1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 #ifdef CONFIG_SYSCTL 38 static struct ctl_table vm_userfaultfd_table[] = { 39 { 40 .procname = "unprivileged_userfaultfd", 41 .data = &sysctl_unprivileged_userfaultfd, 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 43 .mode = 0644, 44 .proc_handler = proc_dointvec_minmax, 45 .extra1 = SYSCTL_ZERO, 46 .extra2 = SYSCTL_ONE, 47 }, 48 }; 49 #endif 50 51 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init; 52 53 struct userfaultfd_fork_ctx { 54 struct userfaultfd_ctx *orig; 55 struct userfaultfd_ctx *new; 56 struct list_head list; 57 }; 58 59 struct userfaultfd_unmap_ctx { 60 struct userfaultfd_ctx *ctx; 61 unsigned long start; 62 unsigned long end; 63 struct list_head list; 64 }; 65 66 struct userfaultfd_wait_queue { 67 struct uffd_msg msg; 68 wait_queue_entry_t wq; 69 struct userfaultfd_ctx *ctx; 70 bool waken; 71 }; 72 73 struct userfaultfd_wake_range { 74 unsigned long start; 75 unsigned long len; 76 }; 77 78 /* internal indication that UFFD_API ioctl was successfully executed */ 79 #define UFFD_FEATURE_INITIALIZED (1u << 31) 80 81 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 82 { 83 return ctx->features & UFFD_FEATURE_INITIALIZED; 84 } 85 86 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx) 87 { 88 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC); 89 } 90 91 /* 92 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 93 * meaningful when userfaultfd_wp()==true on the vma and when it's 94 * anonymous. 95 */ 96 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 97 { 98 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 99 100 if (!ctx) 101 return false; 102 103 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 104 } 105 106 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 107 vm_flags_t flags) 108 { 109 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 110 111 vm_flags_reset(vma, flags); 112 /* 113 * For shared mappings, we want to enable writenotify while 114 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 115 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 116 */ 117 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 118 vma_set_page_prot(vma); 119 } 120 121 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 122 int wake_flags, void *key) 123 { 124 struct userfaultfd_wake_range *range = key; 125 int ret; 126 struct userfaultfd_wait_queue *uwq; 127 unsigned long start, len; 128 129 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 130 ret = 0; 131 /* len == 0 means wake all */ 132 start = range->start; 133 len = range->len; 134 if (len && (start > uwq->msg.arg.pagefault.address || 135 start + len <= uwq->msg.arg.pagefault.address)) 136 goto out; 137 WRITE_ONCE(uwq->waken, true); 138 /* 139 * The Program-Order guarantees provided by the scheduler 140 * ensure uwq->waken is visible before the task is woken. 141 */ 142 ret = wake_up_state(wq->private, mode); 143 if (ret) { 144 /* 145 * Wake only once, autoremove behavior. 146 * 147 * After the effect of list_del_init is visible to the other 148 * CPUs, the waitqueue may disappear from under us, see the 149 * !list_empty_careful() in handle_userfault(). 150 * 151 * try_to_wake_up() has an implicit smp_mb(), and the 152 * wq->private is read before calling the extern function 153 * "wake_up_state" (which in turns calls try_to_wake_up). 154 */ 155 list_del_init(&wq->entry); 156 } 157 out: 158 return ret; 159 } 160 161 /** 162 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 163 * context. 164 * @ctx: [in] Pointer to the userfaultfd context. 165 */ 166 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 167 { 168 refcount_inc(&ctx->refcount); 169 } 170 171 /** 172 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 173 * context. 174 * @ctx: [in] Pointer to userfaultfd context. 175 * 176 * The userfaultfd context reference must have been previously acquired either 177 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 178 */ 179 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 180 { 181 if (refcount_dec_and_test(&ctx->refcount)) { 182 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 183 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 184 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 185 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 186 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 187 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 188 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 189 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 190 mmdrop(ctx->mm); 191 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 192 } 193 } 194 195 static inline void msg_init(struct uffd_msg *msg) 196 { 197 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 198 /* 199 * Must use memset to zero out the paddings or kernel data is 200 * leaked to userland. 201 */ 202 memset(msg, 0, sizeof(struct uffd_msg)); 203 } 204 205 static inline struct uffd_msg userfault_msg(unsigned long address, 206 unsigned long real_address, 207 unsigned int flags, 208 unsigned long reason, 209 unsigned int features) 210 { 211 struct uffd_msg msg; 212 213 msg_init(&msg); 214 msg.event = UFFD_EVENT_PAGEFAULT; 215 216 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 217 real_address : address; 218 219 /* 220 * These flags indicate why the userfault occurred: 221 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 222 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 223 * - Neither of these flags being set indicates a MISSING fault. 224 * 225 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 226 * fault. Otherwise, it was a read fault. 227 */ 228 if (flags & FAULT_FLAG_WRITE) 229 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 230 if (reason & VM_UFFD_WP) 231 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 232 if (reason & VM_UFFD_MINOR) 233 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 234 if (features & UFFD_FEATURE_THREAD_ID) 235 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 236 return msg; 237 } 238 239 #ifdef CONFIG_HUGETLB_PAGE 240 /* 241 * Same functionality as userfaultfd_must_wait below with modifications for 242 * hugepmd ranges. 243 */ 244 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 245 struct vm_fault *vmf, 246 unsigned long reason) 247 { 248 struct vm_area_struct *vma = vmf->vma; 249 pte_t *ptep, pte; 250 bool ret = true; 251 252 assert_fault_locked(vmf); 253 254 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); 255 if (!ptep) 256 goto out; 257 258 ret = false; 259 pte = huge_ptep_get(ptep); 260 261 /* 262 * Lockless access: we're in a wait_event so it's ok if it 263 * changes under us. PTE markers should be handled the same as none 264 * ptes here. 265 */ 266 if (huge_pte_none_mostly(pte)) 267 ret = true; 268 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 269 ret = true; 270 out: 271 return ret; 272 } 273 #else 274 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 275 struct vm_fault *vmf, 276 unsigned long reason) 277 { 278 return false; /* should never get here */ 279 } 280 #endif /* CONFIG_HUGETLB_PAGE */ 281 282 /* 283 * Verify the pagetables are still not ok after having reigstered into 284 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 285 * userfault that has already been resolved, if userfaultfd_read and 286 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 287 * threads. 