1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/leafops.h> 33 #include <linux/miscdevice.h> 34 #include <linux/uio.h> 35 36 static int sysctl_unprivileged_userfaultfd __read_mostly; 37 38 #ifdef CONFIG_SYSCTL 39 static const struct ctl_table vm_userfaultfd_table[] = { 40 { 41 .procname = "unprivileged_userfaultfd", 42 .data = &sysctl_unprivileged_userfaultfd, 43 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 44 .mode = 0644, 45 .proc_handler = proc_dointvec_minmax, 46 .extra1 = SYSCTL_ZERO, 47 .extra2 = SYSCTL_ONE, 48 }, 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init; 53 54 struct userfaultfd_fork_ctx { 55 struct userfaultfd_ctx *orig; 56 struct userfaultfd_ctx *new; 57 struct list_head list; 58 }; 59 60 struct userfaultfd_unmap_ctx { 61 struct userfaultfd_ctx *ctx; 62 unsigned long start; 63 unsigned long end; 64 struct list_head list; 65 }; 66 67 struct userfaultfd_wait_queue { 68 struct uffd_msg msg; 69 wait_queue_entry_t wq; 70 struct userfaultfd_ctx *ctx; 71 bool waken; 72 }; 73 74 struct userfaultfd_wake_range { 75 unsigned long start; 76 unsigned long len; 77 }; 78 79 /* internal indication that UFFD_API ioctl was successfully executed */ 80 #define UFFD_FEATURE_INITIALIZED (1u << 31) 81 82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 83 { 84 return ctx->features & UFFD_FEATURE_INITIALIZED; 85 } 86 87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx) 88 { 89 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC); 90 } 91 92 /* 93 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 94 * meaningful when userfaultfd_wp()==true on the vma and when it's 95 * anonymous. 96 */ 97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 98 { 99 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 100 101 if (!ctx) 102 return false; 103 104 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 105 } 106 107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 108 int wake_flags, void *key) 109 { 110 struct userfaultfd_wake_range *range = key; 111 int ret; 112 struct userfaultfd_wait_queue *uwq; 113 unsigned long start, len; 114 115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 116 ret = 0; 117 /* len == 0 means wake all */ 118 start = range->start; 119 len = range->len; 120 if (len && (start > uwq->msg.arg.pagefault.address || 121 start + len <= uwq->msg.arg.pagefault.address)) 122 goto out; 123 WRITE_ONCE(uwq->waken, true); 124 /* 125 * The Program-Order guarantees provided by the scheduler 126 * ensure uwq->waken is visible before the task is woken. 127 */ 128 ret = wake_up_state(wq->private, mode); 129 if (ret) { 130 /* 131 * Wake only once, autoremove behavior. 132 * 133 * After the effect of list_del_init is visible to the other 134 * CPUs, the waitqueue may disappear from under us, see the 135 * !list_empty_careful() in handle_userfault(). 136 * 137 * try_to_wake_up() has an implicit smp_mb(), and the 138 * wq->private is read before calling the extern function 139 * "wake_up_state" (which in turns calls try_to_wake_up). 140 */ 141 list_del_init(&wq->entry); 142 } 143 out: 144 return ret; 145 } 146 147 /** 148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 149 * context. 150 * @ctx: [in] Pointer to the userfaultfd context. 151 */ 152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 153 { 154 refcount_inc(&ctx->refcount); 155 } 156 157 /** 158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 159 * context. 160 * @ctx: [in] Pointer to userfaultfd context. 161 * 162 * The userfaultfd context reference must have been previously acquired either 163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 164 */ 165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 166 { 167 if (refcount_dec_and_test(&ctx->refcount)) { 168 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_pending_wqh.lock)); 169 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_pending_wqh)); 170 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_wqh.lock)); 171 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_wqh)); 172 VM_WARN_ON_ONCE(spin_is_locked(&ctx->event_wqh.lock)); 173 VM_WARN_ON_ONCE(waitqueue_active(&ctx->event_wqh)); 174 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fd_wqh.lock)); 175 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fd_wqh)); 176 mmdrop(ctx->mm); 177 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 178 } 179 } 180 181 static inline void msg_init(struct uffd_msg *msg) 182 { 183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 184 /* 185 * Must use memset to zero out the paddings or kernel data is 186 * leaked to userland. 187 */ 188 memset(msg, 0, sizeof(struct uffd_msg)); 189 } 190 191 static inline struct uffd_msg userfault_msg(unsigned long address, 192 unsigned long real_address, 193 unsigned int flags, 194 unsigned long reason, 195 unsigned int features) 196 { 197 struct uffd_msg msg; 198 199 msg_init(&msg); 200 msg.event = UFFD_EVENT_PAGEFAULT; 201 202 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 203 real_address : address; 204 205 /* 206 * These flags indicate why the userfault occurred: 207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 209 * - Neither of these flags being set indicates a MISSING fault. 210 * 211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 212 * fault. Otherwise, it was a read fault. 213 */ 214 if (flags & FAULT_FLAG_WRITE) 215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 216 if (reason & VM_UFFD_WP) 217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 218 if (reason & VM_UFFD_MINOR) 219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 220 if (features & UFFD_FEATURE_THREAD_ID) 221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 222 return msg; 223 } 224 225 #ifdef CONFIG_HUGETLB_PAGE 226 /* 227 * Same functionality as userfaultfd_must_wait below with modifications for 228 * hugepmd ranges. 229 */ 230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 231 struct vm_fault *vmf, 232 unsigned long reason) 233 { 234 struct vm_area_struct *vma = vmf->vma; 235 pte_t *ptep, pte; 236 237 assert_fault_locked(vmf); 238 239 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); 240 if (!ptep) 241 return true; 242 243 pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep); 244 245 /* 246 * Lockless access: we're in a wait_event so it's ok if it 247 * changes under us. 248 */ 249 250 /* Entry is still missing, wait for userspace to resolve the fault. */ 251 if (huge_pte_none(pte)) 252 return true; 253 /* UFFD PTE markers require userspace to resolve the fault. */ 254 if (pte_is_uffd_marker(pte)) 255 return true; 256 /* 257 * If VMA has UFFD WP faults enabled and WP fault, wait for userspace to 258 * resolve the fault. 259 */ 260 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 261 return true; 262 263 return false; 264 } 265 #else 266 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 267 struct vm_fault *vmf, 268 unsigned long reason) 269 { 270 /* Should never get here. */ 271 VM_WARN_ON_ONCE(1); 272 return false; 273 } 274 #endif /* CONFIG_HUGETLB_PAGE */ 275 276 /* 277 * Verify the pagetables are still not ok after having registered into 278 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 279 * userfault that has already been resolved, if userfaultfd_read_iter and 280 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 281 * threads. 