xref: /linux/fs/userfaultfd.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
36 
37 #ifdef CONFIG_SYSCTL
38 static struct ctl_table vm_userfaultfd_table[] = {
39 	{
40 		.procname	= "unprivileged_userfaultfd",
41 		.data		= &sysctl_unprivileged_userfaultfd,
42 		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
43 		.mode		= 0644,
44 		.proc_handler	= proc_dointvec_minmax,
45 		.extra1		= SYSCTL_ZERO,
46 		.extra2		= SYSCTL_ONE,
47 	},
48 	{ }
49 };
50 #endif
51 
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53 
54 /*
55  * Start with fault_pending_wqh and fault_wqh so they're more likely
56  * to be in the same cacheline.
57  *
58  * Locking order:
59  *	fd_wqh.lock
60  *		fault_pending_wqh.lock
61  *			fault_wqh.lock
62  *		event_wqh.lock
63  *
64  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66  * also taken in IRQ context.
67  */
68 struct userfaultfd_ctx {
69 	/* waitqueue head for the pending (i.e. not read) userfaults */
70 	wait_queue_head_t fault_pending_wqh;
71 	/* waitqueue head for the userfaults */
72 	wait_queue_head_t fault_wqh;
73 	/* waitqueue head for the pseudo fd to wakeup poll/read */
74 	wait_queue_head_t fd_wqh;
75 	/* waitqueue head for events */
76 	wait_queue_head_t event_wqh;
77 	/* a refile sequence protected by fault_pending_wqh lock */
78 	seqcount_spinlock_t refile_seq;
79 	/* pseudo fd refcounting */
80 	refcount_t refcount;
81 	/* userfaultfd syscall flags */
82 	unsigned int flags;
83 	/* features requested from the userspace */
84 	unsigned int features;
85 	/* released */
86 	bool released;
87 	/* memory mappings are changing because of non-cooperative event */
88 	atomic_t mmap_changing;
89 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
90 	struct mm_struct *mm;
91 };
92 
93 struct userfaultfd_fork_ctx {
94 	struct userfaultfd_ctx *orig;
95 	struct userfaultfd_ctx *new;
96 	struct list_head list;
97 };
98 
99 struct userfaultfd_unmap_ctx {
100 	struct userfaultfd_ctx *ctx;
101 	unsigned long start;
102 	unsigned long end;
103 	struct list_head list;
104 };
105 
106 struct userfaultfd_wait_queue {
107 	struct uffd_msg msg;
108 	wait_queue_entry_t wq;
109 	struct userfaultfd_ctx *ctx;
110 	bool waken;
111 };
112 
113 struct userfaultfd_wake_range {
114 	unsigned long start;
115 	unsigned long len;
116 };
117 
118 /* internal indication that UFFD_API ioctl was successfully executed */
119 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
120 
121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122 {
123 	return ctx->features & UFFD_FEATURE_INITIALIZED;
124 }
125 
126 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
127 {
128 	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
129 }
130 
131 /*
132  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
133  * meaningful when userfaultfd_wp()==true on the vma and when it's
134  * anonymous.
135  */
136 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
137 {
138 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
139 
140 	if (!ctx)
141 		return false;
142 
143 	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
144 }
145 
146 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
147 				     vm_flags_t flags)
148 {
149 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
150 
151 	vm_flags_reset(vma, flags);
152 	/*
153 	 * For shared mappings, we want to enable writenotify while
154 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
155 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
156 	 */
157 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
158 		vma_set_page_prot(vma);
159 }
160 
161 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
162 				     int wake_flags, void *key)
163 {
164 	struct userfaultfd_wake_range *range = key;
165 	int ret;
166 	struct userfaultfd_wait_queue *uwq;
167 	unsigned long start, len;
168 
169 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
170 	ret = 0;
171 	/* len == 0 means wake all */
172 	start = range->start;
173 	len = range->len;
174 	if (len && (start > uwq->msg.arg.pagefault.address ||
175 		    start + len <= uwq->msg.arg.pagefault.address))
176 		goto out;
177 	WRITE_ONCE(uwq->waken, true);
178 	/*
179 	 * The Program-Order guarantees provided by the scheduler
180 	 * ensure uwq->waken is visible before the task is woken.
181 	 */
182 	ret = wake_up_state(wq->private, mode);
183 	if (ret) {
184 		/*
185 		 * Wake only once, autoremove behavior.
186 		 *
187 		 * After the effect of list_del_init is visible to the other
188 		 * CPUs, the waitqueue may disappear from under us, see the
189 		 * !list_empty_careful() in handle_userfault().
190 		 *
191 		 * try_to_wake_up() has an implicit smp_mb(), and the
192 		 * wq->private is read before calling the extern function
193 		 * "wake_up_state" (which in turns calls try_to_wake_up).
194 		 */
195 		list_del_init(&wq->entry);
196 	}
197 out:
198 	return ret;
199 }
200 
201 /**
202  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
203  * context.
204  * @ctx: [in] Pointer to the userfaultfd context.
205  */
206 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
207 {
208 	refcount_inc(&ctx->refcount);
209 }
210 
211 /**
212  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
213  * context.
214  * @ctx: [in] Pointer to userfaultfd context.
215  *
216  * The userfaultfd context reference must have been previously acquired either
217  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
218  */
219 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
220 {
221 	if (refcount_dec_and_test(&ctx->refcount)) {
222 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
223 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
224 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
225 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
226 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
227 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
228 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
229 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
230 		mmdrop(ctx->mm);
231 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
232 	}
233 }
234 
235 static inline void msg_init(struct uffd_msg *msg)
236 {
237 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
238 	/*
239 	 * Must use memset to zero out the paddings or kernel data is
240 	 * leaked to userland.
241 	 */
242 	memset(msg, 0, sizeof(struct uffd_msg));
243 }
244 
245 static inline struct uffd_msg userfault_msg(unsigned long address,
246 					    unsigned long real_address,
247 					    unsigned int flags,
248 					    unsigned long reason,
249 					    unsigned int features)
250 {
251 	struct uffd_msg msg;
252 
253 	msg_init(&msg);
254 	msg.event = UFFD_EVENT_PAGEFAULT;
255 
256 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
257 				    real_address : address;
258 
259 	/*
260 	 * These flags indicate why the userfault occurred:
261 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
262 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
263 	 * - Neither of these flags being set indicates a MISSING fault.
264 	 *
265 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
266 	 * fault. Otherwise, it was a read fault.
267 	 */
268 	if (flags & FAULT_FLAG_WRITE)
269 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
270 	if (reason & VM_UFFD_WP)
271 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
272 	if (reason & VM_UFFD_MINOR)
273 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
274 	if (features & UFFD_FEATURE_THREAD_ID)
275 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
276 	return msg;
277 }
278 
279 #ifdef CONFIG_HUGETLB_PAGE
280 /*
281  * Same functionality as userfaultfd_must_wait below with modifications for
282  * hugepmd ranges.
283  */
284 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
285 					      struct vm_fault *vmf,
286 					      unsigned long reason)
287 {
288 	struct vm_area_struct *vma = vmf->vma;
289 	pte_t *ptep, pte;
290 	bool ret = true;
291 
292 	assert_fault_locked(vmf);
293 
294 	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
295 	if (!ptep)
296 		goto out;
297 
298 	ret = false;
299 	pte = huge_ptep_get(ptep);
300 
301 	/*
302 	 * Lockless access: we're in a wait_event so it's ok if it
303 	 * changes under us.  PTE markers should be handled the same as none
304 	 * ptes here.
305 	 */
306 	if (huge_pte_none_mostly(pte))
307 		ret = true;
308 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
309 		ret = true;
310 out:
311 	return ret;
312 }
313 #else
314 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
315 					      struct vm_fault *vmf,
316 					      unsigned long reason)
317 {
318 	return false;	/* should never get here */
319 }
320 #endif /* CONFIG_HUGETLB_PAGE */
321 
322 /*
323  * Verify the pagetables are still not ok after having reigstered into
324  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
325  * userfault that has already been resolved, if userfaultfd_read and
326  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
327  * threads.