288 */ 289 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 290 struct vm_fault *vmf, 291 unsigned long reason) 292 { 293 struct mm_struct *mm = ctx->mm; 294 unsigned long address = vmf->address; 295 pgd_t *pgd; 296 p4d_t *p4d; 297 pud_t *pud; 298 pmd_t *pmd, _pmd; 299 pte_t *pte; 300 pte_t ptent; 301 bool ret = true; 302 303 assert_fault_locked(vmf); 304 305 pgd = pgd_offset(mm, address); 306 if (!pgd_present(*pgd)) 307 goto out; 308 p4d = p4d_offset(pgd, address); 309 if (!p4d_present(*p4d)) 310 goto out; 311 pud = pud_offset(p4d, address); 312 if (!pud_present(*pud)) 313 goto out; 314 pmd = pmd_offset(pud, address); 315 again: 316 _pmd = pmdp_get_lockless(pmd); 317 if (pmd_none(_pmd)) 318 goto out; 319 320 ret = false; 321 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 322 goto out; 323 324 if (pmd_trans_huge(_pmd)) { 325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 326 ret = true; 327 goto out; 328 } 329 330 pte = pte_offset_map(pmd, address); 331 if (!pte) { 332 ret = true; 333 goto again; 334 } 335 /* 336 * Lockless access: we're in a wait_event so it's ok if it 337 * changes under us. PTE markers should be handled the same as none 338 * ptes here. 339 */ 340 ptent = ptep_get(pte); 341 if (pte_none_mostly(ptent)) 342 ret = true; 343 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 344 ret = true; 345 pte_unmap(pte); 346 347 out: 348 return ret; 349 } 350 351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 352 { 353 if (flags & FAULT_FLAG_INTERRUPTIBLE) 354 return TASK_INTERRUPTIBLE; 355 356 if (flags & FAULT_FLAG_KILLABLE) 357 return TASK_KILLABLE; 358 359 return TASK_UNINTERRUPTIBLE; 360 } 361 362 /* 363 * The locking rules involved in returning VM_FAULT_RETRY depending on 364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 366 * recommendation in __lock_page_or_retry is not an understatement. 367 * 368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 370 * not set. 371 * 372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 373 * set, VM_FAULT_RETRY can still be returned if and only if there are 374 * fatal_signal_pending()s, and the mmap_lock must be released before 375 * returning it. 376 */ 377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 378 { 379 struct vm_area_struct *vma = vmf->vma; 380 struct mm_struct *mm = vma->vm_mm; 381 struct userfaultfd_ctx *ctx; 382 struct userfaultfd_wait_queue uwq; 383 vm_fault_t ret = VM_FAULT_SIGBUS; 384 bool must_wait; 385 unsigned int blocking_state; 386 387 /* 388 * We don't do userfault handling for the final child pid update. 389 * 390 * We also don't do userfault handling during 391 * coredumping. hugetlbfs has the special 392 * hugetlb_follow_page_mask() to skip missing pages in the 393 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 394 * the no_page_table() helper in follow_page_mask(), but the 395 * shmem_vm_ops->fault method is invoked even during 396 * coredumping and it ends up here. 397 */ 398 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 399 goto out; 400 401 assert_fault_locked(vmf); 402 403 ctx = vma->vm_userfaultfd_ctx.ctx; 404 if (!ctx) 405 goto out; 406 407 BUG_ON(ctx->mm != mm); 408 409 /* Any unrecognized flag is a bug. */ 410 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 411 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 412 VM_BUG_ON(!reason || (reason & (reason - 1))); 413 414 if (ctx->features & UFFD_FEATURE_SIGBUS) 415 goto out; 416 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 417 goto out; 418 419 /* 420 * If it's already released don't get it. This avoids to loop 421 * in __get_user_pages if userfaultfd_release waits on the 422 * caller of handle_userfault to release the mmap_lock. 423 */ 424 if (unlikely(READ_ONCE(ctx->released))) { 425 /* 426 * Don't return VM_FAULT_SIGBUS in this case, so a non 427 * cooperative manager can close the uffd after the 428 * last UFFDIO_COPY, without risking to trigger an 429 * involuntary SIGBUS if the process was starting the 430 * userfaultfd while the userfaultfd was still armed 431 * (but after the last UFFDIO_COPY). If the uffd 432 * wasn't already closed when the userfault reached 433 * this point, that would normally be solved by 434 * userfaultfd_must_wait returning 'false'. 435 * 436 * If we were to return VM_FAULT_SIGBUS here, the non 437 * cooperative manager would be instead forced to 438 * always call UFFDIO_UNREGISTER before it can safely 439 * close the uffd. 440 */ 441 ret = VM_FAULT_NOPAGE; 442 goto out; 443 } 444 445 /* 446 * Check that we can return VM_FAULT_RETRY. 447 * 448 * NOTE: it should become possible to return VM_FAULT_RETRY 449 * even if FAULT_FLAG_TRIED is set without leading to gup() 450 * -EBUSY failures, if the userfaultfd is to be extended for 451 * VM_UFFD_WP tracking and we intend to arm the userfault 452 * without first stopping userland access to the memory. For 453 * VM_UFFD_MISSING userfaults this is enough for now. 454 */ 455 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 456 /* 457 * Validate the invariant that nowait must allow retry 458 * to be sure not to return SIGBUS erroneously on 459 * nowait invocations. 460 */ 461 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 462 #ifdef CONFIG_DEBUG_VM 463 if (printk_ratelimit()) { 464 printk(KERN_WARNING 465 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 466 vmf->flags); 467 dump_stack(); 468 } 469 #endif 470 goto out; 471 } 472 473 /* 474 * Handle nowait, not much to do other than tell it to retry 475 * and wait. 476 */ 477 ret = VM_FAULT_RETRY; 478 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 479 goto out; 480 481 /* take the reference before dropping the mmap_lock */ 482 userfaultfd_ctx_get(ctx); 483 484 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 485 uwq.wq.private = current; 486 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 487 reason, ctx->features); 488 uwq.ctx = ctx; 489 uwq.waken = false; 490 491 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 492 493 /* 494 * Take the vma lock now, in order to safely call 495 * userfaultfd_huge_must_wait() later. Since acquiring the 496 * (sleepable) vma lock can modify the current task state, that 497 * must be before explicitly calling set_current_state(). 498 */ 499 if (is_vm_hugetlb_page(vma)) 500 hugetlb_vma_lock_read(vma); 501 502 spin_lock_irq(&ctx->fault_pending_wqh.lock); 503 /* 504 * After the __add_wait_queue the uwq is visible to userland 505 * through poll/read(). 506 */ 507 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 508 /* 509 * The smp_mb() after __set_current_state prevents the reads 510 * following the spin_unlock to happen before the list_add in 511 * __add_wait_queue. 512 */ 513 set_current_state(blocking_state); 514 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 515 516 if (!is_vm_hugetlb_page(vma)) 517 must_wait = userfaultfd_must_wait(ctx, vmf, reason); 518 else 519 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); 520 if (is_vm_hugetlb_page(vma)) 521 hugetlb_vma_unlock_read(vma); 522 release_fault_lock(vmf); 523 524 if (likely(must_wait && !READ_ONCE(ctx->released))) { 525 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 526 schedule(); 527 } 528 529 __set_current_state(TASK_RUNNING); 530 531 /* 532 * Here we race with the list_del; list_add in 533 * userfaultfd_ctx_read(), however because we don't ever run 534 * list_del_init() to refile across the two lists, the prev 535 * and next pointers will never point to self. list_add also 536 * would never let any of the two pointers to point to 537 * self. So list_empty_careful won't risk to see both pointers 538 * pointing to self at any time during the list refile. The 539 * only case where list_del_init() is called is the full 540 * removal in the wake function and there we don't re-list_add 541 * and it's fine not to block on the spinlock. The uwq on this 542 * kernel stack can be released after the list_del_init. 543 */ 544 if (!list_empty_careful(&uwq.wq.entry)) { 545 spin_lock_irq(&ctx->fault_pending_wqh.lock); 546 /* 547 * No need of list_del_init(), the uwq on the stack 548 * will be freed shortly anyway. 549 */ 550 list_del(&uwq.wq.entry); 551 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 552 } 553 554 /* 555 * ctx may go away after this if the userfault pseudo fd is 556 * already released. 557 */ 558 userfaultfd_ctx_put(ctx); 559 560 out: 561 return ret; 562 } 563 564 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 565 struct userfaultfd_wait_queue *ewq) 566 { 567 struct userfaultfd_ctx *release_new_ctx; 568 569 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 570 goto out; 571 572 ewq->ctx = ctx; 573 init_waitqueue_entry(&ewq->wq, current); 574 release_new_ctx = NULL; 575 576 spin_lock_irq(&ctx->event_wqh.lock); 577 /* 578 * After the __add_wait_queue the uwq is visible to userland 579 * through poll/read(). 