282 */ 283 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 284 struct vm_fault *vmf, 285 unsigned long reason) 286 { 287 struct mm_struct *mm = ctx->mm; 288 unsigned long address = vmf->address; 289 pgd_t *pgd; 290 p4d_t *p4d; 291 pud_t *pud; 292 pmd_t *pmd, _pmd; 293 pte_t *pte; 294 pte_t ptent; 295 bool ret; 296 297 assert_fault_locked(vmf); 298 299 pgd = pgd_offset(mm, address); 300 if (!pgd_present(*pgd)) 301 return true; 302 p4d = p4d_offset(pgd, address); 303 if (!p4d_present(*p4d)) 304 return true; 305 pud = pud_offset(p4d, address); 306 if (!pud_present(*pud)) 307 return true; 308 pmd = pmd_offset(pud, address); 309 again: 310 _pmd = pmdp_get_lockless(pmd); 311 if (pmd_none(_pmd)) 312 return true; 313 314 /* 315 * A race could arise which would result in a softleaf entry such as 316 * migration entry unexpectedly being present in the PMD, so explicitly 317 * check for this and bail out if so. 318 */ 319 if (!pmd_present(_pmd)) 320 return false; 321 322 if (pmd_trans_huge(_pmd)) 323 return !pmd_write(_pmd) && (reason & VM_UFFD_WP); 324 325 pte = pte_offset_map(pmd, address); 326 if (!pte) 327 goto again; 328 329 /* 330 * Lockless access: we're in a wait_event so it's ok if it 331 * changes under us. 332 */ 333 ptent = ptep_get(pte); 334 335 ret = true; 336 /* Entry is still missing, wait for userspace to resolve the fault. */ 337 if (pte_none(ptent)) 338 goto out; 339 /* UFFD PTE markers require userspace to resolve the fault. */ 340 if (pte_is_uffd_marker(ptent)) 341 goto out; 342 /* 343 * If VMA has UFFD WP faults enabled and WP fault, wait for userspace to 344 * resolve the fault. 345 */ 346 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 347 goto out; 348 349 ret = false; 350 out: 351 pte_unmap(pte); 352 return ret; 353 } 354 355 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 356 { 357 if (flags & FAULT_FLAG_INTERRUPTIBLE) 358 return TASK_INTERRUPTIBLE; 359 360 if (flags & FAULT_FLAG_KILLABLE) 361 return TASK_KILLABLE; 362 363 return TASK_UNINTERRUPTIBLE; 364 } 365 366 /* 367 * The locking rules involved in returning VM_FAULT_RETRY depending on 368 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 369 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 370 * recommendation in __lock_page_or_retry is not an understatement. 371 * 372 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 373 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 374 * not set. 375 * 376 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 377 * set, VM_FAULT_RETRY can still be returned if and only if there are 378 * fatal_signal_pending()s, and the mmap_lock must be released before 379 * returning it. 380 */ 381 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 382 { 383 struct vm_area_struct *vma = vmf->vma; 384 struct mm_struct *mm = vma->vm_mm; 385 struct userfaultfd_ctx *ctx; 386 struct userfaultfd_wait_queue uwq; 387 vm_fault_t ret = VM_FAULT_SIGBUS; 388 bool must_wait; 389 unsigned int blocking_state; 390 391 /* 392 * We don't do userfault handling for the final child pid update 393 * and when coredumping (faults triggered by get_dump_page()). 394 */ 395 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 396 goto out; 397 398 assert_fault_locked(vmf); 399 400 ctx = vma->vm_userfaultfd_ctx.ctx; 401 if (!ctx) 402 goto out; 403 404 VM_WARN_ON_ONCE(ctx->mm != mm); 405 406 /* Any unrecognized flag is a bug. */ 407 VM_WARN_ON_ONCE(reason & ~__VM_UFFD_FLAGS); 408 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 409 VM_WARN_ON_ONCE(!reason || (reason & (reason - 1))); 410 411 if (ctx->features & UFFD_FEATURE_SIGBUS) 412 goto out; 413 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 414 goto out; 415 416 /* 417 * Check that we can return VM_FAULT_RETRY. 418 * 419 * NOTE: it should become possible to return VM_FAULT_RETRY 420 * even if FAULT_FLAG_TRIED is set without leading to gup() 421 * -EBUSY failures, if the userfaultfd is to be extended for 422 * VM_UFFD_WP tracking and we intend to arm the userfault 423 * without first stopping userland access to the memory. For 424 * VM_UFFD_MISSING userfaults this is enough for now. 425 */ 426 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 427 /* 428 * Validate the invariant that nowait must allow retry 429 * to be sure not to return SIGBUS erroneously on 430 * nowait invocations. 431 */ 432 VM_WARN_ON_ONCE(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 433 #ifdef CONFIG_DEBUG_VM 434 if (printk_ratelimit()) { 435 pr_warn("FAULT_FLAG_ALLOW_RETRY missing %x\n", 436 vmf->flags); 437 dump_stack(); 438 } 439 #endif 440 goto out; 441 } 442 443 /* 444 * Handle nowait, not much to do other than tell it to retry 445 * and wait. 446 */ 447 ret = VM_FAULT_RETRY; 448 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 449 goto out; 450 451 if (unlikely(READ_ONCE(ctx->released))) { 452 /* 453 * If a concurrent release is detected, do not return 454 * VM_FAULT_SIGBUS or VM_FAULT_NOPAGE, but instead always 455 * return VM_FAULT_RETRY with lock released proactively. 456 * 457 * If we were to return VM_FAULT_SIGBUS here, the non 458 * cooperative manager would be instead forced to 459 * always call UFFDIO_UNREGISTER before it can safely 460 * close the uffd, to avoid involuntary SIGBUS triggered. 461 * 462 * If we were to return VM_FAULT_NOPAGE, it would work for 463 * the fault path, in which the lock will be released 464 * later. However for GUP, faultin_page() does nothing 465 * special on NOPAGE, so GUP would spin retrying without 466 * releasing the mmap read lock, causing possible livelock. 467 * 468 * Here only VM_FAULT_RETRY would make sure the mmap lock 469 * be released immediately, so that the thread concurrently 470 * releasing the userfault would always make progress. 471 */ 472 release_fault_lock(vmf); 473 goto out; 474 } 475 476 /* take the reference before dropping the mmap_lock */ 477 userfaultfd_ctx_get(ctx); 478 479 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 480 uwq.wq.private = current; 481 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 482 reason, ctx->features); 483 uwq.ctx = ctx; 484 uwq.waken = false; 485 486 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 487 488 /* 489 * Take the vma lock now, in order to safely call 490 * userfaultfd_huge_must_wait() later. Since acquiring the 491 * (sleepable) vma lock can modify the current task state, that 492 * must be before explicitly calling set_current_state(). 493 */ 494 if (is_vm_hugetlb_page(vma)) 495 hugetlb_vma_lock_read(vma); 496 497 spin_lock_irq(&ctx->fault_pending_wqh.lock); 498 /* 499 * After the __add_wait_queue the uwq is visible to userland 500 * through poll/read(). 501 */ 502 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 503 /* 504 * The smp_mb() after __set_current_state prevents the reads 505 * following the spin_unlock to happen before the list_add in 506 * __add_wait_queue. 507 */ 508 set_current_state(blocking_state); 509 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 510 511 if (is_vm_hugetlb_page(vma)) { 512 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); 513 hugetlb_vma_unlock_read(vma); 514 } else { 515 must_wait = userfaultfd_must_wait(ctx, vmf, reason); 516 } 517 518 release_fault_lock(vmf); 519 520 if (likely(must_wait && !READ_ONCE(ctx->released))) { 521 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 522 schedule(); 523 } 524 525 __set_current_state(TASK_RUNNING); 526 527 /* 528 * Here we race with the list_del; list_add in 529 * userfaultfd_ctx_read(), however because we don't ever run 530 * list_del_init() to refile across the two lists, the prev 531 * and next pointers will never point to self. list_add also 532 * would never let any of the two pointers to point to 533 * self. So list_empty_careful won't risk to see both pointers 534 * pointing to self at any time during the list refile. The 535 * only case where list_del_init() is called is the full 536 * removal in the wake function and there we don't re-list_add 537 * and it's fine not to block on the spinlock. The uwq on this 538 * kernel stack can be released after the list_del_init. 539 */ 540 if (!list_empty_careful(&uwq.wq.entry)) { 541 spin_lock_irq(&ctx->fault_pending_wqh.lock); 542 /* 543 * No need of list_del_init(), the uwq on the stack 544 * will be freed shortly anyway. 