328  */
329 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
330 					 struct vm_fault *vmf,
331 					 unsigned long reason)
332 {
333 	struct mm_struct *mm = ctx->mm;
334 	unsigned long address = vmf->address;
335 	pgd_t *pgd;
336 	p4d_t *p4d;
337 	pud_t *pud;
338 	pmd_t *pmd, _pmd;
339 	pte_t *pte;
340 	pte_t ptent;
341 	bool ret = true;
342 
343 	assert_fault_locked(vmf);
344 
345 	pgd = pgd_offset(mm, address);
346 	if (!pgd_present(*pgd))
347 		goto out;
348 	p4d = p4d_offset(pgd, address);
349 	if (!p4d_present(*p4d))
350 		goto out;
351 	pud = pud_offset(p4d, address);
352 	if (!pud_present(*pud))
353 		goto out;
354 	pmd = pmd_offset(pud, address);
355 again:
356 	_pmd = pmdp_get_lockless(pmd);
357 	if (pmd_none(_pmd))
358 		goto out;
359 
360 	ret = false;
361 	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
362 		goto out;
363 
364 	if (pmd_trans_huge(_pmd)) {
365 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
366 			ret = true;
367 		goto out;
368 	}
369 
370 	pte = pte_offset_map(pmd, address);
371 	if (!pte) {
372 		ret = true;
373 		goto again;
374 	}
375 	/*
376 	 * Lockless access: we're in a wait_event so it's ok if it
377 	 * changes under us.  PTE markers should be handled the same as none
378 	 * ptes here.
379 	 */
380 	ptent = ptep_get(pte);
381 	if (pte_none_mostly(ptent))
382 		ret = true;
383 	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
384 		ret = true;
385 	pte_unmap(pte);
386 
387 out:
388 	return ret;
389 }
390 
391 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
392 {
393 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
394 		return TASK_INTERRUPTIBLE;
395 
396 	if (flags & FAULT_FLAG_KILLABLE)
397 		return TASK_KILLABLE;
398 
399 	return TASK_UNINTERRUPTIBLE;
400 }
401 
402 /*
403  * The locking rules involved in returning VM_FAULT_RETRY depending on
404  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
405  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
406  * recommendation in __lock_page_or_retry is not an understatement.
407  *
408  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
409  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
410  * not set.
411  *
412  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
413  * set, VM_FAULT_RETRY can still be returned if and only if there are
414  * fatal_signal_pending()s, and the mmap_lock must be released before
415  * returning it.
416  */
417 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
418 {
419 	struct vm_area_struct *vma = vmf->vma;
420 	struct mm_struct *mm = vma->vm_mm;
421 	struct userfaultfd_ctx *ctx;
422 	struct userfaultfd_wait_queue uwq;
423 	vm_fault_t ret = VM_FAULT_SIGBUS;
424 	bool must_wait;
425 	unsigned int blocking_state;
426 
427 	/*
428 	 * We don't do userfault handling for the final child pid update.
429 	 *
430 	 * We also don't do userfault handling during
431 	 * coredumping. hugetlbfs has the special
432 	 * hugetlb_follow_page_mask() to skip missing pages in the
433 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
434 	 * the no_page_table() helper in follow_page_mask(), but the
435 	 * shmem_vm_ops->fault method is invoked even during
436 	 * coredumping and it ends up here.
437 	 */
438 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
439 		goto out;
440 
441 	assert_fault_locked(vmf);
442 
443 	ctx = vma->vm_userfaultfd_ctx.ctx;
444 	if (!ctx)
445 		goto out;
446 
447 	BUG_ON(ctx->mm != mm);
448 
449 	/* Any unrecognized flag is a bug. */
450 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
451 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
452 	VM_BUG_ON(!reason || (reason & (reason - 1)));
453 
454 	if (ctx->features & UFFD_FEATURE_SIGBUS)
455 		goto out;
456 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
457 		goto out;
458 
459 	/*
460 	 * If it's already released don't get it. This avoids to loop
461 	 * in __get_user_pages if userfaultfd_release waits on the
462 	 * caller of handle_userfault to release the mmap_lock.
463 	 */
464 	if (unlikely(READ_ONCE(ctx->released))) {
465 		/*
466 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
467 		 * cooperative manager can close the uffd after the
468 		 * last UFFDIO_COPY, without risking to trigger an
469 		 * involuntary SIGBUS if the process was starting the
470 		 * userfaultfd while the userfaultfd was still armed
471 		 * (but after the last UFFDIO_COPY). If the uffd
472 		 * wasn't already closed when the userfault reached
473 		 * this point, that would normally be solved by
474 		 * userfaultfd_must_wait returning 'false'.
475 		 *
476 		 * If we were to return VM_FAULT_SIGBUS here, the non
477 		 * cooperative manager would be instead forced to
478 		 * always call UFFDIO_UNREGISTER before it can safely
479 		 * close the uffd.
480 		 */
481 		ret = VM_FAULT_NOPAGE;
482 		goto out;
483 	}
484 
485 	/*
486 	 * Check that we can return VM_FAULT_RETRY.
487 	 *
488 	 * NOTE: it should become possible to return VM_FAULT_RETRY
489 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
490 	 * -EBUSY failures, if the userfaultfd is to be extended for
491 	 * VM_UFFD_WP tracking and we intend to arm the userfault
492 	 * without first stopping userland access to the memory. For
493 	 * VM_UFFD_MISSING userfaults this is enough for now.
494 	 */
495 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
496 		/*
497 		 * Validate the invariant that nowait must allow retry
498 		 * to be sure not to return SIGBUS erroneously on
499 		 * nowait invocations.
500 		 */
501 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
502 #ifdef CONFIG_DEBUG_VM
503 		if (printk_ratelimit()) {
504 			printk(KERN_WARNING
505 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
506 			       vmf->flags);
507 			dump_stack();
508 		}
509 #endif
510 		goto out;
511 	}
512 
513 	/*
514 	 * Handle nowait, not much to do other than tell it to retry
515 	 * and wait.
516 	 */
517 	ret = VM_FAULT_RETRY;
518 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
519 		goto out;
520 
521 	/* take the reference before dropping the mmap_lock */
522 	userfaultfd_ctx_get(ctx);
523 
524 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
525 	uwq.wq.private = current;
526 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
527 				reason, ctx->features);
528 	uwq.ctx = ctx;
529 	uwq.waken = false;
530 
531 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
532 
533         /*
534          * Take the vma lock now, in order to safely call
535          * userfaultfd_huge_must_wait() later. Since acquiring the
536          * (sleepable) vma lock can modify the current task state, that
537          * must be before explicitly calling set_current_state().
538          */
539 	if (is_vm_hugetlb_page(vma))
540 		hugetlb_vma_lock_read(vma);
541 
542 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
543 	/*
544 	 * After the __add_wait_queue the uwq is visible to userland
545 	 * through poll/read().
546 	 */
547 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
548 	/*
549 	 * The smp_mb() after __set_current_state prevents the reads
550 	 * following the spin_unlock to happen before the list_add in
551 	 * __add_wait_queue.
552 	 */
553 	set_current_state(blocking_state);
554 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
555 
556 	if (!is_vm_hugetlb_page(vma))
557 		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
558 	else
559 		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
560 	if (is_vm_hugetlb_page(vma))
561 		hugetlb_vma_unlock_read(vma);
562 	release_fault_lock(vmf);
563 
564 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
565 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
566 		schedule();
567 	}
568 
569 	__set_current_state(TASK_RUNNING);
570 
571 	/*
572 	 * Here we race with the list_del; list_add in
573 	 * userfaultfd_ctx_read(), however because we don't ever run
574 	 * list_del_init() to refile across the two lists, the prev
575 	 * and next pointers will never point to self. list_add also
576 	 * would never let any of the two pointers to point to
577 	 * self. So list_empty_careful won't risk to see both pointers
578 	 * pointing to self at any time during the list refile. The
579 	 * only case where list_del_init() is called is the full
580 	 * removal in the wake function and there we don't re-list_add
581 	 * and it's fine not to block on the spinlock. The uwq on this
582 	 * kernel stack can be released after the list_del_init.
583 	 */
584 	if (!list_empty_careful(&uwq.wq.entry)) {
585 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
586 		/*
587 		 * No need of list_del_init(), the uwq on the stack
588 		 * will be freed shortly anyway.
589 		 */
590 		list_del(&uwq.wq.entry);
591 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
592 	}
593 
594 	/*
595 	 * ctx may go away after this if the userfault pseudo fd is
596 	 * already released.
597 	 */
598 	userfaultfd_ctx_put(ctx);
599 
600 out:
601 	return ret;
602 }
603 
604 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
605 					      struct userfaultfd_wait_queue *ewq)
606 {
607 	struct userfaultfd_ctx *release_new_ctx;
608 
609 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
610 		goto out;
611 
612 	ewq->ctx = ctx;
613 	init_waitqueue_entry(&ewq->wq, current);
614 	release_new_ctx = NULL;
615 
616 	spin_lock_irq(&ctx->event_wqh.lock);
617 	/*
618 	 * After the __add_wait_queue the uwq is visible to userland
619 	 * through poll/read().
