xref: /linux/fs/userfaultfd.c (revision b0319c4642638bad4b36974055b1c0894b2c7aa9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/leafops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
35 
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
37 
38 #ifdef CONFIG_SYSCTL
39 static const struct ctl_table vm_userfaultfd_table[] = {
40 	{
41 		.procname	= "unprivileged_userfaultfd",
42 		.data		= &sysctl_unprivileged_userfaultfd,
43 		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
44 		.mode		= 0644,
45 		.proc_handler	= proc_dointvec_minmax,
46 		.extra1		= SYSCTL_ZERO,
47 		.extra2		= SYSCTL_ONE,
48 	},
49 };
50 #endif
51 
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53 
54 struct userfaultfd_fork_ctx {
55 	struct userfaultfd_ctx *orig;
56 	struct userfaultfd_ctx *new;
57 	struct list_head list;
58 };
59 
60 struct userfaultfd_unmap_ctx {
61 	struct userfaultfd_ctx *ctx;
62 	unsigned long start;
63 	unsigned long end;
64 	struct list_head list;
65 };
66 
67 struct userfaultfd_wait_queue {
68 	struct uffd_msg msg;
69 	wait_queue_entry_t wq;
70 	struct userfaultfd_ctx *ctx;
71 	bool waken;
72 };
73 
74 struct userfaultfd_wake_range {
75 	unsigned long start;
76 	unsigned long len;
77 };
78 
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
81 
82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83 {
84 	return ctx->features & UFFD_FEATURE_INITIALIZED;
85 }
86 
87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88 {
89 	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
90 }
91 
92 /*
93  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
94  * meaningful when userfaultfd_wp()==true on the vma and when it's
95  * anonymous.
96  */
97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98 {
99 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
100 
101 	if (!ctx)
102 		return false;
103 
104 	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
105 }
106 
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 				     int wake_flags, void *key)
109 {
110 	struct userfaultfd_wake_range *range = key;
111 	int ret;
112 	struct userfaultfd_wait_queue *uwq;
113 	unsigned long start, len;
114 
115 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 	ret = 0;
117 	/* len == 0 means wake all */
118 	start = range->start;
119 	len = range->len;
120 	if (len && (start > uwq->msg.arg.pagefault.address ||
121 		    start + len <= uwq->msg.arg.pagefault.address))
122 		goto out;
123 	WRITE_ONCE(uwq->waken, true);
124 	/*
125 	 * The Program-Order guarantees provided by the scheduler
126 	 * ensure uwq->waken is visible before the task is woken.
127 	 */
128 	ret = wake_up_state(wq->private, mode);
129 	if (ret) {
130 		/*
131 		 * Wake only once, autoremove behavior.
132 		 *
133 		 * After the effect of list_del_init is visible to the other
134 		 * CPUs, the waitqueue may disappear from under us, see the
135 		 * !list_empty_careful() in handle_userfault().
136 		 *
137 		 * try_to_wake_up() has an implicit smp_mb(), and the
138 		 * wq->private is read before calling the extern function
139 		 * "wake_up_state" (which in turns calls try_to_wake_up).
140 		 */
141 		list_del_init(&wq->entry);
142 	}
143 out:
144 	return ret;
145 }
146 
147 /**
148  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to the userfaultfd context.
151  */
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154 	refcount_inc(&ctx->refcount);
155 }
156 
157 /**
158  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159  * context.
160  * @ctx: [in] Pointer to userfaultfd context.
161  *
162  * The userfaultfd context reference must have been previously acquired either
163  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164  */
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167 	if (refcount_dec_and_test(&ctx->refcount)) {
168 		VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 		VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_pending_wqh));
170 		VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_wqh.lock));
171 		VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_wqh));
172 		VM_WARN_ON_ONCE(spin_is_locked(&ctx->event_wqh.lock));
173 		VM_WARN_ON_ONCE(waitqueue_active(&ctx->event_wqh));
174 		VM_WARN_ON_ONCE(spin_is_locked(&ctx->fd_wqh.lock));
175 		VM_WARN_ON_ONCE(waitqueue_active(&ctx->fd_wqh));
176 		mmdrop(ctx->mm);
177 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178 	}
179 }
180 
181 static inline void msg_init(struct uffd_msg *msg)
182 {
183 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 	/*
185 	 * Must use memset to zero out the paddings or kernel data is
186 	 * leaked to userland.
187 	 */
188 	memset(msg, 0, sizeof(struct uffd_msg));
189 }
190 
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 					    unsigned long real_address,
193 					    unsigned int flags,
194 					    unsigned long reason,
195 					    unsigned int features)
196 {
197 	struct uffd_msg msg;
198 
199 	msg_init(&msg);
200 	msg.event = UFFD_EVENT_PAGEFAULT;
201 
202 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
203 				    real_address : address;
204 
205 	/*
206 	 * These flags indicate why the userfault occurred:
207 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 	 * - Neither of these flags being set indicates a MISSING fault.
210 	 *
211 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 	 * fault. Otherwise, it was a read fault.
213 	 */
214 	if (flags & FAULT_FLAG_WRITE)
215 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
216 	if (reason & VM_UFFD_WP)
217 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 	if (reason & VM_UFFD_MINOR)
219 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
220 	if (features & UFFD_FEATURE_THREAD_ID)
221 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
222 	return msg;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE
226 /*
227  * Same functionality as userfaultfd_must_wait below with modifications for
228  * hugepmd ranges.
229  */
230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
231 					      struct vm_fault *vmf,
232 					      unsigned long reason)
233 {
234 	struct vm_area_struct *vma = vmf->vma;
235 	pte_t *ptep, pte;
236 
237 	assert_fault_locked(vmf);
238 
239 	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
240 	if (!ptep)
241 		return true;
242 
243 	pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep);
244 
245 	/*
246 	 * Lockless access: we're in a wait_event so it's ok if it
247 	 * changes under us.
248 	 */
249 
250 	/* Entry is still missing, wait for userspace to resolve the fault. */
251 	if (huge_pte_none(pte))
252 		return true;
253 	/* UFFD PTE markers require userspace to resolve the fault. */
254 	if (pte_is_uffd_marker(pte))
255 		return true;
256 	/*
257 	 * If VMA has UFFD WP faults enabled and WP fault, wait for userspace to
258 	 * resolve the fault.
259 	 */
260 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
261 		return true;
262 
263 	return false;
264 }
265 #else
266 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
267 					      struct vm_fault *vmf,
268 					      unsigned long reason)
269 {
270 	/* Should never get here. */
271 	VM_WARN_ON_ONCE(1);
272 	return false;
273 }
274 #endif /* CONFIG_HUGETLB_PAGE */
275 
276 /*
277  * Verify the pagetables are still not ok after having registered into
278  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
279  * userfault that has already been resolved, if userfaultfd_read_iter and
280  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
281  * threads.
282  */
283 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
284 					 struct vm_fault *vmf,
285 					 unsigned long reason)
286 {
287 	struct mm_struct *mm = ctx->mm;
288 	unsigned long address = vmf->address;
289 	pgd_t *pgd;
290 	p4d_t *p4d;
291 	pud_t *pud;
292 	pmd_t *pmd, _pmd;
293 	pte_t *pte;
294 	pte_t ptent;
295 	bool ret;
296 
297 	assert_fault_locked(vmf);
298 
299 	pgd = pgd_offset(mm, address);
300 	if (!pgd_present(*pgd))
301 		return true;
302 	p4d = p4d_offset(pgd, address);
303 	if (!p4d_present(*p4d))
304 		return true;
305 	pud = pud_offset(p4d, address);
306 	if (!pud_present(*pud))
307 		return true;
308 	pmd = pmd_offset(pud, address);
309 again:
310 	_pmd = pmdp_get_lockless(pmd);
311 	if (pmd_none(_pmd))
312 		return true;
313 
314 	/*
315 	 * A race could arise which would result in a softleaf entry such as
316 	 * migration entry unexpectedly being present in the PMD, so explicitly
317 	 * check for this and bail out if so.
318 	 */
319 	if (!pmd_present(_pmd))
320 		return false;
321 
322 	if (pmd_trans_huge(_pmd))
323 		return !pmd_write(_pmd) && (reason & VM_UFFD_WP);
324 
325 	pte = pte_offset_map(pmd, address);
326 	if (!pte)
327 		goto again;
328 
329 	/*
330 	 * Lockless access: we're in a wait_event so it's ok if it
331 	 * changes under us.