545 */ 546 list_del(&uwq.wq.entry); 547 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 548 } 549 550 /* 551 * ctx may go away after this if the userfault pseudo fd is 552 * already released. 553 */ 554 userfaultfd_ctx_put(ctx); 555 556 out: 557 return ret; 558 } 559 560 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 561 struct userfaultfd_wait_queue *ewq) 562 { 563 struct userfaultfd_ctx *release_new_ctx; 564 565 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 566 goto out; 567 568 ewq->ctx = ctx; 569 init_waitqueue_entry(&ewq->wq, current); 570 release_new_ctx = NULL; 571 572 spin_lock_irq(&ctx->event_wqh.lock); 573 /* 574 * After the __add_wait_queue the uwq is visible to userland 575 * through poll/read(). 576 */ 577 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 578 for (;;) { 579 set_current_state(TASK_KILLABLE); 580 if (ewq->msg.event == 0) 581 break; 582 if (READ_ONCE(ctx->released) || 583 fatal_signal_pending(current)) { 584 /* 585 * &ewq->wq may be queued in fork_event, but 586 * __remove_wait_queue ignores the head 587 * parameter. It would be a problem if it 588 * didn't. 589 */ 590 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 591 if (ewq->msg.event == UFFD_EVENT_FORK) { 592 struct userfaultfd_ctx *new; 593 594 new = (struct userfaultfd_ctx *) 595 (unsigned long) 596 ewq->msg.arg.reserved.reserved1; 597 release_new_ctx = new; 598 } 599 break; 600 } 601 602 spin_unlock_irq(&ctx->event_wqh.lock); 603 604 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 605 schedule(); 606 607 spin_lock_irq(&ctx->event_wqh.lock); 608 } 609 __set_current_state(TASK_RUNNING); 610 spin_unlock_irq(&ctx->event_wqh.lock); 611 612 if (release_new_ctx) { 613 userfaultfd_release_new(release_new_ctx); 614 userfaultfd_ctx_put(release_new_ctx); 615 } 616 617 /* 618 * ctx may go away after this if the userfault pseudo fd is 619 * already released. 620 */ 621 out: 622 atomic_dec(&ctx->mmap_changing); 623 VM_WARN_ON_ONCE(atomic_read(&ctx->mmap_changing) < 0); 624 userfaultfd_ctx_put(ctx); 625 } 626 627 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 628 struct userfaultfd_wait_queue *ewq) 629 { 630 ewq->msg.event = 0; 631 wake_up_locked(&ctx->event_wqh); 632 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 633 } 634 635 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 636 { 637 struct userfaultfd_ctx *ctx = NULL, *octx; 638 struct userfaultfd_fork_ctx *fctx; 639 640 octx = vma->vm_userfaultfd_ctx.ctx; 641 if (!octx) 642 return 0; 643 644 if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) { 645 userfaultfd_reset_ctx(vma); 646 return 0; 647 } 648 649 list_for_each_entry(fctx, fcs, list) 650 if (fctx->orig == octx) { 651 ctx = fctx->new; 652 break; 653 } 654 655 if (!ctx) { 656 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 657 if (!fctx) 658 return -ENOMEM; 659 660 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 661 if (!ctx) { 662 kfree(fctx); 663 return -ENOMEM; 664 } 665 666 refcount_set(&ctx->refcount, 1); 667 ctx->flags = octx->flags; 668 ctx->features = octx->features; 669 ctx->released = false; 670 init_rwsem(&ctx->map_changing_lock); 671 atomic_set(&ctx->mmap_changing, 0); 672 ctx->mm = vma->vm_mm; 673 mmgrab(ctx->mm); 674 675 userfaultfd_ctx_get(octx); 676 down_write(&octx->map_changing_lock); 677 atomic_inc(&octx->mmap_changing); 678 up_write(&octx->map_changing_lock); 679 fctx->orig = octx; 680 fctx->new = ctx; 681 list_add_tail(&fctx->list, fcs); 682 } 683 684 vma->vm_userfaultfd_ctx.ctx = ctx; 685 return 0; 686 } 687 688 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 689 { 690 struct userfaultfd_ctx *ctx = fctx->orig; 691 struct userfaultfd_wait_queue ewq; 692 693 msg_init(&ewq.msg); 694 695 ewq.msg.event = UFFD_EVENT_FORK; 696 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 697 698 userfaultfd_event_wait_completion(ctx, &ewq); 699 } 700 701 void dup_userfaultfd_complete(struct list_head *fcs) 702 { 703 struct userfaultfd_fork_ctx *fctx, *n; 704 705 list_for_each_entry_safe(fctx, n, fcs, list) { 706 dup_fctx(fctx); 707 list_del(&fctx->list); 708 kfree(fctx); 709 } 710 } 711 712 void dup_userfaultfd_fail(struct list_head *fcs) 713 { 714 struct userfaultfd_fork_ctx *fctx, *n; 715 716 /* 717 * An error has occurred on fork, we will tear memory down, but have 718 * allocated memory for fctx's and raised reference counts for both the 719 * original and child contexts (and on the mm for each as a result). 720 * 721 * These would ordinarily be taken care of by a user handling the event, 722 * but we are no longer doing so, so manually clean up here. 723 * 724 * mm tear down will take care of cleaning up VMA contexts. 725 */ 726 list_for_each_entry_safe(fctx, n, fcs, list) { 727 struct userfaultfd_ctx *octx = fctx->orig; 728 struct userfaultfd_ctx *ctx = fctx->new; 729 730 atomic_dec(&octx->mmap_changing); 731 VM_WARN_ON_ONCE(atomic_read(&octx->mmap_changing) < 0); 732 userfaultfd_ctx_put(octx); 733 userfaultfd_ctx_put(ctx); 734 735 list_del(&fctx->list); 736 kfree(fctx); 737 } 738 } 739 740 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 741 struct vm_userfaultfd_ctx *vm_ctx) 742 { 743 struct userfaultfd_ctx *ctx; 744 745 ctx = vma->vm_userfaultfd_ctx.ctx; 746 747 if (!ctx) 748 return; 749 750 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 751 vm_ctx->ctx = ctx; 752 userfaultfd_ctx_get(ctx); 753 down_write(&ctx->map_changing_lock); 754 atomic_inc(&ctx->mmap_changing); 755 up_write(&ctx->map_changing_lock); 756 } else { 757 /* Drop uffd context if remap feature not enabled */ 758 userfaultfd_reset_ctx(vma); 759 } 760 } 761 762 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 763 unsigned long from, unsigned long to, 764 unsigned long len) 765 { 766 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 767 struct userfaultfd_wait_queue ewq; 768 769 if (!ctx) 770 return; 771 772 msg_init(&ewq.msg); 773 774 ewq.msg.event = UFFD_EVENT_REMAP; 775 ewq.msg.arg.remap.from = from; 776 ewq.msg.arg.remap.to = to; 777 ewq.msg.arg.remap.len = len; 778 779 userfaultfd_event_wait_completion(ctx, &ewq); 780 } 781 782 void mremap_userfaultfd_fail(struct vm_userfaultfd_ctx *vm_ctx) 783 { 784 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 785 786 if (!ctx) 787 return; 788 789 userfaultfd_ctx_put(ctx); 790 } 791 792 bool userfaultfd_remove(struct vm_area_struct *vma, 793 unsigned long start, unsigned long end) 794 { 795 struct mm_struct *mm = vma->vm_mm; 796 struct userfaultfd_ctx *ctx; 797 struct userfaultfd_wait_queue ewq; 798 799 ctx = vma->vm_userfaultfd_ctx.ctx; 800 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 801 return true; 802 803 userfaultfd_ctx_get(ctx); 804 down_write(&ctx->map_changing_lock); 805 atomic_inc(&ctx->mmap_changing); 806 up_write(&ctx->map_changing_lock); 807 mmap_read_unlock(mm); 808 809 msg_init(&ewq.msg); 810 811 ewq.msg.event = UFFD_EVENT_REMOVE; 812 ewq.msg.arg.remove.start = start; 813 ewq.msg.arg.remove.end = end; 814 815 userfaultfd_event_wait_completion(ctx, &ewq); 816 817 return false; 818 } 819 820 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 821 unsigned long start, unsigned long end) 822 { 823 struct userfaultfd_unmap_ctx *unmap_ctx; 824 825 list_for_each_entry(unmap_ctx, unmaps, list) 826 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 827 unmap_ctx->end == end) 828 return true; 829 830 return false; 831 } 832 833 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 834 unsigned long end, struct list_head *unmaps) 835 { 836 struct userfaultfd_unmap_ctx *unmap_ctx; 837 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 838 839 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 840 has_unmap_ctx(ctx, unmaps, start, end)) 841 return 0; 842 843 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 844 if (!unmap_ctx) 845 return -ENOMEM; 846 847 userfaultfd_ctx_get(ctx); 848 