1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 34 int sysctl_unprivileged_userfaultfd __read_mostly; 35 36 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 37 38 /* 39 * Start with fault_pending_wqh and fault_wqh so they're more likely 40 * to be in the same cacheline. 41 * 42 * Locking order: 43 * fd_wqh.lock 44 * fault_pending_wqh.lock 45 * fault_wqh.lock 46 * event_wqh.lock 47 * 48 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 49 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 50 * also taken in IRQ context. 51 */ 52 struct userfaultfd_ctx { 53 /* waitqueue head for the pending (i.e. not read) userfaults */ 54 wait_queue_head_t fault_pending_wqh; 55 /* waitqueue head for the userfaults */ 56 wait_queue_head_t fault_wqh; 57 /* waitqueue head for the pseudo fd to wakeup poll/read */ 58 wait_queue_head_t fd_wqh; 59 /* waitqueue head for events */ 60 wait_queue_head_t event_wqh; 61 /* a refile sequence protected by fault_pending_wqh lock */ 62 seqcount_spinlock_t refile_seq; 63 /* pseudo fd refcounting */ 64 refcount_t refcount; 65 /* userfaultfd syscall flags */ 66 unsigned int flags; 67 /* features requested from the userspace */ 68 unsigned int features; 69 /* released */ 70 bool released; 71 /* memory mappings are changing because of non-cooperative event */ 72 atomic_t mmap_changing; 73 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 74 struct mm_struct *mm; 75 }; 76 77 struct userfaultfd_fork_ctx { 78 struct userfaultfd_ctx *orig; 79 struct userfaultfd_ctx *new; 80 struct list_head list; 81 }; 82 83 struct userfaultfd_unmap_ctx { 84 struct userfaultfd_ctx *ctx; 85 unsigned long start; 86 unsigned long end; 87 struct list_head list; 88 }; 89 90 struct userfaultfd_wait_queue { 91 struct uffd_msg msg; 92 wait_queue_entry_t wq; 93 struct userfaultfd_ctx *ctx; 94 bool waken; 95 }; 96 97 struct userfaultfd_wake_range { 98 unsigned long start; 99 unsigned long len; 100 }; 101 102 /* internal indication that UFFD_API ioctl was successfully executed */ 103 #define UFFD_FEATURE_INITIALIZED (1u << 31) 104 105 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 106 { 107 return ctx->features & UFFD_FEATURE_INITIALIZED; 108 } 109 110 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 111 int wake_flags, void *key) 112 { 113 struct userfaultfd_wake_range *range = key; 114 int ret; 115 struct userfaultfd_wait_queue *uwq; 116 unsigned long start, len; 117 118 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 119 ret = 0; 120 /* len == 0 means wake all */ 121 start = range->start; 122 len = range->len; 123 if (len && (start > uwq->msg.arg.pagefault.address || 124 start + len <= uwq->msg.arg.pagefault.address)) 125 goto out; 126 WRITE_ONCE(uwq->waken, true); 127 /* 128 * The Program-Order guarantees provided by the scheduler 129 * ensure uwq->waken is visible before the task is woken. 130 */ 131 ret = wake_up_state(wq->private, mode); 132 if (ret) { 133 /* 134 * Wake only once, autoremove behavior. 135 * 136 * After the effect of list_del_init is visible to the other 137 * CPUs, the waitqueue may disappear from under us, see the 138 * !list_empty_careful() in handle_userfault(). 139 * 140 * try_to_wake_up() has an implicit smp_mb(), and the 141 * wq->private is read before calling the extern function 142 * "wake_up_state" (which in turns calls try_to_wake_up). 143 */ 144 list_del_init(&wq->entry); 145 } 146 out: 147 return ret; 148 } 149 150 /** 151 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 152 * context. 153 * @ctx: [in] Pointer to the userfaultfd context. 154 */ 155 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 156 { 157 refcount_inc(&ctx->refcount); 158 } 159 160 /** 161 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 162 * context. 163 * @ctx: [in] Pointer to userfaultfd context. 164 * 165 * The userfaultfd context reference must have been previously acquired either 166 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 167 */ 168 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 169 { 170 if (refcount_dec_and_test(&ctx->refcount)) { 171 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 172 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 173 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 174 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 175 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 176 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 177 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 178 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 179 mmdrop(ctx->mm); 180 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 181 } 182 } 183 184 static inline void msg_init(struct uffd_msg *msg) 185 { 186 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 187 /* 188 * Must use memset to zero out the paddings or kernel data is 189 * leaked to userland. 190 */ 191 memset(msg, 0, sizeof(struct uffd_msg)); 192 } 193 194 static inline struct uffd_msg userfault_msg(unsigned long address, 195 unsigned int flags, 196 unsigned long reason, 197 unsigned int features) 198 { 199 struct uffd_msg msg; 200 msg_init(&msg); 201 msg.event = UFFD_EVENT_PAGEFAULT; 202 203 if (!(features & UFFD_FEATURE_EXACT_ADDRESS)) 204 address &= PAGE_MASK; 205 msg.arg.pagefault.address = address; 206 /* 207 * These flags indicate why the userfault occurred: 208 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 209 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 210 * - Neither of these flags being set indicates a MISSING fault. 211 * 212 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 213 * fault. Otherwise, it was a read fault. 214 */ 215 if (flags & FAULT_FLAG_WRITE) 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 217 if (reason & VM_UFFD_WP) 218 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 219 if (reason & VM_UFFD_MINOR) 220 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 221 if (features & UFFD_FEATURE_THREAD_ID) 222 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 223 return msg; 224 } 225 226 #ifdef CONFIG_HUGETLB_PAGE 227 /* 228 * Same functionality as userfaultfd_must_wait below with modifications for 229 * hugepmd ranges. 230 */ 231 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 232 struct vm_area_struct *vma, 233 unsigned long address, 234 unsigned long flags, 235 unsigned long reason) 236 { 237 struct mm_struct *mm = ctx->mm; 238 pte_t *ptep, pte; 239 bool ret = true; 240 241 mmap_assert_locked(mm); 242 243 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 244 245 if (!ptep) 246 goto out; 247 248 ret = false; 249 pte = huge_ptep_get(ptep); 250 251 /* 252 * Lockless access: we're in a wait_event so it's ok if it 253 * changes under us. PTE markers should be handled the same as none 254 * ptes here. 255 */ 256 if (huge_pte_none_mostly(pte)) 257 ret = true; 258 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 259 ret = true; 260 out: 261 return ret; 262 } 263 #else 264 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 265 struct vm_area_struct *vma, 266 unsigned long address, 267 unsigned long flags, 268 unsigned long reason) 269 { 270 return false; /* should never get here */ 271 } 272 #endif /* CONFIG_HUGETLB_PAGE */ 273 274 /* 275 * Verify the pagetables are still not ok after having reigstered into 276 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 277 * userfault that has already been resolved, if userfaultfd_read and 278 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 279 * threads. 