332 	 */
333 	ptent = ptep_get(pte);
334 
335 	ret = true;
336 	/* Entry is still missing, wait for userspace to resolve the fault. */
337 	if (pte_none(ptent))
338 		goto out;
339 	/* UFFD PTE markers require userspace to resolve the fault. */
340 	if (pte_is_uffd_marker(ptent))
341 		goto out;
342 	/*
343 	 * If VMA has UFFD WP faults enabled and WP fault, wait for userspace to
344 	 * resolve the fault.
345 	 */
346 	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
347 		goto out;
348 
349 	ret = false;
350 out:
351 	pte_unmap(pte);
352 	return ret;
353 }
354 
355 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
356 {
357 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
358 		return TASK_INTERRUPTIBLE;
359 
360 	if (flags & FAULT_FLAG_KILLABLE)
361 		return TASK_KILLABLE;
362 
363 	return TASK_UNINTERRUPTIBLE;
364 }
365 
366 /*
367  * The locking rules involved in returning VM_FAULT_RETRY depending on
368  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
369  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
370  * recommendation in __lock_page_or_retry is not an understatement.
371  *
372  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
373  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
374  * not set.
375  *
376  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
377  * set, VM_FAULT_RETRY can still be returned if and only if there are
378  * fatal_signal_pending()s, and the mmap_lock must be released before
379  * returning it.
380  */
381 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
382 {
383 	struct vm_area_struct *vma = vmf->vma;
384 	struct mm_struct *mm = vma->vm_mm;
385 	struct userfaultfd_ctx *ctx;
386 	struct userfaultfd_wait_queue uwq;
387 	vm_fault_t ret = VM_FAULT_SIGBUS;
388 	bool must_wait;
389 	unsigned int blocking_state;
390 
391 	/*
392 	 * We don't do userfault handling for the final child pid update
393 	 * and when coredumping (faults triggered by get_dump_page()).
394 	 */
395 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
396 		goto out;
397 
398 	assert_fault_locked(vmf);
399 
400 	ctx = vma->vm_userfaultfd_ctx.ctx;
401 	if (!ctx)
402 		goto out;
403 
404 	VM_WARN_ON_ONCE(ctx->mm != mm);
405 
406 	/* Any unrecognized flag is a bug. */
407 	VM_WARN_ON_ONCE(reason & ~__VM_UFFD_FLAGS);
408 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
409 	VM_WARN_ON_ONCE(!reason || (reason & (reason - 1)));
410 
411 	if (ctx->features & UFFD_FEATURE_SIGBUS)
412 		goto out;
413 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
414 		goto out;
415 
416 	/*
417 	 * Check that we can return VM_FAULT_RETRY.
418 	 *
419 	 * NOTE: it should become possible to return VM_FAULT_RETRY
420 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
421 	 * -EBUSY failures, if the userfaultfd is to be extended for
422 	 * VM_UFFD_WP tracking and we intend to arm the userfault
423 	 * without first stopping userland access to the memory. For
424 	 * VM_UFFD_MISSING userfaults this is enough for now.
425 	 */
426 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
427 		/*
428 		 * Validate the invariant that nowait must allow retry
429 		 * to be sure not to return SIGBUS erroneously on
430 		 * nowait invocations.
431 		 */
432 		VM_WARN_ON_ONCE(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
433 #ifdef CONFIG_DEBUG_VM
434 		if (printk_ratelimit()) {
435 			pr_warn("FAULT_FLAG_ALLOW_RETRY missing %x\n",
436 				vmf->flags);
437 			dump_stack();
438 		}
439 #endif
440 		goto out;
441 	}
442 
443 	/*
444 	 * Handle nowait, not much to do other than tell it to retry
445 	 * and wait.
446 	 */
447 	ret = VM_FAULT_RETRY;
448 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
449 		goto out;
450 
451 	if (unlikely(READ_ONCE(ctx->released))) {
452 		/*
453 		 * If a concurrent release is detected, do not return
454 		 * VM_FAULT_SIGBUS or VM_FAULT_NOPAGE, but instead always
455 		 * return VM_FAULT_RETRY with lock released proactively.
456 		 *
457 		 * If we were to return VM_FAULT_SIGBUS here, the non
458 		 * cooperative manager would be instead forced to
459 		 * always call UFFDIO_UNREGISTER before it can safely
460 		 * close the uffd, to avoid involuntary SIGBUS triggered.
461 		 *
462 		 * If we were to return VM_FAULT_NOPAGE, it would work for
463 		 * the fault path, in which the lock will be released
464 		 * later.  However for GUP, faultin_page() does nothing
465 		 * special on NOPAGE, so GUP would spin retrying without
466 		 * releasing the mmap read lock, causing possible livelock.
467 		 *
468 		 * Here only VM_FAULT_RETRY would make sure the mmap lock
469 		 * be released immediately, so that the thread concurrently
470 		 * releasing the userfault would always make progress.
471 		 */
472 		release_fault_lock(vmf);
473 		goto out;
474 	}
475 
476 	/* take the reference before dropping the mmap_lock */
477 	userfaultfd_ctx_get(ctx);
478 
479 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
480 	uwq.wq.private = current;
481 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
482 				reason, ctx->features);
483 	uwq.ctx = ctx;
484 	uwq.waken = false;
485 
486 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
487 
488         /*
489          * Take the vma lock now, in order to safely call
490          * userfaultfd_huge_must_wait() later. Since acquiring the
491          * (sleepable) vma lock can modify the current task state, that
492          * must be before explicitly calling set_current_state().
493          */
494 	if (is_vm_hugetlb_page(vma))
495 		hugetlb_vma_lock_read(vma);
496 
497 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
498 	/*
499 	 * After the __add_wait_queue the uwq is visible to userland
500 	 * through poll/read().
501 	 */
502 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
503 	/*
504 	 * The smp_mb() after __set_current_state prevents the reads
505 	 * following the spin_unlock to happen before the list_add in
506 	 * __add_wait_queue.
507 	 */
508 	set_current_state(blocking_state);
509 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
510 
511 	if (is_vm_hugetlb_page(vma)) {
512 		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
513 		hugetlb_vma_unlock_read(vma);
514 	} else {
515 		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
516 	}
517 
518 	release_fault_lock(vmf);
519 
520 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
521 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
522 		schedule();
523 	}
524 
525 	__set_current_state(TASK_RUNNING);
526 
527 	/*
528 	 * Here we race with the list_del; list_add in
529 	 * userfaultfd_ctx_read(), however because we don't ever run
530 	 * list_del_init() to refile across the two lists, the prev
531 	 * and next pointers will never point to self. list_add also
532 	 * would never let any of the two pointers to point to
533 	 * self. So list_empty_careful won't risk to see both pointers
534 	 * pointing to self at any time during the list refile. The
535 	 * only case where list_del_init() is called is the full
536 	 * removal in the wake function and there we don't re-list_add
537 	 * and it's fine not to block on the spinlock. The uwq on this
538 	 * kernel stack can be released after the list_del_init.
539 	 */
540 	if (!list_empty_careful(&uwq.wq.entry)) {
541 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
542 		/*
543 		 * No need of list_del_init(), the uwq on the stack
544 		 * will be freed shortly anyway.
545 		 */
546 		list_del(&uwq.wq.entry);
547 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
548 	}
549 
550 	/*
551 	 * ctx may go away after this if the userfault pseudo fd is
552 	 * already released.
553 	 */
554 	userfaultfd_ctx_put(ctx);
555 
556 out:
557 	return ret;
558 }
559 
560 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
561 					      struct userfaultfd_wait_queue *ewq)
562 {
563 	struct userfaultfd_ctx *release_new_ctx;
564 
565 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
566 		goto out;
567 
568 	ewq->ctx = ctx;
569 	init_waitqueue_entry(&ewq->wq, current);
570 	release_new_ctx = NULL;
571 
572 	spin_lock_irq(&ctx->event_wqh.lock);
573 	/*
574 	 * After the __add_wait_queue the uwq is visible to userland
575 	 * through poll/read().
576 	 */
577 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
578 	for (;;) {
579 		set_current_state(TASK_KILLABLE);
580 		if (ewq->msg.event == 0)
581 			break;
582 		if (READ_ONCE(ctx->released) ||
583 		    fatal_signal_pending(current)) {
584 			/*
585 			 * &ewq->wq may be queued in fork_event, but
586 			 * __remove_wait_queue ignores the head
587 			 * parameter. It would be a problem if it
588 			 * didn't.
