 		return -ESRCH;
1829 	}
1830 
1831 	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1832 		return -EFAULT;
1833 	if (ret < 0)
1834 		goto out;
1835 
1836 	/* len == 0 would wake all */
1837 	BUG_ON(!ret);
1838 	range.len = ret;
1839 	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1840 		range.start = uffdio_poison.range.start;
1841 		wake_userfault(ctx, &range);
1842 	}
1843 	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1844 
1845 out:
1846 	return ret;
1847 }
1848 
1849 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1850 {
1851 	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1852 }
1853 
1854 static inline unsigned int uffd_ctx_features(__u64 user_features)
1855 {
1856 	/*
1857 	 * For the current set of features the bits just coincide. Set
1858 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1859 	 */
1860 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1861 }
1862 
1863 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1864 			    unsigned long arg)
1865 {
1866 	__s64 ret;
1867 	struct uffdio_move uffdio_move;
1868 	struct uffdio_move __user *user_uffdio_move;
1869 	struct userfaultfd_wake_range range;
1870 	struct mm_struct *mm = ctx->mm;
1871 
1872 	user_uffdio_move = (struct uffdio_move __user *) arg;
1873 
1874 	if (atomic_read(&ctx->mmap_changing))
1875 		return -EAGAIN;
1876 
1877 	if (copy_from_user(&uffdio_move, user_uffdio_move,
1878 			   /* don't copy "move" last field */
1879 			   sizeof(uffdio_move)-sizeof(__s64)))
1880 		return -EFAULT;
1881 
1882 	/* Do not allow cross-mm moves. */
1883 	if (mm != current->mm)
1884 		return -EINVAL;
1885 
1886 	ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
1887 	if (ret)
1888 		return ret;
1889 
1890 	ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
1891 	if (ret)
1892 		return ret;
1893 
1894 	if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
1895 				  UFFDIO_MOVE_MODE_DONTWAKE))
1896 		return -EINVAL;
1897 
1898 	if (mmget_not_zero(mm)) {
1899 		ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
1900 				 uffdio_move.len, uffdio_move.mode);
1901 		mmput(mm);
1902 	} else {
1903 		return -ESRCH;
1904 	}
1905 
1906 	if (unlikely(put_user(ret, &user_uffdio_move->move)))
1907 		return -EFAULT;
1908 	if (ret < 0)
1909 		goto out;
1910 
1911 	/* len == 0 would wake all */
1912 	VM_WARN_ON(!ret);
1913 	range.len = ret;
1914 	if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
1915 		range.start = uffdio_move.dst;
1916 		wake_userfault(ctx, &range);
1917 	}
1918 	ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
1919 
1920 out:
1921 	return ret;
1922 }
1923 
1924 /*
1925  * userland asks for a certain API version and we return which bits
1926  * and ioctl commands are implemented in this kernel for such API
1927  * version or -EINVAL if unknown.
1928  */
1929 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1930 			   unsigned long arg)
1931 {
1932 	struct uffdio_api uffdio_api;
1933 	void __user *buf = (void __user *)arg;
1934 	unsigned int ctx_features;
1935 	int ret;
1936 	__u64 features;
1937 
1938 	ret = -EFAULT;
1939 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1940 		goto out;
1941 	features = uffdio_api.features;
1942 	ret = -EINVAL;
1943 	if (uffdio_api.api != UFFD_API)
1944 		goto err_out;
1945 	ret = -EPERM;
1946 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1947 		goto err_out;
1948 
1949 	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
1950 	if (features & UFFD_FEATURE_WP_ASYNC)
1951 		features |= UFFD_FEATURE_WP_UNPOPULATED;
1952 
1953 	/* report all available features and ioctls to userland */
1954 	uffdio_api.features = UFFD_API_FEATURES;
1955 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1956 	uffdio_api.features &=
1957 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1958 #endif
1959 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1960 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1961 #endif
1962 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1963 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1964 	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
1965 	uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
1966 #endif
1967 
1968 	ret = -EINVAL;
1969 	if (features & ~uffdio_api.features)
1970 		goto err_out;
1971 
1972 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1973 	ret = -EFAULT;
1974 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1975 		goto out;
1976 
1977 	/* only enable the requested features for this uffd context */
1978 	ctx_features = uffd_ctx_features(features);
1979 	ret = -EINVAL;
1980 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1981 		goto err_out;
1982 
1983 	ret = 0;
1984 out:
1985 	return ret;
1986 err_out:
1987 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1988 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1989 		ret = -EFAULT;
1990 	goto out;
1991 }
1992 
1993 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1994 			      unsigned long arg)
1995 {
1996 	int ret = -EINVAL;
1997 	struct userfaultfd_ctx *ctx = file->private_data;
1998 
1999 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2000 		return -EINVAL;
2001 
2002 	switch(cmd) {
2003 	case UFFDIO_API:
2004 		ret = userfaultfd_api(ctx, arg);
2005 		break;
2006 	case UFFDIO_REGISTER:
2007 		ret = userfaultfd_register(ctx, arg);
2008 		break;
2009 	case UFFDIO_UNREGISTER:
2010 		ret = userfaultfd_unregister(ctx, arg);
2011 		break;
2012 	case UFFDIO_WAKE:
2013 		ret = userfaultfd_wake(ctx, arg);
2014 		break;
2015 	case UFFDIO_COPY:
2016 		ret = userfaultfd_copy(ctx, arg);
2017 		break;
2018 	case UFFDIO_ZEROPAGE:
2019 		ret = userfaultfd_zeropage(ctx, arg);
2020 		break;
2021 	case UFFDIO_MOVE:
2022 		ret = userfaultfd_move(ctx, arg);
2023 		break;
2024 	case UFFDIO_WRITEPROTECT:
2025 		ret = userfaultfd_writeprotect(ctx, arg);
2026 		break;
2027 	case UFFDIO_CONTINUE:
2028 		ret = userfaultfd_continue(ctx, arg);
2029 		break;
2030 	case UFFDIO_POISON:
2031 		ret = userfaultfd_poison(ctx, arg);
2032 		break;
2033 	}
2034 	return ret;
2035 }
2036 
2037 #ifdef CONFIG_PROC_FS
2038 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2039 {
2040 	struct userfaultfd_ctx *ctx = f->private_data;
2041 	wait_queue_entry_t *wq;
2042 	unsigned long pending = 0, total = 0;
2043 
2044 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2045 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2046 		pending++;
2047 		total++;
2048 	}
2049 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2050 		total++;
2051 	}
2052 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2053 
2054 	/*
2055 	 * If more protocols will be added, there will be all shown
2056 	 * separated by a space. Like this:
2057 	 *	protocols: aa:... bb:...