280 */ 281 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 282 unsigned long address, 283 unsigned long flags, 284 unsigned long reason) 285 { 286 struct mm_struct *mm = ctx->mm; 287 pgd_t *pgd; 288 p4d_t *p4d; 289 pud_t *pud; 290 pmd_t *pmd, _pmd; 291 pte_t *pte; 292 bool ret = true; 293 294 mmap_assert_locked(mm); 295 296 pgd = pgd_offset(mm, address); 297 if (!pgd_present(*pgd)) 298 goto out; 299 p4d = p4d_offset(pgd, address); 300 if (!p4d_present(*p4d)) 301 goto out; 302 pud = pud_offset(p4d, address); 303 if (!pud_present(*pud)) 304 goto out; 305 pmd = pmd_offset(pud, address); 306 /* 307 * READ_ONCE must function as a barrier with narrower scope 308 * and it must be equivalent to: 309 * _pmd = *pmd; barrier(); 310 * 311 * This is to deal with the instability (as in 312 * pmd_trans_unstable) of the pmd. 313 */ 314 _pmd = READ_ONCE(*pmd); 315 if (pmd_none(_pmd)) 316 goto out; 317 318 ret = false; 319 if (!pmd_present(_pmd)) 320 goto out; 321 322 if (pmd_trans_huge(_pmd)) { 323 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 324 ret = true; 325 goto out; 326 } 327 328 /* 329 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 330 * and use the standard pte_offset_map() instead of parsing _pmd. 331 */ 332 pte = pte_offset_map(pmd, address); 333 /* 334 * Lockless access: we're in a wait_event so it's ok if it 335 * changes under us. PTE markers should be handled the same as none 336 * ptes here. 337 */ 338 if (pte_none_mostly(*pte)) 339 ret = true; 340 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 341 ret = true; 342 pte_unmap(pte); 343 344 out: 345 return ret; 346 } 347 348 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 349 { 350 if (flags & FAULT_FLAG_INTERRUPTIBLE) 351 return TASK_INTERRUPTIBLE; 352 353 if (flags & FAULT_FLAG_KILLABLE) 354 return TASK_KILLABLE; 355 356 return TASK_UNINTERRUPTIBLE; 357 } 358 359 /* 360 * The locking rules involved in returning VM_FAULT_RETRY depending on 361 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 362 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 363 * recommendation in __lock_page_or_retry is not an understatement. 364 * 365 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 366 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 367 * not set. 368 * 369 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 370 * set, VM_FAULT_RETRY can still be returned if and only if there are 371 * fatal_signal_pending()s, and the mmap_lock must be released before 372 * returning it. 373 */ 374 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 375 { 376 struct mm_struct *mm = vmf->vma->vm_mm; 377 struct userfaultfd_ctx *ctx; 378 struct userfaultfd_wait_queue uwq; 379 vm_fault_t ret = VM_FAULT_SIGBUS; 380 bool must_wait; 381 unsigned int blocking_state; 382 383 /* 384 * We don't do userfault handling for the final child pid update. 385 * 386 * We also don't do userfault handling during 387 * coredumping. hugetlbfs has the special 388 * follow_hugetlb_page() to skip missing pages in the 389 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 390 * the no_page_table() helper in follow_page_mask(), but the 391 * shmem_vm_ops->fault method is invoked even during 392 * coredumping without mmap_lock and it ends up here. 393 */ 394 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 395 goto out; 396 397 /* 398 * Coredumping runs without mmap_lock so we can only check that 399 * the mmap_lock is held, if PF_DUMPCORE was not set. 400 */ 401 mmap_assert_locked(mm); 402 403 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 404 if (!ctx) 405 goto out; 406 407 BUG_ON(ctx->mm != mm); 408 409 /* Any unrecognized flag is a bug. */ 410 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 411 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 412 VM_BUG_ON(!reason || (reason & (reason - 1))); 413 414 if (ctx->features & UFFD_FEATURE_SIGBUS) 415 goto out; 416 if ((vmf->flags & FAULT_FLAG_USER) == 0 && 417 ctx->flags & UFFD_USER_MODE_ONLY) { 418 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 419 "sysctl knob to 1 if kernel faults must be handled " 420 "without obtaining CAP_SYS_PTRACE capability\n"); 421 goto out; 422 } 423 424 /* 425 * If it's already released don't get it. This avoids to loop 426 * in __get_user_pages if userfaultfd_release waits on the 427 * caller of handle_userfault to release the mmap_lock. 428 */ 429 if (unlikely(READ_ONCE(ctx->released))) { 430 /* 431 * Don't return VM_FAULT_SIGBUS in this case, so a non 432 * cooperative manager can close the uffd after the 433 * last UFFDIO_COPY, without risking to trigger an 434 * involuntary SIGBUS if the process was starting the 435 * userfaultfd while the userfaultfd was still armed 436 * (but after the last UFFDIO_COPY). If the uffd 437 * wasn't already closed when the userfault reached 438 * this point, that would normally be solved by 439 * userfaultfd_must_wait returning 'false'. 440 * 441 * If we were to return VM_FAULT_SIGBUS here, the non 442 * cooperative manager would be instead forced to 443 * always call UFFDIO_UNREGISTER before it can safely 444 * close the uffd. 445 */ 446 ret = VM_FAULT_NOPAGE; 447 goto out; 448 } 449 450 /* 451 * Check that we can return VM_FAULT_RETRY. 452 * 453 * NOTE: it should become possible to return VM_FAULT_RETRY 454 * even if FAULT_FLAG_TRIED is set without leading to gup() 455 * -EBUSY failures, if the userfaultfd is to be extended for 456 * VM_UFFD_WP tracking and we intend to arm the userfault 457 * without first stopping userland access to the memory. For 458 * VM_UFFD_MISSING userfaults this is enough for now. 459 */ 460 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 461 /* 462 * Validate the invariant that nowait must allow retry 463 * to be sure not to return SIGBUS erroneously on 464 * nowait invocations. 465 */ 466 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 467 #ifdef CONFIG_DEBUG_VM 468 if (printk_ratelimit()) { 469 printk(KERN_WARNING 470 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 471 vmf->flags); 472 dump_stack(); 473 } 474 #endif 475 goto out; 476 } 477 478 /* 479 * Handle nowait, not much to do other than tell it to retry 480 * and wait. 481 */ 482 ret = VM_FAULT_RETRY; 483 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 484 goto out; 485 486 /* take the reference before dropping the mmap_lock */ 487 userfaultfd_ctx_get(ctx); 488 489 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 490 uwq.wq.private = current; 491 uwq.msg = userfault_msg(vmf->real_address, vmf->flags, reason, 492 ctx->features); 493 uwq.ctx = ctx; 494 uwq.waken = false; 495 496 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 497 498 spin_lock_irq(&ctx->fault_pending_wqh.lock); 499 /* 500 * After the __add_wait_queue the uwq is visible to userland 501 * through poll/read(). 502 */ 503 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 504 /* 505 * The smp_mb() after __set_current_state prevents the reads 506 * following the spin_unlock to happen before the list_add in 507 * __add_wait_queue. 