620 	 */
621 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
622 	for (;;) {
623 		set_current_state(TASK_KILLABLE);
624 		if (ewq->msg.event == 0)
625 			break;
626 		if (READ_ONCE(ctx->released) ||
627 		    fatal_signal_pending(current)) {
628 			/*
629 			 * &ewq->wq may be queued in fork_event, but
630 			 * __remove_wait_queue ignores the head
631 			 * parameter. It would be a problem if it
632 			 * didn't.
633 			 */
634 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
635 			if (ewq->msg.event == UFFD_EVENT_FORK) {
636 				struct userfaultfd_ctx *new;
637 
638 				new = (struct userfaultfd_ctx *)
639 					(unsigned long)
640 					ewq->msg.arg.reserved.reserved1;
641 				release_new_ctx = new;
642 			}
643 			break;
644 		}
645 
646 		spin_unlock_irq(&ctx->event_wqh.lock);
647 
648 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
649 		schedule();
650 
651 		spin_lock_irq(&ctx->event_wqh.lock);
652 	}
653 	__set_current_state(TASK_RUNNING);
654 	spin_unlock_irq(&ctx->event_wqh.lock);
655 
656 	if (release_new_ctx) {
657 		struct vm_area_struct *vma;
658 		struct mm_struct *mm = release_new_ctx->mm;
659 		VMA_ITERATOR(vmi, mm, 0);
660 
661 		/* the various vma->vm_userfaultfd_ctx still points to it */
662 		mmap_write_lock(mm);
663 		for_each_vma(vmi, vma) {
664 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
665 				vma_start_write(vma);
666 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
667 				userfaultfd_set_vm_flags(vma,
668 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
669 			}
670 		}
671 		mmap_write_unlock(mm);
672 
673 		userfaultfd_ctx_put(release_new_ctx);
674 	}
675 
676 	/*
677 	 * ctx may go away after this if the userfault pseudo fd is
678 	 * already released.
679 	 */
680 out:
681 	atomic_dec(&ctx->mmap_changing);
682 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
683 	userfaultfd_ctx_put(ctx);
684 }
685 
686 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
687 				       struct userfaultfd_wait_queue *ewq)
688 {
689 	ewq->msg.event = 0;
690 	wake_up_locked(&ctx->event_wqh);
691 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
692 }
693 
694 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
695 {
696 	struct userfaultfd_ctx *ctx = NULL, *octx;
697 	struct userfaultfd_fork_ctx *fctx;
698 
699 	octx = vma->vm_userfaultfd_ctx.ctx;
700 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
701 		vma_start_write(vma);
702 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
703 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
704 		return 0;
705 	}
706 
707 	list_for_each_entry(fctx, fcs, list)
708 		if (fctx->orig == octx) {
709 			ctx = fctx->new;
710 			break;
711 		}
712 
713 	if (!ctx) {
714 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
715 		if (!fctx)
716 			return -ENOMEM;
717 
718 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
719 		if (!ctx) {
720 			kfree(fctx);
721 			return -ENOMEM;
722 		}
723 
724 		refcount_set(&ctx->refcount, 1);
725 		ctx->flags = octx->flags;
726 		ctx->features = octx->features;
727 		ctx->released = false;
728 		atomic_set(&ctx->mmap_changing, 0);
729 		ctx->mm = vma->vm_mm;
730 		mmgrab(ctx->mm);
731 
732 		userfaultfd_ctx_get(octx);
733 		atomic_inc(&octx->mmap_changing);
734 		fctx->orig = octx;
735 		fctx->new = ctx;
736 		list_add_tail(&fctx->list, fcs);
737 	}
738 
739 	vma->vm_userfaultfd_ctx.ctx = ctx;
740 	return 0;
741 }
742 
743 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
744 {
745 	struct userfaultfd_ctx *ctx = fctx->orig;
746 	struct userfaultfd_wait_queue ewq;
747 
748 	msg_init(&ewq.msg);
749 
750 	ewq.msg.event = UFFD_EVENT_FORK;
751 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
752 
753 	userfaultfd_event_wait_completion(ctx, &ewq);
754 }
755 
756 void dup_userfaultfd_complete(struct list_head *fcs)
757 {
758 	struct userfaultfd_fork_ctx *fctx, *n;
759 
760 	list_for_each_entry_safe(fctx, n, fcs, list) {
761 		dup_fctx(fctx);
762 		list_del(&fctx->list);
763 		kfree(fctx);
764 	}
765 }
766 
767 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
768 			     struct vm_userfaultfd_ctx *vm_ctx)
769 {
770 	struct userfaultfd_ctx *ctx;
771 
772 	ctx = vma->vm_userfaultfd_ctx.ctx;
773 
774 	if (!ctx)
775 		return;
776 
777 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
778 		vm_ctx->ctx = ctx;
779 		userfaultfd_ctx_get(ctx);
780 		atomic_inc(&ctx->mmap_changing);
781 	} else {
782 		/* Drop uffd context if remap feature not enabled */
783 		vma_start_write(vma);
784 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
785 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
786 	}
787 }
788 
789 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
790 				 unsigned long from, unsigned long to,
791 				 unsigned long len)
792 {
793 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
794 	struct userfaultfd_wait_queue ewq;
795 
796 	if (!ctx)
797 		return;
798 
799 	if (to & ~PAGE_MASK) {
800 		userfaultfd_ctx_put(ctx);
801 		return;
802 	}
803 
804 	msg_init(&ewq.msg);
805 
806 	ewq.msg.event = UFFD_EVENT_REMAP;
807 	ewq.msg.arg.remap.from = from;
808 	ewq.msg.arg.remap.to = to;
809 	ewq.msg.arg.remap.len = len;
810 
811 	userfaultfd_event_wait_completion(ctx, &ewq);
812 }
813 
814 bool userfaultfd_remove(struct vm_area_struct *vma,
815 			unsigned long start, unsigned long end)
816 {
817 	struct mm_struct *mm = vma->vm_mm;
818 	struct userfaultfd_ctx *ctx;
819 	struct userfaultfd_wait_queue ewq;
820 
821 	ctx = vma->vm_userfaultfd_ctx.ctx;
822 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
823 		return true;
824 
825 	userfaultfd_ctx_get(ctx);
826 	atomic_inc(&ctx->mmap_changing);
827 	mmap_read_unlock(mm);
828 
829 	msg_init(&ewq.msg);
830 
831 	ewq.msg.event = UFFD_EVENT_REMOVE;
832 	ewq.msg.arg.remove.start = start;
833 	ewq.msg.arg.remove.end = end;
834 
835 	userfaultfd_event_wait_completion(ctx, &ewq);
836 
837 	return false;
838 }
839 
840 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
841 			  unsigned long start, unsigned long end)
842 {
843 	struct userfaultfd_unmap_ctx *unmap_ctx;
844 
845 	list_for_each_entry(unmap_ctx, unmaps, list)
846 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
847 		    unmap_ctx->end == end)
848 			return true;
849 
850 	return false;
851 }
852 
853 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
854 			   unsigned long end, struct list_head *unmaps)
855 {
856 	struct userfaultfd_unmap_ctx *unmap_ctx;
857 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
858 
859 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
860 	    has_unmap_ctx(ctx, unmaps, start, end))
861 		return 0;
862 
863 	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
864 	if (!unmap_ctx)
865 		return -ENOMEM;
866 
867 	userfaultfd_ctx_get(ctx);
868 	atomic_inc(&ctx->mmap_changing);
869 	unmap_ctx->ctx = ctx;
870 	unmap_ctx->start = start;
871 	unmap_ctx->end = end;
872 	list_add_tail(&unmap_ctx->list, unmaps);
873 
874 	return 0;
875 }
876 
877 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
878 {
879 	struct userfaultfd_unmap_ctx *ctx, *n;
880 	struct userfaultfd_wait_queue ewq;
881 
882 	list_for_each_entry_safe(ctx, n, uf, list) {
883 		msg_init(&ewq.msg);
884 
885 		ewq.msg.event = UFFD_EVENT_UNMAP;
886 		ewq.msg.arg.remove.start = ctx->start;
887 		ewq.msg.arg.remove.end = ctx->end;
888 
889 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
890 
891 		list_del(&ctx->list);
892 		kfree(ctx);
893 	}
894 }
895 
896 static int userfaultfd_release(struct inode *inode, struct file *file)
897 {
898 	struct userfaultfd_ctx *ctx = file->private_data;
899 	struct mm_struct *mm = ctx->mm;
900 	struct vm_area_struct *vma, *prev;
901 	/* len == 0 means wake all */
902 	struct userfaultfd_wake_range range = { .len = 0, };
903 	unsigned long new_flags;
904 	VMA_ITERATOR(vmi, mm, 0);
905 
906 	WRITE_ONCE(ctx->released, true);
907 
908 	if (!mmget_not_zero(mm))
909 		goto wakeup;
910 
911 	/*
912 	 * Flush page faults out of all CPUs. NOTE: all page faults
913 	 * must be retried without returning VM_FAULT_SIGBUS if
914 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
915 	 * changes while handle_userfault released the mmap_lock. So
916 	 * it's critical that released is set to true (above), before
917 	 * taking the mmap_lock for writing.
