1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 #ifdef CONFIG_SYSCTL 38 static struct ctl_table vm_userfaultfd_table[] = { 39 { 40 .procname = "unprivileged_userfaultfd", 41 .data = &sysctl_unprivileged_userfaultfd, 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 43 .mode = 0644, 44 .proc_handler = proc_dointvec_minmax, 45 .extra1 = SYSCTL_ZERO, 46 .extra2 = SYSCTL_ONE, 47 }, 48 { } 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 53 54 /* 55 * Start with fault_pending_wqh and fault_wqh so they're more likely 56 * to be in the same cacheline. 57 * 58 * Locking order: 59 * fd_wqh.lock 60 * fault_pending_wqh.lock 61 * fault_wqh.lock 62 * event_wqh.lock 63 * 64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 66 * also taken in IRQ context. 67 */ 68 struct userfaultfd_ctx { 69 /* waitqueue head for the pending (i.e. not read) userfaults */ 70 wait_queue_head_t fault_pending_wqh; 71 /* waitqueue head for the userfaults */ 72 wait_queue_head_t fault_wqh; 73 /* waitqueue head for the pseudo fd to wakeup poll/read */ 74 wait_queue_head_t fd_wqh; 75 /* waitqueue head for events */ 76 wait_queue_head_t event_wqh; 77 /* a refile sequence protected by fault_pending_wqh lock */ 78 seqcount_spinlock_t refile_seq; 79 /* pseudo fd refcounting */ 80 refcount_t refcount; 81 /* userfaultfd syscall flags */ 82 unsigned int flags; 83 /* features requested from the userspace */ 84 unsigned int features; 85 /* released */ 86 bool released; 87 /* memory mappings are changing because of non-cooperative event */ 88 atomic_t mmap_changing; 89 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 90 struct mm_struct *mm; 91 }; 92 93 struct userfaultfd_fork_ctx { 94 struct userfaultfd_ctx *orig; 95 struct userfaultfd_ctx *new; 96 struct list_head list; 97 }; 98 99 struct userfaultfd_unmap_ctx { 100 struct userfaultfd_ctx *ctx; 101 unsigned long start; 102 unsigned long end; 103 struct list_head list; 104 }; 105 106 struct userfaultfd_wait_queue { 107 struct uffd_msg msg; 108 wait_queue_entry_t wq; 109 struct userfaultfd_ctx *ctx; 110 bool waken; 111 }; 112 113 struct userfaultfd_wake_range { 114 unsigned long start; 115 unsigned long len; 116 }; 117 118 /* internal indication that UFFD_API ioctl was successfully executed */ 119 #define UFFD_FEATURE_INITIALIZED (1u << 31) 120 121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 122 { 123 return ctx->features & UFFD_FEATURE_INITIALIZED; 124 } 125 126 /* 127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 128 * meaningful when userfaultfd_wp()==true on the vma and when it's 129 * anonymous. 130 */ 131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 132 { 133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 134 135 if (!ctx) 136 return false; 137 138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 139 } 140 141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 142 vm_flags_t flags) 143 { 144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 145 146 vm_flags_reset(vma, flags); 147 /* 148 * For shared mappings, we want to enable writenotify while 149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 151 */ 152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 153 vma_set_page_prot(vma); 154 } 155 156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 157 int wake_flags, void *key) 158 { 159 struct userfaultfd_wake_range *range = key; 160 int ret; 161 struct userfaultfd_wait_queue *uwq; 162 unsigned long start, len; 163 164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 165 ret = 0; 166 /* len == 0 means wake all */ 167 start = range->start; 168 len = range->len; 169 if (len && (start > uwq->msg.arg.pagefault.address || 170 start + len <= uwq->msg.arg.pagefault.address)) 171 goto out; 172 WRITE_ONCE(uwq->waken, true); 173 /* 174 * The Program-Order guarantees provided by the scheduler 175 * ensure uwq->waken is visible before the task is woken. 176 */ 177 ret = wake_up_state(wq->private, mode); 178 if (ret) { 179 /* 180 * Wake only once, autoremove behavior. 181 * 182 * After the effect of list_del_init is visible to the other 183 * CPUs, the waitqueue may disappear from under us, see the 184 * !list_empty_careful() in handle_userfault(). 185 * 186 * try_to_wake_up() has an implicit smp_mb(), and the 187 * wq->private is read before calling the extern function 188 * "wake_up_state" (which in turns calls try_to_wake_up). 189 */ 190 list_del_init(&wq->entry); 191 } 192 out: 193 return ret; 194 } 195 196 /** 197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 198 * context. 199 * @ctx: [in] Pointer to the userfaultfd context. 200 */ 201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 202 { 203 refcount_inc(&ctx->refcount); 204 } 205 206 /** 207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 208 * context. 209 * @ctx: [in] Pointer to userfaultfd context. 210 * 211 * The userfaultfd context reference must have been previously acquired either 212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 213 */ 214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 215 { 216 if (refcount_dec_and_test(&ctx->refcount)) { 217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 225 mmdrop(ctx->mm); 226 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 227 } 228 } 229 230 static inline void msg_init(struct uffd_msg *msg) 231 { 232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 233 /* 234 * Must use memset to zero out the paddings or kernel data is 235 * leaked to userland. 236 */ 237 memset(msg, 0, sizeof(struct uffd_msg)); 238 } 239 240 static inline struct uffd_msg userfault_msg(unsigned long address, 241 unsigned long real_address, 242 unsigned int flags, 243 unsigned long reason, 244 unsigned int features) 245 { 246 struct uffd_msg msg; 247 248 msg_init(&msg); 249 msg.event = UFFD_EVENT_PAGEFAULT; 250 251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 252 real_address : address; 253 254 /* 255 * These flags indicate why the userfault occurred: 256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 258 * - Neither of these flags being set indicates a MISSING fault. 259 * 260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 261 * fault. Otherwise, it was a read fault. 262 */ 263 if (flags & FAULT_FLAG_WRITE) 264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 265 if (reason & VM_UFFD_WP) 266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 267 if (reason & VM_UFFD_MINOR) 268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 269 if (features & UFFD_FEATURE_THREAD_ID) 270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 271 return msg; 272 } 273 274 #ifdef CONFIG_HUGETLB_PAGE 275 /* 276 * Same functionality as userfaultfd_must_wait below with modifications for 277 * hugepmd ranges. 