508 */ 509 set_current_state(blocking_state); 510 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 511 512 if (!is_vm_hugetlb_page(vmf->vma)) 513 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 514 reason); 515 else 516 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 517 vmf->address, 518 vmf->flags, reason); 519 mmap_read_unlock(mm); 520 521 if (likely(must_wait && !READ_ONCE(ctx->released))) { 522 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 523 schedule(); 524 } 525 526 __set_current_state(TASK_RUNNING); 527 528 /* 529 * Here we race with the list_del; list_add in 530 * userfaultfd_ctx_read(), however because we don't ever run 531 * list_del_init() to refile across the two lists, the prev 532 * and next pointers will never point to self. list_add also 533 * would never let any of the two pointers to point to 534 * self. So list_empty_careful won't risk to see both pointers 535 * pointing to self at any time during the list refile. The 536 * only case where list_del_init() is called is the full 537 * removal in the wake function and there we don't re-list_add 538 * and it's fine not to block on the spinlock. The uwq on this 539 * kernel stack can be released after the list_del_init. 540 */ 541 if (!list_empty_careful(&uwq.wq.entry)) { 542 spin_lock_irq(&ctx->fault_pending_wqh.lock); 543 /* 544 * No need of list_del_init(), the uwq on the stack 545 * will be freed shortly anyway. 546 */ 547 list_del(&uwq.wq.entry); 548 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 549 } 550 551 /* 552 * ctx may go away after this if the userfault pseudo fd is 553 * already released. 554 */ 555 userfaultfd_ctx_put(ctx); 556 557 out: 558 return ret; 559 } 560 561 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 562 struct userfaultfd_wait_queue *ewq) 563 { 564 struct userfaultfd_ctx *release_new_ctx; 565 566 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 567 goto out; 568 569 ewq->ctx = ctx; 570 init_waitqueue_entry(&ewq->wq, current); 571 release_new_ctx = NULL; 572 573 spin_lock_irq(&ctx->event_wqh.lock); 574 /* 575 * After the __add_wait_queue the uwq is visible to userland 576 * through poll/read(). 577 */ 578 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 579 for (;;) { 580 set_current_state(TASK_KILLABLE); 581 if (ewq->msg.event == 0) 582 break; 583 if (READ_ONCE(ctx->released) || 584 fatal_signal_pending(current)) { 585 /* 586 * &ewq->wq may be queued in fork_event, but 587 * __remove_wait_queue ignores the head 588 * parameter. It would be a problem if it 589 * didn't. 590 */ 591 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 592 if (ewq->msg.event == UFFD_EVENT_FORK) { 593 struct userfaultfd_ctx *new; 594 595 new = (struct userfaultfd_ctx *) 596 (unsigned long) 597 ewq->msg.arg.reserved.reserved1; 598 release_new_ctx = new; 599 } 600 break; 601 } 602 603 spin_unlock_irq(&ctx->event_wqh.lock); 604 605 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 606 schedule(); 607 608 spin_lock_irq(&ctx->event_wqh.lock); 609 } 610 __set_current_state(TASK_RUNNING); 611 spin_unlock_irq(&ctx->event_wqh.lock); 612 613 if (release_new_ctx) { 614 struct vm_area_struct *vma; 615 struct mm_struct *mm = release_new_ctx->mm; 616 617 /* the various vma->vm_userfaultfd_ctx still points to it */ 618 mmap_write_lock(mm); 619 for (vma = mm->mmap; vma; vma = vma->vm_next) 620 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 621 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 622 vma->vm_flags &= ~__VM_UFFD_FLAGS; 623 } 624 mmap_write_unlock(mm); 625 626 userfaultfd_ctx_put(release_new_ctx); 627 } 628 629 /* 630 * ctx may go away after this if the userfault pseudo fd is 631 * already released. 632 */ 633 out: 634 atomic_dec(&ctx->mmap_changing); 635 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 636 userfaultfd_ctx_put(ctx); 637 } 638 639 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 640 struct userfaultfd_wait_queue *ewq) 641 { 642 ewq->msg.event = 0; 643 wake_up_locked(&ctx->event_wqh); 644 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 645 } 646 647 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 648 { 649 struct userfaultfd_ctx *ctx = NULL, *octx; 650 struct userfaultfd_fork_ctx *fctx; 651 652 octx = vma->vm_userfaultfd_ctx.ctx; 653 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 654 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 655 vma->vm_flags &= ~__VM_UFFD_FLAGS; 656 return 0; 657 } 658 659 list_for_each_entry(fctx, fcs, list) 660 if (fctx->orig == octx) { 661 ctx = fctx->new; 662 break; 663 } 664 665 if (!ctx) { 666 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 667 if (!fctx) 668 return -ENOMEM; 669 670 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 671 if (!ctx) { 672 kfree(fctx); 673 return -ENOMEM; 674 } 675 676 refcount_set(&ctx->refcount, 1); 677 ctx->flags = octx->flags; 678 ctx->features = octx->features; 679 ctx->released = false; 680 atomic_set(&ctx->mmap_changing, 0); 681 ctx->mm = vma->vm_mm; 682 mmgrab(ctx->mm); 683 684 userfaultfd_ctx_get(octx); 685 atomic_inc(&octx->mmap_changing); 686 fctx->orig = octx; 687 fctx->new = ctx; 688 list_add_tail(&fctx->list, fcs); 689 } 690 691 vma->vm_userfaultfd_ctx.ctx = ctx; 692 return 0; 693 } 694 695 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 696 { 697 struct userfaultfd_ctx *ctx = fctx->orig; 698 struct userfaultfd_wait_queue ewq; 699 700 msg_init(&ewq.msg); 701 702 ewq.msg.event = UFFD_EVENT_FORK; 703 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 704 705 userfaultfd_event_wait_completion(ctx, &ewq); 706 } 707 708 void dup_userfaultfd_complete(struct list_head *fcs) 709 { 710 struct userfaultfd_fork_ctx *fctx, *n; 711 712 list_for_each_entry_safe(fctx, n, fcs, list) { 713 dup_fctx(fctx); 714 list_del(&fctx->list); 715 kfree(fctx); 716 } 717 } 718 719 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 720 struct vm_userfaultfd_ctx *vm_ctx) 721 { 722 struct userfaultfd_ctx *ctx; 723 724 ctx = vma->vm_userfaultfd_ctx.ctx; 725 726 if (!ctx) 727 return; 728 729 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 730 vm_ctx->ctx = ctx; 731 userfaultfd_ctx_get(ctx); 732 atomic_inc(&ctx->mmap_changing); 733 } else { 734 /* Drop uffd context if remap feature not enabled */ 735 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 736 vma->vm_flags &= ~__VM_UFFD_FLAGS; 737 } 738 } 739 740 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 741 unsigned long from, unsigned long to, 742 unsigned long len) 743 { 744 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 745 struct userfaultfd_wait_queue ewq; 746 747 if (!ctx) 748 return; 749 750 if (to & ~PAGE_MASK) { 751 userfaultfd_ctx_put(ctx); 752 return; 753 } 754 755 msg_init(&ewq.msg); 756 757 ewq.msg.event = UFFD_EVENT_REMAP; 758 ewq.msg.arg.remap.from = from; 759 ewq.msg.arg.remap.to = to; 760 ewq.msg.arg.remap.len = len; 761 762 userfaultfd_event_wait_completion(ctx, &ewq); 763 } 764 765 bool userfaultfd_remove(struct vm_area_struct *vma, 766 unsigned long start, unsigned long end) 767 { 768 struct mm_struct *mm = vma->vm_mm; 769 struct userfaultfd_ctx *ctx; 770 struct userfaultfd_wait_queue ewq; 771 772 ctx = vma->vm_userfaultfd_ctx.ctx; 773 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 774 return true; 775 776 userfaultfd_ctx_get(ctx); 777 atomic_inc(&ctx->mmap_changing); 778 mmap_read_unlock(mm); 779 780 msg_init(&ewq.msg); 781 782 ewq.msg.event = UFFD_EVENT_REMOVE; 783 ewq.msg.arg.remove.start = start; 784 ewq.msg.arg.remove.end = end; 785 786 userfaultfd_event_wait_completion(ctx, &ewq); 787 788 return false; 789 } 790 791 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 792 unsigned long start, unsigned long end) 793 { 794 struct userfaultfd_unmap_ctx *unmap_ctx; 795 796 list_for_each_entry(unmap_ctx, unmaps, list) 797 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 798 unmap_ctx->end == end) 799 return true; 800 801 return false; 802 } 803 804 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 