918 	 */
919 	mmap_write_lock(mm);
920 	prev = NULL;
921 	for_each_vma(vmi, vma) {
922 		cond_resched();
923 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
924 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
925 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
926 			prev = vma;
927 			continue;
928 		}
929 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
930 		vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
931 					    vma->vm_end, new_flags,
932 					    NULL_VM_UFFD_CTX);
933 
934 		vma_start_write(vma);
935 		userfaultfd_set_vm_flags(vma, new_flags);
936 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
937 
938 		prev = vma;
939 	}
940 	mmap_write_unlock(mm);
941 	mmput(mm);
942 wakeup:
943 	/*
944 	 * After no new page faults can wait on this fault_*wqh, flush
945 	 * the last page faults that may have been already waiting on
946 	 * the fault_*wqh.
947 	 */
948 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
949 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
950 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
951 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
952 
953 	/* Flush pending events that may still wait on event_wqh */
954 	wake_up_all(&ctx->event_wqh);
955 
956 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
957 	userfaultfd_ctx_put(ctx);
958 	return 0;
959 }
960 
961 /* fault_pending_wqh.lock must be hold by the caller */
962 static inline struct userfaultfd_wait_queue *find_userfault_in(
963 		wait_queue_head_t *wqh)
964 {
965 	wait_queue_entry_t *wq;
966 	struct userfaultfd_wait_queue *uwq;
967 
968 	lockdep_assert_held(&wqh->lock);
969 
970 	uwq = NULL;
971 	if (!waitqueue_active(wqh))
972 		goto out;
973 	/* walk in reverse to provide FIFO behavior to read userfaults */
974 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
975 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
976 out:
977 	return uwq;
978 }
979 
980 static inline struct userfaultfd_wait_queue *find_userfault(
981 		struct userfaultfd_ctx *ctx)
982 {
983 	return find_userfault_in(&ctx->fault_pending_wqh);
984 }
985 
986 static inline struct userfaultfd_wait_queue *find_userfault_evt(
987 		struct userfaultfd_ctx *ctx)
988 {
989 	return find_userfault_in(&ctx->event_wqh);
990 }
991 
992 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
993 {
994 	struct userfaultfd_ctx *ctx = file->private_data;
995 	__poll_t ret;
996 
997 	poll_wait(file, &ctx->fd_wqh, wait);
998 
999 	if (!userfaultfd_is_initialized(ctx))
1000 		return EPOLLERR;
1001 
1002 	/*
1003 	 * poll() never guarantees that read won't block.
1004 	 * userfaults can be waken before they're read().
1005 	 */
1006 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
1007 		return EPOLLERR;
1008 	/*
1009 	 * lockless access to see if there are pending faults
1010 	 * __pollwait last action is the add_wait_queue but
1011 	 * the spin_unlock would allow the waitqueue_active to
1012 	 * pass above the actual list_add inside
1013 	 * add_wait_queue critical section. So use a full
1014 	 * memory barrier to serialize the list_add write of
1015 	 * add_wait_queue() with the waitqueue_active read
1016 	 * below.
1017 	 */
1018 	ret = 0;
1019 	smp_mb();
1020 	if (waitqueue_active(&ctx->fault_pending_wqh))
1021 		ret = EPOLLIN;
1022 	else if (waitqueue_active(&ctx->event_wqh))
1023 		ret = EPOLLIN;
1024 
1025 	return ret;
1026 }
1027 
1028 static const struct file_operations userfaultfd_fops;
1029 
1030 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1031 				  struct inode *inode,
1032 				  struct uffd_msg *msg)
1033 {
1034 	int fd;
1035 
1036 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1037 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1038 	if (fd < 0)
1039 		return fd;
1040 
1041 	msg->arg.reserved.reserved1 = 0;
1042 	msg->arg.fork.ufd = fd;
1043 	return 0;
1044 }
1045 
1046 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1047 				    struct uffd_msg *msg, struct inode *inode)
1048 {
1049 	ssize_t ret;
1050 	DECLARE_WAITQUEUE(wait, current);
1051 	struct userfaultfd_wait_queue *uwq;
1052 	/*
1053 	 * Handling fork event requires sleeping operations, so
1054 	 * we drop the event_wqh lock, then do these ops, then
1055 	 * lock it back and wake up the waiter. While the lock is
1056 	 * dropped the ewq may go away so we keep track of it
1057 	 * carefully.
1058 	 */
1059 	LIST_HEAD(fork_event);
1060 	struct userfaultfd_ctx *fork_nctx = NULL;
1061 
1062 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1063 	spin_lock_irq(&ctx->fd_wqh.lock);
1064 	__add_wait_queue(&ctx->fd_wqh, &wait);
1065 	for (;;) {
1066 		set_current_state(TASK_INTERRUPTIBLE);
1067 		spin_lock(&ctx->fault_pending_wqh.lock);
1068 		uwq = find_userfault(ctx);
1069 		if (uwq) {
1070 			/*
1071 			 * Use a seqcount to repeat the lockless check
1072 			 * in wake_userfault() to avoid missing
1073 			 * wakeups because during the refile both
1074 			 * waitqueue could become empty if this is the
1075 			 * only userfault.
1076 			 */
1077 			write_seqcount_begin(&ctx->refile_seq);
1078 
1079 			/*
1080 			 * The fault_pending_wqh.lock prevents the uwq
1081 			 * to disappear from under us.
1082 			 *
1083 			 * Refile this userfault from
1084 			 * fault_pending_wqh to fault_wqh, it's not
1085 			 * pending anymore after we read it.
1086 			 *
1087 			 * Use list_del() by hand (as
1088 			 * userfaultfd_wake_function also uses
1089 			 * list_del_init() by hand) to be sure nobody
1090 			 * changes __remove_wait_queue() to use
1091 			 * list_del_init() in turn breaking the
1092 			 * !list_empty_careful() check in
1093 			 * handle_userfault(). The uwq->wq.head list
1094 			 * must never be empty at any time during the
1095 			 * refile, or the waitqueue could disappear
1096 			 * from under us. The "wait_queue_head_t"
1097 			 * parameter of __remove_wait_queue() is unused
1098 			 * anyway.
1099 			 */
1100 			list_del(&uwq->wq.entry);
1101 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1102 
1103 			write_seqcount_end(&ctx->refile_seq);
1104 
1105 			/* careful to always initialize msg if ret == 0 */
1106 			*msg = uwq->msg;
1107 			spin_unlock(&ctx->fault_pending_wqh.lock);
1108 			ret = 0;
1109 			break;
1110 		}
1111 		spin_unlock(&ctx->fault_pending_wqh.lock);
1112 
1113 		spin_lock(&ctx->event_wqh.lock);
1114 		uwq = find_userfault_evt(ctx);
1115 		if (uwq) {
1116 			*msg = uwq->msg;
1117 
1118 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1119 				fork_nctx = (struct userfaultfd_ctx *)
1120 					(unsigned long)
1121 					uwq->msg.arg.reserved.reserved1;
1122 				list_move(&uwq->wq.entry, &fork_event);
1123 				/*
1124 				 * fork_nctx can be freed as soon as
1125 				 * we drop the lock, unless we take a
1126 				 * reference on it.