2058 	 */
2059 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2060 		   pending, total, UFFD_API, ctx->features,
2061 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2062 }
2063 #endif
2064 
2065 static const struct file_operations userfaultfd_fops = {
2066 #ifdef CONFIG_PROC_FS
2067 	.show_fdinfo	= userfaultfd_show_fdinfo,
2068 #endif
2069 	.release	= userfaultfd_release,
2070 	.poll		= userfaultfd_poll,
2071 	.read_iter	= userfaultfd_read_iter,
2072 	.unlocked_ioctl = userfaultfd_ioctl,
2073 	.compat_ioctl	= compat_ptr_ioctl,
2074 	.llseek		= noop_llseek,
2075 };
2076 
2077 static void init_once_userfaultfd_ctx(void *mem)
2078 {
2079 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2080 
2081 	init_waitqueue_head(&ctx->fault_pending_wqh);
2082 	init_waitqueue_head(&ctx->fault_wqh);
2083 	init_waitqueue_head(&ctx->event_wqh);
2084 	init_waitqueue_head(&ctx->fd_wqh);
2085 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2086 }
2087 
2088 static int new_userfaultfd(int flags)
2089 {
2090 	struct userfaultfd_ctx *ctx;
2091 	struct file *file;
2092 	int fd;
2093 
2094 	BUG_ON(!current->mm);
2095 
2096 	/* Check the UFFD_* constants for consistency.  */
2097 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2098 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2099 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2100 
2101 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2102 		return -EINVAL;
2103 
2104 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2105 	if (!ctx)
2106 		return -ENOMEM;
2107 
2108 	refcount_set(&ctx->refcount, 1);
2109 	ctx->flags = flags;
2110 	ctx->features = 0;
2111 	ctx->released = false;
2112 	init_rwsem(&ctx->map_changing_lock);
2113 	atomic_set(&ctx->mmap_changing, 0);
2114 	ctx->mm = current->mm;
2115 
2116 	fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
2117 	if (fd < 0)
2118 		goto err_out;
2119 
2120 	/* Create a new inode so that the LSM can block the creation.  */
2121 	file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2122 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2123 	if (IS_ERR(file)) {
2124 		put_unused_fd(fd);
2125 		fd = PTR_ERR(file);
2126 		goto err_out;
2127 	}
2128 	/* prevent the mm struct to be freed */
2129 	mmgrab(ctx->mm);
2130 	file->f_mode |= FMODE_NOWAIT;
2131 	fd_install(fd, file);
2132 	return fd;
2133 err_out:
2134 	kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2135 	return fd;
2136 }
2137 
2138 static inline bool userfaultfd_syscall_allowed(int flags)
2139 {
2140 	/* Userspace-only page faults are always allowed */
2141 	if (flags & UFFD_USER_MODE_ONLY)
2142 		return true;
2143 
2144 	/*
2145 	 * The user is requesting a userfaultfd which can handle kernel faults.
2146 	 * Privileged users are always allowed to do this.
2147 	 */
2148 	if (capable(CAP_SYS_PTRACE))
2149 		return true;
2150 
2151 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2152 	return sysctl_unprivileged_userfaultfd;
2153 }
2154 
2155 SYSCALL_DEFINE1(userfaultfd, int, flags)
2156 {
2157 	if (!userfaultfd_syscall_allowed(flags))
2158 		return -EPERM;
2159 
2160 	return new_userfaultfd(flags);
2161 }
2162 
2163 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2164 {
2165 	if (cmd != USERFAULTFD_IOC_NEW)
2166 		return -EINVAL;
2167 
2168 	return new_userfaultfd(flags);
2169 }
2170 
2171 static const struct file_operations userfaultfd_dev_fops = {
2172 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2173 	.compat_ioctl = userfaultfd_dev_ioctl,
2174 	.owner = THIS_MODULE,
2175 	.llseek = noop_llseek,
2176 };
2177 
2178 static struct miscdevice userfaultfd_misc = {
2179 	.minor = MISC_DYNAMIC_MINOR,
2180 	.name = "userfaultfd",
2181 	.fops = &userfaultfd_dev_fops
2182 };
2183 
2184 static int __init userfaultfd_init(void)
2185 {
2186 	int ret;
2187 
2188 	ret = misc_register(&userfaultfd_misc);
2189 	if (ret)
2190 		return ret;
2191 
2192 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2193 						sizeof(struct userfaultfd_ctx),
2194 						0,
2195 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2196 						init_once_userfaultfd_ctx);
2197 #ifdef CONFIG_SYSCTL
2198 	register_sysctl_init("vm", vm_userfaultfd_table);
2199 #endif
2200 	return 0;
2201 }
2202 __initcall(userfaultfd_init);
2203