805 unsigned long start, unsigned long end, 806 struct list_head *unmaps) 807 { 808 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 809 struct userfaultfd_unmap_ctx *unmap_ctx; 810 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 811 812 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 813 has_unmap_ctx(ctx, unmaps, start, end)) 814 continue; 815 816 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 817 if (!unmap_ctx) 818 return -ENOMEM; 819 820 userfaultfd_ctx_get(ctx); 821 atomic_inc(&ctx->mmap_changing); 822 unmap_ctx->ctx = ctx; 823 unmap_ctx->start = start; 824 unmap_ctx->end = end; 825 list_add_tail(&unmap_ctx->list, unmaps); 826 } 827 828 return 0; 829 } 830 831 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 832 { 833 struct userfaultfd_unmap_ctx *ctx, *n; 834 struct userfaultfd_wait_queue ewq; 835 836 list_for_each_entry_safe(ctx, n, uf, list) { 837 msg_init(&ewq.msg); 838 839 ewq.msg.event = UFFD_EVENT_UNMAP; 840 ewq.msg.arg.remove.start = ctx->start; 841 ewq.msg.arg.remove.end = ctx->end; 842 843 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 844 845 list_del(&ctx->list); 846 kfree(ctx); 847 } 848 } 849 850 static int userfaultfd_release(struct inode *inode, struct file *file) 851 { 852 struct userfaultfd_ctx *ctx = file->private_data; 853 struct mm_struct *mm = ctx->mm; 854 struct vm_area_struct *vma, *prev; 855 /* len == 0 means wake all */ 856 struct userfaultfd_wake_range range = { .len = 0, }; 857 unsigned long new_flags; 858 859 WRITE_ONCE(ctx->released, true); 860 861 if (!mmget_not_zero(mm)) 862 goto wakeup; 863 864 /* 865 * Flush page faults out of all CPUs. NOTE: all page faults 866 * must be retried without returning VM_FAULT_SIGBUS if 867 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 868 * changes while handle_userfault released the mmap_lock. So 869 * it's critical that released is set to true (above), before 870 * taking the mmap_lock for writing. 871 */ 872 mmap_write_lock(mm); 873 prev = NULL; 874 for (vma = mm->mmap; vma; vma = vma->vm_next) { 875 cond_resched(); 876 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 877 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 878 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 879 prev = vma; 880 continue; 881 } 882 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 883 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 884 new_flags, vma->anon_vma, 885 vma->vm_file, vma->vm_pgoff, 886 vma_policy(vma), 887 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 888 if (prev) 889 vma = prev; 890 else 891 prev = vma; 892 vma->vm_flags = new_flags; 893 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 894 } 895 mmap_write_unlock(mm); 896 mmput(mm); 897 wakeup: 898 /* 899 * After no new page faults can wait on this fault_*wqh, flush 900 * the last page faults that may have been already waiting on 901 * the fault_*wqh. 902 */ 903 spin_lock_irq(&ctx->fault_pending_wqh.lock); 904 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 905 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 906 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 907 908 /* Flush pending events that may still wait on event_wqh */ 909 wake_up_all(&ctx->event_wqh); 910 911 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 912 userfaultfd_ctx_put(ctx); 913 return 0; 914 } 915 916 /* fault_pending_wqh.lock must be hold by the caller */ 917 static inline struct userfaultfd_wait_queue *find_userfault_in( 918 wait_queue_head_t *wqh) 919 { 920 wait_queue_entry_t *wq; 921 struct userfaultfd_wait_queue *uwq; 922 923 lockdep_assert_held(&wqh->lock); 924 925 uwq = NULL; 926 if (!waitqueue_active(wqh)) 927 goto out; 928 /* walk in reverse to provide FIFO behavior to read userfaults */ 929 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 930 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 931 out: 932 return uwq; 933 } 934 935 static inline struct userfaultfd_wait_queue *find_userfault( 936 struct userfaultfd_ctx *ctx) 937 { 938 return find_userfault_in(&ctx->fault_pending_wqh); 939 } 940 941 static inline struct userfaultfd_wait_queue *find_userfault_evt( 942 struct userfaultfd_ctx *ctx) 943 { 944 return find_userfault_in(&ctx->event_wqh); 945 } 946 947 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 948 { 949 struct userfaultfd_ctx *ctx = file->private_data; 950 __poll_t ret; 951 952 poll_wait(file, &ctx->fd_wqh, wait); 953 954 if (!userfaultfd_is_initialized(ctx)) 955 return EPOLLERR; 956 957 /* 958 * poll() never guarantees that read won't block. 959 * userfaults can be waken before they're read(). 960 */ 961 if (unlikely(!(file->f_flags & O_NONBLOCK))) 962 return EPOLLERR; 963 /* 964 * lockless access to see if there are pending faults 965 * __pollwait last action is the add_wait_queue but 966 * the spin_unlock would allow the waitqueue_active to 967 * pass above the actual list_add inside 968 * add_wait_queue critical section. So use a full 969 * memory barrier to serialize the list_add write of 970 * add_wait_queue() with the waitqueue_active read 971 * below. 972 */ 973 ret = 0; 974 smp_mb(); 975 if (waitqueue_active(&ctx->fault_pending_wqh)) 976 ret = EPOLLIN; 977 else if (waitqueue_active(&ctx->event_wqh)) 978 ret = EPOLLIN; 979 980 return ret; 981 } 982 983 static const struct file_operations userfaultfd_fops; 984 985 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 986 struct inode *inode, 987 struct uffd_msg *msg) 988 { 989 int fd; 990 991 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 992 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 993 if (fd < 0) 994 return fd; 995 996 msg->arg.reserved.reserved1 = 0; 997 msg->arg.fork.ufd = fd; 998 return 0; 999 } 1000 1001 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1002 struct uffd_msg *msg, struct inode *inode) 1003 { 1004 ssize_t ret; 1005 DECLARE_WAITQUEUE(wait, current); 1006 struct userfaultfd_wait_queue *uwq; 1007 /* 1008 * Handling fork event requires sleeping operations, so 1009 * we drop the event_wqh lock, then do these ops, then 1010 * lock it back and wake up the waiter. While the lock is 1011 * dropped the ewq may go away so we keep track of it 1012 * carefully. 1013 */ 1014 LIST_HEAD(fork_event); 1015 struct userfaultfd_ctx *fork_nctx = NULL; 1016 1017 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1018 spin_lock_irq(&ctx->fd_wqh.lock); 1019 __add_wait_queue(&ctx->fd_wqh, &wait); 1020 for (;;) { 1021 set_current_state(TASK_INTERRUPTIBLE); 1022 spin_lock(&ctx->fault_pending_wqh.lock); 1023 uwq = find_userfault(ctx); 1024 if (uwq) { 1025 /* 1026 * Use a seqcount to repeat the lockless check 1027 * in wake_userfault() to avoid missing 1028 * wakeups because during the refile both 1029 * waitqueue could become empty if this is the 1030 * only userfault. 1031 */ 1032 write_seqcount_begin(&ctx->refile_seq); 1033 1034 /* 1035 * The fault_pending_wqh.lock prevents the uwq 1036 * to disappear from under us. 1037 * 1038 * Refile this userfault from 1039 * fault_pending_wqh to fault_wqh, it's not 1040 * pending anymore after we read it. 1041 * 1042 * Use list_del() by hand (as 1043 * userfaultfd_wake_function also uses 1044 * list_del_init() by hand) to be sure nobody 1045 * changes __remove_wait_queue() to use 1046 * list_del_init() in turn breaking the 1047 * !list_empty_careful() check in 1048 * handle_userfault(). The uwq->wq.head list 1049 * must never be empty at any time during the 1050 * refile, or the waitqueue could disappear 1051 * from under us. The "wait_queue_head_t" 1052 * parameter of __remove_wait_queue() is unused 1053 * anyway. 