580 */ 581 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 582 for (;;) { 583 set_current_state(TASK_KILLABLE); 584 if (ewq->msg.event == 0) 585 break; 586 if (READ_ONCE(ctx->released) || 587 fatal_signal_pending(current)) { 588 /* 589 * &ewq->wq may be queued in fork_event, but 590 * __remove_wait_queue ignores the head 591 * parameter. It would be a problem if it 592 * didn't. 593 */ 594 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 595 if (ewq->msg.event == UFFD_EVENT_FORK) { 596 struct userfaultfd_ctx *new; 597 598 new = (struct userfaultfd_ctx *) 599 (unsigned long) 600 ewq->msg.arg.reserved.reserved1; 601 release_new_ctx = new; 602 } 603 break; 604 } 605 606 spin_unlock_irq(&ctx->event_wqh.lock); 607 608 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 609 schedule(); 610 611 spin_lock_irq(&ctx->event_wqh.lock); 612 } 613 __set_current_state(TASK_RUNNING); 614 spin_unlock_irq(&ctx->event_wqh.lock); 615 616 if (release_new_ctx) { 617 struct vm_area_struct *vma; 618 struct mm_struct *mm = release_new_ctx->mm; 619 VMA_ITERATOR(vmi, mm, 0); 620 621 /* the various vma->vm_userfaultfd_ctx still points to it */ 622 mmap_write_lock(mm); 623 for_each_vma(vmi, vma) { 624 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 625 vma_start_write(vma); 626 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 627 userfaultfd_set_vm_flags(vma, 628 vma->vm_flags & ~__VM_UFFD_FLAGS); 629 } 630 } 631 mmap_write_unlock(mm); 632 633 userfaultfd_ctx_put(release_new_ctx); 634 } 635 636 /* 637 * ctx may go away after this if the userfault pseudo fd is 638 * already released. 639 */ 640 out: 641 atomic_dec(&ctx->mmap_changing); 642 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 643 userfaultfd_ctx_put(ctx); 644 } 645 646 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 647 struct userfaultfd_wait_queue *ewq) 648 { 649 ewq->msg.event = 0; 650 wake_up_locked(&ctx->event_wqh); 651 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 652 } 653 654 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 655 { 656 struct userfaultfd_ctx *ctx = NULL, *octx; 657 struct userfaultfd_fork_ctx *fctx; 658 659 octx = vma->vm_userfaultfd_ctx.ctx; 660 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 661 vma_start_write(vma); 662 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 663 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 664 return 0; 665 } 666 667 list_for_each_entry(fctx, fcs, list) 668 if (fctx->orig == octx) { 669 ctx = fctx->new; 670 break; 671 } 672 673 if (!ctx) { 674 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 675 if (!fctx) 676 return -ENOMEM; 677 678 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 679 if (!ctx) { 680 kfree(fctx); 681 return -ENOMEM; 682 } 683 684 refcount_set(&ctx->refcount, 1); 685 ctx->flags = octx->flags; 686 ctx->features = octx->features; 687 ctx->released = false; 688 init_rwsem(&ctx->map_changing_lock); 689 atomic_set(&ctx->mmap_changing, 0); 690 ctx->mm = vma->vm_mm; 691 mmgrab(ctx->mm); 692 693 userfaultfd_ctx_get(octx); 694 down_write(&octx->map_changing_lock); 695 atomic_inc(&octx->mmap_changing); 696 up_write(&octx->map_changing_lock); 697 fctx->orig = octx; 698 fctx->new = ctx; 699 list_add_tail(&fctx->list, fcs); 700 } 701 702 vma->vm_userfaultfd_ctx.ctx = ctx; 703 return 0; 704 } 705 706 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 707 { 708 struct userfaultfd_ctx *ctx = fctx->orig; 709 struct userfaultfd_wait_queue ewq; 710 711 msg_init(&ewq.msg); 712 713 ewq.msg.event = UFFD_EVENT_FORK; 714 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 715 716 userfaultfd_event_wait_completion(ctx, &ewq); 717 } 718 719 void dup_userfaultfd_complete(struct list_head *fcs) 720 { 721 struct userfaultfd_fork_ctx *fctx, *n; 722 723 list_for_each_entry_safe(fctx, n, fcs, list) { 724 dup_fctx(fctx); 725 list_del(&fctx->list); 726 kfree(fctx); 727 } 728 } 729 730 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 731 struct vm_userfaultfd_ctx *vm_ctx) 732 { 733 struct userfaultfd_ctx *ctx; 734 735 ctx = vma->vm_userfaultfd_ctx.ctx; 736 737 if (!ctx) 738 return; 739 740 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 741 vm_ctx->ctx = ctx; 742 userfaultfd_ctx_get(ctx); 743 down_write(&ctx->map_changing_lock); 744 atomic_inc(&ctx->mmap_changing); 745 up_write(&ctx->map_changing_lock); 746 } else { 747 /* Drop uffd context if remap feature not enabled */ 748 vma_start_write(vma); 749 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 750 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 751 } 752 } 753 754 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 755 unsigned long from, unsigned long to, 756 unsigned long len) 757 { 758 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 759 struct userfaultfd_wait_queue ewq; 760 761 if (!ctx) 762 return; 763 764 if (to & ~PAGE_MASK) { 765 userfaultfd_ctx_put(ctx); 766 return; 767 } 768 769 msg_init(&ewq.msg); 770 771 ewq.msg.event = UFFD_EVENT_REMAP; 772 ewq.msg.arg.remap.from = from; 773 ewq.msg.arg.remap.to = to; 774 ewq.msg.arg.remap.len = len; 775 776 userfaultfd_event_wait_completion(ctx, &ewq); 777 } 778 779 bool userfaultfd_remove(struct vm_area_struct *vma, 780 unsigned long start, unsigned long end) 781 { 782 struct mm_struct *mm = vma->vm_mm; 783 struct userfaultfd_ctx *ctx; 784 struct userfaultfd_wait_queue ewq; 785 786 ctx = vma->vm_userfaultfd_ctx.ctx; 787 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 788 return true; 789 790 userfaultfd_ctx_get(ctx); 791 down_write(&ctx->map_changing_lock); 792 atomic_inc(&ctx->mmap_changing); 793 up_write(&ctx->map_changing_lock); 794 mmap_read_unlock(mm); 795 796 msg_init(&ewq.msg); 797 798 ewq.msg.event = UFFD_EVENT_REMOVE; 799 ewq.msg.arg.remove.start = start; 800 ewq.msg.arg.remove.end = end; 801 802 userfaultfd_event_wait_completion(ctx, &ewq); 803 804 return false; 805 } 806 807 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 808 unsigned long start, unsigned long end) 809 { 810 struct userfaultfd_unmap_ctx *unmap_ctx; 811 812 list_for_each_entry(unmap_ctx, unmaps, list) 813 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 814 unmap_ctx->end == end) 815 return true; 816 817 return false; 818 } 819 820 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 821 unsigned long end, struct list_head *unmaps) 822 { 823 struct userfaultfd_unmap_ctx *unmap_ctx; 824 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 825 826 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 827 has_unmap_ctx(ctx, unmaps, start, end)) 828 return 0; 829 830 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 831 if (!unmap_ctx) 832 return -ENOMEM; 833 834 userfaultfd_ctx_get(ctx); 835 down_write(&ctx->map_changing_lock); 836 atomic_inc(&ctx->mmap_changing); 837 up_write(&ctx->map_changing_lock); 838 unmap_ctx->ctx = ctx; 839 unmap_ctx->start = start; 840 unmap_ctx->end = end; 841 list_add_tail(&unmap_ctx->list, unmaps); 842 843 return 0; 844 } 845 846 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 847 { 848 struct userfaultfd_unmap_ctx *ctx, *n; 849 struct userfaultfd_wait_queue ewq; 850 851 list_for_each_entry_safe(ctx, n, uf, list) { 852 msg_init(&ewq.msg); 853 854 ewq.msg.event = UFFD_EVENT_UNMAP; 855 ewq.msg.arg.remove.start = ctx->start; 856 ewq.msg.arg.remove.end = ctx->end; 857 858 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 859 860 list_del(&ctx->list); 861 kfree(ctx); 862 } 863 } 864 865 static int userfaultfd_release(struct inode *inode, struct file *file) 866 { 867 struct userfaultfd_ctx *ctx = file->private_data; 868 struct mm_struct *mm = ctx->mm; 869 struct vm_area_struct *vma, *prev; 870 /* len == 0 means wake all */ 871 struct userfaultfd_wake_range range = { .len = 0, }; 872 unsigned long new_flags; 873 VMA_ITERATOR(vmi, mm, 0); 874 875 WRITE_ONCE(ctx->released, true); 876 877 if (!mmget_not_zero(mm)) 878 goto wakeup; 879 880 /* 881 * Flush page faults out of all CPUs. NOTE: all page faults 882 * must be retried without returning VM_FAULT_SIGBUS if 883 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 884 * changes while handle_userfault released the mmap_lock. So 885 * it's critical that released is set to true (above), before 886 * taking the mmap_lock for writing. 