589 			 */
590 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
591 			if (ewq->msg.event == UFFD_EVENT_FORK) {
592 				struct userfaultfd_ctx *new;
593 
594 				new = (struct userfaultfd_ctx *)
595 					(unsigned long)
596 					ewq->msg.arg.reserved.reserved1;
597 				release_new_ctx = new;
598 			}
599 			break;
600 		}
601 
602 		spin_unlock_irq(&ctx->event_wqh.lock);
603 
604 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
605 		schedule();
606 
607 		spin_lock_irq(&ctx->event_wqh.lock);
608 	}
609 	__set_current_state(TASK_RUNNING);
610 	spin_unlock_irq(&ctx->event_wqh.lock);
611 
612 	if (release_new_ctx) {
613 		userfaultfd_release_new(release_new_ctx);
614 		userfaultfd_ctx_put(release_new_ctx);
615 	}
616 
617 	/*
618 	 * ctx may go away after this if the userfault pseudo fd is
619 	 * already released.
620 	 */
621 out:
622 	atomic_dec(&ctx->mmap_changing);
623 	VM_WARN_ON_ONCE(atomic_read(&ctx->mmap_changing) < 0);
624 	userfaultfd_ctx_put(ctx);
625 }
626 
627 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
628 				       struct userfaultfd_wait_queue *ewq)
629 {
630 	ewq->msg.event = 0;
631 	wake_up_locked(&ctx->event_wqh);
632 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
633 }
634 
635 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
636 {
637 	struct userfaultfd_ctx *ctx = NULL, *octx;
638 	struct userfaultfd_fork_ctx *fctx;
639 
640 	octx = vma->vm_userfaultfd_ctx.ctx;
641 	if (!octx)
642 		return 0;
643 
644 	if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645 		userfaultfd_reset_ctx(vma);
646 		return 0;
647 	}
648 
649 	list_for_each_entry(fctx, fcs, list)
650 		if (fctx->orig == octx) {
651 			ctx = fctx->new;
652 			break;
653 		}
654 
655 	if (!ctx) {
656 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
657 		if (!fctx)
658 			return -ENOMEM;
659 
660 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
661 		if (!ctx) {
662 			kfree(fctx);
663 			return -ENOMEM;
664 		}
665 
666 		refcount_set(&ctx->refcount, 1);
667 		ctx->flags = octx->flags;
668 		ctx->features = octx->features;
669 		ctx->released = false;
670 		init_rwsem(&ctx->map_changing_lock);
671 		atomic_set(&ctx->mmap_changing, 0);
672 		ctx->mm = vma->vm_mm;
673 		mmgrab(ctx->mm);
674 
675 		userfaultfd_ctx_get(octx);
676 		down_write(&octx->map_changing_lock);
677 		atomic_inc(&octx->mmap_changing);
678 		up_write(&octx->map_changing_lock);
679 		fctx->orig = octx;
680 		fctx->new = ctx;
681 		list_add_tail(&fctx->list, fcs);
682 	}
683 
684 	vma->vm_userfaultfd_ctx.ctx = ctx;
685 	return 0;
686 }
687 
688 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
689 {
690 	struct userfaultfd_ctx *ctx = fctx->orig;
691 	struct userfaultfd_wait_queue ewq;
692 
693 	msg_init(&ewq.msg);
694 
695 	ewq.msg.event = UFFD_EVENT_FORK;
696 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
697 
698 	userfaultfd_event_wait_completion(ctx, &ewq);
699 }
700 
701 void dup_userfaultfd_complete(struct list_head *fcs)
702 {
703 	struct userfaultfd_fork_ctx *fctx, *n;
704 
705 	list_for_each_entry_safe(fctx, n, fcs, list) {
706 		dup_fctx(fctx);
707 		list_del(&fctx->list);
708 		kfree(fctx);
709 	}
710 }
711 
712 void dup_userfaultfd_fail(struct list_head *fcs)
713 {
714 	struct userfaultfd_fork_ctx *fctx, *n;
715 
716 	/*
717 	 * An error has occurred on fork, we will tear memory down, but have
718 	 * allocated memory for fctx's and raised reference counts for both the
719 	 * original and child contexts (and on the mm for each as a result).
720 	 *
721 	 * These would ordinarily be taken care of by a user handling the event,
722 	 * but we are no longer doing so, so manually clean up here.
723 	 *
724 	 * mm tear down will take care of cleaning up VMA contexts.
725 	 */
726 	list_for_each_entry_safe(fctx, n, fcs, list) {
727 		struct userfaultfd_ctx *octx = fctx->orig;
728 		struct userfaultfd_ctx *ctx = fctx->new;
729 
730 		atomic_dec(&octx->mmap_changing);
731 		VM_WARN_ON_ONCE(atomic_read(&octx->mmap_changing) < 0);
732 		userfaultfd_ctx_put(octx);
733 		userfaultfd_ctx_put(ctx);
734 
735 		list_del(&fctx->list);
736 		kfree(fctx);
737 	}
738 }
739 
740 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
741 			     struct vm_userfaultfd_ctx *vm_ctx)
742 {
743 	struct userfaultfd_ctx *ctx;
744 
745 	ctx = vma->vm_userfaultfd_ctx.ctx;
746 
747 	if (!ctx)
748 		return;
749 
750 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
751 		vm_ctx->ctx = ctx;
752 		userfaultfd_ctx_get(ctx);
753 		down_write(&ctx->map_changing_lock);
754 		atomic_inc(&ctx->mmap_changing);
755 		up_write(&ctx->map_changing_lock);
756 	} else {
757 		/* Drop uffd context if remap feature not enabled */
758 		userfaultfd_reset_ctx(vma);
759 	}
760 }
761 
762 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
763 				 unsigned long from, unsigned long to,
764 				 unsigned long len)
765 {
766 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
767 	struct userfaultfd_wait_queue ewq;
768 
769 	if (!ctx)
770 		return;
771 
772 	msg_init(&ewq.msg);
773 
774 	ewq.msg.event = UFFD_EVENT_REMAP;
775 	ewq.msg.arg.remap.from = from;
776 	ewq.msg.arg.remap.to = to;
777 	ewq.msg.arg.remap.len = len;
778 
779 	userfaultfd_event_wait_completion(ctx, &ewq);
780 }
781 
782 void mremap_userfaultfd_fail(struct vm_userfaultfd_ctx *vm_ctx)
783 {
784 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
785 
786 	if (!ctx)
787 		return;
788 
789 	userfaultfd_ctx_put(ctx);
790 }
791 
792 bool userfaultfd_remove(struct vm_area_struct *vma,
793 			unsigned long start, unsigned long end)
794 {
795 	struct mm_struct *mm = vma->vm_mm;
796 	struct userfaultfd_ctx *ctx;
797 	struct userfaultfd_wait_queue ewq;
798 
799 	ctx = vma->vm_userfaultfd_ctx.ctx;
800 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
801 		return true;
802 
803 	userfaultfd_ctx_get(ctx);
804 	down_write(&ctx->map_changing_lock);
805 	atomic_inc(&ctx->mmap_changing);
806 	up_write(&ctx->map_changing_lock);
807 	mmap_read_unlock(mm);
808 
809 	msg_init(&ewq.msg);
810 
811 	ewq.msg.event = UFFD_EVENT_REMOVE;
812 	ewq.msg.arg.remove.start = start;
813 	ewq.msg.arg.remove.end = end;
814 
815 	userfaultfd_event_wait_completion(ctx, &ewq);
816 
817 	return false;
818 }
819 
820 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
821 			  unsigned long start, unsigned long end)
822 {
823 	struct userfaultfd_unmap_ctx *unmap_ctx;
824 
825 	list_for_each_entry(unmap_ctx, unmaps, list)
826 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
827 		    unmap_ctx->end == end)
828 			return true;
829 
830 	return false;
831 }
832 
833 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
834 			   unsigned long end, struct list_head *unmaps)
835 {
836 	struct userfaultfd_unmap_ctx *unmap_ctx;
837 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
838 
839 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
840 	    has_unmap_ctx(ctx, unmaps, start, end))
841 		return 0;
842 
843 	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
844 	if (!unmap_ctx)
845 		return -ENOMEM;
846 
847 	userfaultfd_ctx_get(ctx);
848 	down_write(&ctx->map_changing_lock);
849 	atomic_inc(&ctx->mmap_changing);
850 	up_write(&ctx->map_changing_lock);
851 	unmap_ctx->ctx = ctx;
852 	unmap_ctx->start = start;
853 	unmap_ctx->end = end;
854 	list_add_tail(&unmap_ctx->list, unmaps);
855 
856 	return 0;
857 }
858 
859 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
860 {
861 	struct userfaultfd_unmap_ctx *ctx, *n;
862 	struct userfaultfd_wait_queue ewq;
863 
864 	list_for_each_entry_safe(ctx, n, uf, list) {
865 		msg_init(&ewq.msg);
866 
867 		ewq.msg.event = UFFD_EVENT_UNMAP;
868 		ewq.msg.arg.remove.start = ctx->start;
869 		ewq.msg.arg.remove.end = ctx->end;
870 
871 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
872 
873 		list_del(&ctx->list);
874 		kfree(ctx);
875 	}
876 }
877 
878 static int userfaultfd_release(struct inode *inode, struct file *file)
879 {
880 	struct userfaultfd_ctx *ctx = file->private_data;
881 	struct mm_struct *mm = ctx->mm;
882 	/* len == 0 means wake all */
883 	struct userfaultfd_wake_range range = { .len = 0, };
884 
885 	WRITE_ONCE(ctx->released, true);
886 
887 	userfaultfd_release_all(mm, ctx);
888 
889 	/*
890 	 * After no new page faults can wait on this fault_*wqh, flush
891 	 * the last page faults that may have been already waiting on
892 	 * the fault_*wqh.
