xref: /linux/fs/userfaultfd.c (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
36 
37 #ifdef CONFIG_SYSCTL
38 static struct ctl_table vm_userfaultfd_table[] = {
39 	{
40 		.procname	= "unprivileged_userfaultfd",
41 		.data		= &sysctl_unprivileged_userfaultfd,
42 		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
43 		.mode		= 0644,
44 		.proc_handler	= proc_dointvec_minmax,
45 		.extra1		= SYSCTL_ZERO,
46 		.extra2		= SYSCTL_ONE,
47 	},
48 };
49 #endif
50 
51 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
52 
53 struct userfaultfd_fork_ctx {
54 	struct userfaultfd_ctx *orig;
55 	struct userfaultfd_ctx *new;
56 	struct list_head list;
57 };
58 
59 struct userfaultfd_unmap_ctx {
60 	struct userfaultfd_ctx *ctx;
61 	unsigned long start;
62 	unsigned long end;
63 	struct list_head list;
64 };
65 
66 struct userfaultfd_wait_queue {
67 	struct uffd_msg msg;
68 	wait_queue_entry_t wq;
69 	struct userfaultfd_ctx *ctx;
70 	bool waken;
71 };
72 
73 struct userfaultfd_wake_range {
74 	unsigned long start;
75 	unsigned long len;
76 };
77 
78 /* internal indication that UFFD_API ioctl was successfully executed */
79 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
80 
81 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
82 {
83 	return ctx->features & UFFD_FEATURE_INITIALIZED;
84 }
85 
86 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
87 {
88 	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
89 }
90 
91 /*
92  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
93  * meaningful when userfaultfd_wp()==true on the vma and when it's
94  * anonymous.
95  */
96 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
97 {
98 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
99 
100 	if (!ctx)
101 		return false;
102 
103 	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
104 }
105 
106 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
107 				     vm_flags_t flags)
108 {
109 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
110 
111 	vm_flags_reset(vma, flags);
112 	/*
113 	 * For shared mappings, we want to enable writenotify while
114 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
115 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
116 	 */
117 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
118 		vma_set_page_prot(vma);
119 }
120 
121 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
122 				     int wake_flags, void *key)
123 {
124 	struct userfaultfd_wake_range *range = key;
125 	int ret;
126 	struct userfaultfd_wait_queue *uwq;
127 	unsigned long start, len;
128 
129 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
130 	ret = 0;
131 	/* len == 0 means wake all */
132 	start = range->start;
133 	len = range->len;
134 	if (len && (start > uwq->msg.arg.pagefault.address ||
135 		    start + len <= uwq->msg.arg.pagefault.address))
136 		goto out;
137 	WRITE_ONCE(uwq->waken, true);
138 	/*
139 	 * The Program-Order guarantees provided by the scheduler
140 	 * ensure uwq->waken is visible before the task is woken.
141 	 */
142 	ret = wake_up_state(wq->private, mode);
143 	if (ret) {
144 		/*
145 		 * Wake only once, autoremove behavior.
146 		 *
147 		 * After the effect of list_del_init is visible to the other
148 		 * CPUs, the waitqueue may disappear from under us, see the
149 		 * !list_empty_careful() in handle_userfault().
150 		 *
151 		 * try_to_wake_up() has an implicit smp_mb(), and the
152 		 * wq->private is read before calling the extern function
153 		 * "wake_up_state" (which in turns calls try_to_wake_up).
154 		 */
155 		list_del_init(&wq->entry);
156 	}
157 out:
158 	return ret;
159 }
160 
161 /**
162  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
163  * context.
164  * @ctx: [in] Pointer to the userfaultfd context.
165  */
166 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
167 {
168 	refcount_inc(&ctx->refcount);
169 }
170 
171 /**
172  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
173  * context.
174  * @ctx: [in] Pointer to userfaultfd context.
175  *
176  * The userfaultfd context reference must have been previously acquired either
177  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
178  */
179 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
180 {
181 	if (refcount_dec_and_test(&ctx->refcount)) {
182 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
183 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
184 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
185 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
186 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
187 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
188 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
189 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
190 		mmdrop(ctx->mm);
191 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
192 	}
193 }
194 
195 static inline void msg_init(struct uffd_msg *msg)
196 {
197 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
198 	/*
199 	 * Must use memset to zero out the paddings or kernel data is
200 	 * leaked to userland.
201 	 */
202 	memset(msg, 0, sizeof(struct uffd_msg));
203 }
204 
205 static inline struct uffd_msg userfault_msg(unsigned long address,
206 					    unsigned long real_address,
207 					    unsigned int flags,
208 					    unsigned long reason,
209 					    unsigned int features)
210 {
211 	struct uffd_msg msg;
212 
213 	msg_init(&msg);
214 	msg.event = UFFD_EVENT_PAGEFAULT;
215 
216 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
217 				    real_address : address;
218 
219 	/*
220 	 * These flags indicate why the userfault occurred:
221 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
222 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
223 	 * - Neither of these flags being set indicates a MISSING fault.
224 	 *
225 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
226 	 * fault. Otherwise, it was a read fault.
227 	 */
228 	if (flags & FAULT_FLAG_WRITE)
229 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
230 	if (reason & VM_UFFD_WP)
231 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
232 	if (reason & VM_UFFD_MINOR)
233 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
234 	if (features & UFFD_FEATURE_THREAD_ID)
235 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
236 	return msg;
237 }
238 
239 #ifdef CONFIG_HUGETLB_PAGE
240 /*
241  * Same functionality as userfaultfd_must_wait below with modifications for
242  * hugepmd ranges.
243  */
244 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
245 					      struct vm_fault *vmf,
246 					      unsigned long reason)
247 {
248 	struct vm_area_struct *vma = vmf->vma;
249 	pte_t *ptep, pte;
250 	bool ret = true;
251 
252 	assert_fault_locked(vmf);
253 
254 	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
255 	if (!ptep)
256 		goto out;
257 
258 	ret = false;
259 	pte = huge_ptep_get(ptep);
260 
261 	/*
262 	 * Lockless access: we're in a wait_event so it's ok if it
263 	 * changes under us.  PTE markers should be handled the same as none
264 	 * ptes here.
265 	 */
266 	if (huge_pte_none_mostly(pte))
267 		ret = true;
268 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
269 		ret = true;
270 out:
271 	return ret;
272 }
273 #else
274 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
275 					      struct vm_fault *vmf,
276 					      unsigned long reason)
277 {
278 	return false;	/* should never get here */
279 }
280 #endif /* CONFIG_HUGETLB_PAGE */
281 
282 /*
283  * Verify the pagetables are still not ok after having reigstered into
284  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
285  * userfault that has already been resolved, if userfaultfd_read and
286  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
287  * threads.
288  */
289 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
290 					 struct vm_fault *vmf,
291 					 unsigned long reason)
292 {
293 	struct mm_struct *mm = ctx->mm;
294 	unsigned long address = vmf->address;
295 	pgd_t *pgd;
296 	p4d_t *p4d;
297 	pud_t *pud;
298 	pmd_t *pmd, _pmd;
299 	pte_t *pte;
300 	pte_t ptent;
301 	bool ret = true;
302 
303 	assert_fault_locked(vmf);
304 
305 	pgd = pgd_offset(mm, address);
306 	if (!pgd_present(*pgd))
307 		goto out;
308 	p4d = p4d_offset(pgd, address);
309 	if (!p4d_present(*p4d))
310 		goto out;
311 	pud = pud_offset(p4d, address);
312 	if (!pud_present(*pud))
313 		goto out;
314 	pmd = pmd_offset(pud, address);
315 again:
316 	_pmd = pmdp_get_lockless(pmd);
317 	if (pmd_none(_pmd))
318 		goto out;
319 
320 	ret = false;
321 	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
322 		goto out;
323 
324 	if (pmd_trans_huge(_pmd)) {
325 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
326 			ret = true;
327 		goto out;
328 	}
329 
330 	pte = pte_offset_map(pmd, address);
331 	if (!pte) {
332 		ret = true;
333 		goto again;
334 	}
335 	/*
336 	 * Lockless access: we're in a wait_event so it's ok if it
337 	 * changes under us.  PTE markers should be handled the same as none
338 	 * ptes here.
339 	 */
340 	ptent = ptep_get(pte);
341 	if (pte_none_mostly(ptent))
342 		ret = true;
343 	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
344 		ret = true;
345 	pte_unmap(pte);
346 
347 out:
348 	return ret;
349 }
350 
351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
352 {
353 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
354 		return TASK_INTERRUPTIBLE;
355 
356 	if (flags & FAULT_FLAG_KILLABLE)
357 		return TASK_KILLABLE;
358 
359 	return TASK_UNINTERRUPTIBLE;
360 }
361 
362 /*
363  * The locking rules involved in returning VM_FAULT_RETRY depending on
364  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366  * recommendation in __lock_page_or_retry is not an understatement.