887 */ 888 mmap_write_lock(mm); 889 prev = NULL; 890 for_each_vma(vmi, vma) { 891 cond_resched(); 892 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 893 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 894 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 895 prev = vma; 896 continue; 897 } 898 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 899 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start, 900 vma->vm_end, new_flags, 901 NULL_VM_UFFD_CTX); 902 903 vma_start_write(vma); 904 userfaultfd_set_vm_flags(vma, new_flags); 905 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 906 907 prev = vma; 908 } 909 mmap_write_unlock(mm); 910 mmput(mm); 911 wakeup: 912 /* 913 * After no new page faults can wait on this fault_*wqh, flush 914 * the last page faults that may have been already waiting on 915 * the fault_*wqh. 916 */ 917 spin_lock_irq(&ctx->fault_pending_wqh.lock); 918 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 919 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 920 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 921 922 /* Flush pending events that may still wait on event_wqh */ 923 wake_up_all(&ctx->event_wqh); 924 925 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 926 userfaultfd_ctx_put(ctx); 927 return 0; 928 } 929 930 /* fault_pending_wqh.lock must be hold by the caller */ 931 static inline struct userfaultfd_wait_queue *find_userfault_in( 932 wait_queue_head_t *wqh) 933 { 934 wait_queue_entry_t *wq; 935 struct userfaultfd_wait_queue *uwq; 936 937 lockdep_assert_held(&wqh->lock); 938 939 uwq = NULL; 940 if (!waitqueue_active(wqh)) 941 goto out; 942 /* walk in reverse to provide FIFO behavior to read userfaults */ 943 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 944 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 945 out: 946 return uwq; 947 } 948 949 static inline struct userfaultfd_wait_queue *find_userfault( 950 struct userfaultfd_ctx *ctx) 951 { 952 return find_userfault_in(&ctx->fault_pending_wqh); 953 } 954 955 static inline struct userfaultfd_wait_queue *find_userfault_evt( 956 struct userfaultfd_ctx *ctx) 957 { 958 return find_userfault_in(&ctx->event_wqh); 959 } 960 961 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 962 { 963 struct userfaultfd_ctx *ctx = file->private_data; 964 __poll_t ret; 965 966 poll_wait(file, &ctx->fd_wqh, wait); 967 968 if (!userfaultfd_is_initialized(ctx)) 969 return EPOLLERR; 970 971 /* 972 * poll() never guarantees that read won't block. 973 * userfaults can be waken before they're read(). 974 */ 975 if (unlikely(!(file->f_flags & O_NONBLOCK))) 976 return EPOLLERR; 977 /* 978 * lockless access to see if there are pending faults 979 * __pollwait last action is the add_wait_queue but 980 * the spin_unlock would allow the waitqueue_active to 981 * pass above the actual list_add inside 982 * add_wait_queue critical section. So use a full 983 * memory barrier to serialize the list_add write of 984 * add_wait_queue() with the waitqueue_active read 985 * below. 986 */ 987 ret = 0; 988 smp_mb(); 989 if (waitqueue_active(&ctx->fault_pending_wqh)) 990 ret = EPOLLIN; 991 else if (waitqueue_active(&ctx->event_wqh)) 992 ret = EPOLLIN; 993 994 return ret; 995 } 996 997 static const struct file_operations userfaultfd_fops; 998 999 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1000 struct inode *inode, 1001 struct uffd_msg *msg) 1002 { 1003 int fd; 1004 1005 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new, 1006 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1007 if (fd < 0) 1008 return fd; 1009 1010 msg->arg.reserved.reserved1 = 0; 1011 msg->arg.fork.ufd = fd; 1012 return 0; 1013 } 1014 1015 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1016 struct uffd_msg *msg, struct inode *inode) 1017 { 1018 ssize_t ret; 1019 DECLARE_WAITQUEUE(wait, current); 1020 struct userfaultfd_wait_queue *uwq; 1021 /* 1022 * Handling fork event requires sleeping operations, so 1023 * we drop the event_wqh lock, then do these ops, then 1024 * lock it back and wake up the waiter. While the lock is 1025 * dropped the ewq may go away so we keep track of it 1026 * carefully. 1027 */ 1028 LIST_HEAD(fork_event); 1029 struct userfaultfd_ctx *fork_nctx = NULL; 1030 1031 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1032 spin_lock_irq(&ctx->fd_wqh.lock); 1033 __add_wait_queue(&ctx->fd_wqh, &wait); 1034 for (;;) { 1035 set_current_state(TASK_INTERRUPTIBLE); 1036 spin_lock(&ctx->fault_pending_wqh.lock); 1037 uwq = find_userfault(ctx); 1038 if (uwq) { 1039 /* 1040 * Use a seqcount to repeat the lockless check 1041 * in wake_userfault() to avoid missing 1042 * wakeups because during the refile both 1043 * waitqueue could become empty if this is the 1044 * only userfault. 1045 */ 1046 write_seqcount_begin(&ctx->refile_seq); 1047 1048 /* 1049 * The fault_pending_wqh.lock prevents the uwq 1050 * to disappear from under us. 1051 * 1052 * Refile this userfault from 1053 * fault_pending_wqh to fault_wqh, it's not 1054 * pending anymore after we read it. 1055 * 1056 * Use list_del() by hand (as 1057 * userfaultfd_wake_function also uses 1058 * list_del_init() by hand) to be sure nobody 1059 * changes __remove_wait_queue() to use 1060 * list_del_init() in turn breaking the 1061 * !list_empty_careful() check in 1062 * handle_userfault(). The uwq->wq.head list 1063 * must never be empty at any time during the 1064 * refile, or the waitqueue could disappear 1065 * from under us. The "wait_queue_head_t" 1066 * parameter of __remove_wait_queue() is unused 1067 * anyway. 1068 */ 1069 list_del(&uwq->wq.entry); 1070 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1071 1072 write_seqcount_end(&ctx->refile_seq); 1073 1074 /* careful to always initialize msg if ret == 0 */ 1075 *msg = uwq->msg; 1076 spin_unlock(&ctx->fault_pending_wqh.lock); 1077 ret = 0; 1078 break; 1079 } 1080 spin_unlock(&ctx->fault_pending_wqh.lock); 1081 1082 spin_lock(&ctx->event_wqh.lock); 1083 uwq = find_userfault_evt(ctx); 1084 if (uwq) { 1085 *msg = uwq->msg; 1086 1087 if (uwq->msg.event == UFFD_EVENT_FORK) { 1088 fork_nctx = (struct userfaultfd_ctx *) 1089 (unsigned long) 1090 uwq->msg.arg.reserved.reserved1; 1091 list_move(&uwq->wq.entry, &fork_event); 1092 /* 1093 * fork_nctx can be freed as soon as 1094 * we drop the lock, unless we take a 1095 * reference on it. 1096 */ 1097 userfaultfd_ctx_get(fork_nctx); 1098 spin_unlock(&ctx->event_wqh.lock); 1099 ret = 0; 1100 break; 1101 } 1102 1103 userfaultfd_event_complete(ctx, uwq); 1104 spin_unlock(&ctx->event_wqh.lock); 1105 ret = 0; 1106 break; 1107 } 1108 spin_unlock(&ctx->event_wqh.lock); 1109 1110 if (signal_pending(current)) { 1111 ret = -ERESTARTSYS; 1112 break; 1113 } 1114 if (no_wait) { 1115 ret = -EAGAIN; 1116 break; 1117 } 1118 spin_unlock_irq(&ctx->fd_wqh.lock); 1119 schedule(); 1120 spin_lock_irq(&ctx->fd_wqh.lock); 1121 } 1122 __remove_wait_queue(&ctx->fd_wqh, &wait); 1123 __set_current_state(TASK_RUNNING); 1124 spin_unlock_irq(&ctx->fd_wqh.lock); 1125 1126 if (!ret && msg->event == UFFD_EVENT_FORK) { 1127 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1128 spin_lock_irq(&ctx->event_wqh.lock); 1129 if (!list_empty(&fork_event)) { 1130 /* 1131 * The fork thread didn't abort, so we can 1132 * drop the temporary refcount. 1133 */ 1134 userfaultfd_ctx_put(fork_nctx); 1135 1136 uwq = list_first_entry(&fork_event, 1137 typeof(*uwq), 1138 wq.entry); 1139 /* 1140 * If fork_event list wasn't empty and in turn 1141 * the event wasn't already released by fork 1142 * (the event is allocated on fork kernel 1143 * stack), put the event back to its place in 1144 * the event_wq. fork_event head will be freed 1145 * as soon as we return so the event cannot 1146 * stay queued there no matter the current 1147 * "ret" value. 