893 	 */
894 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
895 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
896 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
897 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
898 
899 	/* Flush pending events that may still wait on event_wqh */
900 	wake_up_all(&ctx->event_wqh);
901 
902 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
903 	userfaultfd_ctx_put(ctx);
904 	return 0;
905 }
906 
907 /* fault_pending_wqh.lock must be hold by the caller */
908 static inline struct userfaultfd_wait_queue *find_userfault_in(
909 		wait_queue_head_t *wqh)
910 {
911 	wait_queue_entry_t *wq;
912 	struct userfaultfd_wait_queue *uwq;
913 
914 	lockdep_assert_held(&wqh->lock);
915 
916 	uwq = NULL;
917 	if (!waitqueue_active(wqh))
918 		goto out;
919 	/* walk in reverse to provide FIFO behavior to read userfaults */
920 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
921 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
922 out:
923 	return uwq;
924 }
925 
926 static inline struct userfaultfd_wait_queue *find_userfault(
927 		struct userfaultfd_ctx *ctx)
928 {
929 	return find_userfault_in(&ctx->fault_pending_wqh);
930 }
931 
932 static inline struct userfaultfd_wait_queue *find_userfault_evt(
933 		struct userfaultfd_ctx *ctx)
934 {
935 	return find_userfault_in(&ctx->event_wqh);
936 }
937 
938 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
939 {
940 	struct userfaultfd_ctx *ctx = file->private_data;
941 	__poll_t ret;
942 
943 	poll_wait(file, &ctx->fd_wqh, wait);
944 
945 	if (!userfaultfd_is_initialized(ctx))
946 		return EPOLLERR;
947 
948 	/*
949 	 * poll() never guarantees that read won't block.
950 	 * userfaults can be waken before they're read().
951 	 */
952 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
953 		return EPOLLERR;
954 	/*
955 	 * lockless access to see if there are pending faults
956 	 * __pollwait last action is the add_wait_queue but
957 	 * the spin_unlock would allow the waitqueue_active to
958 	 * pass above the actual list_add inside
959 	 * add_wait_queue critical section. So use a full
960 	 * memory barrier to serialize the list_add write of
961 	 * add_wait_queue() with the waitqueue_active read
962 	 * below.
963 	 */
964 	ret = 0;
965 	smp_mb();
966 	if (waitqueue_active(&ctx->fault_pending_wqh))
967 		ret = EPOLLIN;
968 	else if (waitqueue_active(&ctx->event_wqh))
969 		ret = EPOLLIN;
970 
971 	return ret;
972 }
973 
974 static const struct file_operations userfaultfd_fops;
975 
976 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
977 				  struct inode *inode,
978 				  struct uffd_msg *msg)
979 {
980 	int fd;
981 
982 	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
983 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
984 	if (fd < 0)
985 		return fd;
986 
987 	msg->arg.reserved.reserved1 = 0;
988 	msg->arg.fork.ufd = fd;
989 	return 0;
990 }
991 
992 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
993 				    struct uffd_msg *msg, struct inode *inode)
994 {
995 	ssize_t ret;
996 	DECLARE_WAITQUEUE(wait, current);
997 	struct userfaultfd_wait_queue *uwq;
998 	/*
999 	 * Handling fork event requires sleeping operations, so
1000 	 * we drop the event_wqh lock, then do these ops, then
1001 	 * lock it back and wake up the waiter. While the lock is
1002 	 * dropped the ewq may go away so we keep track of it
1003 	 * carefully.
1004 	 */
1005 	LIST_HEAD(fork_event);
1006 	struct userfaultfd_ctx *fork_nctx = NULL;
1007 
1008 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1009 	spin_lock_irq(&ctx->fd_wqh.lock);
1010 	__add_wait_queue(&ctx->fd_wqh, &wait);
1011 	for (;;) {
1012 		set_current_state(TASK_INTERRUPTIBLE);
1013 		spin_lock(&ctx->fault_pending_wqh.lock);
1014 		uwq = find_userfault(ctx);
1015 		if (uwq) {
1016 			/*
1017 			 * Use a seqcount to repeat the lockless check
1018 			 * in wake_userfault() to avoid missing
1019 			 * wakeups because during the refile both
1020 			 * waitqueue could become empty if this is the
1021 			 * only userfault.
1022 			 */
1023 			write_seqcount_begin(&ctx->refile_seq);
1024 
1025 			/*
1026 			 * The fault_pending_wqh.lock prevents the uwq
1027 			 * to disappear from under us.
1028 			 *
1029 			 * Refile this userfault from
1030 			 * fault_pending_wqh to fault_wqh, it's not
1031 			 * pending anymore after we read it.
1032 			 *
1033 			 * Use list_del() by hand (as
1034 			 * userfaultfd_wake_function also uses
1035 			 * list_del_init() by hand) to be sure nobody
1036 			 * changes __remove_wait_queue() to use
1037 			 * list_del_init() in turn breaking the
1038 			 * !list_empty_careful() check in
1039 			 * handle_userfault(). The uwq->wq.head list
1040 			 * must never be empty at any time during the
1041 			 * refile, or the waitqueue could disappear
1042 			 * from under us. The "wait_queue_head_t"
1043 			 * parameter of __remove_wait_queue() is unused
1044 			 * anyway.
1045 			 */
1046 			list_del(&uwq->wq.entry);
1047 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1048 
1049 			write_seqcount_end(&ctx->refile_seq);
1050 
1051 			/* careful to always initialize msg if ret == 0 */
1052 			*msg = uwq->msg;
1053 			spin_unlock(&ctx->fault_pending_wqh.lock);
1054 			ret = 0;
1055 			break;
1056 		}
1057 		spin_unlock(&ctx->fault_pending_wqh.lock);
1058 
1059 		spin_lock(&ctx->event_wqh.lock);
1060 		uwq = find_userfault_evt(ctx);
1061 		if (uwq) {
1062 			*msg = uwq->msg;
1063 
1064 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1065 				fork_nctx = (struct userfaultfd_ctx *)
1066 					(unsigned long)
1067 					uwq->msg.arg.reserved.reserved1;
1068 				list_move(&uwq->wq.entry, &fork_event);
1069 				/*
1070 				 * fork_nctx can be freed as soon as
1071 				 * we drop the lock, unless we take a
1072 				 * reference on it.
1073 				 */
1074 				userfaultfd_ctx_get(fork_nctx);
1075 				spin_unlock(&ctx->event_wqh.lock);
1076 				ret = 0;
1077 				break;
1078 			}
1079 
1080 			userfaultfd_event_complete(ctx, uwq);
1081 			spin_unlock(&ctx->event_wqh.lock);
1082 			ret = 0;
1083 			break;
1084 		}
1085 		spin_unlock(&ctx->event_wqh.lock);
1086 
1087 		if (signal_pending(current)) {
1088 			ret = -ERESTARTSYS;
1089 			break;
1090 		}
1091 		if (no_wait) {
1092 			ret = -EAGAIN;
1093 			break;
1094 		}
1095 		spin_unlock_irq(&ctx->fd_wqh.lock);
1096 		schedule();
1097 		spin_lock_irq(&ctx->fd_wqh.lock);
1098 	}
1099 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1100 	__set_current_state(TASK_RUNNING);
1101 	spin_unlock_irq(&ctx->fd_wqh.lock);
1102 
1103 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1104 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1105 		spin_lock_irq(&ctx->event_wqh.lock);
1106 		if (!list_empty(&fork_event)) {
1107 			/*
1108 			 * The fork thread didn't abort, so we can
1109 			 * drop the temporary refcount.