367  *
368  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
369  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
370  * not set.
371  *
372  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373  * set, VM_FAULT_RETRY can still be returned if and only if there are
374  * fatal_signal_pending()s, and the mmap_lock must be released before
375  * returning it.
376  */
377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
378 {
379 	struct vm_area_struct *vma = vmf->vma;
380 	struct mm_struct *mm = vma->vm_mm;
381 	struct userfaultfd_ctx *ctx;
382 	struct userfaultfd_wait_queue uwq;
383 	vm_fault_t ret = VM_FAULT_SIGBUS;
384 	bool must_wait;
385 	unsigned int blocking_state;
386 
387 	/*
388 	 * We don't do userfault handling for the final child pid update.
389 	 *
390 	 * We also don't do userfault handling during
391 	 * coredumping. hugetlbfs has the special
392 	 * hugetlb_follow_page_mask() to skip missing pages in the
393 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
394 	 * the no_page_table() helper in follow_page_mask(), but the
395 	 * shmem_vm_ops->fault method is invoked even during
396 	 * coredumping and it ends up here.
397 	 */
398 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
399 		goto out;
400 
401 	assert_fault_locked(vmf);
402 
403 	ctx = vma->vm_userfaultfd_ctx.ctx;
404 	if (!ctx)
405 		goto out;
406 
407 	BUG_ON(ctx->mm != mm);
408 
409 	/* Any unrecognized flag is a bug. */
410 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
411 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
412 	VM_BUG_ON(!reason || (reason & (reason - 1)));
413 
414 	if (ctx->features & UFFD_FEATURE_SIGBUS)
415 		goto out;
416 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
417 		goto out;
418 
419 	/*
420 	 * If it's already released don't get it. This avoids to loop
421 	 * in __get_user_pages if userfaultfd_release waits on the
422 	 * caller of handle_userfault to release the mmap_lock.
423 	 */
424 	if (unlikely(READ_ONCE(ctx->released))) {
425 		/*
426 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
427 		 * cooperative manager can close the uffd after the
428 		 * last UFFDIO_COPY, without risking to trigger an
429 		 * involuntary SIGBUS if the process was starting the
430 		 * userfaultfd while the userfaultfd was still armed
431 		 * (but after the last UFFDIO_COPY). If the uffd
432 		 * wasn't already closed when the userfault reached
433 		 * this point, that would normally be solved by
434 		 * userfaultfd_must_wait returning 'false'.
435 		 *
436 		 * If we were to return VM_FAULT_SIGBUS here, the non
437 		 * cooperative manager would be instead forced to
438 		 * always call UFFDIO_UNREGISTER before it can safely
439 		 * close the uffd.
440 		 */
441 		ret = VM_FAULT_NOPAGE;
442 		goto out;
443 	}
444 
445 	/*
446 	 * Check that we can return VM_FAULT_RETRY.
447 	 *
448 	 * NOTE: it should become possible to return VM_FAULT_RETRY
449 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
450 	 * -EBUSY failures, if the userfaultfd is to be extended for
451 	 * VM_UFFD_WP tracking and we intend to arm the userfault
452 	 * without first stopping userland access to the memory. For
453 	 * VM_UFFD_MISSING userfaults this is enough for now.
454 	 */
455 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
456 		/*
457 		 * Validate the invariant that nowait must allow retry
458 		 * to be sure not to return SIGBUS erroneously on
459 		 * nowait invocations.
460 		 */
461 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
462 #ifdef CONFIG_DEBUG_VM
463 		if (printk_ratelimit()) {
464 			printk(KERN_WARNING
465 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
466 			       vmf->flags);
467 			dump_stack();
468 		}
469 #endif
470 		goto out;
471 	}
472 
473 	/*
474 	 * Handle nowait, not much to do other than tell it to retry
475 	 * and wait.
476 	 */
477 	ret = VM_FAULT_RETRY;
478 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
479 		goto out;
480 
481 	/* take the reference before dropping the mmap_lock */
482 	userfaultfd_ctx_get(ctx);
483 
484 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
485 	uwq.wq.private = current;
486 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
487 				reason, ctx->features);
488 	uwq.ctx = ctx;
489 	uwq.waken = false;
490 
491 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
492 
493         /*
494          * Take the vma lock now, in order to safely call
495          * userfaultfd_huge_must_wait() later. Since acquiring the
496          * (sleepable) vma lock can modify the current task state, that
497          * must be before explicitly calling set_current_state().
498          */
499 	if (is_vm_hugetlb_page(vma))
500 		hugetlb_vma_lock_read(vma);
501 
502 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
503 	/*
504 	 * After the __add_wait_queue the uwq is visible to userland
505 	 * through poll/read().
506 	 */
507 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
508 	/*
509 	 * The smp_mb() after __set_current_state prevents the reads
510 	 * following the spin_unlock to happen before the list_add in
511 	 * __add_wait_queue.
512 	 */
513 	set_current_state(blocking_state);
514 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
515 
516 	if (!is_vm_hugetlb_page(vma))
517 		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
518 	else
519 		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
520 	if (is_vm_hugetlb_page(vma))
521 		hugetlb_vma_unlock_read(vma);
522 	release_fault_lock(vmf);
523 
524 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
525 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
526 		schedule();
527 	}
528 
529 	__set_current_state(TASK_RUNNING);
530 
531 	/*
532 	 * Here we race with the list_del; list_add in
533 	 * userfaultfd_ctx_read(), however because we don't ever run
534 	 * list_del_init() to refile across the two lists, the prev
535 	 * and next pointers will never point to self. list_add also
536 	 * would never let any of the two pointers to point to
537 	 * self. So list_empty_careful won't risk to see both pointers
538 	 * pointing to self at any time during the list refile. The
539 	 * only case where list_del_init() is called is the full
540 	 * removal in the wake function and there we don't re-list_add
541 	 * and it's fine not to block on the spinlock. The uwq on this
542 	 * kernel stack can be released after the list_del_init.
543 	 */
544 	if (!list_empty_careful(&uwq.wq.entry)) {
545 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
546 		/*
547 		 * No need of list_del_init(), the uwq on the stack
548 		 * will be freed shortly anyway.
549 		 */
550 		list_del(&uwq.wq.entry);
551 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
552 	}
553 
554 	/*
555 	 * ctx may go away after this if the userfault pseudo fd is
556 	 * already released.
557 	 */
558 	userfaultfd_ctx_put(ctx);
559 
560 out:
561 	return ret;
562 }
563 
564 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
565 					      struct userfaultfd_wait_queue *ewq)
566 {
567 	struct userfaultfd_ctx *release_new_ctx;
568 
569 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
570 		goto out;
571 
572 	ewq->ctx = ctx;
573 	init_waitqueue_entry(&ewq->wq, current);
574 	release_new_ctx = NULL;
575 
576 	spin_lock_irq(&ctx->event_wqh.lock);
577 	/*
578 	 * After the __add_wait_queue the uwq is visible to userland
579 	 * through poll/read().
580 	 */
581 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
582 	for (;;) {
583 		set_current_state(TASK_KILLABLE);
584 		if (ewq->msg.event == 0)
585 			break;
586 		if (READ_ONCE(ctx->released) ||
587 		    fatal_signal_pending(current)) {
588 			/*
589 			 * &ewq->wq may be queued in fork_event, but
590 			 * __remove_wait_queue ignores the head
591 			 * parameter. It would be a problem if it
592 			 * didn't.
593 			 */
594 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
595 			if (ewq->msg.event == UFFD_EVENT_FORK) {
596 				struct userfaultfd_ctx *new;
597 
598 				new = (struct userfaultfd_ctx *)
599 					(unsigned long)
600 					ewq->msg.arg.reserved.reserved1;
601 				release_new_ctx = new;
602 			}
603 			break;
604 		}
605 
606 		spin_unlock_irq(&ctx->event_wqh.lock);
607 
608 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
609 		schedule();
610 
611 		spin_lock_irq(&ctx->event_wqh.lock);
612 	}
613 	__set_current_state(TASK_RUNNING);
614 	spin_unlock_irq(&ctx->event_wqh.lock);
615 
616 	if (release_new_ctx) {
617 		struct vm_area_struct *vma;
618 		struct mm_struct *mm = release_new_ctx->mm;
619 		VMA_ITERATOR(vmi, mm, 0);
620 
621 		/* the various vma->vm_userfaultfd_ctx still points to it */
622 		mmap_write_lock(mm);
623 		for_each_vma(vmi, vma) {
624 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
625 				vma_start_write(vma);
626 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
627 				userfaultfd_set_vm_flags(vma,
628 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
629 			}
630 		}
631 		mmap_write_unlock(mm);
632 
633 		userfaultfd_ctx_put(release_new_ctx);
634 	}
635 
636 	/*
637 	 * ctx may go away after this if the userfault pseudo fd is
638 	 * already released.