1148 */ 1149 list_del(&uwq->wq.entry); 1150 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1151 1152 /* 1153 * Leave the event in the waitqueue and report 1154 * error to userland if we failed to resolve 1155 * the userfault fork. 1156 */ 1157 if (likely(!ret)) 1158 userfaultfd_event_complete(ctx, uwq); 1159 } else { 1160 /* 1161 * Here the fork thread aborted and the 1162 * refcount from the fork thread on fork_nctx 1163 * has already been released. We still hold 1164 * the reference we took before releasing the 1165 * lock above. If resolve_userfault_fork 1166 * failed we've to drop it because the 1167 * fork_nctx has to be freed in such case. If 1168 * it succeeded we'll hold it because the new 1169 * uffd references it. 1170 */ 1171 if (ret) 1172 userfaultfd_ctx_put(fork_nctx); 1173 } 1174 spin_unlock_irq(&ctx->event_wqh.lock); 1175 } 1176 1177 return ret; 1178 } 1179 1180 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1181 size_t count, loff_t *ppos) 1182 { 1183 struct userfaultfd_ctx *ctx = file->private_data; 1184 ssize_t _ret, ret = 0; 1185 struct uffd_msg msg; 1186 int no_wait = file->f_flags & O_NONBLOCK; 1187 struct inode *inode = file_inode(file); 1188 1189 if (!userfaultfd_is_initialized(ctx)) 1190 return -EINVAL; 1191 1192 for (;;) { 1193 if (count < sizeof(msg)) 1194 return ret ? ret : -EINVAL; 1195 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1196 if (_ret < 0) 1197 return ret ? ret : _ret; 1198 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1199 return ret ? ret : -EFAULT; 1200 ret += sizeof(msg); 1201 buf += sizeof(msg); 1202 count -= sizeof(msg); 1203 /* 1204 * Allow to read more than one fault at time but only 1205 * block if waiting for the very first one. 1206 */ 1207 no_wait = O_NONBLOCK; 1208 } 1209 } 1210 1211 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1212 struct userfaultfd_wake_range *range) 1213 { 1214 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1215 /* wake all in the range and autoremove */ 1216 if (waitqueue_active(&ctx->fault_pending_wqh)) 1217 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1218 range); 1219 if (waitqueue_active(&ctx->fault_wqh)) 1220 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1221 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1222 } 1223 1224 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1225 struct userfaultfd_wake_range *range) 1226 { 1227 unsigned seq; 1228 bool need_wakeup; 1229 1230 /* 1231 * To be sure waitqueue_active() is not reordered by the CPU 1232 * before the pagetable update, use an explicit SMP memory 1233 * barrier here. PT lock release or mmap_read_unlock(mm) still 1234 * have release semantics that can allow the 1235 * waitqueue_active() to be reordered before the pte update. 1236 */ 1237 smp_mb(); 1238 1239 /* 1240 * Use waitqueue_active because it's very frequent to 1241 * change the address space atomically even if there are no 1242 * userfaults yet. So we take the spinlock only when we're 1243 * sure we've userfaults to wake. 1244 */ 1245 do { 1246 seq = read_seqcount_begin(&ctx->refile_seq); 1247 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1248 waitqueue_active(&ctx->fault_wqh); 1249 cond_resched(); 1250 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1251 if (need_wakeup) 1252 __wake_userfault(ctx, range); 1253 } 1254 1255 static __always_inline int validate_unaligned_range( 1256 struct mm_struct *mm, __u64 start, __u64 len) 1257 { 1258 __u64 task_size = mm->task_size; 1259 1260 if (len & ~PAGE_MASK) 1261 return -EINVAL; 1262 if (!len) 1263 return -EINVAL; 1264 if (start < mmap_min_addr) 1265 return -EINVAL; 1266 if (start >= task_size) 1267 return -EINVAL; 1268 if (len > task_size - start) 1269 return -EINVAL; 1270 if (start + len <= start) 1271 return -EINVAL; 1272 return 0; 1273 } 1274 1275 static __always_inline int validate_range(struct mm_struct *mm, 1276 __u64 start, __u64 len) 1277 { 1278 if (start & ~PAGE_MASK) 1279 return -EINVAL; 1280 1281 return validate_unaligned_range(mm, start, len); 1282 } 1283 1284 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1285 unsigned long arg) 1286 { 1287 struct mm_struct *mm = ctx->mm; 1288 struct vm_area_struct *vma, *prev, *cur; 1289 int ret; 1290 struct uffdio_register uffdio_register; 1291 struct uffdio_register __user *user_uffdio_register; 1292 unsigned long vm_flags, new_flags; 1293 bool found; 1294 bool basic_ioctls; 1295 unsigned long start, end, vma_end; 1296 struct vma_iterator vmi; 1297 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1298 1299 user_uffdio_register = (struct uffdio_register __user *) arg; 1300 1301 ret = -EFAULT; 1302 if (copy_from_user(&uffdio_register, user_uffdio_register, 1303 sizeof(uffdio_register)-sizeof(__u64))) 1304 goto out; 1305 1306 ret = -EINVAL; 1307 if (!uffdio_register.mode) 1308 goto out; 1309 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1310 goto out; 1311 vm_flags = 0; 1312 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1313 vm_flags |= VM_UFFD_MISSING; 1314 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1315 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1316 goto out; 1317 #endif 1318 vm_flags |= VM_UFFD_WP; 1319 } 1320 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1321 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1322 goto out; 1323 #endif 1324 vm_flags |= VM_UFFD_MINOR; 1325 } 1326 1327 ret = validate_range(mm, uffdio_register.range.start, 1328 uffdio_register.range.len); 1329 if (ret) 1330 goto out; 1331 1332 start = uffdio_register.range.start; 1333 end = start + uffdio_register.range.len; 1334 1335 ret = -ENOMEM; 1336 if (!mmget_not_zero(mm)) 1337 goto out; 1338 1339 ret = -EINVAL; 1340 mmap_write_lock(mm); 1341 vma_iter_init(&vmi, mm, start); 1342 vma = vma_find(&vmi, end); 1343 if (!vma) 1344 goto out_unlock; 1345 1346 /* 1347 * If the first vma contains huge pages, make sure start address 1348 * is aligned to huge page size. 1349 */ 1350 if (is_vm_hugetlb_page(vma)) { 1351 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1352 1353 if (start & (vma_hpagesize - 1)) 1354 goto out_unlock; 1355 } 1356 1357 /* 1358 * Search for not compatible vmas. 1359 */ 1360 found = false; 1361 basic_ioctls = false; 1362 cur = vma; 1363 do { 1364 cond_resched(); 1365 1366 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1367 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1368 1369 /* check not compatible vmas */ 1370 ret = -EINVAL; 1371 if (!vma_can_userfault(cur, vm_flags, wp_async)) 1372 goto out_unlock; 1373 1374 /* 1375 * UFFDIO_COPY will fill file holes even without 1376 * PROT_WRITE. This check enforces that if this is a 1377 * MAP_SHARED, the process has write permission to the backing 1378 * file. If VM_MAYWRITE is set it also enforces that on a 1379 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1380 * F_WRITE_SEAL can be taken until the vma is destroyed. 1381 */ 1382 ret = -EPERM; 1383 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1384 goto out_unlock; 1385 1386 /* 1387 * If this vma contains ending address, and huge pages 1388 * check alignment. 