down_write(&ctx->map_changing_lock); 849 atomic_inc(&ctx->mmap_changing); 850 up_write(&ctx->map_changing_lock); 851 unmap_ctx->ctx = ctx; 852 unmap_ctx->start = start; 853 unmap_ctx->end = end; 854 list_add_tail(&unmap_ctx->list, unmaps); 855 856 return 0; 857 } 858 859 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 860 { 861 struct userfaultfd_unmap_ctx *ctx, *n; 862 struct userfaultfd_wait_queue ewq; 863 864 list_for_each_entry_safe(ctx, n, uf, list) { 865 msg_init(&ewq.msg); 866 867 ewq.msg.event = UFFD_EVENT_UNMAP; 868 ewq.msg.arg.remove.start = ctx->start; 869 ewq.msg.arg.remove.end = ctx->end; 870 871 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 872 873 list_del(&ctx->list); 874 kfree(ctx); 875 } 876 } 877 878 static int userfaultfd_release(struct inode *inode, struct file *file) 879 { 880 struct userfaultfd_ctx *ctx = file->private_data; 881 struct mm_struct *mm = ctx->mm; 882 /* len == 0 means wake all */ 883 struct userfaultfd_wake_range range = { .len = 0, }; 884 885 WRITE_ONCE(ctx->released, true); 886 887 userfaultfd_release_all(mm, ctx); 888 889 /* 890 * After no new page faults can wait on this fault_*wqh, flush 891 * the last page faults that may have been already waiting on 892 * the fault_*wqh. 893 */ 894 spin_lock_irq(&ctx->fault_pending_wqh.lock); 895 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 896 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 897 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 898 899 /* Flush pending events that may still wait on event_wqh */ 900 wake_up_all(&ctx->event_wqh); 901 902 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 903 userfaultfd_ctx_put(ctx); 904 return 0; 905 } 906 907 /* fault_pending_wqh.lock must be hold by the caller */ 908 static inline struct userfaultfd_wait_queue *find_userfault_in( 909 wait_queue_head_t *wqh) 910 { 911 wait_queue_entry_t *wq; 912 struct userfaultfd_wait_queue *uwq; 913 914 lockdep_assert_held(&wqh->lock); 915 916 uwq = NULL; 917 if (!waitqueue_active(wqh)) 918 goto out; 919 /* walk in reverse to provide FIFO behavior to read userfaults */ 920 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 921 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 922 out: 923 return uwq; 924 } 925 926 static inline struct userfaultfd_wait_queue *find_userfault( 927 struct userfaultfd_ctx *ctx) 928 { 929 return find_userfault_in(&ctx->fault_pending_wqh); 930 } 931 932 static inline struct userfaultfd_wait_queue *find_userfault_evt( 933 struct userfaultfd_ctx *ctx) 934 { 935 return find_userfault_in(&ctx->event_wqh); 936 } 937 938 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 939 { 940 struct userfaultfd_ctx *ctx = file->private_data; 941 __poll_t ret; 942 943 poll_wait(file, &ctx->fd_wqh, wait); 944 945 if (!userfaultfd_is_initialized(ctx)) 946 return EPOLLERR; 947 948 /* 949 * poll() never guarantees that read won't block. 950 * userfaults can be waken before they're read(). 951 */ 952 if (unlikely(!(file->f_flags & O_NONBLOCK))) 953 return EPOLLERR; 954 /* 955 * lockless access to see if there are pending faults 956 * __pollwait last action is the add_wait_queue but 957 * the spin_unlock would allow the waitqueue_active to 958 * pass above the actual list_add inside 959 * add_wait_queue critical section. So use a full 960 * memory barrier to serialize the list_add write of 961 * add_wait_queue() with the waitqueue_active read 962 * below. 963 */ 964 ret = 0; 965 smp_mb(); 966 if (waitqueue_active(&ctx->fault_pending_wqh)) 967 ret = EPOLLIN; 968 else if (waitqueue_active(&ctx->event_wqh)) 969 ret = EPOLLIN; 970 971 return ret; 972 } 973 974 static const struct file_operations userfaultfd_fops; 975 976 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 977 struct inode *inode, 978 struct uffd_msg *msg) 979 { 980 int fd; 981 982 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new, 983 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 984 if (fd < 0) 985 return fd; 986 987 msg->arg.reserved.reserved1 = 0; 988 msg->arg.fork.ufd = fd; 989 return 0; 990 } 991 992 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 993 struct uffd_msg *msg, struct inode *inode) 994 { 995 ssize_t ret; 996 DECLARE_WAITQUEUE(wait, current); 997 struct userfaultfd_wait_queue *uwq; 998 /* 999 * Handling fork event requires sleeping operations, so 1000 * we drop the event_wqh lock, then do these ops, then 1001 * lock it back and wake up the waiter. While the lock is 1002 * dropped the ewq may go away so we keep track of it 1003 * carefully. 1004 */ 1005 LIST_HEAD(fork_event); 1006 struct userfaultfd_ctx *fork_nctx = NULL; 1007 1008 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1009 spin_lock_irq(&ctx->fd_wqh.lock); 1010 __add_wait_queue(&ctx->fd_wqh, &wait); 1011 for (;;) { 1012 set_current_state(TASK_INTERRUPTIBLE); 1013 spin_lock(&ctx->fault_pending_wqh.lock); 1014 uwq = find_userfault(ctx); 1015 if (uwq) { 1016 /* 1017 * Use a seqcount to repeat the lockless check 1018 * in wake_userfault() to avoid missing 1019 * wakeups because during the refile both 1020 * waitqueue could become empty if this is the 1021 * only userfault. 1022 */ 1023 write_seqcount_begin(&ctx->refile_seq); 1024 1025 /* 1026 * The fault_pending_wqh.lock prevents the uwq 1027 * to disappear from under us. 1028 * 1029 * Refile this userfault from 1030 * fault_pending_wqh to fault_wqh, it's not 1031 * pending anymore after we read it. 1032 * 1033 * Use list_del() by hand (as 1034 * userfaultfd_wake_function also uses 1035 * list_del_init() by hand) to be sure nobody 1036 * changes __remove_wait_queue() to use 1037 * list_del_init() in turn breaking the 1038 * !list_empty_careful() check in 1039 * handle_userfault(). The uwq->wq.head list 1040 * must never be empty at any time during the 1041 * refile, or the waitqueue could disappear 1042 * from under us. The "wait_queue_head_t" 1043 * parameter of __remove_wait_queue() is unused 1044 * anyway. 1045 */ 1046 list_del(&uwq->wq.entry); 1047 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1048 1049 write_seqcount_end(&ctx->refile_seq); 1050 1051 /* careful to always initialize msg if ret == 0 */ 1052 *msg = uwq->msg; 1053 spin_unlock(&ctx->fault_pending_wqh.lock); 1054 ret = 0; 1055 break; 1056 } 1057 spin_unlock(&ctx->fault_pending_wqh.lock); 1058 1059 spin_lock(&ctx->event_wqh.lock); 1060 uwq = find_userfault_evt(ctx); 1061 if (uwq) { 1062 *msg = uwq->msg; 1063 1064 if (uwq->msg.event == UFFD_EVENT_FORK) { 1065 fork_nctx = (struct userfaultfd_ctx *) 1066 (unsigned long) 1067 uwq->msg.arg.reserved.reserved1; 1068 list_move(&uwq->wq.entry, &fork_event); 1069 /* 1070 * fork_nctx can be freed as soon as 1071 * we drop the lock, unless we take a 1072 * reference on it. 1073 */ 1074 userfaultfd_ctx_get(fork_nctx); 1075 spin_unlock(&ctx->event_wqh.lock); 1076 ret = 0; 1077 break; 1078 } 1079 1080 userfaultfd_event_complete(ctx, uwq); 1081 spin_unlock(&ctx->event_wqh.lock); 1082 ret = 0; 1083 break; 1084 } 1085 spin_unlock(&ctx->event_wqh.lock); 1086 1087 if (signal_pending(current)) { 1088 ret = -ERESTARTSYS; 1089 break; 1090 } 1091 if (no_wait) { 1092 ret = -EAGAIN; 1093 break; 1094 } 1095 spin_unlock_irq(&ctx->fd_wqh.lock); 1096 schedule(); 1097 spin_lock_irq(&ctx->fd_wqh.lock); 1098 } 1099 __remove_wait_queue(&ctx->fd_wqh, &wait); 1100 __set_current_state(TASK_RUNNING); 1101 spin_unlock_irq(&ctx->fd_wqh.lock); 1102 1103 if (!ret && msg->event == UFFD_EVENT_FORK) { 1104 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1105 spin_lock_irq(&ctx->event_wqh.lock); 1106 if (!list_empty(&fork_event)) { 1107 /* 1108 * The fork thread didn't abort, so we can 1109 * drop the temporary refcount. 