639 	 */
640 out:
641 	atomic_dec(&ctx->mmap_changing);
642 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
643 	userfaultfd_ctx_put(ctx);
644 }
645 
646 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
647 				       struct userfaultfd_wait_queue *ewq)
648 {
649 	ewq->msg.event = 0;
650 	wake_up_locked(&ctx->event_wqh);
651 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
652 }
653 
654 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
655 {
656 	struct userfaultfd_ctx *ctx = NULL, *octx;
657 	struct userfaultfd_fork_ctx *fctx;
658 
659 	octx = vma->vm_userfaultfd_ctx.ctx;
660 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
661 		vma_start_write(vma);
662 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
663 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
664 		return 0;
665 	}
666 
667 	list_for_each_entry(fctx, fcs, list)
668 		if (fctx->orig == octx) {
669 			ctx = fctx->new;
670 			break;
671 		}
672 
673 	if (!ctx) {
674 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
675 		if (!fctx)
676 			return -ENOMEM;
677 
678 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
679 		if (!ctx) {
680 			kfree(fctx);
681 			return -ENOMEM;
682 		}
683 
684 		refcount_set(&ctx->refcount, 1);
685 		ctx->flags = octx->flags;
686 		ctx->features = octx->features;
687 		ctx->released = false;
688 		init_rwsem(&ctx->map_changing_lock);
689 		atomic_set(&ctx->mmap_changing, 0);
690 		ctx->mm = vma->vm_mm;
691 		mmgrab(ctx->mm);
692 
693 		userfaultfd_ctx_get(octx);
694 		down_write(&octx->map_changing_lock);
695 		atomic_inc(&octx->mmap_changing);
696 		up_write(&octx->map_changing_lock);
697 		fctx->orig = octx;
698 		fctx->new = ctx;
699 		list_add_tail(&fctx->list, fcs);
700 	}
701 
702 	vma->vm_userfaultfd_ctx.ctx = ctx;
703 	return 0;
704 }
705 
706 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
707 {
708 	struct userfaultfd_ctx *ctx = fctx->orig;
709 	struct userfaultfd_wait_queue ewq;
710 
711 	msg_init(&ewq.msg);
712 
713 	ewq.msg.event = UFFD_EVENT_FORK;
714 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
715 
716 	userfaultfd_event_wait_completion(ctx, &ewq);
717 }
718 
719 void dup_userfaultfd_complete(struct list_head *fcs)
720 {
721 	struct userfaultfd_fork_ctx *fctx, *n;
722 
723 	list_for_each_entry_safe(fctx, n, fcs, list) {
724 		dup_fctx(fctx);
725 		list_del(&fctx->list);
726 		kfree(fctx);
727 	}
728 }
729 
730 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
731 			     struct vm_userfaultfd_ctx *vm_ctx)
732 {
733 	struct userfaultfd_ctx *ctx;
734 
735 	ctx = vma->vm_userfaultfd_ctx.ctx;
736 
737 	if (!ctx)
738 		return;
739 
740 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
741 		vm_ctx->ctx = ctx;
742 		userfaultfd_ctx_get(ctx);
743 		down_write(&ctx->map_changing_lock);
744 		atomic_inc(&ctx->mmap_changing);
745 		up_write(&ctx->map_changing_lock);
746 	} else {
747 		/* Drop uffd context if remap feature not enabled */
748 		vma_start_write(vma);
749 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
750 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
751 	}
752 }
753 
754 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
755 				 unsigned long from, unsigned long to,
756 				 unsigned long len)
757 {
758 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
759 	struct userfaultfd_wait_queue ewq;
760 
761 	if (!ctx)
762 		return;
763 
764 	if (to & ~PAGE_MASK) {
765 		userfaultfd_ctx_put(ctx);
766 		return;
767 	}
768 
769 	msg_init(&ewq.msg);
770 
771 	ewq.msg.event = UFFD_EVENT_REMAP;
772 	ewq.msg.arg.remap.from = from;
773 	ewq.msg.arg.remap.to = to;
774 	ewq.msg.arg.remap.len = len;
775 
776 	userfaultfd_event_wait_completion(ctx, &ewq);
777 }
778 
779 bool userfaultfd_remove(struct vm_area_struct *vma,
780 			unsigned long start, unsigned long end)
781 {
782 	struct mm_struct *mm = vma->vm_mm;
783 	struct userfaultfd_ctx *ctx;
784 	struct userfaultfd_wait_queue ewq;
785 
786 	ctx = vma->vm_userfaultfd_ctx.ctx;
787 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
788 		return true;
789 
790 	userfaultfd_ctx_get(ctx);
791 	down_write(&ctx->map_changing_lock);
792 	atomic_inc(&ctx->mmap_changing);
793 	up_write(&ctx->map_changing_lock);
794 	mmap_read_unlock(mm);
795 
796 	msg_init(&ewq.msg);
797 
798 	ewq.msg.event = UFFD_EVENT_REMOVE;
799 	ewq.msg.arg.remove.start = start;
800 	ewq.msg.arg.remove.end = end;
801 
802 	userfaultfd_event_wait_completion(ctx, &ewq);
803 
804 	return false;
805 }
806 
807 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
808 			  unsigned long start, unsigned long end)
809 {
810 	struct userfaultfd_unmap_ctx *unmap_ctx;
811 
812 	list_for_each_entry(unmap_ctx, unmaps, list)
813 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
814 		    unmap_ctx->end == end)
815 			return true;
816 
817 	return false;
818 }
819 
820 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
821 			   unsigned long end, struct list_head *unmaps)
822 {
823 	struct userfaultfd_unmap_ctx *unmap_ctx;
824 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
825 
826 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
827 	    has_unmap_ctx(ctx, unmaps, start, end))
828 		return 0;
829 
830 	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
831 	if (!unmap_ctx)
832 		return -ENOMEM;
833 
834 	userfaultfd_ctx_get(ctx);
835 	down_write(&ctx->map_changing_lock);
836 	atomic_inc(&ctx->mmap_changing);
837 	up_write(&ctx->map_changing_lock);
838 	unmap_ctx->ctx = ctx;
839 	unmap_ctx->start = start;
840 	unmap_ctx->end = end;
841 	list_add_tail(&unmap_ctx->list, unmaps);
842 
843 	return 0;
844 }
845 
846 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
847 {
848 	struct userfaultfd_unmap_ctx *ctx, *n;
849 	struct userfaultfd_wait_queue ewq;
850 
851 	list_for_each_entry_safe(ctx, n, uf, list) {
852 		msg_init(&ewq.msg);
853 
854 		ewq.msg.event = UFFD_EVENT_UNMAP;
855 		ewq.msg.arg.remove.start = ctx->start;
856 		ewq.msg.arg.remove.end = ctx->end;
857 
858 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
859 
860 		list_del(&ctx->list);
861 		kfree(ctx);
862 	}
863 }
864 
865 static int userfaultfd_release(struct inode *inode, struct file *file)
866 {
867 	struct userfaultfd_ctx *ctx = file->private_data;
868 	struct mm_struct *mm = ctx->mm;
869 	struct vm_area_struct *vma, *prev;
870 	/* len == 0 means wake all */
871 	struct userfaultfd_wake_range range = { .len = 0, };
872 	unsigned long new_flags;
873 	VMA_ITERATOR(vmi, mm, 0);
874 
875 	WRITE_ONCE(ctx->released, true);
876 
877 	if (!mmget_not_zero(mm))
878 		goto wakeup;
879 
880 	/*
881 	 * Flush page faults out of all CPUs. NOTE: all page faults
882 	 * must be retried without returning VM_FAULT_SIGBUS if
883 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
884 	 * changes while handle_userfault released the mmap_lock. So
885 	 * it's critical that released is set to true (above), before
886 	 * taking the mmap_lock for writing.