278 */ 279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 280 struct vm_fault *vmf, 281 unsigned long reason) 282 { 283 struct vm_area_struct *vma = vmf->vma; 284 pte_t *ptep, pte; 285 bool ret = true; 286 287 assert_fault_locked(vmf); 288 289 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); 290 if (!ptep) 291 goto out; 292 293 ret = false; 294 pte = huge_ptep_get(ptep); 295 296 /* 297 * Lockless access: we're in a wait_event so it's ok if it 298 * changes under us. PTE markers should be handled the same as none 299 * ptes here. 300 */ 301 if (huge_pte_none_mostly(pte)) 302 ret = true; 303 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 304 ret = true; 305 out: 306 return ret; 307 } 308 #else 309 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 310 struct vm_fault *vmf, 311 unsigned long reason) 312 { 313 return false; /* should never get here */ 314 } 315 #endif /* CONFIG_HUGETLB_PAGE */ 316 317 /* 318 * Verify the pagetables are still not ok after having reigstered into 319 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 320 * userfault that has already been resolved, if userfaultfd_read and 321 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 322 * threads. 323 */ 324 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 325 struct vm_fault *vmf, 326 unsigned long reason) 327 { 328 struct mm_struct *mm = ctx->mm; 329 unsigned long address = vmf->address; 330 pgd_t *pgd; 331 p4d_t *p4d; 332 pud_t *pud; 333 pmd_t *pmd, _pmd; 334 pte_t *pte; 335 pte_t ptent; 336 bool ret = true; 337 338 assert_fault_locked(vmf); 339 340 pgd = pgd_offset(mm, address); 341 if (!pgd_present(*pgd)) 342 goto out; 343 p4d = p4d_offset(pgd, address); 344 if (!p4d_present(*p4d)) 345 goto out; 346 pud = pud_offset(p4d, address); 347 if (!pud_present(*pud)) 348 goto out; 349 pmd = pmd_offset(pud, address); 350 again: 351 _pmd = pmdp_get_lockless(pmd); 352 if (pmd_none(_pmd)) 353 goto out; 354 355 ret = false; 356 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 357 goto out; 358 359 if (pmd_trans_huge(_pmd)) { 360 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 361 ret = true; 362 goto out; 363 } 364 365 pte = pte_offset_map(pmd, address); 366 if (!pte) { 367 ret = true; 368 goto again; 369 } 370 /* 371 * Lockless access: we're in a wait_event so it's ok if it 372 * changes under us. PTE markers should be handled the same as none 373 * ptes here. 374 */ 375 ptent = ptep_get(pte); 376 if (pte_none_mostly(ptent)) 377 ret = true; 378 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 379 ret = true; 380 pte_unmap(pte); 381 382 out: 383 return ret; 384 } 385 386 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 387 { 388 if (flags & FAULT_FLAG_INTERRUPTIBLE) 389 return TASK_INTERRUPTIBLE; 390 391 if (flags & FAULT_FLAG_KILLABLE) 392 return TASK_KILLABLE; 393 394 return TASK_UNINTERRUPTIBLE; 395 } 396 397 /* 398 * The locking rules involved in returning VM_FAULT_RETRY depending on 399 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 400 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 401 * recommendation in __lock_page_or_retry is not an understatement. 402 * 403 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 404 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 405 * not set. 406 * 407 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 408 * set, VM_FAULT_RETRY can still be returned if and only if there are 409 * fatal_signal_pending()s, and the mmap_lock must be released before 410 * returning it. 411 */ 412 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 413 { 414 struct vm_area_struct *vma = vmf->vma; 415 struct mm_struct *mm = vma->vm_mm; 416 struct userfaultfd_ctx *ctx; 417 struct userfaultfd_wait_queue uwq; 418 vm_fault_t ret = VM_FAULT_SIGBUS; 419 bool must_wait; 420 unsigned int blocking_state; 421 422 /* 423 * We don't do userfault handling for the final child pid update. 424 * 425 * We also don't do userfault handling during 426 * coredumping. hugetlbfs has the special 427 * hugetlb_follow_page_mask() to skip missing pages in the 428 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 429 * the no_page_table() helper in follow_page_mask(), but the 430 * shmem_vm_ops->fault method is invoked even during 431 * coredumping and it ends up here. 432 */ 433 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 434 goto out; 435 436 assert_fault_locked(vmf); 437 438 ctx = vma->vm_userfaultfd_ctx.ctx; 439 if (!ctx) 440 goto out; 441 442 BUG_ON(ctx->mm != mm); 443 444 /* Any unrecognized flag is a bug. */ 445 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 446 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 447 VM_BUG_ON(!reason || (reason & (reason - 1))); 448 449 if (ctx->features & UFFD_FEATURE_SIGBUS) 450 goto out; 451 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 452 goto out; 453 454 /* 455 * If it's already released don't get it. This avoids to loop 456 * in __get_user_pages if userfaultfd_release waits on the 457 * caller of handle_userfault to release the mmap_lock. 458 */ 459 if (unlikely(READ_ONCE(ctx->released))) { 460 /* 461 * Don't return VM_FAULT_SIGBUS in this case, so a non 462 * cooperative manager can close the uffd after the 463 * last UFFDIO_COPY, without risking to trigger an 464 * involuntary SIGBUS if the process was starting the 465 * userfaultfd while the userfaultfd was still armed 466 * (but after the last UFFDIO_COPY). If the uffd 467 * wasn't already closed when the userfault reached 468 * this point, that would normally be solved by 469 * userfaultfd_must_wait returning 'false'. 470 * 471 * If we were to return VM_FAULT_SIGBUS here, the non 472 * cooperative manager would be instead forced to 473 * always call UFFDIO_UNREGISTER before it can safely 474 * close the uffd. 475 */ 476 ret = VM_FAULT_NOPAGE; 477 goto out; 478 } 479 480 /* 481 * Check that we can return VM_FAULT_RETRY. 482 * 483 * NOTE: it should become possible to return VM_FAULT_RETRY 484 * even if FAULT_FLAG_TRIED is set without leading to gup() 485 * -EBUSY failures, if the userfaultfd is to be extended for 486 * VM_UFFD_WP tracking and we intend to arm the userfault 487 * without first stopping userland access to the memory. For 488 * VM_UFFD_MISSING userfaults this is enough for now. 489 */ 490 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 491 /* 492 * Validate the invariant that nowait must allow retry 493 * to be sure not to return SIGBUS erroneously on 494 * nowait invocations. 495 */ 496 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 497 #ifdef CONFIG_DEBUG_VM 498 if (printk_ratelimit()) { 499 printk(KERN_WARNING 500 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 501 vmf->flags); 502 dump_stack(); 503 } 504 #endif 505 goto out; 506 } 507 508 /* 509 * Handle nowait, not much to do other than tell it to retry 510 * and wait. 511 */ 512 ret = VM_FAULT_RETRY; 513 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 514 goto out; 515 516 /* take the reference before dropping the mmap_lock */ 517 userfaultfd_ctx_get(ctx); 518 519 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 520 uwq.wq.private = current; 521 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 522 reason, ctx->features); 523 uwq.ctx = ctx; 524 uwq.waken = false; 525 526 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 527 528 /* 529 * Take the vma lock now, in order to safely call 530 * userfaultfd_huge_must_wait() later. Since acquiring the 531 * (sleepable) vma lock can modify the current task state, that 532 * must be before explicitly calling set_current_state(). 