1110 			 */
1111 			userfaultfd_ctx_put(fork_nctx);
1112 
1113 			uwq = list_first_entry(&fork_event,
1114 					       typeof(*uwq),
1115 					       wq.entry);
1116 			/*
1117 			 * If fork_event list wasn't empty and in turn
1118 			 * the event wasn't already released by fork
1119 			 * (the event is allocated on fork kernel
1120 			 * stack), put the event back to its place in
1121 			 * the event_wq. fork_event head will be freed
1122 			 * as soon as we return so the event cannot
1123 			 * stay queued there no matter the current
1124 			 * "ret" value.
1125 			 */
1126 			list_del(&uwq->wq.entry);
1127 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1128 
1129 			/*
1130 			 * Leave the event in the waitqueue and report
1131 			 * error to userland if we failed to resolve
1132 			 * the userfault fork.
1133 			 */
1134 			if (likely(!ret))
1135 				userfaultfd_event_complete(ctx, uwq);
1136 		} else {
1137 			/*
1138 			 * Here the fork thread aborted and the
1139 			 * refcount from the fork thread on fork_nctx
1140 			 * has already been released. We still hold
1141 			 * the reference we took before releasing the
1142 			 * lock above. If resolve_userfault_fork
1143 			 * failed we've to drop it because the
1144 			 * fork_nctx has to be freed in such case. If
1145 			 * it succeeded we'll hold it because the new
1146 			 * uffd references it.
1147 			 */
1148 			if (ret)
1149 				userfaultfd_ctx_put(fork_nctx);
1150 		}
1151 		spin_unlock_irq(&ctx->event_wqh.lock);
1152 	}
1153 
1154 	return ret;
1155 }
1156 
1157 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1158 {
1159 	struct file *file = iocb->ki_filp;
1160 	struct userfaultfd_ctx *ctx = file->private_data;
1161 	ssize_t _ret, ret = 0;
1162 	struct uffd_msg msg;
1163 	struct inode *inode = file_inode(file);
1164 	bool no_wait;
1165 
1166 	if (!userfaultfd_is_initialized(ctx))
1167 		return -EINVAL;
1168 
1169 	no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1170 	for (;;) {
1171 		if (iov_iter_count(to) < sizeof(msg))
1172 			return ret ? ret : -EINVAL;
1173 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1174 		if (_ret < 0)
1175 			return ret ? ret : _ret;
1176 		_ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1177 		if (_ret)
1178 			return ret ? ret : -EFAULT;
1179 		ret += sizeof(msg);
1180 		/*
1181 		 * Allow to read more than one fault at time but only
1182 		 * block if waiting for the very first one.
1183 		 */
1184 		no_wait = true;
1185 	}
1186 }
1187 
1188 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1189 			     struct userfaultfd_wake_range *range)
1190 {
1191 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1192 	/* wake all in the range and autoremove */
1193 	if (waitqueue_active(&ctx->fault_pending_wqh))
1194 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1195 				     range);
1196 	if (waitqueue_active(&ctx->fault_wqh))
1197 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1198 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1199 }
1200 
1201 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1202 					   struct userfaultfd_wake_range *range)
1203 {
1204 	unsigned seq;
1205 	bool need_wakeup;
1206 
1207 	/*
1208 	 * To be sure waitqueue_active() is not reordered by the CPU
1209 	 * before the pagetable update, use an explicit SMP memory
1210 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1211 	 * have release semantics that can allow the
1212 	 * waitqueue_active() to be reordered before the pte update.
1213 	 */
1214 	smp_mb();
1215 
1216 	/*
1217 	 * Use waitqueue_active because it's very frequent to
1218 	 * change the address space atomically even if there are no
1219 	 * userfaults yet. So we take the spinlock only when we're
1220 	 * sure we've userfaults to wake.
1221 	 */
1222 	do {
1223 		seq = read_seqcount_begin(&ctx->refile_seq);
1224 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1225 			waitqueue_active(&ctx->fault_wqh);
1226 		cond_resched();
1227 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1228 	if (need_wakeup)
1229 		__wake_userfault(ctx, range);
1230 }
1231 
1232 static __always_inline int validate_unaligned_range(
1233 	struct mm_struct *mm, __u64 start, __u64 len)
1234 {
1235 	__u64 task_size = mm->task_size;
1236 
1237 	if (len & ~PAGE_MASK)
1238 		return -EINVAL;
1239 	if (!len)
1240 		return -EINVAL;
1241 	if (start < mmap_min_addr)
1242 		return -EINVAL;
1243 	if (start >= task_size)
1244 		return -EINVAL;
1245 	if (len > task_size - start)
1246 		return -EINVAL;
1247 	if (start + len <= start)
1248 		return -EINVAL;
1249 	return 0;
1250 }
1251 
1252 static __always_inline int validate_range(struct mm_struct *mm,
1253 					  __u64 start, __u64 len)
1254 {
1255 	if (start & ~PAGE_MASK)
1256 		return -EINVAL;
1257 
1258 	return validate_unaligned_range(mm, start, len);
1259 }
1260 
1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1262 				unsigned long arg)
1263 {
1264 	struct mm_struct *mm = ctx->mm;
1265 	struct vm_area_struct *vma, *cur;
1266 	int ret;
1267 	struct uffdio_register uffdio_register;
1268 	struct uffdio_register __user *user_uffdio_register;
1269 	vm_flags_t vm_flags;
1270 	bool found;
1271 	bool basic_ioctls;
1272 	unsigned long start, end;
1273 	struct vma_iterator vmi;
1274 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1275 
1276 	user_uffdio_register = (struct uffdio_register __user *) arg;
1277 
1278 	ret = -EFAULT;
1279 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1280 			   sizeof(uffdio_register)-sizeof(__u64)))
1281 		goto out;
1282 
1283 	ret = -EINVAL;
1284 	if (!uffdio_register.mode)
1285 		goto out;
1286 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1287 		goto out;
1288 	vm_flags = 0;
1289 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1290 		vm_flags |= VM_UFFD_MISSING;
1291 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1292 		if (!pgtable_supports_uffd_wp())
1293 			goto out;
1294 
1295 		vm_flags |= VM_UFFD_WP;
1296 	}
1297 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1298 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1299 		goto out;
1300 #endif
1301 		vm_flags |= VM_UFFD_MINOR;
1302 	}
1303 
1304 	ret = validate_range(mm, uffdio_register.range.start,
1305 			     uffdio_register.range.len);
1306 	if (ret)
1307 		goto out;
1308 
1309 	start = uffdio_register.range.start;
1310 	end = start + uffdio_register.range.len;
1311 
1312 	ret = -ENOMEM;
1313 	if (!mmget_not_zero(mm))
1314 		goto out;
1315 
1316 	ret = -EINVAL;
1317 	mmap_write_lock(mm);
1318 	vma_iter_init(&vmi, mm, start);
1319 	vma = vma_find(&vmi, end);
1320 	if (!vma)
1321 		goto out_unlock;
1322 
1323 	/*
1324 	 * If the first vma contains huge pages, make sure start address
1325 	 * is aligned to huge page size.
1326 	 */
1327 	if (is_vm_hugetlb_page(vma)) {
1328 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1329 
1330 		if (start & (vma_hpagesize - 1))
1331 			goto out_unlock;
1332 	}
1333 
1334 	/*
1335 	 * Search for not compatible vmas.
1336 	 */
1337 	found = false;
1338 	basic_ioctls = false;
1339 	cur = vma;
1340 	do {
1341 		cond_resched();
1342 
1343 		VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^
1344 				!!(cur->vm_flags & __VM_UFFD_FLAGS));
1345 
1346 		/* check not compatible vmas */
1347 		ret = -EINVAL;
1348 		if (!vma_can_userfault(cur, vm_flags, wp_async))
1349 			goto out_unlock;
1350 
1351 		/*
1352 		 * UFFDIO_COPY will fill file holes even without
1353 		 * PROT_WRITE. This check enforces that if this is a
1354 		 * MAP_SHARED, the process has write permission to the backing
1355 		 * file. If VM_MAYWRITE is set it also enforces that on a
1356 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1357 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1358 		 */
1359 		ret = -EPERM;
1360 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1361 			goto out_unlock;
1362 
1363 		/*
1364 		 * If this vma contains ending address, and huge pages
1365 		 * check alignment.
1366 		 */
1367 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1368 		    end > cur->vm_start) {
1369 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1370 
1371 			ret = -EINVAL;
1372 
1373 			if (end & (vma_hpagesize - 1))
1374 				goto out_unlock;
1375 		}
1376 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1377 			goto out_unlock;
1378 
1379 		/*
1380 		 * Check that this vma isn't already owned by a
1381 		 * different userfaultfd. We can't allow more than one
1382 		 * userfaultfd to own a single vma simultaneously or we
1383 		 * wouldn't know which one to deliver the userfaults to.