887 	 */
888 	mmap_write_lock(mm);
889 	prev = NULL;
890 	for_each_vma(vmi, vma) {
891 		cond_resched();
892 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
893 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
894 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
895 			prev = vma;
896 			continue;
897 		}
898 		/* Reset ptes for the whole vma range if wr-protected */
899 		if (userfaultfd_wp(vma))
900 			uffd_wp_range(vma, vma->vm_start,
901 				      vma->vm_end - vma->vm_start, false);
902 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
903 		vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
904 					    vma->vm_end, new_flags,
905 					    NULL_VM_UFFD_CTX);
906 
907 		vma_start_write(vma);
908 		userfaultfd_set_vm_flags(vma, new_flags);
909 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
910 
911 		prev = vma;
912 	}
913 	mmap_write_unlock(mm);
914 	mmput(mm);
915 wakeup:
916 	/*
917 	 * After no new page faults can wait on this fault_*wqh, flush
918 	 * the last page faults that may have been already waiting on
919 	 * the fault_*wqh.
920 	 */
921 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
922 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
923 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
924 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
925 
926 	/* Flush pending events that may still wait on event_wqh */
927 	wake_up_all(&ctx->event_wqh);
928 
929 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
930 	userfaultfd_ctx_put(ctx);
931 	return 0;
932 }
933 
934 /* fault_pending_wqh.lock must be hold by the caller */
935 static inline struct userfaultfd_wait_queue *find_userfault_in(
936 		wait_queue_head_t *wqh)
937 {
938 	wait_queue_entry_t *wq;
939 	struct userfaultfd_wait_queue *uwq;
940 
941 	lockdep_assert_held(&wqh->lock);
942 
943 	uwq = NULL;
944 	if (!waitqueue_active(wqh))
945 		goto out;
946 	/* walk in reverse to provide FIFO behavior to read userfaults */
947 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
948 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
949 out:
950 	return uwq;
951 }
952 
953 static inline struct userfaultfd_wait_queue *find_userfault(
954 		struct userfaultfd_ctx *ctx)
955 {
956 	return find_userfault_in(&ctx->fault_pending_wqh);
957 }
958 
959 static inline struct userfaultfd_wait_queue *find_userfault_evt(
960 		struct userfaultfd_ctx *ctx)
961 {
962 	return find_userfault_in(&ctx->event_wqh);
963 }
964 
965 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
966 {
967 	struct userfaultfd_ctx *ctx = file->private_data;
968 	__poll_t ret;
969 
970 	poll_wait(file, &ctx->fd_wqh, wait);
971 
972 	if (!userfaultfd_is_initialized(ctx))
973 		return EPOLLERR;
974 
975 	/*
976 	 * poll() never guarantees that read won't block.
977 	 * userfaults can be waken before they're read().
978 	 */
979 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
980 		return EPOLLERR;
981 	/*
982 	 * lockless access to see if there are pending faults
983 	 * __pollwait last action is the add_wait_queue but
984 	 * the spin_unlock would allow the waitqueue_active to
985 	 * pass above the actual list_add inside
986 	 * add_wait_queue critical section. So use a full
987 	 * memory barrier to serialize the list_add write of
988 	 * add_wait_queue() with the waitqueue_active read
989 	 * below.
990 	 */
991 	ret = 0;
992 	smp_mb();
993 	if (waitqueue_active(&ctx->fault_pending_wqh))
994 		ret = EPOLLIN;
995 	else if (waitqueue_active(&ctx->event_wqh))
996 		ret = EPOLLIN;
997 
998 	return ret;
999 }
1000 
1001 static const struct file_operations userfaultfd_fops;
1002 
1003 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1004 				  struct inode *inode,
1005 				  struct uffd_msg *msg)
1006 {
1007 	int fd;
1008 
1009 	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1010 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1011 	if (fd < 0)
1012 		return fd;
1013 
1014 	msg->arg.reserved.reserved1 = 0;
1015 	msg->arg.fork.ufd = fd;
1016 	return 0;
1017 }
1018 
1019 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1020 				    struct uffd_msg *msg, struct inode *inode)
1021 {
1022 	ssize_t ret;
1023 	DECLARE_WAITQUEUE(wait, current);
1024 	struct userfaultfd_wait_queue *uwq;
1025 	/*
1026 	 * Handling fork event requires sleeping operations, so
1027 	 * we drop the event_wqh lock, then do these ops, then
1028 	 * lock it back and wake up the waiter. While the lock is
1029 	 * dropped the ewq may go away so we keep track of it
1030 	 * carefully.
1031 	 */
1032 	LIST_HEAD(fork_event);
1033 	struct userfaultfd_ctx *fork_nctx = NULL;
1034 
1035 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1036 	spin_lock_irq(&ctx->fd_wqh.lock);
1037 	__add_wait_queue(&ctx->fd_wqh, &wait);
1038 	for (;;) {
1039 		set_current_state(TASK_INTERRUPTIBLE);
1040 		spin_lock(&ctx->fault_pending_wqh.lock);
1041 		uwq = find_userfault(ctx);
1042 		if (uwq) {
1043 			/*
1044 			 * Use a seqcount to repeat the lockless check
1045 			 * in wake_userfault() to avoid missing
1046 			 * wakeups because during the refile both
1047 			 * waitqueue could become empty if this is the
1048 			 * only userfault.
1049 			 */
1050 			write_seqcount_begin(&ctx->refile_seq);
1051 
1052 			/*
1053 			 * The fault_pending_wqh.lock prevents the uwq
1054 			 * to disappear from under us.
1055 			 *
1056 			 * Refile this userfault from
1057 			 * fault_pending_wqh to fault_wqh, it's not
1058 			 * pending anymore after we read it.
1059 			 *
1060 			 * Use list_del() by hand (as
1061 			 * userfaultfd_wake_function also uses
1062 			 * list_del_init() by hand) to be sure nobody
1063 			 * changes __remove_wait_queue() to use
1064 			 * list_del_init() in turn breaking the
1065 			 * !list_empty_careful() check in
1066 			 * handle_userfault(). The uwq->wq.head list
1067 			 * must never be empty at any time during the
1068 			 * refile, or the waitqueue could disappear
1069 			 * from under us. The "wait_queue_head_t"
1070 			 * parameter of __remove_wait_queue() is unused
1071 			 * anyway.
1072 			 */
1073 			list_del(&uwq->wq.entry);
1074 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1075 
1076 			write_seqcount_end(&ctx->refile_seq);
1077 
1078 			/* careful to always initialize msg if ret == 0 */
1079 			*msg = uwq->msg;
1080 			spin_unlock(&ctx->fault_pending_wqh.lock);
1081 			ret = 0;
1082 			break;
1083 		}
1084 		spin_unlock(&ctx->fault_pending_wqh.lock);
1085 
1086 		spin_lock(&ctx->event_wqh.lock);
1087 		uwq = find_userfault_evt(ctx);
1088 		if (uwq) {
1089 			*msg = uwq->msg;
1090 
1091 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1092 				fork_nctx = (struct userfaultfd_ctx *)
1093 					(unsigned long)
1094 					uwq->msg.arg.reserved.reserved1;
1095 				list_move(&uwq->wq.entry, &fork_event);
1096 				/*
1097 				 * fork_nctx can be freed as soon as
1098 				 * we drop the lock, unless we take a
1099 				 * reference on it.
1100 				 */
1101 				userfaultfd_ctx_get(fork_nctx);
1102 				spin_unlock(&ctx->event_wqh.lock);
1103 				ret = 0;
1104 				break;
1105 			}
1106 
1107 			userfaultfd_event_complete(ctx, uwq);
1108 			spin_unlock(&ctx->event_wqh.lock);
1109 			ret = 0;
1110 			break;
1111 		}
1112 		spin_unlock(&ctx->event_wqh.lock);
1113 
1114 		if (signal_pending(current)) {
1115 			ret = -ERESTARTSYS;
1116 			break;
1117 		}
1118 		if (no_wait) {
1119 			ret = -EAGAIN;
1120 			break;
1121 		}
1122 		spin_unlock_irq(&ctx->fd_wqh.lock);
1123 		schedule();
1124 		spin_lock_irq(&ctx->fd_wqh.lock);
1125 	}
1126 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1127 	__set_current_state(TASK_RUNNING);
1128 	spin_unlock_irq(&ctx->fd_wqh.lock);
1129 
1130 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1131 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1132 		spin_lock_irq(&ctx->event_wqh.lock);
1133 		if (!list_empty(&fork_event)) {
1134 			/*
1135 			 * The fork thread didn't abort, so we can
1136 			 * drop the temporary refcount.
1137 			 */
1138 			userfaultfd_ctx_put(fork_nctx);
1139 
1140 			uwq = list_first_entry(&fork_event,
1141 					       typeof(*uwq),
1142 					       wq.entry);
1143 			/*
1144 			 * If fork_event list wasn't empty and in turn
1145 			 * the event wasn't already released by fork
1146 			 * (the event is allocated on fork kernel
1147 			 * stack), put the event back to its place in
1148 			 * the event_wq. fork_event head will be freed
1149 			 * as soon as we return so the event cannot
1150 			 * stay queued there no matter the current
1151 			 * "ret" value.