533 */ 534 if (is_vm_hugetlb_page(vma)) 535 hugetlb_vma_lock_read(vma); 536 537 spin_lock_irq(&ctx->fault_pending_wqh.lock); 538 /* 539 * After the __add_wait_queue the uwq is visible to userland 540 * through poll/read(). 541 */ 542 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 543 /* 544 * The smp_mb() after __set_current_state prevents the reads 545 * following the spin_unlock to happen before the list_add in 546 * __add_wait_queue. 547 */ 548 set_current_state(blocking_state); 549 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 550 551 if (!is_vm_hugetlb_page(vma)) 552 must_wait = userfaultfd_must_wait(ctx, vmf, reason); 553 else 554 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); 555 if (is_vm_hugetlb_page(vma)) 556 hugetlb_vma_unlock_read(vma); 557 release_fault_lock(vmf); 558 559 if (likely(must_wait && !READ_ONCE(ctx->released))) { 560 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 561 schedule(); 562 } 563 564 __set_current_state(TASK_RUNNING); 565 566 /* 567 * Here we race with the list_del; list_add in 568 * userfaultfd_ctx_read(), however because we don't ever run 569 * list_del_init() to refile across the two lists, the prev 570 * and next pointers will never point to self. list_add also 571 * would never let any of the two pointers to point to 572 * self. So list_empty_careful won't risk to see both pointers 573 * pointing to self at any time during the list refile. The 574 * only case where list_del_init() is called is the full 575 * removal in the wake function and there we don't re-list_add 576 * and it's fine not to block on the spinlock. The uwq on this 577 * kernel stack can be released after the list_del_init. 578 */ 579 if (!list_empty_careful(&uwq.wq.entry)) { 580 spin_lock_irq(&ctx->fault_pending_wqh.lock); 581 /* 582 * No need of list_del_init(), the uwq on the stack 583 * will be freed shortly anyway. 584 */ 585 list_del(&uwq.wq.entry); 586 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 587 } 588 589 /* 590 * ctx may go away after this if the userfault pseudo fd is 591 * already released. 592 */ 593 userfaultfd_ctx_put(ctx); 594 595 out: 596 return ret; 597 } 598 599 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 600 struct userfaultfd_wait_queue *ewq) 601 { 602 struct userfaultfd_ctx *release_new_ctx; 603 604 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 605 goto out; 606 607 ewq->ctx = ctx; 608 init_waitqueue_entry(&ewq->wq, current); 609 release_new_ctx = NULL; 610 611 spin_lock_irq(&ctx->event_wqh.lock); 612 /* 613 * After the __add_wait_queue the uwq is visible to userland 614 * through poll/read(). 615 */ 616 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 617 for (;;) { 618 set_current_state(TASK_KILLABLE); 619 if (ewq->msg.event == 0) 620 break; 621 if (READ_ONCE(ctx->released) || 622 fatal_signal_pending(current)) { 623 /* 624 * &ewq->wq may be queued in fork_event, but 625 * __remove_wait_queue ignores the head 626 * parameter. It would be a problem if it 627 * didn't. 628 */ 629 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 630 if (ewq->msg.event == UFFD_EVENT_FORK) { 631 struct userfaultfd_ctx *new; 632 633 new = (struct userfaultfd_ctx *) 634 (unsigned long) 635 ewq->msg.arg.reserved.reserved1; 636 release_new_ctx = new; 637 } 638 break; 639 } 640 641 spin_unlock_irq(&ctx->event_wqh.lock); 642 643 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 644 schedule(); 645 646 spin_lock_irq(&ctx->event_wqh.lock); 647 } 648 __set_current_state(TASK_RUNNING); 649 spin_unlock_irq(&ctx->event_wqh.lock); 650 651 if (release_new_ctx) { 652 struct vm_area_struct *vma; 653 struct mm_struct *mm = release_new_ctx->mm; 654 VMA_ITERATOR(vmi, mm, 0); 655 656 /* the various vma->vm_userfaultfd_ctx still points to it */ 657 mmap_write_lock(mm); 658 for_each_vma(vmi, vma) { 659 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 660 vma_start_write(vma); 661 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 662 userfaultfd_set_vm_flags(vma, 663 vma->vm_flags & ~__VM_UFFD_FLAGS); 664 } 665 } 666 mmap_write_unlock(mm); 667 668 userfaultfd_ctx_put(release_new_ctx); 669 } 670 671 /* 672 * ctx may go away after this if the userfault pseudo fd is 673 * already released. 674 */ 675 out: 676 atomic_dec(&ctx->mmap_changing); 677 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 678 userfaultfd_ctx_put(ctx); 679 } 680 681 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 682 struct userfaultfd_wait_queue *ewq) 683 { 684 ewq->msg.event = 0; 685 wake_up_locked(&ctx->event_wqh); 686 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 687 } 688 689 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 690 { 691 struct userfaultfd_ctx *ctx = NULL, *octx; 692 struct userfaultfd_fork_ctx *fctx; 693 694 octx = vma->vm_userfaultfd_ctx.ctx; 695 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 696 vma_start_write(vma); 697 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 698 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 699 return 0; 700 } 701 702 list_for_each_entry(fctx, fcs, list) 703 if (fctx->orig == octx) { 704 ctx = fctx->new; 705 break; 706 } 707 708 if (!ctx) { 709 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 710 if (!fctx) 711 return -ENOMEM; 712 713 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 714 if (!ctx) { 715 kfree(fctx); 716 return -ENOMEM; 717 } 718 719 refcount_set(&ctx->refcount, 1); 720 ctx->flags = octx->flags; 721 ctx->features = octx->features; 722 ctx->released = false; 723 atomic_set(&ctx->mmap_changing, 0); 724 ctx->mm = vma->vm_mm; 725 mmgrab(ctx->mm); 726 727 userfaultfd_ctx_get(octx); 728 atomic_inc(&octx->mmap_changing); 729 fctx->orig = octx; 730 fctx->new = ctx; 731 list_add_tail(&fctx->list, fcs); 732 } 733 734 vma->vm_userfaultfd_ctx.ctx = ctx; 735 return 0; 736 } 737 738 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 739 { 740 struct userfaultfd_ctx *ctx = fctx->orig; 741 struct userfaultfd_wait_queue ewq; 742 743 msg_init(&ewq.msg); 744 745 ewq.msg.event = UFFD_EVENT_FORK; 746 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 747 748 userfaultfd_event_wait_completion(ctx, &ewq); 749 } 750 751 void dup_userfaultfd_complete(struct list_head *fcs) 752 { 753 struct userfaultfd_fork_ctx *fctx, *n; 754 755 list_for_each_entry_safe(fctx, n, fcs, list) { 756 dup_fctx(fctx); 757 list_del(&fctx->list); 758 kfree(fctx); 759 } 760 } 761 762 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 763 struct vm_userfaultfd_ctx *vm_ctx) 764 { 765 struct userfaultfd_ctx *ctx; 766 767 ctx = vma->vm_userfaultfd_ctx.ctx; 768 769 if (!ctx) 770 return; 771 772 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 773 vm_ctx->ctx = ctx; 774 userfaultfd_ctx_get(ctx); 775 atomic_inc(&ctx->mmap_changing); 776 } else { 777 /* Drop uffd context if remap feature not enabled */ 778 vma_start_write(vma); 779 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 780 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 781 } 782 } 783 784 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 