1110 */ 1111 userfaultfd_ctx_put(fork_nctx); 1112 1113 uwq = list_first_entry(&fork_event, 1114 typeof(*uwq), 1115 wq.entry); 1116 /* 1117 * If fork_event list wasn't empty and in turn 1118 * the event wasn't already released by fork 1119 * (the event is allocated on fork kernel 1120 * stack), put the event back to its place in 1121 * the event_wq. fork_event head will be freed 1122 * as soon as we return so the event cannot 1123 * stay queued there no matter the current 1124 * "ret" value. 1125 */ 1126 list_del(&uwq->wq.entry); 1127 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1128 1129 /* 1130 * Leave the event in the waitqueue and report 1131 * error to userland if we failed to resolve 1132 * the userfault fork. 1133 */ 1134 if (likely(!ret)) 1135 userfaultfd_event_complete(ctx, uwq); 1136 } else { 1137 /* 1138 * Here the fork thread aborted and the 1139 * refcount from the fork thread on fork_nctx 1140 * has already been released. We still hold 1141 * the reference we took before releasing the 1142 * lock above. If resolve_userfault_fork 1143 * failed we've to drop it because the 1144 * fork_nctx has to be freed in such case. If 1145 * it succeeded we'll hold it because the new 1146 * uffd references it. 1147 */ 1148 if (ret) 1149 userfaultfd_ctx_put(fork_nctx); 1150 } 1151 spin_unlock_irq(&ctx->event_wqh.lock); 1152 } 1153 1154 return ret; 1155 } 1156 1157 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to) 1158 { 1159 struct file *file = iocb->ki_filp; 1160 struct userfaultfd_ctx *ctx = file->private_data; 1161 ssize_t _ret, ret = 0; 1162 struct uffd_msg msg; 1163 struct inode *inode = file_inode(file); 1164 bool no_wait; 1165 1166 if (!userfaultfd_is_initialized(ctx)) 1167 return -EINVAL; 1168 1169 no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT; 1170 for (;;) { 1171 if (iov_iter_count(to) < sizeof(msg)) 1172 return ret ? ret : -EINVAL; 1173 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1174 if (_ret < 0) 1175 return ret ? ret : _ret; 1176 _ret = !copy_to_iter_full(&msg, sizeof(msg), to); 1177 if (_ret) 1178 return ret ? ret : -EFAULT; 1179 ret += sizeof(msg); 1180 /* 1181 * Allow to read more than one fault at time but only 1182 * block if waiting for the very first one. 1183 */ 1184 no_wait = true; 1185 } 1186 } 1187 1188 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1189 struct userfaultfd_wake_range *range) 1190 { 1191 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1192 /* wake all in the range and autoremove */ 1193 if (waitqueue_active(&ctx->fault_pending_wqh)) 1194 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1195 range); 1196 if (waitqueue_active(&ctx->fault_wqh)) 1197 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1198 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1199 } 1200 1201 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1202 struct userfaultfd_wake_range *range) 1203 { 1204 unsigned seq; 1205 bool need_wakeup; 1206 1207 /* 1208 * To be sure waitqueue_active() is not reordered by the CPU 1209 * before the pagetable update, use an explicit SMP memory 1210 * barrier here. PT lock release or mmap_read_unlock(mm) still 1211 * have release semantics that can allow the 1212 * waitqueue_active() to be reordered before the pte update. 1213 */ 1214 smp_mb(); 1215 1216 /* 1217 * Use waitqueue_active because it's very frequent to 1218 * change the address space atomically even if there are no 1219 * userfaults yet. So we take the spinlock only when we're 1220 * sure we've userfaults to wake. 1221 */ 1222 do { 1223 seq = read_seqcount_begin(&ctx->refile_seq); 1224 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1225 waitqueue_active(&ctx->fault_wqh); 1226 cond_resched(); 1227 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1228 if (need_wakeup) 1229 __wake_userfault(ctx, range); 1230 } 1231 1232 static __always_inline int validate_unaligned_range( 1233 struct mm_struct *mm, __u64 start, __u64 len) 1234 { 1235 __u64 task_size = mm->task_size; 1236 1237 if (len & ~PAGE_MASK) 1238 return -EINVAL; 1239 if (!len) 1240 return -EINVAL; 1241 if (start < mmap_min_addr) 1242 return -EINVAL; 1243 if (start >= task_size) 1244 return -EINVAL; 1245 if (len > task_size - start) 1246 return -EINVAL; 1247 if (start + len <= start) 1248 return -EINVAL; 1249 return 0; 1250 } 1251 1252 static __always_inline int validate_range(struct mm_struct *mm, 1253 __u64 start, __u64 len) 1254 { 1255 if (start & ~PAGE_MASK) 1256 return -EINVAL; 1257 1258 return validate_unaligned_range(mm, start, len); 1259 } 1260 1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1262 unsigned long arg) 1263 { 1264 struct mm_struct *mm = ctx->mm; 1265 struct vm_area_struct *vma, *cur; 1266 int ret; 1267 struct uffdio_register uffdio_register; 1268 struct uffdio_register __user *user_uffdio_register; 1269 vm_flags_t vm_flags; 1270 bool found; 1271 bool basic_ioctls; 1272 unsigned long start, end; 1273 struct vma_iterator vmi; 1274 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1275 1276 user_uffdio_register = (struct uffdio_register __user *) arg; 1277 1278 ret = -EFAULT; 1279 if (copy_from_user(&uffdio_register, user_uffdio_register, 1280 sizeof(uffdio_register)-sizeof(__u64))) 1281 goto out; 1282 1283 ret = -EINVAL; 1284 if (!uffdio_register.mode) 1285 goto out; 1286 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1287 goto out; 1288 vm_flags = 0; 1289 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1290 vm_flags |= VM_UFFD_MISSING; 1291 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1292 if (!pgtable_supports_uffd_wp()) 1293 goto out; 1294 1295 vm_flags |= VM_UFFD_WP; 1296 } 1297 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1298 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1299 goto out; 1300 #endif 1301 vm_flags |= VM_UFFD_MINOR; 1302 } 1303 1304 ret = validate_range(mm, uffdio_register.range.start, 1305 uffdio_register.range.len); 1306 if (ret) 1307 goto out; 1308 1309 start = uffdio_register.range.start; 1310 end = start + uffdio_register.range.len; 1311 1312 ret = -ENOMEM; 1313 if (!mmget_not_zero(mm)) 1314 goto out; 1315 1316 ret = -EINVAL; 1317 mmap_write_lock(mm); 1318 vma_iter_init(&vmi, mm, start); 1319 vma = vma_find(&vmi, end); 1320 if (!vma) 1321 goto out_unlock; 1322 1323 /* 1324 * If the first vma contains huge pages, make sure start address 1325 * is aligned to huge page size. 1326 */ 1327 if (is_vm_hugetlb_page(vma)) { 1328 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1329 1330 if (start & (vma_hpagesize - 1)) 1331 goto out_unlock; 1332 } 1333 1334 /* 1335 * Search for not compatible vmas. 1336 */ 1337 found = false; 1338 basic_ioctls = false; 1339 cur = vma; 1340 do { 1341 cond_resched(); 1342 1343 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^ 1344 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1345 1346 /* check not compatible vmas */ 1347 ret = -EINVAL; 1348 if (!vma_can_userfault(cur, vm_flags, wp_async)) 1349 goto out_unlock; 1350 1351 /* 1352 * UFFDIO_COPY will fill file holes even without 1353 * PROT_WRITE. This check enforces that if this is a 1354 * MAP_SHARED, the process has write permission to the backing 1355 * file. If VM_MAYWRITE is set it also enforces that on a 1356 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1357 * F_WRITE_SEAL can be taken until the vma is destroyed. 1358 */ 1359 ret = -EPERM; 1360 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1361 goto out_unlock; 1362 1363 /* 1364 * If this vma contains ending address, and huge pages 1365 * check alignment. 