1152 			 */
1153 			list_del(&uwq->wq.entry);
1154 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1155 
1156 			/*
1157 			 * Leave the event in the waitqueue and report
1158 			 * error to userland if we failed to resolve
1159 			 * the userfault fork.
1160 			 */
1161 			if (likely(!ret))
1162 				userfaultfd_event_complete(ctx, uwq);
1163 		} else {
1164 			/*
1165 			 * Here the fork thread aborted and the
1166 			 * refcount from the fork thread on fork_nctx
1167 			 * has already been released. We still hold
1168 			 * the reference we took before releasing the
1169 			 * lock above. If resolve_userfault_fork
1170 			 * failed we've to drop it because the
1171 			 * fork_nctx has to be freed in such case. If
1172 			 * it succeeded we'll hold it because the new
1173 			 * uffd references it.
1174 			 */
1175 			if (ret)
1176 				userfaultfd_ctx_put(fork_nctx);
1177 		}
1178 		spin_unlock_irq(&ctx->event_wqh.lock);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185 				size_t count, loff_t *ppos)
1186 {
1187 	struct userfaultfd_ctx *ctx = file->private_data;
1188 	ssize_t _ret, ret = 0;
1189 	struct uffd_msg msg;
1190 	int no_wait = file->f_flags & O_NONBLOCK;
1191 	struct inode *inode = file_inode(file);
1192 
1193 	if (!userfaultfd_is_initialized(ctx))
1194 		return -EINVAL;
1195 
1196 	for (;;) {
1197 		if (count < sizeof(msg))
1198 			return ret ? ret : -EINVAL;
1199 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1200 		if (_ret < 0)
1201 			return ret ? ret : _ret;
1202 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1203 			return ret ? ret : -EFAULT;
1204 		ret += sizeof(msg);
1205 		buf += sizeof(msg);
1206 		count -= sizeof(msg);
1207 		/*
1208 		 * Allow to read more than one fault at time but only
1209 		 * block if waiting for the very first one.
1210 		 */
1211 		no_wait = O_NONBLOCK;
1212 	}
1213 }
1214 
1215 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1216 			     struct userfaultfd_wake_range *range)
1217 {
1218 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1219 	/* wake all in the range and autoremove */
1220 	if (waitqueue_active(&ctx->fault_pending_wqh))
1221 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1222 				     range);
1223 	if (waitqueue_active(&ctx->fault_wqh))
1224 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1225 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1226 }
1227 
1228 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1229 					   struct userfaultfd_wake_range *range)
1230 {
1231 	unsigned seq;
1232 	bool need_wakeup;
1233 
1234 	/*
1235 	 * To be sure waitqueue_active() is not reordered by the CPU
1236 	 * before the pagetable update, use an explicit SMP memory
1237 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1238 	 * have release semantics that can allow the
1239 	 * waitqueue_active() to be reordered before the pte update.
1240 	 */
1241 	smp_mb();
1242 
1243 	/*
1244 	 * Use waitqueue_active because it's very frequent to
1245 	 * change the address space atomically even if there are no
1246 	 * userfaults yet. So we take the spinlock only when we're
1247 	 * sure we've userfaults to wake.
1248 	 */
1249 	do {
1250 		seq = read_seqcount_begin(&ctx->refile_seq);
1251 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1252 			waitqueue_active(&ctx->fault_wqh);
1253 		cond_resched();
1254 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1255 	if (need_wakeup)
1256 		__wake_userfault(ctx, range);
1257 }
1258 
1259 static __always_inline int validate_unaligned_range(
1260 	struct mm_struct *mm, __u64 start, __u64 len)
1261 {
1262 	__u64 task_size = mm->task_size;
1263 
1264 	if (len & ~PAGE_MASK)
1265 		return -EINVAL;
1266 	if (!len)
1267 		return -EINVAL;
1268 	if (start < mmap_min_addr)
1269 		return -EINVAL;
1270 	if (start >= task_size)
1271 		return -EINVAL;
1272 	if (len > task_size - start)
1273 		return -EINVAL;
1274 	if (start + len <= start)
1275 		return -EINVAL;
1276 	return 0;
1277 }
1278 
1279 static __always_inline int validate_range(struct mm_struct *mm,
1280 					  __u64 start, __u64 len)
1281 {
1282 	if (start & ~PAGE_MASK)
1283 		return -EINVAL;
1284 
1285 	return validate_unaligned_range(mm, start, len);
1286 }
1287 
1288 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1289 				unsigned long arg)
1290 {
1291 	struct mm_struct *mm = ctx->mm;
1292 	struct vm_area_struct *vma, *prev, *cur;
1293 	int ret;
1294 	struct uffdio_register uffdio_register;
1295 	struct uffdio_register __user *user_uffdio_register;
1296 	unsigned long vm_flags, new_flags;
1297 	bool found;
1298 	bool basic_ioctls;
1299 	unsigned long start, end, vma_end;
1300 	struct vma_iterator vmi;
1301 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1302 
1303 	user_uffdio_register = (struct uffdio_register __user *) arg;
1304 
1305 	ret = -EFAULT;
1306 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1307 			   sizeof(uffdio_register)-sizeof(__u64)))
1308 		goto out;
1309 
1310 	ret = -EINVAL;
1311 	if (!uffdio_register.mode)
1312 		goto out;
1313 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1314 		goto out;
1315 	vm_flags = 0;
1316 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1317 		vm_flags |= VM_UFFD_MISSING;
1318 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1319 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1320 		goto out;
1321 #endif
1322 		vm_flags |= VM_UFFD_WP;
1323 	}
1324 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1325 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1326 		goto out;
1327 #endif
1328 		vm_flags |= VM_UFFD_MINOR;
1329 	}
1330 
1331 	ret = validate_range(mm, uffdio_register.range.start,
1332 			     uffdio_register.range.len);
1333 	if (ret)
1334 		goto out;
1335 
1336 	start = uffdio_register.range.start;
1337 	end = start + uffdio_register.range.len;
1338 
1339 	ret = -ENOMEM;
1340 	if (!mmget_not_zero(mm))
1341 		goto out;
1342 
1343 	ret = -EINVAL;
1344 	mmap_write_lock(mm);
1345 	vma_iter_init(&vmi, mm, start);
1346 	vma = vma_find(&vmi, end);
1347 	if (!vma)
1348 		goto out_unlock;
1349 
1350 	/*
1351 	 * If the first vma contains huge pages, make sure start address
1352 	 * is aligned to huge page size.
1353 	 */
1354 	if (is_vm_hugetlb_page(vma)) {
1355 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1356 
1357 		if (start & (vma_hpagesize - 1))
1358 			goto out_unlock;
1359 	}
1360 
1361 	/*
1362 	 * Search for not compatible vmas.
1363 	 */
1364 	found = false;
1365 	basic_ioctls = false;
1366 	cur = vma;
1367 	do {
1368 		cond_resched();
1369 
1370 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1371 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1372 
1373 		/* check not compatible vmas */
1374 		ret = -EINVAL;
1375 		if (!vma_can_userfault(cur, vm_flags, wp_async))
1376 			goto out_unlock;
1377 
1378 		/*
1379 		 * UFFDIO_COPY will fill file holes even without
1380 		 * PROT_WRITE. This check enforces that if this is a
1381 		 * MAP_SHARED, the process has write permission to the backing
1382 		 * file. If VM_MAYWRITE is set it also enforces that on a
1383 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1384 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1385 		 */
1386 		ret = -EPERM;
1387 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1388 			goto out_unlock;
1389 
1390 		/*
1391 		 * If this vma contains ending address, and huge pages
1392 		 * check alignment.
1393 		 */
1394 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1395 		    end > cur->vm_start) {
1396 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1397 
1398 			ret = -EINVAL;
1399 
1400 			if (end & (vma_hpagesize - 1))
1401 				goto out_unlock;
1402 		}
1403 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1404 			goto out_unlock;
1405 
1406 		/*
1407 		 * Check that this vma isn't already owned by a
1408 		 * different userfaultfd. We can't allow more than one
1409 		 * userfaultfd to own a single vma simultaneously or we
1410 		 * wouldn't know which one to deliver the userfaults to.