785 unsigned long from, unsigned long to, 786 unsigned long len) 787 { 788 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 789 struct userfaultfd_wait_queue ewq; 790 791 if (!ctx) 792 return; 793 794 if (to & ~PAGE_MASK) { 795 userfaultfd_ctx_put(ctx); 796 return; 797 } 798 799 msg_init(&ewq.msg); 800 801 ewq.msg.event = UFFD_EVENT_REMAP; 802 ewq.msg.arg.remap.from = from; 803 ewq.msg.arg.remap.to = to; 804 ewq.msg.arg.remap.len = len; 805 806 userfaultfd_event_wait_completion(ctx, &ewq); 807 } 808 809 bool userfaultfd_remove(struct vm_area_struct *vma, 810 unsigned long start, unsigned long end) 811 { 812 struct mm_struct *mm = vma->vm_mm; 813 struct userfaultfd_ctx *ctx; 814 struct userfaultfd_wait_queue ewq; 815 816 ctx = vma->vm_userfaultfd_ctx.ctx; 817 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 818 return true; 819 820 userfaultfd_ctx_get(ctx); 821 atomic_inc(&ctx->mmap_changing); 822 mmap_read_unlock(mm); 823 824 msg_init(&ewq.msg); 825 826 ewq.msg.event = UFFD_EVENT_REMOVE; 827 ewq.msg.arg.remove.start = start; 828 ewq.msg.arg.remove.end = end; 829 830 userfaultfd_event_wait_completion(ctx, &ewq); 831 832 return false; 833 } 834 835 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 836 unsigned long start, unsigned long end) 837 { 838 struct userfaultfd_unmap_ctx *unmap_ctx; 839 840 list_for_each_entry(unmap_ctx, unmaps, list) 841 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 842 unmap_ctx->end == end) 843 return true; 844 845 return false; 846 } 847 848 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 849 unsigned long end, struct list_head *unmaps) 850 { 851 struct userfaultfd_unmap_ctx *unmap_ctx; 852 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 853 854 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 855 has_unmap_ctx(ctx, unmaps, start, end)) 856 return 0; 857 858 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 859 if (!unmap_ctx) 860 return -ENOMEM; 861 862 userfaultfd_ctx_get(ctx); 863 atomic_inc(&ctx->mmap_changing); 864 unmap_ctx->ctx = ctx; 865 unmap_ctx->start = start; 866 unmap_ctx->end = end; 867 list_add_tail(&unmap_ctx->list, unmaps); 868 869 return 0; 870 } 871 872 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 873 { 874 struct userfaultfd_unmap_ctx *ctx, *n; 875 struct userfaultfd_wait_queue ewq; 876 877 list_for_each_entry_safe(ctx, n, uf, list) { 878 msg_init(&ewq.msg); 879 880 ewq.msg.event = UFFD_EVENT_UNMAP; 881 ewq.msg.arg.remove.start = ctx->start; 882 ewq.msg.arg.remove.end = ctx->end; 883 884 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 885 886 list_del(&ctx->list); 887 kfree(ctx); 888 } 889 } 890 891 static int userfaultfd_release(struct inode *inode, struct file *file) 892 { 893 struct userfaultfd_ctx *ctx = file->private_data; 894 struct mm_struct *mm = ctx->mm; 895 struct vm_area_struct *vma, *prev; 896 /* len == 0 means wake all */ 897 struct userfaultfd_wake_range range = { .len = 0, }; 898 unsigned long new_flags; 899 VMA_ITERATOR(vmi, mm, 0); 900 901 WRITE_ONCE(ctx->released, true); 902 903 if (!mmget_not_zero(mm)) 904 goto wakeup; 905 906 /* 907 * Flush page faults out of all CPUs. NOTE: all page faults 908 * must be retried without returning VM_FAULT_SIGBUS if 909 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 910 * changes while handle_userfault released the mmap_lock. So 911 * it's critical that released is set to true (above), before 912 * taking the mmap_lock for writing. 913 */ 914 mmap_write_lock(mm); 915 prev = NULL; 916 for_each_vma(vmi, vma) { 917 cond_resched(); 918 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 919 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 920 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 921 prev = vma; 922 continue; 923 } 924 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 925 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end, 926 new_flags, vma->anon_vma, 927 vma->vm_file, vma->vm_pgoff, 928 vma_policy(vma), 929 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 930 if (prev) { 931 vma = prev; 932 } else { 933 prev = vma; 934 } 935 936 vma_start_write(vma); 937 userfaultfd_set_vm_flags(vma, new_flags); 938 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 939 } 940 mmap_write_unlock(mm); 941 mmput(mm); 942 wakeup: 943 /* 944 * After no new page faults can wait on this fault_*wqh, flush 945 * the last page faults that may have been already waiting on 946 * the fault_*wqh. 947 */ 948 spin_lock_irq(&ctx->fault_pending_wqh.lock); 949 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 950 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 951 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 952 953 /* Flush pending events that may still wait on event_wqh */ 954 wake_up_all(&ctx->event_wqh); 955 956 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 957 userfaultfd_ctx_put(ctx); 958 return 0; 959 } 960 961 /* fault_pending_wqh.lock must be hold by the caller */ 962 static inline struct userfaultfd_wait_queue *find_userfault_in( 963 wait_queue_head_t *wqh) 964 { 965 wait_queue_entry_t *wq; 966 struct userfaultfd_wait_queue *uwq; 967 968 lockdep_assert_held(&wqh->lock); 969 970 uwq = NULL; 971 if (!waitqueue_active(wqh)) 972 goto out; 973 /* walk in reverse to provide FIFO behavior to read userfaults */ 974 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 975 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 976 out: 977 return uwq; 978 } 979 980 static inline struct userfaultfd_wait_queue *find_userfault( 981 struct userfaultfd_ctx *ctx) 982 { 983 return find_userfault_in(&ctx->fault_pending_wqh); 984 } 985 986 static inline struct userfaultfd_wait_queue *find_userfault_evt( 987 struct userfaultfd_ctx *ctx) 988 { 989 return find_userfault_in(&ctx->event_wqh); 990 } 991 992 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 993 { 994 struct userfaultfd_ctx *ctx = file->private_data; 995 __poll_t ret; 996 997 poll_wait(file, &ctx->fd_wqh, wait); 998 999 if (!userfaultfd_is_initialized(ctx)) 1000 return EPOLLERR; 1001 1002 /* 1003 * poll() never guarantees that read won't block. 1004 * userfaults can be waken before they're read(). 1005 */ 1006 if (unlikely(!(file->f_flags & O_NONBLOCK))) 1007 return EPOLLERR; 1008 /* 1009 * lockless access to see if there are pending faults 1010 * __pollwait last action is the add_wait_queue but 1011 * the spin_unlock would allow the waitqueue_active to 1012 * pass above the actual list_add inside 1013 * add_wait_queue critical section. So use a full 1014 * memory barrier to serialize the list_add write of 1015 * add_wait_queue() with the waitqueue_active read 1016 * below. 