1127 				 */
1128 				userfaultfd_ctx_get(fork_nctx);
1129 				spin_unlock(&ctx->event_wqh.lock);
1130 				ret = 0;
1131 				break;
1132 			}
1133 
1134 			userfaultfd_event_complete(ctx, uwq);
1135 			spin_unlock(&ctx->event_wqh.lock);
1136 			ret = 0;
1137 			break;
1138 		}
1139 		spin_unlock(&ctx->event_wqh.lock);
1140 
1141 		if (signal_pending(current)) {
1142 			ret = -ERESTARTSYS;
1143 			break;
1144 		}
1145 		if (no_wait) {
1146 			ret = -EAGAIN;
1147 			break;
1148 		}
1149 		spin_unlock_irq(&ctx->fd_wqh.lock);
1150 		schedule();
1151 		spin_lock_irq(&ctx->fd_wqh.lock);
1152 	}
1153 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1154 	__set_current_state(TASK_RUNNING);
1155 	spin_unlock_irq(&ctx->fd_wqh.lock);
1156 
1157 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1158 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1159 		spin_lock_irq(&ctx->event_wqh.lock);
1160 		if (!list_empty(&fork_event)) {
1161 			/*
1162 			 * The fork thread didn't abort, so we can
1163 			 * drop the temporary refcount.
1164 			 */
1165 			userfaultfd_ctx_put(fork_nctx);
1166 
1167 			uwq = list_first_entry(&fork_event,
1168 					       typeof(*uwq),
1169 					       wq.entry);
1170 			/*
1171 			 * If fork_event list wasn't empty and in turn
1172 			 * the event wasn't already released by fork
1173 			 * (the event is allocated on fork kernel
1174 			 * stack), put the event back to its place in
1175 			 * the event_wq. fork_event head will be freed
1176 			 * as soon as we return so the event cannot
1177 			 * stay queued there no matter the current
1178 			 * "ret" value.
1179 			 */
1180 			list_del(&uwq->wq.entry);
1181 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1182 
1183 			/*
1184 			 * Leave the event in the waitqueue and report
1185 			 * error to userland if we failed to resolve
1186 			 * the userfault fork.
1187 			 */
1188 			if (likely(!ret))
1189 				userfaultfd_event_complete(ctx, uwq);
1190 		} else {
1191 			/*
1192 			 * Here the fork thread aborted and the
1193 			 * refcount from the fork thread on fork_nctx
1194 			 * has already been released. We still hold
1195 			 * the reference we took before releasing the
1196 			 * lock above. If resolve_userfault_fork
1197 			 * failed we've to drop it because the
1198 			 * fork_nctx has to be freed in such case. If
1199 			 * it succeeded we'll hold it because the new
1200 			 * uffd references it.
1201 			 */
1202 			if (ret)
1203 				userfaultfd_ctx_put(fork_nctx);
1204 		}
1205 		spin_unlock_irq(&ctx->event_wqh.lock);
1206 	}
1207 
1208 	return ret;
1209 }
1210 
1211 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1212 				size_t count, loff_t *ppos)
1213 {
1214 	struct userfaultfd_ctx *ctx = file->private_data;
1215 	ssize_t _ret, ret = 0;
1216 	struct uffd_msg msg;
1217 	int no_wait = file->f_flags & O_NONBLOCK;
1218 	struct inode *inode = file_inode(file);
1219 
1220 	if (!userfaultfd_is_initialized(ctx))
1221 		return -EINVAL;
1222 
1223 	for (;;) {
1224 		if (count < sizeof(msg))
1225 			return ret ? ret : -EINVAL;
1226 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1227 		if (_ret < 0)
1228 			return ret ? ret : _ret;
1229 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1230 			return ret ? ret : -EFAULT;
1231 		ret += sizeof(msg);
1232 		buf += sizeof(msg);
1233 		count -= sizeof(msg);
1234 		/*
1235 		 * Allow to read more than one fault at time but only
1236 		 * block if waiting for the very first one.
1237 		 */
1238 		no_wait = O_NONBLOCK;
1239 	}
1240 }
1241 
1242 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1243 			     struct userfaultfd_wake_range *range)
1244 {
1245 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1246 	/* wake all in the range and autoremove */
1247 	if (waitqueue_active(&ctx->fault_pending_wqh))
1248 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1249 				     range);
1250 	if (waitqueue_active(&ctx->fault_wqh))
1251 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1252 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1253 }
1254 
1255 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1256 					   struct userfaultfd_wake_range *range)
1257 {
1258 	unsigned seq;
1259 	bool need_wakeup;
1260 
1261 	/*
1262 	 * To be sure waitqueue_active() is not reordered by the CPU
1263 	 * before the pagetable update, use an explicit SMP memory
1264 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1265 	 * have release semantics that can allow the
1266 	 * waitqueue_active() to be reordered before the pte update.
1267 	 */
1268 	smp_mb();
1269 
1270 	/*
1271 	 * Use waitqueue_active because it's very frequent to
1272 	 * change the address space atomically even if there are no
1273 	 * userfaults yet. So we take the spinlock only when we're
1274 	 * sure we've userfaults to wake.
1275 	 */
1276 	do {
1277 		seq = read_seqcount_begin(&ctx->refile_seq);
1278 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1279 			waitqueue_active(&ctx->fault_wqh);
1280 		cond_resched();
1281 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1282 	if (need_wakeup)
1283 		__wake_userfault(ctx, range);
1284 }
1285 
1286 static __always_inline int validate_unaligned_range(
1287 	struct mm_struct *mm, __u64 start, __u64 len)
1288 {
1289 	__u64 task_size = mm->task_size;
1290 
1291 	if (len & ~PAGE_MASK)
1292 		return -EINVAL;
1293 	if (!len)
1294 		return -EINVAL;
1295 	if (start < mmap_min_addr)
1296 		return -EINVAL;
1297 	if (start >= task_size)
1298 		return -EINVAL;
1299 	if (len > task_size - start)
1300 		return -EINVAL;
1301 	if (start + len <= start)
1302 		return -EINVAL;
1303 	return 0;
1304 }
1305 
1306 static __always_inline int validate_range(struct mm_struct *mm,
1307 					  __u64 start, __u64 len)
1308 {
1309 	if (start & ~PAGE_MASK)
1310 		return -EINVAL;
1311 
1312 	return validate_unaligned_range(mm, start, len);
1313 }
1314 
1315 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1316 				unsigned long arg)
1317 {
1318 	struct mm_struct *mm = ctx->mm;
1319 	struct vm_area_struct *vma, *prev, *cur;
1320 	int ret;
1321 	struct uffdio_register uffdio_register;
1322 	struct uffdio_register __user *user_uffdio_register;
1323 	unsigned long vm_flags, new_flags;
1324 	bool found;
1325 	bool basic_ioctls;
1326 	unsigned long start, end, vma_end;
1327 	struct vma_iterator vmi;
1328 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1329 
1330 	user_uffdio_register = (struct uffdio_register __user *) arg;
1331 
1332 	ret = -EFAULT;
1333 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1334 			   sizeof(uffdio_register)-sizeof(__u64)))
1335 		goto out;
1336 
1337 	ret = -EINVAL;
1338 	if (!uffdio_register.mode)
1339 		goto out;
1340 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1341 		goto out;
1342 	vm_flags = 0;
1343 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1344 		vm_flags |= VM_UFFD_MISSING;
1345 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1346 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1347 		goto out;
1348 #endif
1349 		vm_flags |= VM_UFFD_WP;
1350 	}
1351 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1352 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1353 		goto out;
1354 #endif
1355 		vm_flags |= VM_UFFD_MINOR;
1356 	}
1357 
1358 	ret = validate_range(mm, uffdio_register.range.start,
1359 			     uffdio_register.range.len);
1360 	if (ret)
1361 		goto out;
1362 
1363 	start = uffdio_register.range.start;
1364 	end = start + uffdio_register.range.len;
1365 
1366 	ret = -ENOMEM;
1367 	if (!mmget_not_zero(mm))
1368 		goto out;
1369 
1370 	ret = -EINVAL;
1371 	mmap_write_lock(mm);
1372 	vma_iter_init(&vmi, mm, start);
1373 	vma = vma_find(&vmi, end);
1374 	if (!vma)
1375 		goto out_unlock;
1376 
1377 	/*
1378 	 * If the first vma contains huge pages, make sure start address
1379 	 * is aligned to huge page size.
1380 	 */
1381 	if (is_vm_hugetlb_page(vma)) {
1382 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1383 
1384 		if (start & (vma_hpagesize - 1))
1385 			goto out_unlock;
1386 	}
1387 
1388 	/*
1389 	 * Search for not compatible vmas.