1411 		 */
1412 		ret = -EBUSY;
1413 		if (cur->vm_userfaultfd_ctx.ctx &&
1414 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1415 			goto out_unlock;
1416 
1417 		/*
1418 		 * Note vmas containing huge pages
1419 		 */
1420 		if (is_vm_hugetlb_page(cur))
1421 			basic_ioctls = true;
1422 
1423 		found = true;
1424 	} for_each_vma_range(vmi, cur, end);
1425 	BUG_ON(!found);
1426 
1427 	vma_iter_set(&vmi, start);
1428 	prev = vma_prev(&vmi);
1429 	if (vma->vm_start < start)
1430 		prev = vma;
1431 
1432 	ret = 0;
1433 	for_each_vma_range(vmi, vma, end) {
1434 		cond_resched();
1435 
1436 		BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1437 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1438 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1439 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1440 
1441 		/*
1442 		 * Nothing to do: this vma is already registered into this
1443 		 * userfaultfd and with the right tracking mode too.
1444 		 */
1445 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1446 		    (vma->vm_flags & vm_flags) == vm_flags)
1447 			goto skip;
1448 
1449 		if (vma->vm_start > start)
1450 			start = vma->vm_start;
1451 		vma_end = min(end, vma->vm_end);
1452 
1453 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1454 		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1455 					    new_flags,
1456 					    (struct vm_userfaultfd_ctx){ctx});
1457 		if (IS_ERR(vma)) {
1458 			ret = PTR_ERR(vma);
1459 			break;
1460 		}
1461 
1462 		/*
1463 		 * In the vma_merge() successful mprotect-like case 8:
1464 		 * the next vma was merged into the current one and
1465 		 * the current one has not been updated yet.
1466 		 */
1467 		vma_start_write(vma);
1468 		userfaultfd_set_vm_flags(vma, new_flags);
1469 		vma->vm_userfaultfd_ctx.ctx = ctx;
1470 
1471 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1472 			hugetlb_unshare_all_pmds(vma);
1473 
1474 	skip:
1475 		prev = vma;
1476 		start = vma->vm_end;
1477 	}
1478 
1479 out_unlock:
1480 	mmap_write_unlock(mm);
1481 	mmput(mm);
1482 	if (!ret) {
1483 		__u64 ioctls_out;
1484 
1485 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1486 		    UFFD_API_RANGE_IOCTLS;
1487 
1488 		/*
1489 		 * Declare the WP ioctl only if the WP mode is
1490 		 * specified and all checks passed with the range
1491 		 */
1492 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1493 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1494 
1495 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1496 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1497 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1498 
1499 		/*
1500 		 * Now that we scanned all vmas we can already tell
1501 		 * userland which ioctls methods are guaranteed to
1502 		 * succeed on this range.
1503 		 */
1504 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1505 			ret = -EFAULT;
1506 	}
1507 out:
1508 	return ret;
1509 }
1510 
1511 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1512 				  unsigned long arg)
1513 {
1514 	struct mm_struct *mm = ctx->mm;
1515 	struct vm_area_struct *vma, *prev, *cur;
1516 	int ret;
1517 	struct uffdio_range uffdio_unregister;
1518 	unsigned long new_flags;
1519 	bool found;
1520 	unsigned long start, end, vma_end;
1521 	const void __user *buf = (void __user *)arg;
1522 	struct vma_iterator vmi;
1523 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1524 
1525 	ret = -EFAULT;
1526 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1527 		goto out;
1528 
1529 	ret = validate_range(mm, uffdio_unregister.start,
1530 			     uffdio_unregister.len);
1531 	if (ret)
1532 		goto out;
1533 
1534 	start = uffdio_unregister.start;
1535 	end = start + uffdio_unregister.len;
1536 
1537 	ret = -ENOMEM;
1538 	if (!mmget_not_zero(mm))
1539 		goto out;
1540 
1541 	mmap_write_lock(mm);
1542 	ret = -EINVAL;
1543 	vma_iter_init(&vmi, mm, start);
1544 	vma = vma_find(&vmi, end);
1545 	if (!vma)
1546 		goto out_unlock;
1547 
1548 	/*
1549 	 * If the first vma contains huge pages, make sure start address
1550 	 * is aligned to huge page size.
1551 	 */
1552 	if (is_vm_hugetlb_page(vma)) {
1553 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1554 
1555 		if (start & (vma_hpagesize - 1))
1556 			goto out_unlock;
1557 	}
1558 
1559 	/*
1560 	 * Search for not compatible vmas.
1561 	 */
1562 	found = false;
1563 	cur = vma;
1564 	do {
1565 		cond_resched();
1566 
1567 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1568 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1569 
1570 		/*
1571 		 * Check not compatible vmas, not strictly required
1572 		 * here as not compatible vmas cannot have an
1573 		 * userfaultfd_ctx registered on them, but this
1574 		 * provides for more strict behavior to notice
1575 		 * unregistration errors.
1576 		 */
1577 		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1578 			goto out_unlock;
1579 
1580 		found = true;
1581 	} for_each_vma_range(vmi, cur, end);
1582 	BUG_ON(!found);
1583 
1584 	vma_iter_set(&vmi, start);
1585 	prev = vma_prev(&vmi);
1586 	if (vma->vm_start < start)
1587 		prev = vma;
1588 
1589 	ret = 0;
1590 	for_each_vma_range(vmi, vma, end) {
1591 		cond_resched();
1592 
1593 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1594 
1595 		/*
1596 		 * Nothing to do: this vma is already registered into this
1597 		 * userfaultfd and with the right tracking mode too.
1598 		 */
1599 		if (!vma->vm_userfaultfd_ctx.ctx)
1600 			goto skip;
1601 
1602 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1603 
1604 		if (vma->vm_start > start)
1605 			start = vma->vm_start;
1606 		vma_end = min(end, vma->vm_end);
1607 
1608 		if (userfaultfd_missing(vma)) {
1609 			/*
1610 			 * Wake any concurrent pending userfault while
1611 			 * we unregister, so they will not hang
1612 			 * permanently and it avoids userland to call
1613 			 * UFFDIO_WAKE explicitly.
1614 			 */
1615 			struct userfaultfd_wake_range range;
1616 			range.start = start;
1617 			range.len = vma_end - start;
1618 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1619 		}
1620 
1621 		/* Reset ptes for the whole vma range if wr-protected */
1622 		if (userfaultfd_wp(vma))
1623 			uffd_wp_range(vma, start, vma_end - start, false);
1624 
1625 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1626 		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1627 					    new_flags, NULL_VM_UFFD_CTX);
1628 		if (IS_ERR(vma)) {
1629 			ret = PTR_ERR(vma);
1630 			break;
1631 		}
1632 
1633 		/*
1634 		 * In the vma_merge() successful mprotect-like case 8:
1635 		 * the next vma was merged into the current one and
1636 		 * the current one has not been updated yet.
1637 		 */
1638 		vma_start_write(vma);
1639 		userfaultfd_set_vm_flags(vma, new_flags);
1640 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641 
1642 	skip:
1643 		prev = vma;
1644 		start = vma->vm_end;
1645 	}
1646 
1647 out_unlock:
1648 	mmap_write_unlock(mm);
1649 	mmput(mm);
1650 out:
1651 	return ret;
1652 }
1653 
1654 /*
1655  * userfaultfd_wake may be used in combination with the
1656  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657  */
1658 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 			    unsigned long arg)
1660 {
1661 	int ret;
1662 	struct uffdio_range uffdio_wake;
1663 	struct userfaultfd_wake_range range;
1664 	const void __user *buf = (void __user *)arg;
1665 
1666 	ret = -EFAULT;
1667 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 		goto out;
1669 
1670 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671 	if (ret)
1672 		goto out;
1673 
1674 	range.start = uffdio_wake.start;
1675 	range.len = uffdio_wake.len;
1676 
1677 	/*
1678 	 * len == 0 means wake all and we don't want to wake all here,
1679 	 * so check it again to be sure.