1366 */ 1367 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1368 end > cur->vm_start) { 1369 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1370 1371 ret = -EINVAL; 1372 1373 if (end & (vma_hpagesize - 1)) 1374 goto out_unlock; 1375 } 1376 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1377 goto out_unlock; 1378 1379 /* 1380 * Check that this vma isn't already owned by a 1381 * different userfaultfd. We can't allow more than one 1382 * userfaultfd to own a single vma simultaneously or we 1383 * wouldn't know which one to deliver the userfaults to. 1384 */ 1385 ret = -EBUSY; 1386 if (cur->vm_userfaultfd_ctx.ctx && 1387 cur->vm_userfaultfd_ctx.ctx != ctx) 1388 goto out_unlock; 1389 1390 /* 1391 * Note vmas containing huge pages 1392 */ 1393 if (is_vm_hugetlb_page(cur)) 1394 basic_ioctls = true; 1395 1396 found = true; 1397 } for_each_vma_range(vmi, cur, end); 1398 VM_WARN_ON_ONCE(!found); 1399 1400 ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end, 1401 wp_async); 1402 1403 out_unlock: 1404 mmap_write_unlock(mm); 1405 mmput(mm); 1406 if (!ret) { 1407 __u64 ioctls_out; 1408 1409 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1410 UFFD_API_RANGE_IOCTLS; 1411 1412 /* 1413 * Declare the WP ioctl only if the WP mode is 1414 * specified and all checks passed with the range 1415 */ 1416 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1417 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1418 1419 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1420 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1421 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1422 1423 /* 1424 * Now that we scanned all vmas we can already tell 1425 * userland which ioctls methods are guaranteed to 1426 * succeed on this range. 1427 */ 1428 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1429 ret = -EFAULT; 1430 } 1431 out: 1432 return ret; 1433 } 1434 1435 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1436 unsigned long arg) 1437 { 1438 struct mm_struct *mm = ctx->mm; 1439 struct vm_area_struct *vma, *prev, *cur; 1440 int ret; 1441 struct uffdio_range uffdio_unregister; 1442 bool found; 1443 unsigned long start, end, vma_end; 1444 const void __user *buf = (void __user *)arg; 1445 struct vma_iterator vmi; 1446 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1447 1448 ret = -EFAULT; 1449 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1450 goto out; 1451 1452 ret = validate_range(mm, uffdio_unregister.start, 1453 uffdio_unregister.len); 1454 if (ret) 1455 goto out; 1456 1457 start = uffdio_unregister.start; 1458 end = start + uffdio_unregister.len; 1459 1460 ret = -ENOMEM; 1461 if (!mmget_not_zero(mm)) 1462 goto out; 1463 1464 mmap_write_lock(mm); 1465 ret = -EINVAL; 1466 vma_iter_init(&vmi, mm, start); 1467 vma = vma_find(&vmi, end); 1468 if (!vma) 1469 goto out_unlock; 1470 1471 /* 1472 * If the first vma contains huge pages, make sure start address 1473 * is aligned to huge page size. 1474 */ 1475 if (is_vm_hugetlb_page(vma)) { 1476 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1477 1478 if (start & (vma_hpagesize - 1)) 1479 goto out_unlock; 1480 } 1481 1482 /* 1483 * Search for not compatible vmas. 1484 */ 1485 found = false; 1486 cur = vma; 1487 do { 1488 cond_resched(); 1489 1490 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^ 1491 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1492 1493 /* 1494 * Prevent unregistering through a different userfaultfd than 1495 * the one used for registration. 1496 */ 1497 if (cur->vm_userfaultfd_ctx.ctx && 1498 cur->vm_userfaultfd_ctx.ctx != ctx) 1499 goto out_unlock; 1500 1501 /* 1502 * Check not compatible vmas, not strictly required 1503 * here as not compatible vmas cannot have an 1504 * userfaultfd_ctx registered on them, but this 1505 * provides for more strict behavior to notice 1506 * unregistration errors. 1507 */ 1508 if (!vma_can_userfault(cur, cur->vm_flags, wp_async)) 1509 goto out_unlock; 1510 1511 found = true; 1512 } for_each_vma_range(vmi, cur, end); 1513 VM_WARN_ON_ONCE(!found); 1514 1515 vma_iter_set(&vmi, start); 1516 prev = vma_prev(&vmi); 1517 if (vma->vm_start < start) 1518 prev = vma; 1519 1520 ret = 0; 1521 for_each_vma_range(vmi, vma, end) { 1522 cond_resched(); 1523 1524 /* VMA not registered with userfaultfd. */ 1525 if (!vma->vm_userfaultfd_ctx.ctx) 1526 goto skip; 1527 1528 VM_WARN_ON_ONCE(vma->vm_userfaultfd_ctx.ctx != ctx); 1529 VM_WARN_ON_ONCE(!vma_can_userfault(vma, vma->vm_flags, wp_async)); 1530 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)); 1531 1532 if (vma->vm_start > start) 1533 start = vma->vm_start; 1534 vma_end = min(end, vma->vm_end); 1535 1536 if (userfaultfd_missing(vma)) { 1537 /* 1538 * Wake any concurrent pending userfault while 1539 * we unregister, so they will not hang 1540 * permanently and it avoids userland to call 1541 * UFFDIO_WAKE explicitly. 1542 */ 1543 struct userfaultfd_wake_range range; 1544 range.start = start; 1545 range.len = vma_end - start; 1546 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1547 } 1548 1549 vma = userfaultfd_clear_vma(&vmi, prev, vma, 1550 start, vma_end); 1551 if (IS_ERR(vma)) { 1552 ret = PTR_ERR(vma); 1553 break; 1554 } 1555 1556 skip: 1557 prev = vma; 1558 start = vma->vm_end; 1559 } 1560 1561 out_unlock: 1562 mmap_write_unlock(mm); 1563 mmput(mm); 1564 out: 1565 return ret; 1566 } 1567 1568 /* 1569 * userfaultfd_wake may be used in combination with the 1570 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1571 */ 1572 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1573 unsigned long arg) 1574 { 1575 int ret; 1576 struct uffdio_range uffdio_wake; 1577 struct userfaultfd_wake_range range; 1578 const void __user *buf = (void __user *)arg; 1579 1580 ret = -EFAULT; 1581 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1582 goto out; 1583 1584 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1585 if (ret) 1586 goto out; 1587 1588 range.start = uffdio_wake.start; 1589 range.len = uffdio_wake.len; 1590 1591 /* 1592 * len == 0 means wake all and we don't want to wake all here, 1593 * so check it again to be sure. 1594 */ 1595 VM_WARN_ON_ONCE(!range.len); 1596 1597 wake_userfault(ctx, &range); 1598 ret = 0; 1599 1600 out: 1601 return ret; 1602 } 1603 1604 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1605 unsigned long arg) 1606 { 1607 __s64 ret; 1608 struct uffdio_copy uffdio_copy; 1609 struct uffdio_copy __user *user_uffdio_copy; 1610 struct userfaultfd_wake_range range; 1611 uffd_flags_t flags = 0; 1612 1613 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1614 1615 ret = -EAGAIN; 1616 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1617 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1618 return -EFAULT; 1619 goto out; 1620 } 1621 1622 ret = -EFAULT; 1623 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1624 /* don't copy "copy" last field */ 1625 sizeof(uffdio_copy)-sizeof(__s64))) 1626 goto out; 1627 1628 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1629 uffdio_copy.len); 1630 if (ret) 1631 goto out; 1632 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1633 if (ret) 1634 goto out; 1635 1636 ret = -EINVAL; 1637 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1638 goto out; 1639 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1640 flags |= MFILL_ATOMIC_WP; 1641 if (mmget_not_zero(ctx->mm)) { 1642 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src, 1643 uffdio_copy.len, flags); 1644 mmput(ctx->mm); 1645 } else { 1646 return -ESRCH; 1647 } 1648 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1649 return -EFAULT; 1650 if (ret < 0) 1651 goto out; 1652 VM_WARN_ON_ONCE(!ret); 1653 /* len == 0 would wake all */ 1654 range.len = ret; 1655 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1656 range.start = uffdio_copy.dst; 1657 wake_userfault(ctx, &range); 1658 } 1659 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1660 out: 1661 return ret; 1662 } 1663 1664 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1665 unsigned long arg) 1666 { 1667 __s64 ret; 1668 struct uffdio_zeropage uffdio_zeropage; 1669 struct uffdio_zeropage __user *user_uffdio_zeropage; 1670 struct userfaultfd_wake_range range; 1671 1672 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1673 1674 ret = -EAGAIN; 1675 