1390 	 */
1391 	found = false;
1392 	basic_ioctls = false;
1393 	cur = vma;
1394 	do {
1395 		cond_resched();
1396 
1397 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1398 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1399 
1400 		/* check not compatible vmas */
1401 		ret = -EINVAL;
1402 		if (!vma_can_userfault(cur, vm_flags, wp_async))
1403 			goto out_unlock;
1404 
1405 		/*
1406 		 * UFFDIO_COPY will fill file holes even without
1407 		 * PROT_WRITE. This check enforces that if this is a
1408 		 * MAP_SHARED, the process has write permission to the backing
1409 		 * file. If VM_MAYWRITE is set it also enforces that on a
1410 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1411 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1412 		 */
1413 		ret = -EPERM;
1414 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1415 			goto out_unlock;
1416 
1417 		/*
1418 		 * If this vma contains ending address, and huge pages
1419 		 * check alignment.
1420 		 */
1421 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1422 		    end > cur->vm_start) {
1423 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1424 
1425 			ret = -EINVAL;
1426 
1427 			if (end & (vma_hpagesize - 1))
1428 				goto out_unlock;
1429 		}
1430 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1431 			goto out_unlock;
1432 
1433 		/*
1434 		 * Check that this vma isn't already owned by a
1435 		 * different userfaultfd. We can't allow more than one
1436 		 * userfaultfd to own a single vma simultaneously or we
1437 		 * wouldn't know which one to deliver the userfaults to.
1438 		 */
1439 		ret = -EBUSY;
1440 		if (cur->vm_userfaultfd_ctx.ctx &&
1441 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1442 			goto out_unlock;
1443 
1444 		/*
1445 		 * Note vmas containing huge pages
1446 		 */
1447 		if (is_vm_hugetlb_page(cur))
1448 			basic_ioctls = true;
1449 
1450 		found = true;
1451 	} for_each_vma_range(vmi, cur, end);
1452 	BUG_ON(!found);
1453 
1454 	vma_iter_set(&vmi, start);
1455 	prev = vma_prev(&vmi);
1456 	if (vma->vm_start < start)
1457 		prev = vma;
1458 
1459 	ret = 0;
1460 	for_each_vma_range(vmi, vma, end) {
1461 		cond_resched();
1462 
1463 		BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1464 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1465 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1466 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1467 
1468 		/*
1469 		 * Nothing to do: this vma is already registered into this
1470 		 * userfaultfd and with the right tracking mode too.
1471 		 */
1472 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1473 		    (vma->vm_flags & vm_flags) == vm_flags)
1474 			goto skip;
1475 
1476 		if (vma->vm_start > start)
1477 			start = vma->vm_start;
1478 		vma_end = min(end, vma->vm_end);
1479 
1480 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1481 		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1482 					    new_flags,
1483 					    (struct vm_userfaultfd_ctx){ctx});
1484 		if (IS_ERR(vma)) {
1485 			ret = PTR_ERR(vma);
1486 			break;
1487 		}
1488 
1489 		/*
1490 		 * In the vma_merge() successful mprotect-like case 8:
1491 		 * the next vma was merged into the current one and
1492 		 * the current one has not been updated yet.
1493 		 */
1494 		vma_start_write(vma);
1495 		userfaultfd_set_vm_flags(vma, new_flags);
1496 		vma->vm_userfaultfd_ctx.ctx = ctx;
1497 
1498 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1499 			hugetlb_unshare_all_pmds(vma);
1500 
1501 	skip:
1502 		prev = vma;
1503 		start = vma->vm_end;
1504 	}
1505 
1506 out_unlock:
1507 	mmap_write_unlock(mm);
1508 	mmput(mm);
1509 	if (!ret) {
1510 		__u64 ioctls_out;
1511 
1512 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1513 		    UFFD_API_RANGE_IOCTLS;
1514 
1515 		/*
1516 		 * Declare the WP ioctl only if the WP mode is
1517 		 * specified and all checks passed with the range
1518 		 */
1519 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1520 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1521 
1522 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1523 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1524 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1525 
1526 		/*
1527 		 * Now that we scanned all vmas we can already tell
1528 		 * userland which ioctls methods are guaranteed to
1529 		 * succeed on this range.
1530 		 */
1531 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1532 			ret = -EFAULT;
1533 	}
1534 out:
1535 	return ret;
1536 }
1537 
1538 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1539 				  unsigned long arg)
1540 {
1541 	struct mm_struct *mm = ctx->mm;
1542 	struct vm_area_struct *vma, *prev, *cur;
1543 	int ret;
1544 	struct uffdio_range uffdio_unregister;
1545 	unsigned long new_flags;
1546 	bool found;
1547 	unsigned long start, end, vma_end;
1548 	const void __user *buf = (void __user *)arg;
1549 	struct vma_iterator vmi;
1550 	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1551 
1552 	ret = -EFAULT;
1553 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1554 		goto out;
1555 
1556 	ret = validate_range(mm, uffdio_unregister.start,
1557 			     uffdio_unregister.len);
1558 	if (ret)
1559 		goto out;
1560 
1561 	start = uffdio_unregister.start;
1562 	end = start + uffdio_unregister.len;
1563 
1564 	ret = -ENOMEM;
1565 	if (!mmget_not_zero(mm))
1566 		goto out;
1567 
1568 	mmap_write_lock(mm);
1569 	ret = -EINVAL;
1570 	vma_iter_init(&vmi, mm, start);
1571 	vma = vma_find(&vmi, end);
1572 	if (!vma)
1573 		goto out_unlock;
1574 
1575 	/*
1576 	 * If the first vma contains huge pages, make sure start address
1577 	 * is aligned to huge page size.
1578 	 */
1579 	if (is_vm_hugetlb_page(vma)) {
1580 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1581 
1582 		if (start & (vma_hpagesize - 1))
1583 			goto out_unlock;
1584 	}
1585 
1586 	/*
1587 	 * Search for not compatible vmas.
1588 	 */
1589 	found = false;
1590 	cur = vma;
1591 	do {
1592 		cond_resched();
1593 
1594 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1595 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1596 
1597 		/*
1598 		 * Check not compatible vmas, not strictly required
1599 		 * here as not compatible vmas cannot have an
1600 		 * userfaultfd_ctx registered on them, but this
1601 		 * provides for more strict behavior to notice
1602 		 * unregistration errors.
1603 		 */
1604 		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1605 			goto out_unlock;
1606 
1607 		found = true;
1608 	} for_each_vma_range(vmi, cur, end);
1609 	BUG_ON(!found);
1610 
1611 	vma_iter_set(&vmi, start);
1612 	prev = vma_prev(&vmi);
1613 	if (vma->vm_start < start)
1614 		prev = vma;
1615 
1616 	ret = 0;
1617 	for_each_vma_range(vmi, vma, end) {
1618 		cond_resched();
1619 
1620 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1621 
1622 		/*
1623 		 * Nothing to do: this vma is already registered into this
1624 		 * userfaultfd and with the right tracking mode too.
1625 		 */
1626 		if (!vma->vm_userfaultfd_ctx.ctx)
1627 			goto skip;
1628 
1629 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1630 
1631 		if (vma->vm_start > start)
1632 			start = vma->vm_start;
1633 		vma_end = min(end, vma->vm_end);
1634 
1635 		if (userfaultfd_missing(vma)) {
1636 			/*
1637 			 * Wake any concurrent pending userfault while
1638 			 * we unregister, so they will not hang
1639 			 * permanently and it avoids userland to call
1640 			 * UFFDIO_WAKE explicitly.
1641 			 */
1642 			struct userfaultfd_wake_range range;
1643 			range.start = start;
1644 			range.len = vma_end - start;
1645 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1646 		}
1647 
1648 		/* Reset ptes for the whole vma range if wr-protected */
1649 		if (userfaultfd_wp(vma))
1650 			uffd_wp_range(vma, start, vma_end - start, false);
1651 
1652 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1653 		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1654 					    new_flags, NULL_VM_UFFD_CTX);
1655 		if (IS_ERR(vma)) {
1656 			ret = PTR_ERR(vma);
1657 			break;
1658 		}
1659 
1660 		/*
1661 		 * In the vma_merge() successful mprotect-like case 8:
1662 		 * the next vma was merged into the current one and
1663 		 * the current one has not been updated yet.