1680 	 */
1681 	VM_BUG_ON(!range.len);
1682 
1683 	wake_userfault(ctx, &range);
1684 	ret = 0;
1685 
1686 out:
1687 	return ret;
1688 }
1689 
1690 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 			    unsigned long arg)
1692 {
1693 	__s64 ret;
1694 	struct uffdio_copy uffdio_copy;
1695 	struct uffdio_copy __user *user_uffdio_copy;
1696 	struct userfaultfd_wake_range range;
1697 	uffd_flags_t flags = 0;
1698 
1699 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700 
1701 	ret = -EAGAIN;
1702 	if (atomic_read(&ctx->mmap_changing))
1703 		goto out;
1704 
1705 	ret = -EFAULT;
1706 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1707 			   /* don't copy "copy" last field */
1708 			   sizeof(uffdio_copy)-sizeof(__s64)))
1709 		goto out;
1710 
1711 	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1712 				       uffdio_copy.len);
1713 	if (ret)
1714 		goto out;
1715 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716 	if (ret)
1717 		goto out;
1718 
1719 	ret = -EINVAL;
1720 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1721 		goto out;
1722 	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1723 		flags |= MFILL_ATOMIC_WP;
1724 	if (mmget_not_zero(ctx->mm)) {
1725 		ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1726 					uffdio_copy.len, flags);
1727 		mmput(ctx->mm);
1728 	} else {
1729 		return -ESRCH;
1730 	}
1731 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732 		return -EFAULT;
1733 	if (ret < 0)
1734 		goto out;
1735 	BUG_ON(!ret);
1736 	/* len == 0 would wake all */
1737 	range.len = ret;
1738 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1739 		range.start = uffdio_copy.dst;
1740 		wake_userfault(ctx, &range);
1741 	}
1742 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743 out:
1744 	return ret;
1745 }
1746 
1747 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1748 				unsigned long arg)
1749 {
1750 	__s64 ret;
1751 	struct uffdio_zeropage uffdio_zeropage;
1752 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1753 	struct userfaultfd_wake_range range;
1754 
1755 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756 
1757 	ret = -EAGAIN;
1758 	if (atomic_read(&ctx->mmap_changing))
1759 		goto out;
1760 
1761 	ret = -EFAULT;
1762 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1763 			   /* don't copy "zeropage" last field */
1764 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1765 		goto out;
1766 
1767 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1768 			     uffdio_zeropage.range.len);
1769 	if (ret)
1770 		goto out;
1771 	ret = -EINVAL;
1772 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1773 		goto out;
1774 
1775 	if (mmget_not_zero(ctx->mm)) {
1776 		ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1777 					   uffdio_zeropage.range.len);
1778 		mmput(ctx->mm);
1779 	} else {
1780 		return -ESRCH;
1781 	}
1782 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783 		return -EFAULT;
1784 	if (ret < 0)
1785 		goto out;
1786 	/* len == 0 would wake all */
1787 	BUG_ON(!ret);
1788 	range.len = ret;
1789 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790 		range.start = uffdio_zeropage.range.start;
1791 		wake_userfault(ctx, &range);
1792 	}
1793 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794 out:
1795 	return ret;
1796 }
1797 
1798 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1799 				    unsigned long arg)
1800 {
1801 	int ret;
1802 	struct uffdio_writeprotect uffdio_wp;
1803 	struct uffdio_writeprotect __user *user_uffdio_wp;
1804 	struct userfaultfd_wake_range range;
1805 	bool mode_wp, mode_dontwake;
1806 
1807 	if (atomic_read(&ctx->mmap_changing))
1808 		return -EAGAIN;
1809 
1810 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1811 
1812 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1813 			   sizeof(struct uffdio_writeprotect)))
1814 		return -EFAULT;
1815 
1816 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1817 			     uffdio_wp.range.len);
1818 	if (ret)
1819 		return ret;
1820 
1821 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1822 			       UFFDIO_WRITEPROTECT_MODE_WP))
1823 		return -EINVAL;
1824 
1825 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1826 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1827 
1828 	if (mode_wp && mode_dontwake)
1829 		return -EINVAL;
1830 
1831 	if (mmget_not_zero(ctx->mm)) {
1832 		ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1833 					  uffdio_wp.range.len, mode_wp);
1834 		mmput(ctx->mm);
1835 	} else {
1836 		return -ESRCH;
1837 	}
1838 
1839 	if (ret)
1840 		return ret;
1841 
1842 	if (!mode_wp && !mode_dontwake) {
1843 		range.start = uffdio_wp.range.start;
1844 		range.len = uffdio_wp.range.len;
1845 		wake_userfault(ctx, &range);
1846 	}
1847 	return ret;
1848 }
1849 
1850 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1851 {
1852 	__s64 ret;
1853 	struct uffdio_continue uffdio_continue;
1854 	struct uffdio_continue __user *user_uffdio_continue;
1855 	struct userfaultfd_wake_range range;
1856 	uffd_flags_t flags = 0;
1857 
1858 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1859 
1860 	ret = -EAGAIN;
1861 	if (atomic_read(&ctx->mmap_changing))
1862 		goto out;
1863 
1864 	ret = -EFAULT;
1865 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1866 			   /* don't copy the output fields */
1867 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1868 		goto out;
1869 
1870 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1871 			     uffdio_continue.range.len);
1872 	if (ret)
1873 		goto out;
1874 
1875 	ret = -EINVAL;
1876 	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1877 				     UFFDIO_CONTINUE_MODE_WP))
1878 		goto out;
1879 	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1880 		flags |= MFILL_ATOMIC_WP;
1881 
1882 	if (mmget_not_zero(ctx->mm)) {
1883 		ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1884 					    uffdio_continue.range.len, flags);
1885 		mmput(ctx->mm);
1886 	} else {
1887 		return -ESRCH;
1888 	}
1889 
1890 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891 		return -EFAULT;
1892 	if (ret < 0)
1893 		goto out;
1894 
1895 	/* len == 0 would wake all */
1896 	BUG_ON(!ret);
1897 	range.len = ret;
1898 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899 		range.start = uffdio_continue.range.start;
1900 		wake_userfault(ctx, &range);
1901 	}
1902 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1903 
1904 out:
1905 	return ret;
1906 }
1907 
1908 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1909 {
1910 	__s64 ret;
1911 	struct uffdio_poison uffdio_poison;
1912 	struct uffdio_poison __user *user_uffdio_poison;
1913 	struct userfaultfd_wake_range range;
1914 
1915 	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1916 
1917 	ret = -EAGAIN;
1918 	if (atomic_read(&ctx->mmap_changing))
1919 		goto out;
1920 
1921 	ret = -EFAULT;
1922 	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1923 			   /* don't copy the output fields */
1924 			   sizeof(uffdio_poison) - (sizeof(__s64))))
1925 		goto out;
1926 
1927 	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1928 			     uffdio_poison.range.len);
1929 	if (ret)
1930 		goto out;
1931 
1932 	ret = -EINVAL;
1933 	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1934 		goto out;
1935 
1936 	if (mmget_not_zero(ctx->mm)) {
1937 		ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1938 					  uffdio_poison.range.len, 0);
1939 		mmput(ctx->mm);
1940 	} else {
1941 		return -ESRCH;
1942 	}
1943 
1944 	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1945 		return -EFAULT;
1946 	if (ret < 0)
1947 		goto out;
1948 
1949 	/* len == 0 would wake all */
1950 	BUG_ON(!ret);
1951 	range.len = ret;
1952 	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1953 		range.start = uffdio_poison.range.start;
1954 		wake_userfault(ctx, &range);
1955 	}
1956 	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1957 
1958 out:
1959 	return ret;
1960 }
1961 
1962 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1963 {
1964 	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1965 }
1966 
1967 static inline unsigned int uffd_ctx_features(__u64 user_features)
1968 {
1969 	/*
1970 	 * For the current set of features the bits just coincide. Set
1971 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1972 	 */
1973 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1974 }
1975 
1976 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1977 			    unsigned long arg)
1978 {
1979 	__s64 ret;
1980 	struct uffdio_move uffdio_move;
1981 	struct uffdio_move __user *user_uffdio_move;
1982 	struct userfaultfd_wake_range range;
1983 	struct mm_struct *mm = ctx->mm;
1984 
1985 	user_uffdio_move = (struct uffdio_move __user *) arg;
1986 
1987 	if (atomic_read(&ctx->mmap_changing))
1988 		return -EAGAIN;
1989 
1990 	if (copy_from_user(&uffdio_move, user_uffdio_move,
1991 			   /* don't copy "move" last field */
1992 			   sizeof(uffdio_move)-sizeof(__s64)))
1993 		return -EFAULT;
1994 
1995 	/* Do not allow cross-mm moves. */
1996 	if (mm != current->mm)
1997 		return -EINVAL;
1998 
1999 	ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2000 	if (ret)
2001 		return ret;
2002 
2003 	ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2004 	if (ret)
2005 		return ret;
2006 
2007 	if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2008 				  UFFDIO_MOVE_MODE_DONTWAKE))
2009 		return -EINVAL;
2010 
2011 	if (mmget_not_zero(mm)) {
2012 		ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2013 				 uffdio_move.len, uffdio_move.mode);
2014 		mmput(mm);
2015 	} else {
2016 		return -ESRCH;
2017 	}
2018 
2019 	if (unlikely(put_user(ret, &user_uffdio_move->move)))
2020 		return -EFAULT;
2021 	if (ret < 0)
2022 		goto out;
2023 
2024 	/* len == 0 would wake all */
2025 	VM_WARN_ON(!ret);
2026 	range.len = ret;
2027 	if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2028 		range.start = uffdio_move.dst;
2029 		wake_userfault(ctx, &range);
2030 	}
2031 	ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2032 
2033 out:
2034 	return ret;
2035 }
2036 
2037 /*
2038  * userland asks for a certain API version and we return which bits
2039  * and ioctl commands are implemented in this kernel for such API
2040  * version or -EINVAL if unknown.