1054 */ 1055 list_del(&uwq->wq.entry); 1056 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1057 1058 write_seqcount_end(&ctx->refile_seq); 1059 1060 /* careful to always initialize msg if ret == 0 */ 1061 *msg = uwq->msg; 1062 spin_unlock(&ctx->fault_pending_wqh.lock); 1063 ret = 0; 1064 break; 1065 } 1066 spin_unlock(&ctx->fault_pending_wqh.lock); 1067 1068 spin_lock(&ctx->event_wqh.lock); 1069 uwq = find_userfault_evt(ctx); 1070 if (uwq) { 1071 *msg = uwq->msg; 1072 1073 if (uwq->msg.event == UFFD_EVENT_FORK) { 1074 fork_nctx = (struct userfaultfd_ctx *) 1075 (unsigned long) 1076 uwq->msg.arg.reserved.reserved1; 1077 list_move(&uwq->wq.entry, &fork_event); 1078 /* 1079 * fork_nctx can be freed as soon as 1080 * we drop the lock, unless we take a 1081 * reference on it. 1082 */ 1083 userfaultfd_ctx_get(fork_nctx); 1084 spin_unlock(&ctx->event_wqh.lock); 1085 ret = 0; 1086 break; 1087 } 1088 1089 userfaultfd_event_complete(ctx, uwq); 1090 spin_unlock(&ctx->event_wqh.lock); 1091 ret = 0; 1092 break; 1093 } 1094 spin_unlock(&ctx->event_wqh.lock); 1095 1096 if (signal_pending(current)) { 1097 ret = -ERESTARTSYS; 1098 break; 1099 } 1100 if (no_wait) { 1101 ret = -EAGAIN; 1102 break; 1103 } 1104 spin_unlock_irq(&ctx->fd_wqh.lock); 1105 schedule(); 1106 spin_lock_irq(&ctx->fd_wqh.lock); 1107 } 1108 __remove_wait_queue(&ctx->fd_wqh, &wait); 1109 __set_current_state(TASK_RUNNING); 1110 spin_unlock_irq(&ctx->fd_wqh.lock); 1111 1112 if (!ret && msg->event == UFFD_EVENT_FORK) { 1113 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1114 spin_lock_irq(&ctx->event_wqh.lock); 1115 if (!list_empty(&fork_event)) { 1116 /* 1117 * The fork thread didn't abort, so we can 1118 * drop the temporary refcount. 1119 */ 1120 userfaultfd_ctx_put(fork_nctx); 1121 1122 uwq = list_first_entry(&fork_event, 1123 typeof(*uwq), 1124 wq.entry); 1125 /* 1126 * If fork_event list wasn't empty and in turn 1127 * the event wasn't already released by fork 1128 * (the event is allocated on fork kernel 1129 * stack), put the event back to its place in 1130 * the event_wq. fork_event head will be freed 1131 * as soon as we return so the event cannot 1132 * stay queued there no matter the current 1133 * "ret" value. 1134 */ 1135 list_del(&uwq->wq.entry); 1136 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1137 1138 /* 1139 * Leave the event in the waitqueue and report 1140 * error to userland if we failed to resolve 1141 * the userfault fork. 1142 */ 1143 if (likely(!ret)) 1144 userfaultfd_event_complete(ctx, uwq); 1145 } else { 1146 /* 1147 * Here the fork thread aborted and the 1148 * refcount from the fork thread on fork_nctx 1149 * has already been released. We still hold 1150 * the reference we took before releasing the 1151 * lock above. If resolve_userfault_fork 1152 * failed we've to drop it because the 1153 * fork_nctx has to be freed in such case. If 1154 * it succeeded we'll hold it because the new 1155 * uffd references it. 1156 */ 1157 if (ret) 1158 userfaultfd_ctx_put(fork_nctx); 1159 } 1160 spin_unlock_irq(&ctx->event_wqh.lock); 1161 } 1162 1163 return ret; 1164 } 1165 1166 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1167 size_t count, loff_t *ppos) 1168 { 1169 struct userfaultfd_ctx *ctx = file->private_data; 1170 ssize_t _ret, ret = 0; 1171 struct uffd_msg msg; 1172 int no_wait = file->f_flags & O_NONBLOCK; 1173 struct inode *inode = file_inode(file); 1174 1175 if (!userfaultfd_is_initialized(ctx)) 1176 return -EINVAL; 1177 1178 for (;;) { 1179 if (count < sizeof(msg)) 1180 return ret ? ret : -EINVAL; 1181 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1182 if (_ret < 0) 1183 return ret ? ret : _ret; 1184 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1185 return ret ? ret : -EFAULT; 1186 ret += sizeof(msg); 1187 buf += sizeof(msg); 1188 count -= sizeof(msg); 1189 /* 1190 * Allow to read more than one fault at time but only 1191 * block if waiting for the very first one. 1192 */ 1193 no_wait = O_NONBLOCK; 1194 } 1195 } 1196 1197 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1198 struct userfaultfd_wake_range *range) 1199 { 1200 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1201 /* wake all in the range and autoremove */ 1202 if (waitqueue_active(&ctx->fault_pending_wqh)) 1203 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1204 range); 1205 if (waitqueue_active(&ctx->fault_wqh)) 1206 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1207 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1208 } 1209 1210 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1211 struct userfaultfd_wake_range *range) 1212 { 1213 unsigned seq; 1214 bool need_wakeup; 1215 1216 /* 1217 * To be sure waitqueue_active() is not reordered by the CPU 1218 * before the pagetable update, use an explicit SMP memory 1219 * barrier here. PT lock release or mmap_read_unlock(mm) still 1220 * have release semantics that can allow the 1221 * waitqueue_active() to be reordered before the pte update. 1222 */ 1223 smp_mb(); 1224 1225 /* 1226 * Use waitqueue_active because it's very frequent to 1227 * change the address space atomically even if there are no 1228 * userfaults yet. So we take the spinlock only when we're 1229 * sure we've userfaults to wake. 1230 */ 1231 do { 1232 seq = read_seqcount_begin(&ctx->refile_seq); 1233 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1234 waitqueue_active(&ctx->fault_wqh); 1235 cond_resched(); 1236 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1237 if (need_wakeup) 1238 __wake_userfault(ctx, range); 1239 } 1240 1241 static __always_inline int validate_range(struct mm_struct *mm, 1242 __u64 start, __u64 len) 1243 { 1244 __u64 task_size = mm->task_size; 1245 1246 if (start & ~PAGE_MASK) 1247 return -EINVAL; 1248 if (len & ~PAGE_MASK) 1249 return -EINVAL; 1250 if (!len) 1251 return -EINVAL; 1252 if (start < mmap_min_addr) 1253 return -EINVAL; 1254 if (start >= task_size) 1255 return -EINVAL; 1256 if (len > task_size - start) 1257 return -EINVAL; 1258 return 0; 1259 } 1260 1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1262 unsigned long arg) 1263 { 1264 struct mm_struct *mm = ctx->mm; 1265 struct vm_area_struct *vma, *prev, *cur; 1266 int ret; 1267 struct uffdio_register uffdio_register; 1268 struct uffdio_register __user *user_uffdio_register; 1269 unsigned long vm_flags, new_flags; 1270 bool found; 1271 bool basic_ioctls; 1272 unsigned long start, end, vma_end; 1273 1274 user_uffdio_register = (struct uffdio_register __user *) arg; 1275 1276 ret = -EFAULT; 1277 if (copy_from_user(&uffdio_register, user_uffdio_register, 1278 sizeof(uffdio_register)-sizeof(__u64))) 1279 goto out; 1280 1281 ret = -EINVAL; 1282 if (!uffdio_register.mode) 1283 goto out; 1284 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1285 goto out; 1286 vm_flags = 0; 1287 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1288 vm_flags |= VM_UFFD_MISSING; 1289 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1290 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1291 goto out; 1292 #endif 1293 vm_flags |= VM_UFFD_WP; 1294 } 1295 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1296 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1297 goto out; 1298 #endif 1299 vm_flags |= VM_UFFD_MINOR; 1300 } 1301 1302 ret = validate_range(mm, uffdio_register.range.start, 1303 uffdio_register.range.len); 1304 if (ret) 1305 goto out; 1306 1307 