1389 */ 1390 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1391 end > cur->vm_start) { 1392 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1393 1394 ret = -EINVAL; 1395 1396 if (end & (vma_hpagesize - 1)) 1397 goto out_unlock; 1398 } 1399 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1400 goto out_unlock; 1401 1402 /* 1403 * Check that this vma isn't already owned by a 1404 * different userfaultfd. We can't allow more than one 1405 * userfaultfd to own a single vma simultaneously or we 1406 * wouldn't know which one to deliver the userfaults to. 1407 */ 1408 ret = -EBUSY; 1409 if (cur->vm_userfaultfd_ctx.ctx && 1410 cur->vm_userfaultfd_ctx.ctx != ctx) 1411 goto out_unlock; 1412 1413 /* 1414 * Note vmas containing huge pages 1415 */ 1416 if (is_vm_hugetlb_page(cur)) 1417 basic_ioctls = true; 1418 1419 found = true; 1420 } for_each_vma_range(vmi, cur, end); 1421 BUG_ON(!found); 1422 1423 vma_iter_set(&vmi, start); 1424 prev = vma_prev(&vmi); 1425 if (vma->vm_start < start) 1426 prev = vma; 1427 1428 ret = 0; 1429 for_each_vma_range(vmi, vma, end) { 1430 cond_resched(); 1431 1432 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async)); 1433 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1434 vma->vm_userfaultfd_ctx.ctx != ctx); 1435 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1436 1437 /* 1438 * Nothing to do: this vma is already registered into this 1439 * userfaultfd and with the right tracking mode too. 1440 */ 1441 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1442 (vma->vm_flags & vm_flags) == vm_flags) 1443 goto skip; 1444 1445 if (vma->vm_start > start) 1446 start = vma->vm_start; 1447 vma_end = min(end, vma->vm_end); 1448 1449 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1450 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end, 1451 new_flags, 1452 (struct vm_userfaultfd_ctx){ctx}); 1453 if (IS_ERR(vma)) { 1454 ret = PTR_ERR(vma); 1455 break; 1456 } 1457 1458 /* 1459 * In the vma_merge() successful mprotect-like case 8: 1460 * the next vma was merged into the current one and 1461 * the current one has not been updated yet. 1462 */ 1463 vma_start_write(vma); 1464 userfaultfd_set_vm_flags(vma, new_flags); 1465 vma->vm_userfaultfd_ctx.ctx = ctx; 1466 1467 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1468 hugetlb_unshare_all_pmds(vma); 1469 1470 skip: 1471 prev = vma; 1472 start = vma->vm_end; 1473 } 1474 1475 out_unlock: 1476 mmap_write_unlock(mm); 1477 mmput(mm); 1478 if (!ret) { 1479 __u64 ioctls_out; 1480 1481 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1482 UFFD_API_RANGE_IOCTLS; 1483 1484 /* 1485 * Declare the WP ioctl only if the WP mode is 1486 * specified and all checks passed with the range 1487 */ 1488 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1489 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1490 1491 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1492 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1493 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1494 1495 /* 1496 * Now that we scanned all vmas we can already tell 1497 * userland which ioctls methods are guaranteed to 1498 * succeed on this range. 1499 */ 1500 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1501 ret = -EFAULT; 1502 } 1503 out: 1504 return ret; 1505 } 1506 1507 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1508 unsigned long arg) 1509 { 1510 struct mm_struct *mm = ctx->mm; 1511 struct vm_area_struct *vma, *prev, *cur; 1512 int ret; 1513 struct uffdio_range uffdio_unregister; 1514 unsigned long new_flags; 1515 bool found; 1516 unsigned long start, end, vma_end; 1517 const void __user *buf = (void __user *)arg; 1518 struct vma_iterator vmi; 1519 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1520 1521 ret = -EFAULT; 1522 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1523 goto out; 1524 1525 ret = validate_range(mm, uffdio_unregister.start, 1526 uffdio_unregister.len); 1527 if (ret) 1528 goto out; 1529 1530 start = uffdio_unregister.start; 1531 end = start + uffdio_unregister.len; 1532 1533 ret = -ENOMEM; 1534 if (!mmget_not_zero(mm)) 1535 goto out; 1536 1537 mmap_write_lock(mm); 1538 ret = -EINVAL; 1539 vma_iter_init(&vmi, mm, start); 1540 vma = vma_find(&vmi, end); 1541 if (!vma) 1542 goto out_unlock; 1543 1544 /* 1545 * If the first vma contains huge pages, make sure start address 1546 * is aligned to huge page size. 1547 */ 1548 if (is_vm_hugetlb_page(vma)) { 1549 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1550 1551 if (start & (vma_hpagesize - 1)) 1552 goto out_unlock; 1553 } 1554 1555 /* 1556 * Search for not compatible vmas. 1557 */ 1558 found = false; 1559 cur = vma; 1560 do { 1561 cond_resched(); 1562 1563 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1564 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1565 1566 /* 1567 * Check not compatible vmas, not strictly required 1568 * here as not compatible vmas cannot have an 1569 * userfaultfd_ctx registered on them, but this 1570 * provides for more strict behavior to notice 1571 * unregistration errors. 1572 */ 1573 if (!vma_can_userfault(cur, cur->vm_flags, wp_async)) 1574 goto out_unlock; 1575 1576 found = true; 1577 } for_each_vma_range(vmi, cur, end); 1578 BUG_ON(!found); 1579 1580 vma_iter_set(&vmi, start); 1581 prev = vma_prev(&vmi); 1582 if (vma->vm_start < start) 1583 prev = vma; 1584 1585 ret = 0; 1586 for_each_vma_range(vmi, vma, end) { 1587 cond_resched(); 1588 1589 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async)); 1590 1591 /* 1592 * Nothing to do: this vma is already registered into this 1593 * userfaultfd and with the right tracking mode too. 1594 */ 1595 if (!vma->vm_userfaultfd_ctx.ctx) 1596 goto skip; 1597 1598 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1599 1600 if (vma->vm_start > start) 1601 start = vma->vm_start; 1602 vma_end = min(end, vma->vm_end); 1603 1604 if (userfaultfd_missing(vma)) { 1605 /* 1606 * Wake any concurrent pending userfault while 1607 * we unregister, so they will not hang 1608 * permanently and it avoids userland to call 1609 * UFFDIO_WAKE explicitly. 1610 */ 1611 struct userfaultfd_wake_range range; 1612 range.start = start; 1613 range.len = vma_end - start; 1614 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1615 } 1616 1617 /* Reset ptes for the whole vma range if wr-protected */ 1618 if (userfaultfd_wp(vma)) 1619 uffd_wp_range(vma, start, vma_end - start, false); 1620 1621 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1622 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end, 1623 new_flags, NULL_VM_UFFD_CTX); 1624 if (IS_ERR(vma)) { 1625 ret = PTR_ERR(vma); 1626 break; 1627 } 1628 1629 /* 1630 * In the vma_merge() successful mprotect-like case 8: 1631 * the next vma was merged into the current one and 1632 * the current one has not been updated yet. 1633 */ 1634 vma_start_write(vma); 1635 userfaultfd_set_vm_flags(vma, new_flags); 1636 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1637 1638 skip: 1639 prev = vma; 1640 start = vma->vm_end; 1641 } 1642 1643 out_unlock: 1644 mmap_write_unlock(mm); 1645 mmput(mm); 1646 out: 1647 return ret; 1648 } 1649 1650 /* 1651 * userfaultfd_wake may be used in combination with the 1652 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1653 */ 1654 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1655 unsigned long arg) 1656 { 1657 int ret; 1658 struct uffdio_range uffdio_wake; 1659 struct userfaultfd_wake_range range; 1660 const void __user *buf = (void __user *)arg; 1661 1662 ret = -EFAULT; 1663 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1664 goto out; 1665 1666 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1667 if (ret) 1668 goto out; 1669 1670 range.start = uffdio_wake.start; 1671 range.len = uffdio_wake.len; 1672 1673 /* 1674 * len == 0 means wake all and we don't want to wake all here, 1675 * so check it again to be sure. 1676 */ 1677 VM_BUG_ON(!range.len); 1678 1679 wake_userfault(ctx, &range); 1680 ret = 0; 1681 1682 out: 1683 return ret; 1684 } 1685 1686 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1687 unsigned long arg) 1688 { 1689 __s64 ret; 1690 struct uffdio_copy uffdio_copy; 1691 struct uffdio_copy __user *user_uffdio_copy; 1692 struct userfaultfd_wake_range range; 1693 uffd_flags_t flags = 0; 1694 1695 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1696 1697 ret = -EAGAIN; 1698 if (atomic_read(&ctx->mmap_changing)) 1699 goto out; 1700 1701 ret = -EFAULT; 1702 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1703 /* don't copy "copy" last field */ 1704 sizeof(uffdio_copy)-sizeof(__s64))) 1705 goto out; 1706 1707 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1708 uffdio_copy.len); 1709 if (ret) 1710 goto out; 1711 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1712 if (ret) 1713 goto out; 1714 1715 ret = -EINVAL; 1716 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1717 goto out; 1718 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1719 flags |= MFILL_ATOMIC_WP; 1720 if (mmget_not_zero(ctx->mm)) { 1721 