1017 */ 1018 ret = 0; 1019 smp_mb(); 1020 if (waitqueue_active(&ctx->fault_pending_wqh)) 1021 ret = EPOLLIN; 1022 else if (waitqueue_active(&ctx->event_wqh)) 1023 ret = EPOLLIN; 1024 1025 return ret; 1026 } 1027 1028 static const struct file_operations userfaultfd_fops; 1029 1030 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1031 struct inode *inode, 1032 struct uffd_msg *msg) 1033 { 1034 int fd; 1035 1036 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1037 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1038 if (fd < 0) 1039 return fd; 1040 1041 msg->arg.reserved.reserved1 = 0; 1042 msg->arg.fork.ufd = fd; 1043 return 0; 1044 } 1045 1046 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1047 struct uffd_msg *msg, struct inode *inode) 1048 { 1049 ssize_t ret; 1050 DECLARE_WAITQUEUE(wait, current); 1051 struct userfaultfd_wait_queue *uwq; 1052 /* 1053 * Handling fork event requires sleeping operations, so 1054 * we drop the event_wqh lock, then do these ops, then 1055 * lock it back and wake up the waiter. While the lock is 1056 * dropped the ewq may go away so we keep track of it 1057 * carefully. 1058 */ 1059 LIST_HEAD(fork_event); 1060 struct userfaultfd_ctx *fork_nctx = NULL; 1061 1062 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1063 spin_lock_irq(&ctx->fd_wqh.lock); 1064 __add_wait_queue(&ctx->fd_wqh, &wait); 1065 for (;;) { 1066 set_current_state(TASK_INTERRUPTIBLE); 1067 spin_lock(&ctx->fault_pending_wqh.lock); 1068 uwq = find_userfault(ctx); 1069 if (uwq) { 1070 /* 1071 * Use a seqcount to repeat the lockless check 1072 * in wake_userfault() to avoid missing 1073 * wakeups because during the refile both 1074 * waitqueue could become empty if this is the 1075 * only userfault. 1076 */ 1077 write_seqcount_begin(&ctx->refile_seq); 1078 1079 /* 1080 * The fault_pending_wqh.lock prevents the uwq 1081 * to disappear from under us. 1082 * 1083 * Refile this userfault from 1084 * fault_pending_wqh to fault_wqh, it's not 1085 * pending anymore after we read it. 1086 * 1087 * Use list_del() by hand (as 1088 * userfaultfd_wake_function also uses 1089 * list_del_init() by hand) to be sure nobody 1090 * changes __remove_wait_queue() to use 1091 * list_del_init() in turn breaking the 1092 * !list_empty_careful() check in 1093 * handle_userfault(). The uwq->wq.head list 1094 * must never be empty at any time during the 1095 * refile, or the waitqueue could disappear 1096 * from under us. The "wait_queue_head_t" 1097 * parameter of __remove_wait_queue() is unused 1098 * anyway. 1099 */ 1100 list_del(&uwq->wq.entry); 1101 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1102 1103 write_seqcount_end(&ctx->refile_seq); 1104 1105 /* careful to always initialize msg if ret == 0 */ 1106 *msg = uwq->msg; 1107 spin_unlock(&ctx->fault_pending_wqh.lock); 1108 ret = 0; 1109 break; 1110 } 1111 spin_unlock(&ctx->fault_pending_wqh.lock); 1112 1113 spin_lock(&ctx->event_wqh.lock); 1114 uwq = find_userfault_evt(ctx); 1115 if (uwq) { 1116 *msg = uwq->msg; 1117 1118 if (uwq->msg.event == UFFD_EVENT_FORK) { 1119 fork_nctx = (struct userfaultfd_ctx *) 1120 (unsigned long) 1121 uwq->msg.arg.reserved.reserved1; 1122 list_move(&uwq->wq.entry, &fork_event); 1123 /* 1124 * fork_nctx can be freed as soon as 1125 * we drop the lock, unless we take a 1126 * reference on it. 1127 */ 1128 userfaultfd_ctx_get(fork_nctx); 1129 spin_unlock(&ctx->event_wqh.lock); 1130 ret = 0; 1131 break; 1132 } 1133 1134 userfaultfd_event_complete(ctx, uwq); 1135 spin_unlock(&ctx->event_wqh.lock); 1136 ret = 0; 1137 break; 1138 } 1139 spin_unlock(&ctx->event_wqh.lock); 1140 1141 if (signal_pending(current)) { 1142 ret = -ERESTARTSYS; 1143 break; 1144 } 1145 if (no_wait) { 1146 ret = -EAGAIN; 1147 break; 1148 } 1149 spin_unlock_irq(&ctx->fd_wqh.lock); 1150 schedule(); 1151 spin_lock_irq(&ctx->fd_wqh.lock); 1152 } 1153 __remove_wait_queue(&ctx->fd_wqh, &wait); 1154 __set_current_state(TASK_RUNNING); 1155 spin_unlock_irq(&ctx->fd_wqh.lock); 1156 1157 if (!ret && msg->event == UFFD_EVENT_FORK) { 1158 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1159 spin_lock_irq(&ctx->event_wqh.lock); 1160 if (!list_empty(&fork_event)) { 1161 /* 1162 * The fork thread didn't abort, so we can 1163 * drop the temporary refcount. 1164 */ 1165 userfaultfd_ctx_put(fork_nctx); 1166 1167 uwq = list_first_entry(&fork_event, 1168 typeof(*uwq), 1169 wq.entry); 1170 /* 1171 * If fork_event list wasn't empty and in turn 1172 * the event wasn't already released by fork 1173 * (the event is allocated on fork kernel 1174 * stack), put the event back to its place in 1175 * the event_wq. fork_event head will be freed 1176 * as soon as we return so the event cannot 1177 * stay queued there no matter the current 1178 * "ret" value. 1179 */ 1180 list_del(&uwq->wq.entry); 1181 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1182 1183 /* 1184 * Leave the event in the waitqueue and report 1185 * error to userland if we failed to resolve 1186 * the userfault fork. 1187 */ 1188 if (likely(!ret)) 1189 userfaultfd_event_complete(ctx, uwq); 1190 } else { 1191 /* 1192 * Here the fork thread aborted and the 1193 * refcount from the fork thread on fork_nctx 1194 * has already been released. We still hold 1195 * the reference we took before releasing the 1196 * lock above. If resolve_userfault_fork 1197 * failed we've to drop it because the 1198 * fork_nctx has to be freed in such case. If 1199 * it succeeded we'll hold it because the new 1200 * uffd references it. 1201 */ 1202 if (ret) 1203 userfaultfd_ctx_put(fork_nctx); 1204 } 1205 spin_unlock_irq(&ctx->event_wqh.lock); 1206 } 1207 1208 return ret; 1209 } 1210 1211 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1212 size_t count, loff_t *ppos) 1213 { 1214 struct userfaultfd_ctx *ctx = file->private_data; 1215 ssize_t _ret, ret = 0; 1216 struct uffd_msg msg; 1217 int no_wait = file->f_flags & O_NONBLOCK; 1218 struct inode *inode = file_inode(file); 1219 1220 if (!userfaultfd_is_initialized(ctx)) 1221 return -EINVAL; 1222 1223 for (;;) { 1224 if (count < sizeof(msg)) 1225 return ret ? ret : -EINVAL; 1226 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1227 if (_ret < 0) 1228 return ret ? ret : _ret; 1229 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1230 return ret ? ret : -EFAULT; 1231 ret += sizeof(msg); 1232 buf += sizeof(msg); 1233 count -= sizeof(msg); 1234 /* 1235 * Allow to read more than one fault at time but only 1236 * block if waiting for the very first one. 1237 */ 1238 no_wait = O_NONBLOCK; 1239 } 1240 } 1241 1242 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1243 struct userfaultfd_wake_range *range) 1244 { 1245 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1246 /* wake all in the range and autoremove */ 1247 if (waitqueue_active(&ctx->fault_pending_wqh)) 1248 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1249 range); 1250 if (waitqueue_active(&ctx->fault_wqh)) 1251 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1252 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1253 } 1254 1255 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1256 struct userfaultfd_wake_range *range) 1257 { 1258 unsigned seq; 1259 bool need_wakeup; 1260 1261 /* 1262 * To be sure waitqueue_active() is not reordered by the CPU 1263 * before the pagetable update, use an explicit SMP memory 1264 * barrier here. PT lock release or mmap_read_unlock(mm) still 1265 * have release semantics that can allow the 1266 * waitqueue_active() to be reordered before the pte update. 