start = uffdio_register.range.start; 1308 end = start + uffdio_register.range.len; 1309 1310 ret = -ENOMEM; 1311 if (!mmget_not_zero(mm)) 1312 goto out; 1313 1314 mmap_write_lock(mm); 1315 vma = find_vma_prev(mm, start, &prev); 1316 if (!vma) 1317 goto out_unlock; 1318 1319 /* check that there's at least one vma in the range */ 1320 ret = -EINVAL; 1321 if (vma->vm_start >= end) 1322 goto out_unlock; 1323 1324 /* 1325 * If the first vma contains huge pages, make sure start address 1326 * is aligned to huge page size. 1327 */ 1328 if (is_vm_hugetlb_page(vma)) { 1329 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1330 1331 if (start & (vma_hpagesize - 1)) 1332 goto out_unlock; 1333 } 1334 1335 /* 1336 * Search for not compatible vmas. 1337 */ 1338 found = false; 1339 basic_ioctls = false; 1340 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1341 cond_resched(); 1342 1343 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1344 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1345 1346 /* check not compatible vmas */ 1347 ret = -EINVAL; 1348 if (!vma_can_userfault(cur, vm_flags)) 1349 goto out_unlock; 1350 1351 /* 1352 * UFFDIO_COPY will fill file holes even without 1353 * PROT_WRITE. This check enforces that if this is a 1354 * MAP_SHARED, the process has write permission to the backing 1355 * file. If VM_MAYWRITE is set it also enforces that on a 1356 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1357 * F_WRITE_SEAL can be taken until the vma is destroyed. 1358 */ 1359 ret = -EPERM; 1360 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1361 goto out_unlock; 1362 1363 /* 1364 * If this vma contains ending address, and huge pages 1365 * check alignment. 1366 */ 1367 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1368 end > cur->vm_start) { 1369 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1370 1371 ret = -EINVAL; 1372 1373 if (end & (vma_hpagesize - 1)) 1374 goto out_unlock; 1375 } 1376 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1377 goto out_unlock; 1378 1379 /* 1380 * Check that this vma isn't already owned by a 1381 * different userfaultfd. We can't allow more than one 1382 * userfaultfd to own a single vma simultaneously or we 1383 * wouldn't know which one to deliver the userfaults to. 1384 */ 1385 ret = -EBUSY; 1386 if (cur->vm_userfaultfd_ctx.ctx && 1387 cur->vm_userfaultfd_ctx.ctx != ctx) 1388 goto out_unlock; 1389 1390 /* 1391 * Note vmas containing huge pages 1392 */ 1393 if (is_vm_hugetlb_page(cur)) 1394 basic_ioctls = true; 1395 1396 found = true; 1397 } 1398 BUG_ON(!found); 1399 1400 if (vma->vm_start < start) 1401 prev = vma; 1402 1403 ret = 0; 1404 do { 1405 cond_resched(); 1406 1407 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1408 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1409 vma->vm_userfaultfd_ctx.ctx != ctx); 1410 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1411 1412 /* 1413 * Nothing to do: this vma is already registered into this 1414 * userfaultfd and with the right tracking mode too. 1415 */ 1416 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1417 (vma->vm_flags & vm_flags) == vm_flags) 1418 goto skip; 1419 1420 if (vma->vm_start > start) 1421 start = vma->vm_start; 1422 vma_end = min(end, vma->vm_end); 1423 1424 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1425 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1426 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1427 vma_policy(vma), 1428 ((struct vm_userfaultfd_ctx){ ctx }), 1429 anon_vma_name(vma)); 1430 if (prev) { 1431 vma = prev; 1432 goto next; 1433 } 1434 if (vma->vm_start < start) { 1435 ret = split_vma(mm, vma, start, 1); 1436 if (ret) 1437 break; 1438 } 1439 if (vma->vm_end > end) { 1440 ret = split_vma(mm, vma, end, 0); 1441 if (ret) 1442 break; 1443 } 1444 next: 1445 /* 1446 * In the vma_merge() successful mprotect-like case 8: 1447 * the next vma was merged into the current one and 1448 * the current one has not been updated yet. 1449 */ 1450 vma->vm_flags = new_flags; 1451 vma->vm_userfaultfd_ctx.ctx = ctx; 1452 1453 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1454 hugetlb_unshare_all_pmds(vma); 1455 1456 skip: 1457 prev = vma; 1458 start = vma->vm_end; 1459 vma = vma->vm_next; 1460 } while (vma && vma->vm_start < end); 1461 out_unlock: 1462 mmap_write_unlock(mm); 1463 mmput(mm); 1464 if (!ret) { 1465 __u64 ioctls_out; 1466 1467 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1468 UFFD_API_RANGE_IOCTLS; 1469 1470 /* 1471 * Declare the WP ioctl only if the WP mode is 1472 * specified and all checks passed with the range 1473 */ 1474 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1475 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1476 1477 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1478 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1479 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1480 1481 /* 1482 * Now that we scanned all vmas we can already tell 1483 * userland which ioctls methods are guaranteed to 1484 * succeed on this range. 1485 */ 1486 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1487 ret = -EFAULT; 1488 } 1489 out: 1490 return ret; 1491 } 1492 1493 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1494 unsigned long arg) 1495 { 1496 struct mm_struct *mm = ctx->mm; 1497 struct vm_area_struct *vma, *prev, *cur; 1498 int ret; 1499 struct uffdio_range uffdio_unregister; 1500 unsigned long new_flags; 1501 bool found; 1502 unsigned long start, end, vma_end; 1503 const void __user *buf = (void __user *)arg; 1504 1505 ret = -EFAULT; 1506 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1507 goto out; 1508 1509 ret = validate_range(mm, uffdio_unregister.start, 1510 uffdio_unregister.len); 1511 if (ret) 1512 goto out; 1513 1514 start = uffdio_unregister.start; 1515 end = start + uffdio_unregister.len; 1516 1517 ret = -ENOMEM; 1518 if (!mmget_not_zero(mm)) 1519 goto out; 1520 1521 mmap_write_lock(mm); 1522 vma = find_vma_prev(mm, start, &prev); 1523 if (!vma) 1524 goto out_unlock; 1525 1526 /* check that there's at least one vma in the range */ 1527 ret = -EINVAL; 1528 if (vma->vm_start >= end) 1529 goto out_unlock; 1530 1531 /* 1532 * If the first vma contains huge pages, make sure start address 1533 * is aligned to huge page size. 1534 */ 1535 if (is_vm_hugetlb_page(vma)) { 1536 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1537 1538 if (start & (vma_hpagesize - 1)) 1539 goto out_unlock; 1540 } 1541 1542 /* 1543 * Search for not compatible vmas. 1544 */ 1545 found = false; 1546 ret = -EINVAL; 1547 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1548 cond_resched(); 1549 1550 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1551 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1552 1553 /* 1554 * Check not compatible vmas, not strictly required 1555 * here as not compatible vmas cannot have an 1556 * userfaultfd_ctx registered on them, but this 1557 * provides for more strict behavior to notice 1558 * unregistration errors. 1559 */ 1560 if (!vma_can_userfault(cur, cur->vm_flags)) 1561 goto out_unlock; 1562 1563 found = true; 1564 } 1565 BUG_ON(!found); 1566 1567 if (vma->vm_start < start) 1568 prev = vma; 1569 1570 ret = 0; 1571 do { 1572 cond_resched(); 1573 1574 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1575 1576 /* 1577 * Nothing to do: this vma is already registered into this 1578 * userfaultfd and with the right tracking mode too. 1579 */ 1580 if (!vma->vm_userfaultfd_ctx.ctx) 1581 goto skip; 1582 1583 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1584 1585 if (vma->vm_start > start) 1586 start = vma->vm_start; 1587 vma_end = min(end, vma->vm_end); 1588 1589 if (userfaultfd_missing(vma)) { 1590 /* 1591 * Wake any concurrent pending userfault while 1592 * we unregister, so they will not hang 1593 * permanently and it avoids userland to call 1594 * UFFDIO_WAKE explicitly. 