1384 		 */
1385 		ret = -EBUSY;
1386 		if (cur->vm_userfaultfd_ctx.ctx &&
1387 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1388 			goto out_unlock;
1389 
1390 		/*
1391 		 * Note vmas containing huge pages
1392 		 */
1393 		if (is_vm_hugetlb_page(cur))
1394 			basic_ioctls = true;
1395 
1396 		found = true;
1397 	} for_each_vma_range(vmi, cur, end);
1398 	VM_WARN_ON_ONCE(!found);
1399 
1400 	ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end,
1401 					 wp_async);
1402 
1403 out_unlock:
1404 	mmap_write_unlock(mm);
1405 	mmput(mm);
1406 	if (!ret) {
1407 		__u64 ioctls_out;
1408 
1409 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1410 		    UFFD_API_RANGE_IOCTLS;
1411 
1412 		/*
1413 		 * Declare the WP ioctl only if the WP mode is
1414 		 * specified and all checks passed with the range
1415 		 */
1416 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1417 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1418 
1419 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1420 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1421 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1422 
1423 		/*
1424 		 * Now that we scanned all vmas we can already tell
1425 		 * userland which ioctls methods are guaranteed to
1426 		 * succeed on this range.
1427 		 */
1428 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1429 			ret = -EFAULT;
1430 	}
1431 out:
1432 	return ret;
1433 }
1434 
1435 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1436 				  unsigned long arg)
1437 {
1438 	struct mm_struct *mm = ctx->mm;
1439 	struct vm_area_struct *vma, *prev, *cur;
1440 	int ret;
1441 	struct uffdio_range uffdio_unregister;
1442 	bool found;
1443 	unsigned long start, end, vma_end;
1444 	const void __user *buf = (void __user *)arg;
1445 	struct vma_iterator vmi;
1446 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1447 
1448 	ret = -EFAULT;
1449 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1450 		goto out;
1451 
1452 	ret = validate_range(mm, uffdio_unregister.start,
1453 			     uffdio_unregister.len);
1454 	if (ret)
1455 		goto out;
1456 
1457 	start = uffdio_unregister.start;
1458 	end = start + uffdio_unregister.len;
1459 
1460 	ret = -ENOMEM;
1461 	if (!mmget_not_zero(mm))
1462 		goto out;
1463 
1464 	mmap_write_lock(mm);
1465 	ret = -EINVAL;
1466 	vma_iter_init(&vmi, mm, start);
1467 	vma = vma_find(&vmi, end);
1468 	if (!vma)
1469 		goto out_unlock;
1470 
1471 	/*
1472 	 * If the first vma contains huge pages, make sure start address
1473 	 * is aligned to huge page size.
1474 	 */
1475 	if (is_vm_hugetlb_page(vma)) {
1476 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1477 
1478 		if (start & (vma_hpagesize - 1))
1479 			goto out_unlock;
1480 	}
1481 
1482 	/*
1483 	 * Search for not compatible vmas.
1484 	 */
1485 	found = false;
1486 	cur = vma;
1487 	do {
1488 		cond_resched();
1489 
1490 		VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^
1491 				!!(cur->vm_flags & __VM_UFFD_FLAGS));
1492 
1493 		/*
1494 		 * Prevent unregistering through a different userfaultfd than
1495 		 * the one used for registration.
1496 		 */
1497 		if (cur->vm_userfaultfd_ctx.ctx &&
1498 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1499 			goto out_unlock;
1500 
1501 		/*
1502 		 * Check not compatible vmas, not strictly required
1503 		 * here as not compatible vmas cannot have an
1504 		 * userfaultfd_ctx registered on them, but this
1505 		 * provides for more strict behavior to notice
1506 		 * unregistration errors.
1507 		 */
1508 		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1509 			goto out_unlock;
1510 
1511 		found = true;
1512 	} for_each_vma_range(vmi, cur, end);
1513 	VM_WARN_ON_ONCE(!found);
1514 
1515 	vma_iter_set(&vmi, start);
1516 	prev = vma_prev(&vmi);
1517 	if (vma->vm_start < start)
1518 		prev = vma;
1519 
1520 	ret = 0;
1521 	for_each_vma_range(vmi, vma, end) {
1522 		cond_resched();
1523 
1524 		/* VMA not registered with userfaultfd. */
1525 		if (!vma->vm_userfaultfd_ctx.ctx)
1526 			goto skip;
1527 
1528 		VM_WARN_ON_ONCE(vma->vm_userfaultfd_ctx.ctx != ctx);
1529 		VM_WARN_ON_ONCE(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1530 		VM_WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE));
1531 
1532 		if (vma->vm_start > start)
1533 			start = vma->vm_start;
1534 		vma_end = min(end, vma->vm_end);
1535 
1536 		if (userfaultfd_missing(vma)) {
1537 			/*
1538 			 * Wake any concurrent pending userfault while
1539 			 * we unregister, so they will not hang
1540 			 * permanently and it avoids userland to call
1541 			 * UFFDIO_WAKE explicitly.
1542 			 */
1543 			struct userfaultfd_wake_range range;
1544 			range.start = start;
1545 			range.len = vma_end - start;
1546 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1547 		}
1548 
1549 		vma = userfaultfd_clear_vma(&vmi, prev, vma,
1550 					    start, vma_end);
1551 		if (IS_ERR(vma)) {
1552 			ret = PTR_ERR(vma);
1553 			break;
1554 		}
1555 
1556 	skip:
1557 		prev = vma;
1558 		start = vma->vm_end;
1559 	}
1560 
1561 out_unlock:
1562 	mmap_write_unlock(mm);
1563 	mmput(mm);
1564 out:
1565 	return ret;
1566 }
1567 
1568 /*
1569  * userfaultfd_wake may be used in combination with the
1570  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1571  */
1572 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1573 			    unsigned long arg)
1574 {
1575 	int ret;
1576 	struct uffdio_range uffdio_wake;
1577 	struct userfaultfd_wake_range range;
1578 	const void __user *buf = (void __user *)arg;
1579 
1580 	ret = -EFAULT;
1581 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1582 		goto out;
1583 
1584 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1585 	if (ret)
1586 		goto out;
1587 
1588 	range.start = uffdio_wake.start;
1589 	range.len = uffdio_wake.len;
1590 
1591 	/*
1592 	 * len == 0 means wake all and we don't want to wake all here,
1593 	 * so check it again to be sure.