1267 */ 1268 smp_mb(); 1269 1270 /* 1271 * Use waitqueue_active because it's very frequent to 1272 * change the address space atomically even if there are no 1273 * userfaults yet. So we take the spinlock only when we're 1274 * sure we've userfaults to wake. 1275 */ 1276 do { 1277 seq = read_seqcount_begin(&ctx->refile_seq); 1278 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1279 waitqueue_active(&ctx->fault_wqh); 1280 cond_resched(); 1281 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1282 if (need_wakeup) 1283 __wake_userfault(ctx, range); 1284 } 1285 1286 static __always_inline int validate_unaligned_range( 1287 struct mm_struct *mm, __u64 start, __u64 len) 1288 { 1289 __u64 task_size = mm->task_size; 1290 1291 if (len & ~PAGE_MASK) 1292 return -EINVAL; 1293 if (!len) 1294 return -EINVAL; 1295 if (start < mmap_min_addr) 1296 return -EINVAL; 1297 if (start >= task_size) 1298 return -EINVAL; 1299 if (len > task_size - start) 1300 return -EINVAL; 1301 if (start + len <= start) 1302 return -EINVAL; 1303 return 0; 1304 } 1305 1306 static __always_inline int validate_range(struct mm_struct *mm, 1307 __u64 start, __u64 len) 1308 { 1309 if (start & ~PAGE_MASK) 1310 return -EINVAL; 1311 1312 return validate_unaligned_range(mm, start, len); 1313 } 1314 1315 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1316 unsigned long arg) 1317 { 1318 struct mm_struct *mm = ctx->mm; 1319 struct vm_area_struct *vma, *prev, *cur; 1320 int ret; 1321 struct uffdio_register uffdio_register; 1322 struct uffdio_register __user *user_uffdio_register; 1323 unsigned long vm_flags, new_flags; 1324 bool found; 1325 bool basic_ioctls; 1326 unsigned long start, end, vma_end; 1327 struct vma_iterator vmi; 1328 pgoff_t pgoff; 1329 1330 user_uffdio_register = (struct uffdio_register __user *) arg; 1331 1332 ret = -EFAULT; 1333 if (copy_from_user(&uffdio_register, user_uffdio_register, 1334 sizeof(uffdio_register)-sizeof(__u64))) 1335 goto out; 1336 1337 ret = -EINVAL; 1338 if (!uffdio_register.mode) 1339 goto out; 1340 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1341 goto out; 1342 vm_flags = 0; 1343 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1344 vm_flags |= VM_UFFD_MISSING; 1345 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1346 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1347 goto out; 1348 #endif 1349 vm_flags |= VM_UFFD_WP; 1350 } 1351 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1352 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1353 goto out; 1354 #endif 1355 vm_flags |= VM_UFFD_MINOR; 1356 } 1357 1358 ret = validate_range(mm, uffdio_register.range.start, 1359 uffdio_register.range.len); 1360 if (ret) 1361 goto out; 1362 1363 start = uffdio_register.range.start; 1364 end = start + uffdio_register.range.len; 1365 1366 ret = -ENOMEM; 1367 if (!mmget_not_zero(mm)) 1368 goto out; 1369 1370 ret = -EINVAL; 1371 mmap_write_lock(mm); 1372 vma_iter_init(&vmi, mm, start); 1373 vma = vma_find(&vmi, end); 1374 if (!vma) 1375 goto out_unlock; 1376 1377 /* 1378 * If the first vma contains huge pages, make sure start address 1379 * is aligned to huge page size. 1380 */ 1381 if (is_vm_hugetlb_page(vma)) { 1382 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1383 1384 if (start & (vma_hpagesize - 1)) 1385 goto out_unlock; 1386 } 1387 1388 /* 1389 * Search for not compatible vmas. 1390 */ 1391 found = false; 1392 basic_ioctls = false; 1393 cur = vma; 1394 do { 1395 cond_resched(); 1396 1397 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1398 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1399 1400 /* check not compatible vmas */ 1401 ret = -EINVAL; 1402 if (!vma_can_userfault(cur, vm_flags)) 1403 goto out_unlock; 1404 1405 /* 1406 * UFFDIO_COPY will fill file holes even without 1407 * PROT_WRITE. This check enforces that if this is a 1408 * MAP_SHARED, the process has write permission to the backing 1409 * file. If VM_MAYWRITE is set it also enforces that on a 1410 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1411 * F_WRITE_SEAL can be taken until the vma is destroyed. 1412 */ 1413 ret = -EPERM; 1414 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1415 goto out_unlock; 1416 1417 /* 1418 * If this vma contains ending address, and huge pages 1419 * check alignment. 1420 */ 1421 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1422 end > cur->vm_start) { 1423 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1424 1425 ret = -EINVAL; 1426 1427 if (end & (vma_hpagesize - 1)) 1428 goto out_unlock; 1429 } 1430 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1431 goto out_unlock; 1432 1433 /* 1434 * Check that this vma isn't already owned by a 1435 * different userfaultfd. We can't allow more than one 1436 * userfaultfd to own a single vma simultaneously or we 1437 * wouldn't know which one to deliver the userfaults to. 1438 */ 1439 ret = -EBUSY; 1440 if (cur->vm_userfaultfd_ctx.ctx && 1441 cur->vm_userfaultfd_ctx.ctx != ctx) 1442 goto out_unlock; 1443 1444 /* 1445 * Note vmas containing huge pages 1446 */ 1447 if (is_vm_hugetlb_page(cur)) 1448 basic_ioctls = true; 1449 1450 found = true; 1451 } for_each_vma_range(vmi, cur, end); 1452 BUG_ON(!found); 1453 1454 vma_iter_set(&vmi, start); 1455 prev = vma_prev(&vmi); 1456 if (vma->vm_start < start) 1457 prev = vma; 1458 1459 ret = 0; 1460 for_each_vma_range(vmi, vma, end) { 1461 cond_resched(); 1462 1463 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1464 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1465 vma->vm_userfaultfd_ctx.ctx != ctx); 1466 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1467 1468 /* 1469 * Nothing to do: this vma is already registered into this 1470 * userfaultfd and with the right tracking mode too. 1471 */ 1472 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1473 (vma->vm_flags & vm_flags) == vm_flags) 1474 goto skip; 1475 1476 if (vma->vm_start > start) 1477 start = vma->vm_start; 1478 vma_end = min(end, vma->vm_end); 1479 1480 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1481 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1482 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1483 vma->anon_vma, vma->vm_file, pgoff, 1484 vma_policy(vma), 1485 ((struct vm_userfaultfd_ctx){ ctx }), 1486 anon_vma_name(vma)); 1487 if (prev) { 1488 /* vma_merge() invalidated the mas */ 1489 vma = prev; 1490 goto next; 1491 } 1492 if (vma->vm_start < start) { 1493 ret = split_vma(&vmi, vma, start, 1); 1494 if (ret) 1495 break; 1496 } 1497 if (vma->vm_end > end) { 1498 ret = split_vma(&vmi, vma, end, 0); 1499 if (ret) 1500 break; 1501 } 1502 next: 1503 /* 1504 * In the vma_merge() successful mprotect-like case 8: 1505 * the next vma was merged into the current one and 1506 * the current one has not been updated yet. 1507 */ 1508 vma_start_write(vma); 1509 userfaultfd_set_vm_flags(vma, new_flags); 1510 vma->vm_userfaultfd_ctx.ctx = ctx; 1511 1512 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1513 hugetlb_unshare_all_pmds(vma); 1514 1515 skip: 1516 prev = vma; 1517 start = vma->vm_end; 1518 } 1519 1520 out_unlock: 1521 mmap_write_unlock(mm); 1522 mmput(mm); 1523 if (!ret) { 1524 __u64 ioctls_out; 1525 1526 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1527 UFFD_API_RANGE_IOCTLS; 1528 1529 /* 1530 * Declare the WP ioctl only if the WP mode is 1531 * specified and all checks passed with the range 1532 */ 1533 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1534 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1535 1536 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1537 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1538 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1539 1540 /* 1541 * Now that we scanned all vmas we can already tell 1542 * userland which ioctls methods are guaranteed to 1543 * succeed on this range. 