1595 */ 1596 struct userfaultfd_wake_range range; 1597 range.start = start; 1598 range.len = vma_end - start; 1599 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1600 } 1601 1602 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1603 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1604 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1605 vma_policy(vma), 1606 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1607 if (prev) { 1608 vma = prev; 1609 goto next; 1610 } 1611 if (vma->vm_start < start) { 1612 ret = split_vma(mm, vma, start, 1); 1613 if (ret) 1614 break; 1615 } 1616 if (vma->vm_end > end) { 1617 ret = split_vma(mm, vma, end, 0); 1618 if (ret) 1619 break; 1620 } 1621 next: 1622 /* 1623 * In the vma_merge() successful mprotect-like case 8: 1624 * the next vma was merged into the current one and 1625 * the current one has not been updated yet. 1626 */ 1627 vma->vm_flags = new_flags; 1628 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1629 1630 skip: 1631 prev = vma; 1632 start = vma->vm_end; 1633 vma = vma->vm_next; 1634 } while (vma && vma->vm_start < end); 1635 out_unlock: 1636 mmap_write_unlock(mm); 1637 mmput(mm); 1638 out: 1639 return ret; 1640 } 1641 1642 /* 1643 * userfaultfd_wake may be used in combination with the 1644 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1645 */ 1646 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1647 unsigned long arg) 1648 { 1649 int ret; 1650 struct uffdio_range uffdio_wake; 1651 struct userfaultfd_wake_range range; 1652 const void __user *buf = (void __user *)arg; 1653 1654 ret = -EFAULT; 1655 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1656 goto out; 1657 1658 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1659 if (ret) 1660 goto out; 1661 1662 range.start = uffdio_wake.start; 1663 range.len = uffdio_wake.len; 1664 1665 /* 1666 * len == 0 means wake all and we don't want to wake all here, 1667 * so check it again to be sure. 1668 */ 1669 VM_BUG_ON(!range.len); 1670 1671 wake_userfault(ctx, &range); 1672 ret = 0; 1673 1674 out: 1675 return ret; 1676 } 1677 1678 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1679 unsigned long arg) 1680 { 1681 __s64 ret; 1682 struct uffdio_copy uffdio_copy; 1683 struct uffdio_copy __user *user_uffdio_copy; 1684 struct userfaultfd_wake_range range; 1685 1686 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1687 1688 ret = -EAGAIN; 1689 if (atomic_read(&ctx->mmap_changing)) 1690 goto out; 1691 1692 ret = -EFAULT; 1693 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1694 /* don't copy "copy" last field */ 1695 sizeof(uffdio_copy)-sizeof(__s64))) 1696 goto out; 1697 1698 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1699 if (ret) 1700 goto out; 1701 /* 1702 * double check for wraparound just in case. copy_from_user() 1703 * will later check uffdio_copy.src + uffdio_copy.len to fit 1704 * in the userland range. 1705 */ 1706 ret = -EINVAL; 1707 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1708 goto out; 1709 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1710 goto out; 1711 if (mmget_not_zero(ctx->mm)) { 1712 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1713 uffdio_copy.len, &ctx->mmap_changing, 1714 uffdio_copy.mode); 1715 mmput(ctx->mm); 1716 } else { 1717 return -ESRCH; 1718 } 1719 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1720 return -EFAULT; 1721 if (ret < 0) 1722 goto out; 1723 BUG_ON(!ret); 1724 /* len == 0 would wake all */ 1725 range.len = ret; 1726 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1727 range.start = uffdio_copy.dst; 1728 wake_userfault(ctx, &range); 1729 } 1730 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1731 out: 1732 return ret; 1733 } 1734 1735 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1736 unsigned long arg) 1737 { 1738 __s64 ret; 1739 struct uffdio_zeropage uffdio_zeropage; 1740 struct uffdio_zeropage __user *user_uffdio_zeropage; 1741 struct userfaultfd_wake_range range; 1742 1743 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1744 1745 ret = -EAGAIN; 1746 if (atomic_read(&ctx->mmap_changing)) 1747 goto out; 1748 1749 ret = -EFAULT; 1750 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1751 /* don't copy "zeropage" last field */ 1752 sizeof(uffdio_zeropage)-sizeof(__s64))) 1753 goto out; 1754 1755 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1756 uffdio_zeropage.range.len); 1757 if (ret) 1758 goto out; 1759 ret = -EINVAL; 1760 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1761 goto out; 1762 1763 if (mmget_not_zero(ctx->mm)) { 1764 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1765 uffdio_zeropage.range.len, 1766 &ctx->mmap_changing); 1767 mmput(ctx->mm); 1768 } else { 1769 return -ESRCH; 1770 } 1771 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1772 return -EFAULT; 1773 if (ret < 0) 1774 goto out; 1775 /* len == 0 would wake all */ 1776 BUG_ON(!ret); 1777 range.len = ret; 1778 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1779 range.start = uffdio_zeropage.range.start; 1780 wake_userfault(ctx, &range); 1781 } 1782 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1783 out: 1784 return ret; 1785 } 1786 1787 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1788 unsigned long arg) 1789 { 1790 int ret; 1791 struct uffdio_writeprotect uffdio_wp; 1792 struct uffdio_writeprotect __user *user_uffdio_wp; 1793 struct userfaultfd_wake_range range; 1794 bool mode_wp, mode_dontwake; 1795 1796 if (atomic_read(&ctx->mmap_changing)) 1797 return -EAGAIN; 1798 1799 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1800 1801 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1802 sizeof(struct uffdio_writeprotect))) 1803 return -EFAULT; 1804 1805 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1806 uffdio_wp.range.len); 1807 if (ret) 1808 return ret; 1809 1810 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1811 UFFDIO_WRITEPROTECT_MODE_WP)) 1812 return -EINVAL; 1813 1814 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1815 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1816 1817 if (mode_wp && mode_dontwake) 1818 return -EINVAL; 1819 1820 if (mmget_not_zero(ctx->mm)) { 1821 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1822 uffdio_wp.range.len, mode_wp, 1823 &ctx->mmap_changing); 1824 mmput(ctx->mm); 1825 } else { 1826 return -ESRCH; 1827 } 1828 1829 if (ret) 1830 return ret; 1831 1832 if (!mode_wp && !mode_dontwake) { 1833 range.start = uffdio_wp.range.start; 1834 range.len = uffdio_wp.range.len; 1835 wake_userfault(ctx, &range); 1836 } 1837 return ret; 1838 } 1839 1840 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1841 { 1842 __s64 ret; 1843 struct uffdio_continue uffdio_continue; 1844 struct uffdio_continue __user *user_uffdio_continue; 1845 struct userfaultfd_wake_range range; 1846 1847 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1848 1849 ret = -EAGAIN; 1850 if (atomic_read(&ctx->mmap_changing)) 1851 goto out; 1852 1853 ret = -EFAULT; 1854 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1855 /* don't copy the output fields */ 1856 