2041  */
2042 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2043 			   unsigned long arg)
2044 {
2045 	struct uffdio_api uffdio_api;
2046 	void __user *buf = (void __user *)arg;
2047 	unsigned int ctx_features;
2048 	int ret;
2049 	__u64 features;
2050 
2051 	ret = -EFAULT;
2052 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2053 		goto out;
2054 	features = uffdio_api.features;
2055 	ret = -EINVAL;
2056 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2057 		goto err_out;
2058 	ret = -EPERM;
2059 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2060 		goto err_out;
2061 
2062 	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2063 	if (features & UFFD_FEATURE_WP_ASYNC)
2064 		features |= UFFD_FEATURE_WP_UNPOPULATED;
2065 
2066 	/* report all available features and ioctls to userland */
2067 	uffdio_api.features = UFFD_API_FEATURES;
2068 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2069 	uffdio_api.features &=
2070 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2071 #endif
2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2073 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2074 #endif
2075 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2076 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2077 	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2078 	uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2079 #endif
2080 	uffdio_api.ioctls = UFFD_API_IOCTLS;
2081 	ret = -EFAULT;
2082 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2083 		goto out;
2084 
2085 	/* only enable the requested features for this uffd context */
2086 	ctx_features = uffd_ctx_features(features);
2087 	ret = -EINVAL;
2088 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2089 		goto err_out;
2090 
2091 	ret = 0;
2092 out:
2093 	return ret;
2094 err_out:
2095 	memset(&uffdio_api, 0, sizeof(uffdio_api));
2096 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2097 		ret = -EFAULT;
2098 	goto out;
2099 }
2100 
2101 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2102 			      unsigned long arg)
2103 {
2104 	int ret = -EINVAL;
2105 	struct userfaultfd_ctx *ctx = file->private_data;
2106 
2107 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2108 		return -EINVAL;
2109 
2110 	switch(cmd) {
2111 	case UFFDIO_API:
2112 		ret = userfaultfd_api(ctx, arg);
2113 		break;
2114 	case UFFDIO_REGISTER:
2115 		ret = userfaultfd_register(ctx, arg);
2116 		break;
2117 	case UFFDIO_UNREGISTER:
2118 		ret = userfaultfd_unregister(ctx, arg);
2119 		break;
2120 	case UFFDIO_WAKE:
2121 		ret = userfaultfd_wake(ctx, arg);
2122 		break;
2123 	case UFFDIO_COPY:
2124 		ret = userfaultfd_copy(ctx, arg);
2125 		break;
2126 	case UFFDIO_ZEROPAGE:
2127 		ret = userfaultfd_zeropage(ctx, arg);
2128 		break;
2129 	case UFFDIO_MOVE:
2130 		ret = userfaultfd_move(ctx, arg);
2131 		break;
2132 	case UFFDIO_WRITEPROTECT:
2133 		ret = userfaultfd_writeprotect(ctx, arg);
2134 		break;
2135 	case UFFDIO_CONTINUE:
2136 		ret = userfaultfd_continue(ctx, arg);
2137 		break;
2138 	case UFFDIO_POISON:
2139 		ret = userfaultfd_poison(ctx, arg);
2140 		break;
2141 	}
2142 	return ret;
2143 }
2144 
2145 #ifdef CONFIG_PROC_FS
2146 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2147 {
2148 	struct userfaultfd_ctx *ctx = f->private_data;
2149 	wait_queue_entry_t *wq;
2150 	unsigned long pending = 0, total = 0;
2151 
2152 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2153 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2154 		pending++;
2155 		total++;
2156 	}
2157 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2158 		total++;
2159 	}
2160 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2161 
2162 	/*
2163 	 * If more protocols will be added, there will be all shown
2164 	 * separated by a space. Like this:
2165 	 *	protocols: aa:... bb:...
2166 	 */
2167 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2168 		   pending, total, UFFD_API, ctx->features,
2169 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2170 }
2171 #endif
2172 
2173 static const struct file_operations userfaultfd_fops = {
2174 #ifdef CONFIG_PROC_FS
2175 	.show_fdinfo	= userfaultfd_show_fdinfo,
2176 #endif
2177 	.release	= userfaultfd_release,
2178 	.poll		= userfaultfd_poll,
2179 	.read		= userfaultfd_read,
2180 	.unlocked_ioctl = userfaultfd_ioctl,
2181 	.compat_ioctl	= compat_ptr_ioctl,
2182 	.llseek		= noop_llseek,
2183 };
2184 
2185 static void init_once_userfaultfd_ctx(void *mem)
2186 {
2187 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2188 
2189 	init_waitqueue_head(&ctx->fault_pending_wqh);
2190 	init_waitqueue_head(&ctx->fault_wqh);
2191 	init_waitqueue_head(&ctx->event_wqh);
2192 	init_waitqueue_head(&ctx->fd_wqh);
2193 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2194 }
2195 
2196 static int new_userfaultfd(int flags)
2197 {
2198 	struct userfaultfd_ctx *ctx;
2199 	int fd;
2200 
2201 	BUG_ON(!current->mm);
2202 
2203 	/* Check the UFFD_* constants for consistency.  */
2204 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2205 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2206 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2207 
2208 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2209 		return -EINVAL;
2210 
2211 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2212 	if (!ctx)
2213 		return -ENOMEM;
2214 
2215 	refcount_set(&ctx->refcount, 1);
2216 	ctx->flags = flags;
2217 	ctx->features = 0;
2218 	ctx->released = false;
2219 	init_rwsem(&ctx->map_changing_lock);
2220 	atomic_set(&ctx->mmap_changing, 0);
2221 	ctx->mm = current->mm;
2222 	/* prevent the mm struct to be freed */
2223 	mmgrab(ctx->mm);
2224 
2225 	/* Create a new inode so that the LSM can block the creation.  */
2226 	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2227 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2228 	if (fd < 0) {
2229 		mmdrop(ctx->mm);
2230 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2231 	}
2232 	return fd;
2233 }
2234 
2235 static inline bool userfaultfd_syscall_allowed(int flags)
2236 {
2237 	/* Userspace-only page faults are always allowed */
2238 	if (flags & UFFD_USER_MODE_ONLY)
2239 		return true;
2240 
2241 	/*
2242 	 * The user is requesting a userfaultfd which can handle kernel faults.
2243 	 * Privileged users are always allowed to do this.
2244 	 */
2245 	if (capable(CAP_SYS_PTRACE))
2246 		return true;
2247 
2248 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2249 	return sysctl_unprivileged_userfaultfd;
2250 }
2251 
2252 SYSCALL_DEFINE1(userfaultfd, int, flags)
2253 {
2254 	if (!userfaultfd_syscall_allowed(flags))
2255 		return -EPERM;
2256 
2257 	return new_userfaultfd(flags);
2258 }
2259 
2260 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2261 {
2262 	if (cmd != USERFAULTFD_IOC_NEW)
2263 		return -EINVAL;
2264 
2265 	return new_userfaultfd(flags);
2266 }
2267 
2268 static const struct file_operations userfaultfd_dev_fops = {
2269 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2270 	.compat_ioctl = userfaultfd_dev_ioctl,
2271 	.owner = THIS_MODULE,
2272 	.llseek = noop_llseek,
2273 };
2274 
2275 static struct miscdevice userfaultfd_misc = {
2276 	.minor = MISC_DYNAMIC_MINOR,
2277 	.name = "userfaultfd",
2278 	.fops = &userfaultfd_dev_fops
2279 };
2280 
2281 static int __init userfaultfd_init(void)
2282 {
2283 	int ret;
2284 
2285 	ret = misc_register(&userfaultfd_misc);
2286 	if (ret)
2287 		return ret;
2288 
2289 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2290 						sizeof(struct userfaultfd_ctx),
2291 						0,
2292 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2293 						init_once_userfaultfd_ctx);
2294 #ifdef CONFIG_SYSCTL
2295 	register_sysctl_init("vm", vm_userfaultfd_table);
2296 #endif
2297 	return 0;
2298 }
2299 __initcall(userfaultfd_init);
2300