1594 	 */
1595 	VM_WARN_ON_ONCE(!range.len);
1596 
1597 	wake_userfault(ctx, &range);
1598 	ret = 0;
1599 
1600 out:
1601 	return ret;
1602 }
1603 
1604 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1605 			    unsigned long arg)
1606 {
1607 	__s64 ret;
1608 	struct uffdio_copy uffdio_copy;
1609 	struct uffdio_copy __user *user_uffdio_copy;
1610 	struct userfaultfd_wake_range range;
1611 	uffd_flags_t flags = 0;
1612 
1613 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1614 
1615 	ret = -EAGAIN;
1616 	if (unlikely(atomic_read(&ctx->mmap_changing))) {
1617 		if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1618 			return -EFAULT;
1619 		goto out;
1620 	}
1621 
1622 	ret = -EFAULT;
1623 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1624 			   /* don't copy "copy" last field */
1625 			   sizeof(uffdio_copy)-sizeof(__s64)))
1626 		goto out;
1627 
1628 	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1629 				       uffdio_copy.len);
1630 	if (ret)
1631 		goto out;
1632 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1633 	if (ret)
1634 		goto out;
1635 
1636 	ret = -EINVAL;
1637 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1638 		goto out;
1639 	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1640 		flags |= MFILL_ATOMIC_WP;
1641 	if (mmget_not_zero(ctx->mm)) {
1642 		ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1643 					uffdio_copy.len, flags);
1644 		mmput(ctx->mm);
1645 	} else {
1646 		return -ESRCH;
1647 	}
1648 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1649 		return -EFAULT;
1650 	if (ret < 0)
1651 		goto out;
1652 	VM_WARN_ON_ONCE(!ret);
1653 	/* len == 0 would wake all */
1654 	range.len = ret;
1655 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1656 		range.start = uffdio_copy.dst;
1657 		wake_userfault(ctx, &range);
1658 	}
1659 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1660 out:
1661 	return ret;
1662 }
1663 
1664 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1665 				unsigned long arg)
1666 {
1667 	__s64 ret;
1668 	struct uffdio_zeropage uffdio_zeropage;
1669 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1670 	struct userfaultfd_wake_range range;
1671 
1672 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1673 
1674 	ret = -EAGAIN;
1675 	if (unlikely(atomic_read(&ctx->mmap_changing))) {
1676 		if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1677 			return -EFAULT;
1678 		goto out;
1679 	}
1680 
1681 	ret = -EFAULT;
1682 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1683 			   /* don't copy "zeropage" last field */
1684 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1685 		goto out;
1686 
1687 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1688 			     uffdio_zeropage.range.len);
1689 	if (ret)
1690 		goto out;
1691 	ret = -EINVAL;
1692 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1693 		goto out;
1694 
1695 	if (mmget_not_zero(ctx->mm)) {
1696 		ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1697 					   uffdio_zeropage.range.len);
1698 		mmput(ctx->mm);
1699 	} else {
1700 		return -ESRCH;
1701 	}
1702 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1703 		return -EFAULT;
1704 	if (ret < 0)
1705 		goto out;
1706 	/* len == 0 would wake all */
1707 	VM_WARN_ON_ONCE(!ret);
1708 	range.len = ret;
1709 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1710 		range.start = uffdio_zeropage.range.start;
1711 		wake_userfault(ctx, &range);
1712 	}
1713 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1714 out:
1715 	return ret;
1716 }
1717 
1718 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1719 				    unsigned long arg)
1720 {
1721 	int ret;
1722 	struct uffdio_writeprotect uffdio_wp;
1723 	struct uffdio_writeprotect __user *user_uffdio_wp;
1724 	struct userfaultfd_wake_range range;
1725 	bool mode_wp, mode_dontwake;
1726 
1727 	if (atomic_read(&ctx->mmap_changing))
1728 		return -EAGAIN;
1729 
1730 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1731 
1732 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1733 			   sizeof(struct uffdio_writeprotect)))
1734 		return -EFAULT;
1735 
1736 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1737 			     uffdio_wp.range.len);
1738 	if (ret)
1739 		return ret;
1740 
1741 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1742 			       UFFDIO_WRITEPROTECT_MODE_WP))
1743 		return -EINVAL;
1744 
1745 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1746 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1747 
1748 	if (mode_wp && mode_dontwake)
1749 		return -EINVAL;
1750 
1751 	if (mmget_not_zero(ctx->mm)) {
1752 		ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1753 					  uffdio_wp.range.len, mode_wp);
1754 		mmput(ctx->mm);
1755 	} else {
1756 		return -ESRCH;
1757 	}
1758 
1759 	if (ret)
1760 		return ret;
1761 
1762 	if (!mode_wp && !mode_dontwake) {
1763 		range.start = uffdio_wp.range.start;
1764 		range.len = uffdio_wp.range.len;
1765 		wake_userfault(ctx, &range);
1766 	}
1767 	return ret;
1768 }
1769 
1770 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1771 {
1772 	__s64 ret;
1773 	struct uffdio_continue uffdio_continue;
1774 	struct uffdio_continue __user *user_uffdio_continue;
1775 	struct userfaultfd_wake_range range;
1776 	uffd_flags_t flags = 0;
1777 
1778 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1779 
1780 	ret = -EAGAIN;
1781 	if (unlikely(atomic_read(&ctx->mmap_changing))) {
1782 		if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1783 			return -EFAULT;
1784 		goto out;
1785 	}
1786 
1787 	ret = -EFAULT;
1788 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1789 			   /* don't copy the output fields */
1790 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1791 		goto out;
1792 
1793 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1794 			     uffdio_continue.range.len);
1795 	if (ret)
1796 		goto out;
1797 
1798 	ret = -EINVAL;
1799 	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1800 				     UFFDIO_CONTINUE_MODE_WP))
1801 		goto out;
1802 	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1803 		flags |= MFILL_ATOMIC_WP;
1804 
1805 	if (mmget_not_zero(ctx->mm)) {
1806 		ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1807 					    uffdio_continue.range.len, flags);
1808 		mmput(ctx->mm);
1809 	} else {
1810 		return -ESRCH;
1811 	}
1812 
1813 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1814 		return -EFAULT;
1815 	if (ret < 0)
1816 		goto out;
1817 
1818 	/* len == 0 would wake all */
1819 	VM_WARN_ON_ONCE(!ret);
1820 	range.len = ret;
1821 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1822 		range.start = uffdio_continue.range.start;
1823 		wake_userfault(ctx, &range);
1824 	}
1825 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1826 
1827 out:
1828 	return ret;
1829 }
1830 
1831 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1832 {
1833 	__s64 ret;
1834 	struct uffdio_poison uffdio_poison;
1835 	struct uffdio_poison __user *user_uffdio_poison;
1836 	struct userfaultfd_wake_range range;
1837 
1838 	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1839 
1840 	ret = -EAGAIN;
1841 	if (unlikely(atomic_read(&ctx->mmap_changing))) {
1842 		if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1843 			return -EFAULT;
1844 		goto out;
1845 	}
1846 
1847 	ret = -EFAULT;
1848 	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1849 			   /* don't copy the output fields */
1850 			   sizeof(uffdio_poison) - (sizeof(__s64))))
1851 		goto out;
1852 
1853 	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1854 			     uffdio_poison.range.len);
1855 	if (ret)
1856 		goto out;
1857 
1858 	ret = -EINVAL;
1859 	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1860 		goto out;
1861 
1862 	if (mmget_not_zero(ctx->mm)) {
1863 		ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1864 					  uffdio_poison.range.len, 0);
1865 		mmput(ctx->mm);
1866 	} else {
1867 		return -ESRCH;
1868 	}
1869 
1870 	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1871 		return -EFAULT;
1872 	if (ret < 0)
1873 		goto out;
1874 
1875 	/* len == 0 would wake all */
1876 	VM_WARN_ON_ONCE(!ret);
1877 	range.len = ret;
1878 	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1879 		range.start = uffdio_poison.range.start;
1880 		wake_userfault(ctx, &range);
1881 	}
1882 	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1883 
1884 out:
1885 	return ret;
1886 }
1887 
1888 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1889 {
1890 	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1891 }
1892 
1893 static inline unsigned int uffd_ctx_features(__u64 user_features)
1894 {
1895 	/*
1896 	 * For the current set of features the bits just coincide. Set
1897 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1898 	 */
1899 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1900 }
1901 
1902 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1903 			    unsigned long arg)
1904 {
1905 	__s64 ret;
1906 	struct uffdio_move uffdio_move;
1907 	struct uffdio_move __user *user_uffdio_move;
1908 	struct userfaultfd_wake_range range;
1909 	struct mm_struct *mm = ctx->mm;
1910 
1911 	user_uffdio_move = (struct uffdio_move __user *) arg;
1912 
1913 	ret = -EAGAIN;
1914 	if (unlikely(atomic_read(&ctx->mmap_changing))) {
1915 		if (unlikely(put_user(ret, &user_uffdio_move->move)))
1916 			return -EFAULT;
1917 		goto out;
1918 	}
1919 
1920 	if (copy_from_user(&uffdio_move, user_uffdio_move,
1921 			   /* don't copy "move" last field */
1922 			   sizeof(uffdio_move)-sizeof(__s64)))
1923 		return -EFAULT;
1924 
1925 	/* Do not allow cross-mm moves. */
1926 	if (mm != current->mm)
1927 		return -EINVAL;
1928 
1929 	ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
1930 	if (ret)
1931 		return ret;
1932 
1933 	ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
1934 	if (ret)
1935 		return ret;
1936 
1937 	if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
1938 				  UFFDIO_MOVE_MODE_DONTWAKE))
1939 		return -EINVAL;
1940 
1941 	if (mmget_not_zero(mm)) {
1942 		ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
1943 				 uffdio_move.len, uffdio_move.mode);
1944 		mmput(mm);
1945 	} else {
1946 		return -ESRCH;
1947 	}
1948 
1949 	if (unlikely(put_user(ret, &user_uffdio_move->move)))
1950 		return -EFAULT;
1951 	if (ret < 0)
1952 		goto out;
1953 
1954 	/* len == 0 would wake all */
1955 	VM_WARN_ON(!ret);
1956 	range.len = ret;
1957 	if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
1958 		range.start = uffdio_move.dst;
1959 		wake_userfault(ctx, &range);
1960 	}
1961 	ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
1962 
1963 out:
1964 	return ret;
1965 }
1966 
1967 /*
1968  * userland asks for a certain API version and we return which bits
1969  * and ioctl commands are implemented in this kernel for such API
1970  * version or -EINVAL if unknown.