sizeof(uffdio_continue) - (sizeof(__s64)))) 1857 goto out; 1858 1859 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1860 uffdio_continue.range.len); 1861 if (ret) 1862 goto out; 1863 1864 ret = -EINVAL; 1865 /* double check for wraparound just in case. */ 1866 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1867 uffdio_continue.range.start) { 1868 goto out; 1869 } 1870 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) 1871 goto out; 1872 1873 if (mmget_not_zero(ctx->mm)) { 1874 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, 1875 uffdio_continue.range.len, 1876 &ctx->mmap_changing); 1877 mmput(ctx->mm); 1878 } else { 1879 return -ESRCH; 1880 } 1881 1882 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1883 return -EFAULT; 1884 if (ret < 0) 1885 goto out; 1886 1887 /* len == 0 would wake all */ 1888 BUG_ON(!ret); 1889 range.len = ret; 1890 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1891 range.start = uffdio_continue.range.start; 1892 wake_userfault(ctx, &range); 1893 } 1894 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1895 1896 out: 1897 return ret; 1898 } 1899 1900 static inline unsigned int uffd_ctx_features(__u64 user_features) 1901 { 1902 /* 1903 * For the current set of features the bits just coincide. Set 1904 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1905 */ 1906 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1907 } 1908 1909 /* 1910 * userland asks for a certain API version and we return which bits 1911 * and ioctl commands are implemented in this kernel for such API 1912 * version or -EINVAL if unknown. 1913 */ 1914 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1915 unsigned long arg) 1916 { 1917 struct uffdio_api uffdio_api; 1918 void __user *buf = (void __user *)arg; 1919 unsigned int ctx_features; 1920 int ret; 1921 __u64 features; 1922 1923 ret = -EFAULT; 1924 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1925 goto out; 1926 features = uffdio_api.features; 1927 ret = -EINVAL; 1928 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1929 goto err_out; 1930 ret = -EPERM; 1931 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1932 goto err_out; 1933 /* report all available features and ioctls to userland */ 1934 uffdio_api.features = UFFD_API_FEATURES; 1935 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1936 uffdio_api.features &= 1937 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1938 #endif 1939 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1940 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1941 #endif 1942 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1943 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 1944 #endif 1945 uffdio_api.ioctls = UFFD_API_IOCTLS; 1946 ret = -EFAULT; 1947 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1948 goto out; 1949 1950 /* only enable the requested features for this uffd context */ 1951 ctx_features = uffd_ctx_features(features); 1952 ret = -EINVAL; 1953 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 1954 goto err_out; 1955 1956 ret = 0; 1957 out: 1958 return ret; 1959 err_out: 1960 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1961 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1962 ret = -EFAULT; 1963 goto out; 1964 } 1965 1966 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1967 unsigned long arg) 1968 { 1969 int ret = -EINVAL; 1970 struct userfaultfd_ctx *ctx = file->private_data; 1971 1972 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 1973 return -EINVAL; 1974 1975 switch(cmd) { 1976 case UFFDIO_API: 1977 ret = userfaultfd_api(ctx, arg); 1978 break; 1979 case UFFDIO_REGISTER: 1980 ret = userfaultfd_register(ctx, arg); 1981 break; 1982 case UFFDIO_UNREGISTER: 1983 ret = userfaultfd_unregister(ctx, arg); 1984 break; 1985 case UFFDIO_WAKE: 1986 ret = userfaultfd_wake(ctx, arg); 1987 break; 1988 case UFFDIO_COPY: 1989 ret = userfaultfd_copy(ctx, arg); 1990 break; 1991 case UFFDIO_ZEROPAGE: 1992 ret = userfaultfd_zeropage(ctx, arg); 1993 break; 1994 case UFFDIO_WRITEPROTECT: 1995 ret = userfaultfd_writeprotect(ctx, arg); 1996 break; 1997 case UFFDIO_CONTINUE: 1998 ret = userfaultfd_continue(ctx, arg); 1999 break; 2000 } 2001 return ret; 2002 } 2003 2004 #ifdef CONFIG_PROC_FS 2005 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2006 { 2007 struct userfaultfd_ctx *ctx = f->private_data; 2008 wait_queue_entry_t *wq; 2009 unsigned long pending = 0, total = 0; 2010 2011 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2012 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2013 pending++; 2014 total++; 2015 } 2016 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2017 total++; 2018 } 2019 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2020 2021 /* 2022 * If more protocols will be added, there will be all shown 2023 * separated by a space. Like this: 2024 * protocols: aa:... bb:... 2025 */ 2026 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2027 pending, total, UFFD_API, ctx->features, 2028 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2029 } 2030 #endif 2031 2032 static const struct file_operations userfaultfd_fops = { 2033 #ifdef CONFIG_PROC_FS 2034 .show_fdinfo = userfaultfd_show_fdinfo, 2035 #endif 2036 .release = userfaultfd_release, 2037 .poll = userfaultfd_poll, 2038 .read = userfaultfd_read, 2039 .unlocked_ioctl = userfaultfd_ioctl, 2040 .compat_ioctl = compat_ptr_ioctl, 2041 .llseek = noop_llseek, 2042 }; 2043 2044 static void init_once_userfaultfd_ctx(void *mem) 2045 { 2046 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2047 2048 init_waitqueue_head(&ctx->fault_pending_wqh); 2049 init_waitqueue_head(&ctx->fault_wqh); 2050 init_waitqueue_head(&ctx->event_wqh); 2051 init_waitqueue_head(&ctx->fd_wqh); 2052 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2053 } 2054 2055 SYSCALL_DEFINE1(userfaultfd, int, flags) 2056 { 2057 struct userfaultfd_ctx *ctx; 2058 int fd; 2059 2060 if (!sysctl_unprivileged_userfaultfd && 2061 (flags & UFFD_USER_MODE_ONLY) == 0 && 2062 !capable(CAP_SYS_PTRACE)) { 2063 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 2064 "sysctl knob to 1 if kernel faults must be handled " 2065 "without obtaining CAP_SYS_PTRACE capability\n"); 2066 return -EPERM; 2067 } 2068 2069 BUG_ON(!current->mm); 2070 2071 /* Check the UFFD_* constants for consistency. */ 2072 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2073 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2074 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2075 2076 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2077 return -EINVAL; 2078 2079 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2080 if (!ctx) 2081 return -ENOMEM; 2082 2083 refcount_set(&ctx->refcount, 1); 2084 ctx->flags = flags; 2085 ctx->features = 0; 2086 ctx->released = false; 2087 atomic_set(&ctx->mmap_changing, 0); 2088 ctx->mm = current->mm; 2089 /* prevent the mm struct to be freed */ 2090 mmgrab(ctx->mm); 2091 2092 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2093 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2094 if (fd < 0) { 2095 mmdrop(ctx->mm); 2096 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2097 } 2098 return fd; 2099 } 2100 2101 static int __init userfaultfd_init(void) 2102 { 2103 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2104 sizeof(struct userfaultfd_ctx), 2105 0, 2106 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2107 init_once_userfaultfd_ctx); 2108 return 0; 2109 } 2110 __initcall(userfaultfd_init); 2111