1544 */ 1545 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1546 ret = -EFAULT; 1547 } 1548 out: 1549 return ret; 1550 } 1551 1552 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1553 unsigned long arg) 1554 { 1555 struct mm_struct *mm = ctx->mm; 1556 struct vm_area_struct *vma, *prev, *cur; 1557 int ret; 1558 struct uffdio_range uffdio_unregister; 1559 unsigned long new_flags; 1560 bool found; 1561 unsigned long start, end, vma_end; 1562 const void __user *buf = (void __user *)arg; 1563 struct vma_iterator vmi; 1564 pgoff_t pgoff; 1565 1566 ret = -EFAULT; 1567 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1568 goto out; 1569 1570 ret = validate_range(mm, uffdio_unregister.start, 1571 uffdio_unregister.len); 1572 if (ret) 1573 goto out; 1574 1575 start = uffdio_unregister.start; 1576 end = start + uffdio_unregister.len; 1577 1578 ret = -ENOMEM; 1579 if (!mmget_not_zero(mm)) 1580 goto out; 1581 1582 mmap_write_lock(mm); 1583 ret = -EINVAL; 1584 vma_iter_init(&vmi, mm, start); 1585 vma = vma_find(&vmi, end); 1586 if (!vma) 1587 goto out_unlock; 1588 1589 /* 1590 * If the first vma contains huge pages, make sure start address 1591 * is aligned to huge page size. 1592 */ 1593 if (is_vm_hugetlb_page(vma)) { 1594 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1595 1596 if (start & (vma_hpagesize - 1)) 1597 goto out_unlock; 1598 } 1599 1600 /* 1601 * Search for not compatible vmas. 1602 */ 1603 found = false; 1604 cur = vma; 1605 do { 1606 cond_resched(); 1607 1608 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1609 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1610 1611 /* 1612 * Check not compatible vmas, not strictly required 1613 * here as not compatible vmas cannot have an 1614 * userfaultfd_ctx registered on them, but this 1615 * provides for more strict behavior to notice 1616 * unregistration errors. 1617 */ 1618 if (!vma_can_userfault(cur, cur->vm_flags)) 1619 goto out_unlock; 1620 1621 found = true; 1622 } for_each_vma_range(vmi, cur, end); 1623 BUG_ON(!found); 1624 1625 vma_iter_set(&vmi, start); 1626 prev = vma_prev(&vmi); 1627 if (vma->vm_start < start) 1628 prev = vma; 1629 1630 ret = 0; 1631 for_each_vma_range(vmi, vma, end) { 1632 cond_resched(); 1633 1634 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1635 1636 /* 1637 * Nothing to do: this vma is already registered into this 1638 * userfaultfd and with the right tracking mode too. 1639 */ 1640 if (!vma->vm_userfaultfd_ctx.ctx) 1641 goto skip; 1642 1643 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1644 1645 if (vma->vm_start > start) 1646 start = vma->vm_start; 1647 vma_end = min(end, vma->vm_end); 1648 1649 if (userfaultfd_missing(vma)) { 1650 /* 1651 * Wake any concurrent pending userfault while 1652 * we unregister, so they will not hang 1653 * permanently and it avoids userland to call 1654 * UFFDIO_WAKE explicitly. 1655 */ 1656 struct userfaultfd_wake_range range; 1657 range.start = start; 1658 range.len = vma_end - start; 1659 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1660 } 1661 1662 /* Reset ptes for the whole vma range if wr-protected */ 1663 if (userfaultfd_wp(vma)) 1664 uffd_wp_range(vma, start, vma_end - start, false); 1665 1666 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1667 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1668 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1669 vma->anon_vma, vma->vm_file, pgoff, 1670 vma_policy(vma), 1671 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1672 if (prev) { 1673 vma = prev; 1674 goto next; 1675 } 1676 if (vma->vm_start < start) { 1677 ret = split_vma(&vmi, vma, start, 1); 1678 if (ret) 1679 break; 1680 } 1681 if (vma->vm_end > end) { 1682 ret = split_vma(&vmi, vma, end, 0); 1683 if (ret) 1684 break; 1685 } 1686 next: 1687 /* 1688 * In the vma_merge() successful mprotect-like case 8: 1689 * the next vma was merged into the current one and 1690 * the current one has not been updated yet. 1691 */ 1692 vma_start_write(vma); 1693 userfaultfd_set_vm_flags(vma, new_flags); 1694 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1695 1696 skip: 1697 prev = vma; 1698 start = vma->vm_end; 1699 } 1700 1701 out_unlock: 1702 mmap_write_unlock(mm); 1703 mmput(mm); 1704 out: 1705 return ret; 1706 } 1707 1708 /* 1709 * userfaultfd_wake may be used in combination with the 1710 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1711 */ 1712 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1713 unsigned long arg) 1714 { 1715 int ret; 1716 struct uffdio_range uffdio_wake; 1717 struct userfaultfd_wake_range range; 1718 const void __user *buf = (void __user *)arg; 1719 1720 ret = -EFAULT; 1721 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1722 goto out; 1723 1724 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1725 if (ret) 1726 goto out; 1727 1728 range.start = uffdio_wake.start; 1729 range.len = uffdio_wake.len; 1730 1731 /* 1732 * len == 0 means wake all and we don't want to wake all here, 1733 * so check it again to be sure. 1734 */ 1735 VM_BUG_ON(!range.len); 1736 1737 wake_userfault(ctx, &range); 1738 ret = 0; 1739 1740 out: 1741 return ret; 1742 } 1743 1744 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1745 unsigned long arg) 1746 { 1747 __s64 ret; 1748 struct uffdio_copy uffdio_copy; 1749 struct uffdio_copy __user *user_uffdio_copy; 1750 struct userfaultfd_wake_range range; 1751 uffd_flags_t flags = 0; 1752 1753 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1754 1755 ret = -EAGAIN; 1756 if (atomic_read(&ctx->mmap_changing)) 1757 goto out; 1758 1759 ret = -EFAULT; 1760 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1761 /* don't copy "copy" last field */ 1762 sizeof(uffdio_copy)-sizeof(__s64))) 1763 goto out; 1764 1765 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1766 uffdio_copy.len); 1767 if (ret) 1768 goto out; 1769 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1770 if (ret) 1771 goto out; 1772 1773 ret = -EINVAL; 1774 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1775 goto out; 1776 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1777 flags |= MFILL_ATOMIC_WP; 1778 if (mmget_not_zero(ctx->mm)) { 1779 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1780 uffdio_copy.len, &ctx->mmap_changing, 1781 flags); 1782 mmput(ctx->mm); 1783 } else { 1784 return -ESRCH; 1785 } 1786 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1787 return -EFAULT; 1788 if (ret < 0) 1789 goto