1664 		 */
1665 		vma_start_write(vma);
1666 		userfaultfd_set_vm_flags(vma, new_flags);
1667 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1668 
1669 	skip:
1670 		prev = vma;
1671 		start = vma->vm_end;
1672 	}
1673 
1674 out_unlock:
1675 	mmap_write_unlock(mm);
1676 	mmput(mm);
1677 out:
1678 	return ret;
1679 }
1680 
1681 /*
1682  * userfaultfd_wake may be used in combination with the
1683  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1684  */
1685 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1686 			    unsigned long arg)
1687 {
1688 	int ret;
1689 	struct uffdio_range uffdio_wake;
1690 	struct userfaultfd_wake_range range;
1691 	const void __user *buf = (void __user *)arg;
1692 
1693 	ret = -EFAULT;
1694 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1695 		goto out;
1696 
1697 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1698 	if (ret)
1699 		goto out;
1700 
1701 	range.start = uffdio_wake.start;
1702 	range.len = uffdio_wake.len;
1703 
1704 	/*
1705 	 * len == 0 means wake all and we don't want to wake all here,
1706 	 * so check it again to be sure.
1707 	 */
1708 	VM_BUG_ON(!range.len);
1709 
1710 	wake_userfault(ctx, &range);
1711 	ret = 0;
1712 
1713 out:
1714 	return ret;
1715 }
1716 
1717 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1718 			    unsigned long arg)
1719 {
1720 	__s64 ret;
1721 	struct uffdio_copy uffdio_copy;
1722 	struct uffdio_copy __user *user_uffdio_copy;
1723 	struct userfaultfd_wake_range range;
1724 	uffd_flags_t flags = 0;
1725 
1726 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1727 
1728 	ret = -EAGAIN;
1729 	if (atomic_read(&ctx->mmap_changing))
1730 		goto out;
1731 
1732 	ret = -EFAULT;
1733 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1734 			   /* don't copy "copy" last field */
1735 			   sizeof(uffdio_copy)-sizeof(__s64)))
1736 		goto out;
1737 
1738 	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1739 				       uffdio_copy.len);
1740 	if (ret)
1741 		goto out;
1742 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1743 	if (ret)
1744 		goto out;
1745 
1746 	ret = -EINVAL;
1747 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1748 		goto out;
1749 	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1750 		flags |= MFILL_ATOMIC_WP;
1751 	if (mmget_not_zero(ctx->mm)) {
1752 		ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1753 					uffdio_copy.len, &ctx->mmap_changing,
1754 					flags);
1755 		mmput(ctx->mm);
1756 	} else {
1757 		return -ESRCH;
1758 	}
1759 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1760 		return -EFAULT;
1761 	if (ret < 0)
1762 		goto out;
1763 	BUG_ON(!ret);
1764 	/* len == 0 would wake all */
1765 	range.len = ret;
1766 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1767 		range.start = uffdio_copy.dst;
1768 		wake_userfault(ctx, &range);
1769 	}
1770 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1771 out:
1772 	return ret;
1773 }
1774 
1775 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1776 				unsigned long arg)
1777 {
1778 	__s64 ret;
1779 	struct uffdio_zeropage uffdio_zeropage;
1780 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1781 	struct userfaultfd_wake_range range;
1782 
1783 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1784 
1785 	ret = -EAGAIN;
1786 	if (atomic_read(&ctx->mmap_changing))
1787 		goto out;
1788 
1789 	ret = -EFAULT;
1790 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1791 			   /* don't copy "zeropage" last field */
1792 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1793 		goto out;
1794 
1795 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1796 			     uffdio_zeropage.range.len);
1797 	if (ret)
1798 		goto out;
1799 	ret = -EINVAL;
1800 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1801 		goto out;
1802 
1803 	if (mmget_not_zero(ctx->mm)) {
1804 		ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1805 					   uffdio_zeropage.range.len,
1806 					   &ctx->mmap_changing);
1807 		mmput(ctx->mm);
1808 	} else {
1809 		return -ESRCH;
1810 	}
1811 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1812 		return -EFAULT;
1813 	if (ret < 0)
1814 		goto out;
1815 	/* len == 0 would wake all */
1816 	BUG_ON(!ret);
1817 	range.len = ret;
1818 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1819 		range.start = uffdio_zeropage.range.start;
1820 		wake_userfault(ctx, &range);
1821 	}
1822 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1823 out:
1824 	return ret;
1825 }
1826 
1827 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1828 				    unsigned long arg)
1829 {
1830 	int ret;
1831 	struct uffdio_writeprotect uffdio_wp;
1832 	struct uffdio_writeprotect __user *user_uffdio_wp;
1833 	struct userfaultfd_wake_range range;
1834 	bool mode_wp, mode_dontwake;
1835 
1836 	if (atomic_read(&ctx->mmap_changing))
1837 		return -EAGAIN;
1838 
1839 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1840 
1841 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1842 			   sizeof(struct uffdio_writeprotect)))
1843 		return -EFAULT;
1844 
1845 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1846 			     uffdio_wp.range.len);
1847 	if (ret)
1848 		return ret;
1849 
1850 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1851 			       UFFDIO_WRITEPROTECT_MODE_WP))
1852 		return -EINVAL;
1853 
1854 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1855 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1856 
1857 	if (mode_wp && mode_dontwake)
1858 		return -EINVAL;
1859 
1860 	if (mmget_not_zero(ctx->mm)) {
1861 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1862 					  uffdio_wp.range.len, mode_wp,
1863 					  &ctx->mmap_changing);
1864 		mmput(ctx->mm);
1865 	} else {
1866 		return -ESRCH;
1867 	}
1868 
1869 	if (ret)
1870 		return ret;
1871 
1872 	if (!mode_wp && !mode_dontwake) {
1873 		range.start = uffdio_wp.range.start;
1874 		range.len = uffdio_wp.range.len;
1875 		wake_userfault(ctx, &range);
1876 	}
1877 	return ret;
1878 }
1879 
1880 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1881 {
1882 	__s64 ret;
1883 	struct uffdio_continue uffdio_continue;
1884 	struct uffdio_continue __user *user_uffdio_continue;
1885 	struct userfaultfd_wake_range range;
1886 	uffd_flags_t flags = 0;
1887 
1888 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1889 
1890 	ret = -EAGAIN;
1891 	if (atomic_read(&ctx->mmap_changing))
1892 		goto out;
1893 
1894 	ret = -EFAULT;
1895 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1896 			   /* don't copy the output fields */
1897 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1898 		goto out;
1899 
1900 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1901 			     uffdio_continue.range.len);
1902 	if (ret)
1903 		goto out;
1904 
1905 	ret = -EINVAL;
1906 	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1907 				     UFFDIO_CONTINUE_MODE_WP))
1908 		goto out;
1909 	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1910 		flags |= MFILL_ATOMIC_WP;
1911 
1912 	if (mmget_not_zero(ctx->mm)) {
1913 		ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1914 					    uffdio_continue.range.len,
1915 					    &ctx->mmap_changing, flags);
1916 		mmput(ctx->mm);
1917 	} else {
1918 		return -ESRCH;
1919 	}
1920 
1921 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1922 		return -EFAULT;
1923 	if (ret < 0)
1924 		goto out;
1925 
1926 	/* len == 0 would wake all */
1927 	BUG_ON(!ret);
1928 	range.len = ret;
1929 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1930 		range.start = uffdio_continue.range.start;
1931 		wake_userfault(ctx, &range);
1932 	}
1933 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1934 
1935 out:
1936 	return ret;
1937 }
1938 
1939 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1940 {
1941 	__s64 ret;
1942 	struct uffdio_poison uffdio_poison;
1943 	struct uffdio_poison __user *user_uffdio_poison;
1944 	struct userfaultfd_wake_range range;
1945 
1946 	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1947 
1948 	ret = -EAGAIN;
1949 	if (atomic_read(&ctx->mmap_changing))
1950 		goto out;
1951 
1952 	ret = -EFAULT;
1953 	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1954 			   /* don't copy the output fields */
1955 			   sizeof(uffdio_poison) - (sizeof(__s64))))
1956 		goto out;
1957 
1958 	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1959 			     uffdio_poison.range.len);
1960 	if (ret)
1961 		goto out;
1962 
1963 	ret = -EINVAL;
1964 	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1965 		goto out;
1966 
1967 	if (mmget_not_zero(ctx->mm)) {
1968 		ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start,
1969 					  uffdio_poison.range.len,
1970 					  &ctx->mmap_changing, 0);
1971 		mmput(ctx->mm);
1972 	} else {
1973 		return -ESRCH;
1974 	}
1975 
1976 	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1977 		return -EFAULT;
1978 	if (ret < 0)
1979 		goto out;
1980 
1981 	/* len == 0 would wake all */
1982 	BUG_ON(!ret);
1983 	range.len = ret;
1984 	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1985 		range.start = uffdio_poison.range.start;
1986 		wake_userfault(ctx, &range);
1987 	}
1988 	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1989 
1990 out:
1991 	return ret;
1992 }
1993 
1994 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1995 {
1996 	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1997 }
1998 
1999 static inline unsigned int uffd_ctx_features(__u64 user_features)
2000 {
2001 	/*
2002 	 * For the current set of features the bits just coincide. Set
2003 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
2004 	 */
2005 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
2006 }
2007 
2008 /*
2009  * userland asks for a certain API version and we return which bits
2010  * and ioctl commands are implemented in this kernel for such API
2011  * version or -EINVAL if unknown.