1971  */
1972 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1973 			   unsigned long arg)
1974 {
1975 	struct uffdio_api uffdio_api;
1976 	void __user *buf = (void __user *)arg;
1977 	unsigned int ctx_features;
1978 	int ret;
1979 	__u64 features;
1980 
1981 	ret = -EFAULT;
1982 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1983 		goto out;
1984 	features = uffdio_api.features;
1985 	ret = -EINVAL;
1986 	if (uffdio_api.api != UFFD_API)
1987 		goto err_out;
1988 	ret = -EPERM;
1989 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1990 		goto err_out;
1991 
1992 	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
1993 	if (features & UFFD_FEATURE_WP_ASYNC)
1994 		features |= UFFD_FEATURE_WP_UNPOPULATED;
1995 
1996 	/* report all available features and ioctls to userland */
1997 	uffdio_api.features = UFFD_API_FEATURES;
1998 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1999 	uffdio_api.features &=
2000 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2001 #endif
2002 	if (!pgtable_supports_uffd_wp())
2003 		uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2004 
2005 	if (!uffd_supports_wp_marker()) {
2006 		uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2007 		uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2008 		uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2009 	}
2010 
2011 	ret = -EINVAL;
2012 	if (features & ~uffdio_api.features)
2013 		goto err_out;
2014 
2015 	uffdio_api.ioctls = UFFD_API_IOCTLS;
2016 	ret = -EFAULT;
2017 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2018 		goto out;
2019 
2020 	/* only enable the requested features for this uffd context */
2021 	ctx_features = uffd_ctx_features(features);
2022 	ret = -EINVAL;
2023 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2024 		goto err_out;
2025 
2026 	ret = 0;
2027 out:
2028 	return ret;
2029 err_out:
2030 	memset(&uffdio_api, 0, sizeof(uffdio_api));
2031 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2032 		ret = -EFAULT;
2033 	goto out;
2034 }
2035 
2036 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2037 			      unsigned long arg)
2038 {
2039 	int ret = -EINVAL;
2040 	struct userfaultfd_ctx *ctx = file->private_data;
2041 
2042 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2043 		return -EINVAL;
2044 
2045 	switch(cmd) {
2046 	case UFFDIO_API:
2047 		ret = userfaultfd_api(ctx, arg);
2048 		break;
2049 	case UFFDIO_REGISTER:
2050 		ret = userfaultfd_register(ctx, arg);
2051 		break;
2052 	case UFFDIO_UNREGISTER:
2053 		ret = userfaultfd_unregister(ctx, arg);
2054 		break;
2055 	case UFFDIO_WAKE:
2056 		ret = userfaultfd_wake(ctx, arg);
2057 		break;
2058 	case UFFDIO_COPY:
2059 		ret = userfaultfd_copy(ctx, arg);
2060 		break;
2061 	case UFFDIO_ZEROPAGE:
2062 		ret = userfaultfd_zeropage(ctx, arg);
2063 		break;
2064 	case UFFDIO_MOVE:
2065 		ret = userfaultfd_move(ctx, arg);
2066 		break;
2067 	case UFFDIO_WRITEPROTECT:
2068 		ret = userfaultfd_writeprotect(ctx, arg);
2069 		break;
2070 	case UFFDIO_CONTINUE:
2071 		ret = userfaultfd_continue(ctx, arg);
2072 		break;
2073 	case UFFDIO_POISON:
2074 		ret = userfaultfd_poison(ctx, arg);
2075 		break;
2076 	}
2077 	return ret;
2078 }
2079 
2080 #ifdef CONFIG_PROC_FS
2081 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2082 {
2083 	struct userfaultfd_ctx *ctx = f->private_data;
2084 	wait_queue_entry_t *wq;
2085 	unsigned long pending = 0, total = 0;
2086 
2087 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2088 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2089 		pending++;
2090 		total++;
2091 	}
2092 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2093 		total++;
2094 	}
2095 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2096 
2097 	/*
2098 	 * If more protocols will be added, there will be all shown
2099 	 * separated by a space. Like this:
2100 	 *	protocols: aa:... bb:...
2101 	 */
2102 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2103 		   pending, total, UFFD_API, ctx->features,
2104 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2105 }
2106 #endif
2107 
2108 static const struct file_operations userfaultfd_fops = {
2109 #ifdef CONFIG_PROC_FS
2110 	.show_fdinfo	= userfaultfd_show_fdinfo,
2111 #endif
2112 	.release	= userfaultfd_release,
2113 	.poll		= userfaultfd_poll,
2114 	.read_iter	= userfaultfd_read_iter,
2115 	.unlocked_ioctl = userfaultfd_ioctl,
2116 	.compat_ioctl	= compat_ptr_ioctl,
2117 	.llseek		= noop_llseek,
2118 };
2119 
2120 static void init_once_userfaultfd_ctx(void *mem)
2121 {
2122 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2123 
2124 	init_waitqueue_head(&ctx->fault_pending_wqh);
2125 	init_waitqueue_head(&ctx->fault_wqh);
2126 	init_waitqueue_head(&ctx->event_wqh);
2127 	init_waitqueue_head(&ctx->fd_wqh);
2128 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2129 }
2130 
2131 static int new_userfaultfd(int flags)
2132 {
2133 	struct userfaultfd_ctx *ctx __free(kfree) = NULL;
2134 
2135 	VM_WARN_ON_ONCE(!current->mm);
2136 
2137 	/* Check the UFFD_* constants for consistency.  */
2138 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2139 
2140 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2141 		return -EINVAL;
2142 
2143 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2144 	if (!ctx)
2145 		return -ENOMEM;
2146 
2147 	refcount_set(&ctx->refcount, 1);
2148 	ctx->flags = flags;
2149 	ctx->features = 0;
2150 	ctx->released = false;
2151 	init_rwsem(&ctx->map_changing_lock);
2152 	atomic_set(&ctx->mmap_changing, 0);
2153 	ctx->mm = current->mm;
2154 
2155 	FD_PREPARE(fdf, flags & UFFD_SHARED_FCNTL_FLAGS,
2156 		   anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2157 					     O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS),
2158 					     NULL));
2159 	if (fdf.err)
2160 		return fdf.err;
2161 
2162 	/* prevent the mm struct to be freed */
2163 	mmgrab(ctx->mm);
2164 	fd_prepare_file(fdf)->f_mode |= FMODE_NOWAIT;
2165 	retain_and_null_ptr(ctx);
2166 	return fd_publish(fdf);
2167 }
2168 
2169 static inline bool userfaultfd_syscall_allowed(int flags)
2170 {
2171 	/* Userspace-only page faults are always allowed */
2172 	if (flags & UFFD_USER_MODE_ONLY)
2173 		return true;
2174 
2175 	/*
2176 	 * The user is requesting a userfaultfd which can handle kernel faults.
2177 	 * Privileged users are always allowed to do this.
2178 	 */
2179 	if (capable(CAP_SYS_PTRACE))
2180 		return true;
2181 
2182 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2183 	return sysctl_unprivileged_userfaultfd;
2184 }
2185 
2186 SYSCALL_DEFINE1(userfaultfd, int, flags)
2187 {
2188 	if (!userfaultfd_syscall_allowed(flags))
2189 		return -EPERM;
2190 
2191 	return new_userfaultfd(flags);
2192 }
2193 
2194 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2195 {
2196 	if (cmd != USERFAULTFD_IOC_NEW)
2197 		return -EINVAL;
2198 
2199 	return new_userfaultfd(flags);
2200 }
2201 
2202 static const struct file_operations userfaultfd_dev_fops = {
2203 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2204 	.compat_ioctl = userfaultfd_dev_ioctl,
2205 	.owner = THIS_MODULE,
2206 	.llseek = noop_llseek,
2207 };
2208 
2209 static struct miscdevice userfaultfd_misc = {
2210 	.minor = MISC_DYNAMIC_MINOR,
2211 	.name = "userfaultfd",
2212 	.fops = &userfaultfd_dev_fops
2213 };
2214 
2215 static int __init userfaultfd_init(void)
2216 {
2217 	int ret;
2218 
2219 	ret = misc_register(&userfaultfd_misc);
2220 	if (ret)
2221 		return ret;
2222 
2223 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2224 						sizeof(struct userfaultfd_ctx),
2225 						0,
2226 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2227 						init_once_userfaultfd_ctx);
2228 #ifdef CONFIG_SYSCTL
2229 	register_sysctl_init("vm", vm_userfaultfd_table);
2230 #endif
2231 	return 0;
2232 }
2233 __initcall(userfaultfd_init);
2234