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1676 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1677 return -EFAULT; 1678 goto out; 1679 } 1680 1681 ret = -EFAULT; 1682 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1683 /* don't copy "zeropage" last field */ 1684 sizeof(uffdio_zeropage)-sizeof(__s64))) 1685 goto out; 1686 1687 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1688 uffdio_zeropage.range.len); 1689 if (ret) 1690 goto out; 1691 ret = -EINVAL; 1692 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1693 goto out; 1694 1695 if (mmget_not_zero(ctx->mm)) { 1696 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start, 1697 uffdio_zeropage.range.len); 1698 mmput(ctx->mm); 1699 } else { 1700 return -ESRCH; 1701 } 1702 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1703 return -EFAULT; 1704 if (ret < 0) 1705 goto out; 1706 /* len == 0 would wake all */ 1707 VM_WARN_ON_ONCE(!ret); 1708 range.len = ret; 1709 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1710 range.start = uffdio_zeropage.range.start; 1711 wake_userfault(ctx, &range); 1712 } 1713 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1714 out: 1715 return ret; 1716 } 1717 1718 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1719 unsigned long arg) 1720 { 1721 int ret; 1722 struct uffdio_writeprotect uffdio_wp; 1723 struct uffdio_writeprotect __user *user_uffdio_wp; 1724 struct userfaultfd_wake_range range; 1725 bool mode_wp, mode_dontwake; 1726 1727 if (atomic_read(&ctx->mmap_changing)) 1728 return -EAGAIN; 1729 1730 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1731 1732 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1733 sizeof(struct uffdio_writeprotect))) 1734 return -EFAULT; 1735 1736 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1737 uffdio_wp.range.len); 1738 if (ret) 1739 return ret; 1740 1741 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1742 UFFDIO_WRITEPROTECT_MODE_WP)) 1743 return -EINVAL; 1744 1745 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1746 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1747 1748 if (mode_wp && mode_dontwake) 1749 return -EINVAL; 1750 1751 if (mmget_not_zero(ctx->mm)) { 1752 ret = mwriteprotect_range(ctx, uffdio_wp.range.start, 1753 uffdio_wp.range.len, mode_wp); 1754 mmput(ctx->mm); 1755 } else { 1756 return -ESRCH; 1757 } 1758 1759 if (ret) 1760 return ret; 1761 1762 if (!mode_wp && !mode_dontwake) { 1763 range.start = uffdio_wp.range.start; 1764 range.len = uffdio_wp.range.len; 1765 wake_userfault(ctx, &range); 1766 } 1767 return ret; 1768 } 1769 1770 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1771 { 1772 __s64 ret; 1773 struct uffdio_continue uffdio_continue; 1774 struct uffdio_continue __user *user_uffdio_continue; 1775 struct userfaultfd_wake_range range; 1776 uffd_flags_t flags = 0; 1777 1778 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1779 1780 ret = -EAGAIN; 1781 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1782 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1783 return -EFAULT; 1784 goto out; 1785 } 1786 1787 ret = -EFAULT; 1788 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1789 /* don't copy the output fields */ 1790 sizeof(uffdio_continue) - (sizeof(__s64)))) 1791 goto out; 1792 1793 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1794 uffdio_continue.range.len); 1795 if (ret) 1796 goto out; 1797 1798 ret = -EINVAL; 1799 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1800 UFFDIO_CONTINUE_MODE_WP)) 1801 goto out; 1802 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1803 flags |= MFILL_ATOMIC_WP; 1804 1805 if (mmget_not_zero(ctx->mm)) { 1806 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start, 1807 uffdio_continue.range.len, flags); 1808 mmput(ctx->mm); 1809 } else { 1810 return -ESRCH; 1811 } 1812 1813 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1814 return -EFAULT; 1815 if (ret < 0) 1816 goto out; 1817 1818 /* len == 0 would wake all */ 1819 VM_WARN_ON_ONCE(!ret); 1820 range.len = ret; 1821 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1822 range.start = uffdio_continue.range.start; 1823 wake_userfault(ctx, &range); 1824 } 1825 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1826 1827 out: 1828 return ret; 1829 } 1830 1831 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1832 { 1833 __s64 ret; 1834 struct uffdio_poison uffdio_poison; 1835 struct uffdio_poison __user *user_uffdio_poison; 1836 struct userfaultfd_wake_range range; 1837 1838 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1839 1840 ret = -EAGAIN; 1841 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1842 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1843 return -EFAULT; 1844 goto out; 1845 } 1846 1847 ret = -EFAULT; 1848 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1849 /* don't copy the output fields */ 1850 sizeof(uffdio_poison) - (sizeof(__s64)))) 1851 goto out; 1852 1853 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1854 uffdio_poison.range.len); 1855 if (ret) 1856 goto out; 1857 1858 ret = -EINVAL; 1859 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1860 goto out; 1861 1862 if (mmget_not_zero(ctx->mm)) { 1863 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start, 1864 uffdio_poison.range.len, 0); 1865 mmput(ctx->mm); 1866 } else { 1867 return -ESRCH; 1868 } 1869 1870 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1871 return -EFAULT; 1872 if (ret < 0) 1873 goto out; 1874 1875 /* len == 0 would wake all */ 1876 VM_WARN_ON_ONCE(!ret); 1877 range.len = ret; 1878 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 1879 range.start = uffdio_poison.range.start; 1880 wake_userfault(ctx, &range); 1881 } 1882 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 1883 1884 out: 1885 return ret; 1886 } 1887 1888 bool userfaultfd_wp_async(struct vm_area_struct *vma) 1889 { 1890 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx); 1891 } 1892 1893 static inline unsigned int uffd_ctx_features(__u64 user_features) 1894 { 1895 /* 1896 * For the current set of features the bits just coincide. Set 1897 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1898 */ 1899 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1900 } 1901 1902 static int userfaultfd_move(struct userfaultfd_ctx *ctx, 1903 unsigned long arg) 1904 { 1905 __s64 ret; 1906 struct uffdio_move uffdio_move; 1907 struct uffdio_move __user *user_uffdio_move; 1908 struct userfaultfd_wake_range range; 1909 struct mm_struct *mm = ctx->mm; 1910 1911 user_uffdio_move = (struct uffdio_move __user *) arg; 1912 1913 ret = -EAGAIN; 1914 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1915 if (unlikely(put_user(ret, &user_uffdio_move->move))) 1916 return -EFAULT; 1917 goto out; 1918 } 1919 1920 if (copy_from_user(&uffdio_move, user_uffdio_move, 1921 /* don't copy "move" last field */ 1922 sizeof(uffdio_move)-sizeof(__s64))) 1923 return -EFAULT; 1924 1925 /* Do not allow cross-mm moves. */ 1926 if (mm != current->mm) 1927 return -EINVAL; 1928 1929 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len); 1930 if (ret) 1931 return ret; 1932 1933 ret = validate_range(mm, uffdio_move.src, uffdio_move.len); 1934 if (ret) 1935 return ret; 1936 1937 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES| 1938 UFFDIO_MOVE_MODE_DONTWAKE)) 1939 return -EINVAL; 1940 1941 if (mmget_not_zero(mm)) { 1942 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src, 1943 uffdio_move.len, uffdio_move.mode); 1944 mmput(mm); 1945 } else { 1946 return -ESRCH; 1947 } 1948 1949 if (unlikely(put_user(ret, &user_uffdio_move->move))) 1950 return -EFAULT; 1951 if (ret < 0) 1952 goto out; 1953 1954 /* len == 0 would wake all */ 1955 VM_WARN_ON(!ret); 1956 range.len = ret; 1957 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) { 1958 range.start = uffdio_move.dst; 1959 wake_userfault(ctx, &range); 1960 } 1961 ret = range.len == uffdio_move.len ? 