2012  */
2013 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2014 			   unsigned long arg)
2015 {
2016 	struct uffdio_api uffdio_api;
2017 	void __user *buf = (void __user *)arg;
2018 	unsigned int ctx_features;
2019 	int ret;
2020 	__u64 features;
2021 
2022 	ret = -EFAULT;
2023 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2024 		goto out;
2025 	features = uffdio_api.features;
2026 	ret = -EINVAL;
2027 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2028 		goto err_out;
2029 	ret = -EPERM;
2030 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2031 		goto err_out;
2032 
2033 	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2034 	if (features & UFFD_FEATURE_WP_ASYNC)
2035 		features |= UFFD_FEATURE_WP_UNPOPULATED;
2036 
2037 	/* report all available features and ioctls to userland */
2038 	uffdio_api.features = UFFD_API_FEATURES;
2039 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2040 	uffdio_api.features &=
2041 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2042 #endif
2043 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2044 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2045 #endif
2046 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2047 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2048 	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2049 	uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2050 #endif
2051 	uffdio_api.ioctls = UFFD_API_IOCTLS;
2052 	ret = -EFAULT;
2053 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2054 		goto out;
2055 
2056 	/* only enable the requested features for this uffd context */
2057 	ctx_features = uffd_ctx_features(features);
2058 	ret = -EINVAL;
2059 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2060 		goto err_out;
2061 
2062 	ret = 0;
2063 out:
2064 	return ret;
2065 err_out:
2066 	memset(&uffdio_api, 0, sizeof(uffdio_api));
2067 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2068 		ret = -EFAULT;
2069 	goto out;
2070 }
2071 
2072 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2073 			      unsigned long arg)
2074 {
2075 	int ret = -EINVAL;
2076 	struct userfaultfd_ctx *ctx = file->private_data;
2077 
2078 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2079 		return -EINVAL;
2080 
2081 	switch(cmd) {
2082 	case UFFDIO_API:
2083 		ret = userfaultfd_api(ctx, arg);
2084 		break;
2085 	case UFFDIO_REGISTER:
2086 		ret = userfaultfd_register(ctx, arg);
2087 		break;
2088 	case UFFDIO_UNREGISTER:
2089 		ret = userfaultfd_unregister(ctx, arg);
2090 		break;
2091 	case UFFDIO_WAKE:
2092 		ret = userfaultfd_wake(ctx, arg);
2093 		break;
2094 	case UFFDIO_COPY:
2095 		ret = userfaultfd_copy(ctx, arg);
2096 		break;
2097 	case UFFDIO_ZEROPAGE:
2098 		ret = userfaultfd_zeropage(ctx, arg);
2099 		break;
2100 	case UFFDIO_WRITEPROTECT:
2101 		ret = userfaultfd_writeprotect(ctx, arg);
2102 		break;
2103 	case UFFDIO_CONTINUE:
2104 		ret = userfaultfd_continue(ctx, arg);
2105 		break;
2106 	case UFFDIO_POISON:
2107 		ret = userfaultfd_poison(ctx, arg);
2108 		break;
2109 	}
2110 	return ret;
2111 }
2112 
2113 #ifdef CONFIG_PROC_FS
2114 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2115 {
2116 	struct userfaultfd_ctx *ctx = f->private_data;
2117 	wait_queue_entry_t *wq;
2118 	unsigned long pending = 0, total = 0;
2119 
2120 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2121 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2122 		pending++;
2123 		total++;
2124 	}
2125 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2126 		total++;
2127 	}
2128 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2129 
2130 	/*
2131 	 * If more protocols will be added, there will be all shown
2132 	 * separated by a space. Like this:
2133 	 *	protocols: aa:... bb:...
2134 	 */
2135 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2136 		   pending, total, UFFD_API, ctx->features,
2137 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2138 }
2139 #endif
2140 
2141 static const struct file_operations userfaultfd_fops = {
2142 #ifdef CONFIG_PROC_FS
2143 	.show_fdinfo	= userfaultfd_show_fdinfo,
2144 #endif
2145 	.release	= userfaultfd_release,
2146 	.poll		= userfaultfd_poll,
2147 	.read		= userfaultfd_read,
2148 	.unlocked_ioctl = userfaultfd_ioctl,
2149 	.compat_ioctl	= compat_ptr_ioctl,
2150 	.llseek		= noop_llseek,
2151 };
2152 
2153 static void init_once_userfaultfd_ctx(void *mem)
2154 {
2155 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2156 
2157 	init_waitqueue_head(&ctx->fault_pending_wqh);
2158 	init_waitqueue_head(&ctx->fault_wqh);
2159 	init_waitqueue_head(&ctx->event_wqh);
2160 	init_waitqueue_head(&ctx->fd_wqh);
2161 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2162 }
2163 
2164 static int new_userfaultfd(int flags)
2165 {
2166 	struct userfaultfd_ctx *ctx;
2167 	int fd;
2168 
2169 	BUG_ON(!current->mm);
2170 
2171 	/* Check the UFFD_* constants for consistency.  */
2172 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2173 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2174 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2175 
2176 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2177 		return -EINVAL;
2178 
2179 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2180 	if (!ctx)
2181 		return -ENOMEM;
2182 
2183 	refcount_set(&ctx->refcount, 1);
2184 	ctx->flags = flags;
2185 	ctx->features = 0;
2186 	ctx->released = false;
2187 	atomic_set(&ctx->mmap_changing, 0);
2188 	ctx->mm = current->mm;
2189 	/* prevent the mm struct to be freed */
2190 	mmgrab(ctx->mm);
2191 
2192 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2193 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2194 	if (fd < 0) {
2195 		mmdrop(ctx->mm);
2196 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2197 	}
2198 	return fd;
2199 }
2200 
2201 static inline bool userfaultfd_syscall_allowed(int flags)
2202 {
2203 	/* Userspace-only page faults are always allowed */
2204 	if (flags & UFFD_USER_MODE_ONLY)
2205 		return true;
2206 
2207 	/*
2208 	 * The user is requesting a userfaultfd which can handle kernel faults.
2209 	 * Privileged users are always allowed to do this.
2210 	 */
2211 	if (capable(CAP_SYS_PTRACE))
2212 		return true;
2213 
2214 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2215 	return sysctl_unprivileged_userfaultfd;
2216 }
2217 
2218 SYSCALL_DEFINE1(userfaultfd, int, flags)
2219 {
2220 	if (!userfaultfd_syscall_allowed(flags))
2221 		return -EPERM;
2222 
2223 	return new_userfaultfd(flags);
2224 }
2225 
2226 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2227 {
2228 	if (cmd != USERFAULTFD_IOC_NEW)
2229 		return -EINVAL;
2230 
2231 	return new_userfaultfd(flags);
2232 }
2233 
2234 static const struct file_operations userfaultfd_dev_fops = {
2235 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2236 	.compat_ioctl = userfaultfd_dev_ioctl,
2237 	.owner = THIS_MODULE,
2238 	.llseek = noop_llseek,
2239 };
2240 
2241 static struct miscdevice userfaultfd_misc = {
2242 	.minor = MISC_DYNAMIC_MINOR,
2243 	.name = "userfaultfd",
2244 	.fops = &userfaultfd_dev_fops
2245 };
2246 
2247 static int __init userfaultfd_init(void)
2248 {
2249 	int ret;
2250 
2251 	ret = misc_register(&userfaultfd_misc);
2252 	if (ret)
2253 		return ret;
2254 
2255 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2256 						sizeof(struct userfaultfd_ctx),
2257 						0,
2258 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2259 						init_once_userfaultfd_ctx);
2260 #ifdef CONFIG_SYSCTL
2261 	register_sysctl_init("vm", vm_userfaultfd_table);
2262 #endif
2263 	return 0;
2264 }
2265 __initcall(userfaultfd_init);
2266