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src, 1722 uffdio_copy.len, flags); 1723 mmput(ctx->mm); 1724 } else { 1725 return -ESRCH; 1726 } 1727 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1728 return -EFAULT; 1729 if (ret < 0) 1730 goto out; 1731 BUG_ON(!ret); 1732 /* len == 0 would wake all */ 1733 range.len = ret; 1734 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1735 range.start = uffdio_copy.dst; 1736 wake_userfault(ctx, &range); 1737 } 1738 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1739 out: 1740 return ret; 1741 } 1742 1743 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1744 unsigned long arg) 1745 { 1746 __s64 ret; 1747 struct uffdio_zeropage uffdio_zeropage; 1748 struct uffdio_zeropage __user *user_uffdio_zeropage; 1749 struct userfaultfd_wake_range range; 1750 1751 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1752 1753 ret = -EAGAIN; 1754 if (atomic_read(&ctx->mmap_changing)) 1755 goto out; 1756 1757 ret = -EFAULT; 1758 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1759 /* don't copy "zeropage" last field */ 1760 sizeof(uffdio_zeropage)-sizeof(__s64))) 1761 goto out; 1762 1763 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1764 uffdio_zeropage.range.len); 1765 if (ret) 1766 goto out; 1767 ret = -EINVAL; 1768 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1769 goto out; 1770 1771 if (mmget_not_zero(ctx->mm)) { 1772 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start, 1773 uffdio_zeropage.range.len); 1774 mmput(ctx->mm); 1775 } else { 1776 return -ESRCH; 1777 } 1778 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1779 return -EFAULT; 1780 if (ret < 0) 1781 goto out; 1782 /* len == 0 would wake all */ 1783 BUG_ON(!ret); 1784 range.len = ret; 1785 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1786 range.start = uffdio_zeropage.range.start; 1787 wake_userfault(ctx, &range); 1788 } 1789 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1790 out: 1791 return ret; 1792 } 1793 1794 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1795 unsigned long arg) 1796 { 1797 int ret; 1798 struct uffdio_writeprotect uffdio_wp; 1799 struct uffdio_writeprotect __user *user_uffdio_wp; 1800 struct userfaultfd_wake_range range; 1801 bool mode_wp, mode_dontwake; 1802 1803 if (atomic_read(&ctx->mmap_changing)) 1804 return -EAGAIN; 1805 1806 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1807 1808 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1809 sizeof(struct uffdio_writeprotect))) 1810 return -EFAULT; 1811 1812 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1813 uffdio_wp.range.len); 1814 if (ret) 1815 return ret; 1816 1817 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1818 UFFDIO_WRITEPROTECT_MODE_WP)) 1819 return -EINVAL; 1820 1821 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1822 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1823 1824 if (mode_wp && mode_dontwake) 1825 return -EINVAL; 1826 1827 if (mmget_not_zero(ctx->mm)) { 1828 ret = mwriteprotect_range(ctx, uffdio_wp.range.start, 1829 uffdio_wp.range.len, mode_wp); 1830 mmput(ctx->mm); 1831 } else { 1832 return -ESRCH; 1833 } 1834 1835 if (ret) 1836 return ret; 1837 1838 if (!mode_wp && !mode_dontwake) { 1839 range.start = uffdio_wp.range.start; 1840 range.len = uffdio_wp.range.len; 1841 wake_userfault(ctx, &range); 1842 } 1843 return ret; 1844 } 1845 1846 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1847 { 1848 __s64 ret; 1849 struct uffdio_continue uffdio_continue; 1850 struct uffdio_continue __user *user_uffdio_continue; 1851 struct userfaultfd_wake_range range; 1852 uffd_flags_t flags = 0; 1853 1854 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1855 1856 ret = -EAGAIN; 1857 if (atomic_read(&ctx->mmap_changing)) 1858 goto out; 1859 1860 ret = -EFAULT; 1861 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1862 /* don't copy the output fields */ 1863 sizeof(uffdio_continue) - (sizeof(__s64)))) 1864 goto out; 1865 1866 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1867 uffdio_continue.range.len); 1868 if (ret) 1869 goto out; 1870 1871 ret = -EINVAL; 1872 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1873 UFFDIO_CONTINUE_MODE_WP)) 1874 goto out; 1875 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1876 flags |= MFILL_ATOMIC_WP; 1877 1878 if (mmget_not_zero(ctx->mm)) { 1879 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start, 1880 uffdio_continue.range.len, flags); 1881 mmput(ctx->mm); 1882 } else { 1883 return -ESRCH; 1884 } 1885 1886 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1887 return -EFAULT; 1888 if (ret < 0) 1889 goto out; 1890 1891 /* len == 0 would wake all */ 1892 BUG_ON(!ret); 1893 range.len = ret; 1894 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1895 range.start = uffdio_continue.range.start; 1896 wake_userfault(ctx, &range); 1897 } 1898 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1899 1900 out: 1901 return ret; 1902 } 1903 1904 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1905 { 1906 __s64 ret; 1907 struct uffdio_poison uffdio_poison; 1908 struct uffdio_poison __user *user_uffdio_poison; 1909 struct userfaultfd_wake_range range; 1910 1911 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1912 1913 ret = -EAGAIN; 1914 if (atomic_read(&ctx->mmap_changing)) 1915 goto out; 1916 1917 ret = -EFAULT; 1918 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1919 /* don't copy the output fields */ 1920 sizeof(uffdio_poison) - (sizeof(__s64)))) 1921 goto out; 1922 1923 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1924 uffdio_poison.range.len); 1925 if (ret) 1926 goto out; 1927 1928 ret = -EINVAL; 1929 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1930 goto out; 1931 1932 if (mmget_not_zero(ctx->mm)) { 1933 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start, 1934 uffdio_poison.range.len, 0); 1935 mmput(ctx->mm); 1936 } else { 1937 return -ESRCH; 1938 } 1939 1940 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1941 return -EFAULT; 1942 if (ret < 0) 1943 goto out; 1944 1945 /* len == 0 would wake all */ 1946 BUG_ON(!ret); 1947 range.len = ret; 1948 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 1949 range.start = uffdio_poison.range.start; 1950 wake_userfault(ctx, &range); 1951 } 1952 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 1953 1954 out: 1955 return ret; 1956 } 1957 1958 bool userfaultfd_wp_async(struct vm_area_struct *vma) 1959 { 1960 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx); 1961 } 1962 1963 static inline unsigned int uffd_ctx_features(__u64 user_features) 1964 { 1965 /* 1966 * For the current set of features the bits just coincide. Set 1967 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1968 */ 1969 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1970 } 1971 1972 static int userfaultfd_move(struct userfaultfd_ctx *ctx, 1973 unsigned long arg) 1974 { 1975 __s64 ret; 1976 struct uffdio_move uffdio_move; 1977 struct uffdio_move __user *user_uffdio_move; 1978 struct userfaultfd_wake_range range; 1979 struct mm_struct *mm = ctx->mm; 1980 1981 user_uffdio_move = (struct uffdio_move __user *) arg; 1982 1983 if (atomic_read(&ctx->mmap_changing)) 1984 return -EAGAIN; 1985 1986 if (copy_from_user(&uffdio_move, user_uffdio_move, 1987 /* don't copy "move" last field */ 1988 sizeof(uffdio_move)-sizeof(__s64))) 1989 return -EFAULT; 1990 1991 /* Do not allow cross-mm moves. */ 1992 if (mm != current->mm) 1993 return -EINVAL; 1994 1995 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len); 1996 if (ret) 1997 return ret; 1998 1999 ret = validate_range(mm, uffdio_move.src, uffdio_move.len); 2000 if (ret) 2001 return ret; 2002 2003 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES| 2004 UFFDIO_MOVE_MODE_DONTWAKE)) 2005 return -EINVAL; 2006 2007 if (mmget_not_zero(mm)) { 2008 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src, 2009 uffdio_move.len, uffdio_move.mode); 2010 mmput(mm); 2011 } else { 2012 return -ESRCH; 2013 } 2014 2015 if (unlikely(put_user(ret, &user_uffdio_move->move))) 2016 return -EFAULT; 2017 if (ret < 0) 2018 goto out; 2019 2020 /* len == 0 would wake all */ 2021 VM_WARN_ON(!ret); 2022 range.len = ret; 2023 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) { 2024 range.start = uffdio_move.dst; 2025 wake_userfault(ctx, &range); 2026 } 2027 ret = range.len == uffdio_move.len ? 