0 : -EAGAIN; 1962 1963 out: 1964 return ret; 1965 } 1966 1967 /* 1968 * userland asks for a certain API version and we return which bits 1969 * and ioctl commands are implemented in this kernel for such API 1970 * version or -EINVAL if unknown. 1971 */ 1972 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1973 unsigned long arg) 1974 { 1975 struct uffdio_api uffdio_api; 1976 void __user *buf = (void __user *)arg; 1977 unsigned int ctx_features; 1978 int ret; 1979 __u64 features; 1980 1981 ret = -EFAULT; 1982 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1983 goto out; 1984 features = uffdio_api.features; 1985 ret = -EINVAL; 1986 if (uffdio_api.api != UFFD_API) 1987 goto err_out; 1988 ret = -EPERM; 1989 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1990 goto err_out; 1991 1992 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */ 1993 if (features & UFFD_FEATURE_WP_ASYNC) 1994 features |= UFFD_FEATURE_WP_UNPOPULATED; 1995 1996 /* report all available features and ioctls to userland */ 1997 uffdio_api.features = UFFD_API_FEATURES; 1998 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1999 uffdio_api.features &= 2000 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2001 #endif 2002 if (!pgtable_supports_uffd_wp()) 2003 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2004 2005 if (!uffd_supports_wp_marker()) { 2006 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2007 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2008 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC; 2009 } 2010 2011 ret = -EINVAL; 2012 if (features & ~uffdio_api.features) 2013 goto err_out; 2014 2015 uffdio_api.ioctls = UFFD_API_IOCTLS; 2016 ret = -EFAULT; 2017 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2018 goto out; 2019 2020 /* only enable the requested features for this uffd context */ 2021 ctx_features = uffd_ctx_features(features); 2022 ret = -EINVAL; 2023 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2024 goto err_out; 2025 2026 ret = 0; 2027 out: 2028 return ret; 2029 err_out: 2030 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2031 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2032 ret = -EFAULT; 2033 goto out; 2034 } 2035 2036 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2037 unsigned long arg) 2038 { 2039 int ret = -EINVAL; 2040 struct userfaultfd_ctx *ctx = file->private_data; 2041 2042 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2043 return -EINVAL; 2044 2045 switch(cmd) { 2046 case UFFDIO_API: 2047 ret = userfaultfd_api(ctx, arg); 2048 break; 2049 case UFFDIO_REGISTER: 2050 ret = userfaultfd_register(ctx, arg); 2051 break; 2052 case UFFDIO_UNREGISTER: 2053 ret = userfaultfd_unregister(ctx, arg); 2054 break; 2055 case UFFDIO_WAKE: 2056 ret = userfaultfd_wake(ctx, arg); 2057 break; 2058 case UFFDIO_COPY: 2059 ret = userfaultfd_copy(ctx, arg); 2060 break; 2061 case UFFDIO_ZEROPAGE: 2062 ret = userfaultfd_zeropage(ctx, arg); 2063 break; 2064 case UFFDIO_MOVE: 2065 ret = userfaultfd_move(ctx, arg); 2066 break; 2067 case UFFDIO_WRITEPROTECT: 2068 ret = userfaultfd_writeprotect(ctx, arg); 2069 break; 2070 case UFFDIO_CONTINUE: 2071 ret = userfaultfd_continue(ctx, arg); 2072 break; 2073 case UFFDIO_POISON: 2074 ret = userfaultfd_poison(ctx, arg); 2075 break; 2076 } 2077 return ret; 2078 } 2079 2080 #ifdef CONFIG_PROC_FS 2081 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2082 { 2083 struct userfaultfd_ctx *ctx = f->private_data; 2084 wait_queue_entry_t *wq; 2085 unsigned long pending = 0, total = 0; 2086 2087 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2088 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2089 pending++; 2090 total++; 2091 } 2092 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2093 total++; 2094 } 2095 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2096 2097 /* 2098 * If more protocols will be added, there will be all shown 2099 * separated by a space. Like this: 2100 * protocols: aa:... bb:... 2101 */ 2102 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2103 pending, total, UFFD_API, ctx->features, 2104 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2105 } 2106 #endif 2107 2108 static const struct file_operations userfaultfd_fops = { 2109 #ifdef CONFIG_PROC_FS 2110 .show_fdinfo = userfaultfd_show_fdinfo, 2111 #endif 2112 .release = userfaultfd_release, 2113 .poll = userfaultfd_poll, 2114 .read_iter = userfaultfd_read_iter, 2115 .unlocked_ioctl = userfaultfd_ioctl, 2116 .compat_ioctl = compat_ptr_ioctl, 2117 .llseek = noop_llseek, 2118 }; 2119 2120 static void init_once_userfaultfd_ctx(void *mem) 2121 { 2122 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2123 2124 init_waitqueue_head(&ctx->fault_pending_wqh); 2125 init_waitqueue_head(&ctx->fault_wqh); 2126 init_waitqueue_head(&ctx->event_wqh); 2127 init_waitqueue_head(&ctx->fd_wqh); 2128 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2129 } 2130 2131 static int new_userfaultfd(int flags) 2132 { 2133 struct userfaultfd_ctx *ctx __free(kfree) = NULL; 2134 2135 VM_WARN_ON_ONCE(!current->mm); 2136 2137 /* Check the UFFD_* constants for consistency. */ 2138 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2139 2140 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2141 return -EINVAL; 2142 2143 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2144 if (!ctx) 2145 return -ENOMEM; 2146 2147 refcount_set(&ctx->refcount, 1); 2148 ctx->flags = flags; 2149 ctx->features = 0; 2150 ctx->released = false; 2151 init_rwsem(&ctx->map_changing_lock); 2152 atomic_set(&ctx->mmap_changing, 0); 2153 ctx->mm = current->mm; 2154 2155 FD_PREPARE(fdf, flags & UFFD_SHARED_FCNTL_FLAGS, 2156 anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 2157 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), 2158 NULL)); 2159 if (fdf.err) 2160 return fdf.err; 2161 2162 /* prevent the mm struct to be freed */ 2163 mmgrab(ctx->mm); 2164 fd_prepare_file(fdf)->f_mode |= FMODE_NOWAIT; 2165 retain_and_null_ptr(ctx); 2166 return fd_publish(fdf); 2167 } 2168 2169 static inline bool userfaultfd_syscall_allowed(int flags) 2170 { 2171 /* Userspace-only page faults are always allowed */ 2172 if (flags & UFFD_USER_MODE_ONLY) 2173 return true; 2174 2175 /* 2176 * The user is requesting a userfaultfd which can handle kernel faults. 2177 * Privileged users are always allowed to do this. 2178 */ 2179 if (capable(CAP_SYS_PTRACE)) 2180 return true; 2181 2182 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2183 return sysctl_unprivileged_userfaultfd; 2184 } 2185 2186 SYSCALL_DEFINE1(userfaultfd, int, flags) 2187 { 2188 if (!userfaultfd_syscall_allowed(flags)) 2189 return -EPERM; 2190 2191 return new_userfaultfd(flags); 2192 } 2193 2194 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2195 { 2196 if (cmd != USERFAULTFD_IOC_NEW) 2197 return -EINVAL; 2198 2199 return new_userfaultfd(flags); 2200 } 2201 2202 static const struct file_operations userfaultfd_dev_fops = { 2203 .unlocked_ioctl = userfaultfd_dev_ioctl, 2204 .compat_ioctl = userfaultfd_dev_ioctl, 2205 .owner = THIS_MODULE, 2206 .llseek = noop_llseek, 2207 }; 2208 2209 static struct miscdevice userfaultfd_misc = { 2210 .minor = MISC_DYNAMIC_MINOR, 2211 .name = "userfaultfd", 2212 .fops = &userfaultfd_dev_fops 2213 }; 2214 2215 static int __init userfaultfd_init(void) 2216 { 2217 int ret; 2218 2219 ret = misc_register(&userfaultfd_misc); 2220 if (ret) 2221 return ret; 2222 2223 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2224 sizeof(struct userfaultfd_ctx), 2225 0, 2226 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2227 init_once_userfaultfd_ctx); 2228 #ifdef CONFIG_SYSCTL 2229 register_sysctl_init("vm", vm_userfaultfd_table); 2230 #endif 2231 return 0; 2232 } 2233 __initcall(userfaultfd_init); 2234