0 : -EAGAIN; 2028 2029 out: 2030 return ret; 2031 } 2032 2033 /* 2034 * userland asks for a certain API version and we return which bits 2035 * and ioctl commands are implemented in this kernel for such API 2036 * version or -EINVAL if unknown. 2037 */ 2038 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2039 unsigned long arg) 2040 { 2041 struct uffdio_api uffdio_api; 2042 void __user *buf = (void __user *)arg; 2043 unsigned int ctx_features; 2044 int ret; 2045 __u64 features; 2046 2047 ret = -EFAULT; 2048 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2049 goto out; 2050 features = uffdio_api.features; 2051 ret = -EINVAL; 2052 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 2053 goto err_out; 2054 ret = -EPERM; 2055 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2056 goto err_out; 2057 2058 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */ 2059 if (features & UFFD_FEATURE_WP_ASYNC) 2060 features |= UFFD_FEATURE_WP_UNPOPULATED; 2061 2062 /* report all available features and ioctls to userland */ 2063 uffdio_api.features = UFFD_API_FEATURES; 2064 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2065 uffdio_api.features &= 2066 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2067 #endif 2068 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2069 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2070 #endif 2071 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2072 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2073 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2074 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC; 2075 #endif 2076 uffdio_api.ioctls = UFFD_API_IOCTLS; 2077 ret = -EFAULT; 2078 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2079 goto out; 2080 2081 /* only enable the requested features for this uffd context */ 2082 ctx_features = uffd_ctx_features(features); 2083 ret = -EINVAL; 2084 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2085 goto err_out; 2086 2087 ret = 0; 2088 out: 2089 return ret; 2090 err_out: 2091 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2092 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2093 ret = -EFAULT; 2094 goto out; 2095 } 2096 2097 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2098 unsigned long arg) 2099 { 2100 int ret = -EINVAL; 2101 struct userfaultfd_ctx *ctx = file->private_data; 2102 2103 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2104 return -EINVAL; 2105 2106 switch(cmd) { 2107 case UFFDIO_API: 2108 ret = userfaultfd_api(ctx, arg); 2109 break; 2110 case UFFDIO_REGISTER: 2111 ret = userfaultfd_register(ctx, arg); 2112 break; 2113 case UFFDIO_UNREGISTER: 2114 ret = userfaultfd_unregister(ctx, arg); 2115 break; 2116 case UFFDIO_WAKE: 2117 ret = userfaultfd_wake(ctx, arg); 2118 break; 2119 case UFFDIO_COPY: 2120 ret = userfaultfd_copy(ctx, arg); 2121 break; 2122 case UFFDIO_ZEROPAGE: 2123 ret = userfaultfd_zeropage(ctx, arg); 2124 break; 2125 case UFFDIO_MOVE: 2126 ret = userfaultfd_move(ctx, arg); 2127 break; 2128 case UFFDIO_WRITEPROTECT: 2129 ret = userfaultfd_writeprotect(ctx, arg); 2130 break; 2131 case UFFDIO_CONTINUE: 2132 ret = userfaultfd_continue(ctx, arg); 2133 break; 2134 case UFFDIO_POISON: 2135 ret = userfaultfd_poison(ctx, arg); 2136 break; 2137 } 2138 return ret; 2139 } 2140 2141 #ifdef CONFIG_PROC_FS 2142 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2143 { 2144 struct userfaultfd_ctx *ctx = f->private_data; 2145 wait_queue_entry_t *wq; 2146 unsigned long pending = 0, total = 0; 2147 2148 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2149 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2150 pending++; 2151 total++; 2152 } 2153 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2154 total++; 2155 } 2156 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2157 2158 /* 2159 * If more protocols will be added, there will be all shown 2160 * separated by a space. Like this: 2161 * protocols: aa:... bb:... 2162 */ 2163 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2164 pending, total, UFFD_API, ctx->features, 2165 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2166 } 2167 #endif 2168 2169 static const struct file_operations userfaultfd_fops = { 2170 #ifdef CONFIG_PROC_FS 2171 .show_fdinfo = userfaultfd_show_fdinfo, 2172 #endif 2173 .release = userfaultfd_release, 2174 .poll = userfaultfd_poll, 2175 .read = userfaultfd_read, 2176 .unlocked_ioctl = userfaultfd_ioctl, 2177 .compat_ioctl = compat_ptr_ioctl, 2178 .llseek = noop_llseek, 2179 }; 2180 2181 static void init_once_userfaultfd_ctx(void *mem) 2182 { 2183 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2184 2185 init_waitqueue_head(&ctx->fault_pending_wqh); 2186 init_waitqueue_head(&ctx->fault_wqh); 2187 init_waitqueue_head(&ctx->event_wqh); 2188 init_waitqueue_head(&ctx->fd_wqh); 2189 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2190 } 2191 2192 static int new_userfaultfd(int flags) 2193 { 2194 struct userfaultfd_ctx *ctx; 2195 int fd; 2196 2197 BUG_ON(!current->mm); 2198 2199 /* Check the UFFD_* constants for consistency. */ 2200 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2201 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2202 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2203 2204 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2205 return -EINVAL; 2206 2207 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2208 if (!ctx) 2209 return -ENOMEM; 2210 2211 refcount_set(&ctx->refcount, 1); 2212 ctx->flags = flags; 2213 ctx->features = 0; 2214 ctx->released = false; 2215 init_rwsem(&ctx->map_changing_lock); 2216 atomic_set(&ctx->mmap_changing, 0); 2217 ctx->mm = current->mm; 2218 /* prevent the mm struct to be freed */ 2219 mmgrab(ctx->mm); 2220 2221 /* Create a new inode so that the LSM can block the creation. */ 2222 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 2223 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2224 if (fd < 0) { 2225 mmdrop(ctx->mm); 2226 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2227 } 2228 return fd; 2229 } 2230 2231 static inline bool userfaultfd_syscall_allowed(int flags) 2232 { 2233 /* Userspace-only page faults are always allowed */ 2234 if (flags & UFFD_USER_MODE_ONLY) 2235 return true; 2236 2237 /* 2238 * The user is requesting a userfaultfd which can handle kernel faults. 2239 * Privileged users are always allowed to do this. 2240 */ 2241 if (capable(CAP_SYS_PTRACE)) 2242 return true; 2243 2244 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2245 return sysctl_unprivileged_userfaultfd; 2246 } 2247 2248 SYSCALL_DEFINE1(userfaultfd, int, flags) 2249 { 2250 if (!userfaultfd_syscall_allowed(flags)) 2251 return -EPERM; 2252 2253 return new_userfaultfd(flags); 2254 } 2255 2256 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2257 { 2258 if (cmd != USERFAULTFD_IOC_NEW) 2259 return -EINVAL; 2260 2261 return new_userfaultfd(flags); 2262 } 2263 2264 static const struct file_operations userfaultfd_dev_fops = { 2265 .unlocked_ioctl = userfaultfd_dev_ioctl, 2266 .compat_ioctl = userfaultfd_dev_ioctl, 2267 .owner = THIS_MODULE, 2268 .llseek = noop_llseek, 2269 }; 2270 2271 static struct miscdevice userfaultfd_misc = { 2272 .minor = MISC_DYNAMIC_MINOR, 2273 .name = "userfaultfd", 2274 .fops = &userfaultfd_dev_fops 2275 }; 2276 2277 static int __init userfaultfd_init(void) 2278 { 2279 int ret; 2280 2281 ret = misc_register(&userfaultfd_misc); 2282 if (ret) 2283 return ret; 2284 2285 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2286 sizeof(struct userfaultfd_ctx), 2287 0, 2288 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2289 init_once_userfaultfd_ctx); 2290 #ifdef CONFIG_SYSCTL 2291 register_sysctl_init("vm", vm_userfaultfd_table); 2292 #endif 2293 return 0; 2294 } 2295 __initcall(userfaultfd_init); 2296