out; 1790 BUG_ON(!ret); 1791 /* len == 0 would wake all */ 1792 range.len = ret; 1793 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1794 range.start = uffdio_copy.dst; 1795 wake_userfault(ctx, &range); 1796 } 1797 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1798 out: 1799 return ret; 1800 } 1801 1802 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1803 unsigned long arg) 1804 { 1805 __s64 ret; 1806 struct uffdio_zeropage uffdio_zeropage; 1807 struct uffdio_zeropage __user *user_uffdio_zeropage; 1808 struct userfaultfd_wake_range range; 1809 1810 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1811 1812 ret = -EAGAIN; 1813 if (atomic_read(&ctx->mmap_changing)) 1814 goto out; 1815 1816 ret = -EFAULT; 1817 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1818 /* don't copy "zeropage" last field */ 1819 sizeof(uffdio_zeropage)-sizeof(__s64))) 1820 goto out; 1821 1822 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1823 uffdio_zeropage.range.len); 1824 if (ret) 1825 goto out; 1826 ret = -EINVAL; 1827 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1828 goto out; 1829 1830 if (mmget_not_zero(ctx->mm)) { 1831 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start, 1832 uffdio_zeropage.range.len, 1833 &ctx->mmap_changing); 1834 mmput(ctx->mm); 1835 } else { 1836 return -ESRCH; 1837 } 1838 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1839 return -EFAULT; 1840 if (ret < 0) 1841 goto out; 1842 /* len == 0 would wake all */ 1843 BUG_ON(!ret); 1844 range.len = ret; 1845 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1846 range.start = uffdio_zeropage.range.start; 1847 wake_userfault(ctx, &range); 1848 } 1849 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1850 out: 1851 return ret; 1852 } 1853 1854 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1855 unsigned long arg) 1856 { 1857 int ret; 1858 struct uffdio_writeprotect uffdio_wp; 1859 struct uffdio_writeprotect __user *user_uffdio_wp; 1860 struct userfaultfd_wake_range range; 1861 bool mode_wp, mode_dontwake; 1862 1863 if (atomic_read(&ctx->mmap_changing)) 1864 return -EAGAIN; 1865 1866 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1867 1868 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1869 sizeof(struct uffdio_writeprotect))) 1870 return -EFAULT; 1871 1872 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1873 uffdio_wp.range.len); 1874 if (ret) 1875 return ret; 1876 1877 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1878 UFFDIO_WRITEPROTECT_MODE_WP)) 1879 return -EINVAL; 1880 1881 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1882 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1883 1884 if (mode_wp && mode_dontwake) 1885 return -EINVAL; 1886 1887 if (mmget_not_zero(ctx->mm)) { 1888 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1889 uffdio_wp.range.len, mode_wp, 1890 &ctx->mmap_changing); 1891 mmput(ctx->mm); 1892 } else { 1893 return -ESRCH; 1894 } 1895 1896 if (ret) 1897 return ret; 1898 1899 if (!mode_wp && !mode_dontwake) { 1900 range.start = uffdio_wp.range.start; 1901 range.len = uffdio_wp.range.len; 1902 wake_userfault(ctx, &range); 1903 } 1904 return ret; 1905 } 1906 1907 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1908 { 1909 __s64 ret; 1910 struct uffdio_continue uffdio_continue; 1911 struct uffdio_continue __user *user_uffdio_continue; 1912 struct userfaultfd_wake_range range; 1913 uffd_flags_t flags = 0; 1914 1915 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1916 1917 ret = -EAGAIN; 1918 if (atomic_read(&ctx->mmap_changing)) 1919 goto out; 1920 1921 ret = -EFAULT; 1922 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1923 /* don't copy the output fields */ 1924 sizeof(uffdio_continue) - (sizeof(__s64)))) 1925 goto out; 1926 1927 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1928 uffdio_continue.range.len); 1929 if (ret) 1930 goto out; 1931 1932 ret = -EINVAL; 1933 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1934 UFFDIO_CONTINUE_MODE_WP)) 1935 goto out; 1936 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1937 flags |= MFILL_ATOMIC_WP; 1938 1939 if (mmget_not_zero(ctx->mm)) { 1940 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start, 1941 uffdio_continue.range.len, 1942 &ctx->mmap_changing, flags); 1943 mmput(ctx->mm); 1944 } else { 1945 return -ESRCH; 1946 } 1947 1948 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1949 return -EFAULT; 1950 if (ret < 0) 1951 goto out; 1952 1953 /* len == 0 would wake all */ 1954 BUG_ON(!ret); 1955 range.len = ret; 1956 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1957 range.start = uffdio_continue.range.start; 1958 wake_userfault(ctx, &range); 1959 } 1960 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1961 1962 out: 1963 return ret; 1964 } 1965 1966 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1967 { 1968 __s64 ret; 1969 struct uffdio_poison uffdio_poison; 1970 struct uffdio_poison __user *user_uffdio_poison; 1971 struct userfaultfd_wake_range range; 1972 1973 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1974 1975 ret = -EAGAIN; 1976 if (atomic_read(&ctx->mmap_changing)) 1977 goto out; 1978 1979 ret = -EFAULT; 1980 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1981 /* don't copy the output fields */ 1982 sizeof(uffdio_poison) - (sizeof(__s64)))) 1983 goto out; 1984 1985 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1986 uffdio_poison.range.len); 1987 if (ret) 1988 goto out; 1989 1990 ret = -EINVAL; 1991 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1992 goto out; 1993 1994 if (mmget_not_zero(ctx->mm)) { 1995 ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start, 1996 uffdio_poison.range.len, 1997 &ctx->mmap_changing, 0); 1998 mmput(ctx->mm); 1999 } else { 2000 return -ESRCH; 2001 } 2002 2003 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 2004 return -EFAULT; 2005 if (ret < 0) 2006 goto out; 2007 2008 /* len == 0 would wake all */ 2009 BUG_ON(!ret); 2010 range.len = ret; 2011 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 2012 range.start = uffdio_poison.range.start; 2013 wake_userfault(ctx, &range); 2014 } 2015 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 2016 2017 out: 2018 return ret; 2019 } 2020 2021 static inline unsigned int uffd_ctx_features(__u64 user_features) 2022 { 2023 /* 2024 * For the current set of features the bits just coincide. Set 2025 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 2026 */ 2027 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 2028 } 2029 2030 /* 2031 * userland asks for a certain API version and we return which bits 2032 * and ioctl commands are implemented in this kernel for such API 2033 * version or -EINVAL if unknown. 2034 */ 2035 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2036 unsigned long arg) 2037 { 2038 struct uffdio_api uffdio_api; 2039 void __user *buf = (void __user *)arg; 2040 unsigned int ctx_features; 2041 int ret; 2042 __u64 features; 2043 2044 ret = -EFAULT; 2045 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2046 goto out; 2047 features = uffdio_api.features; 2048 ret = -EINVAL; 2049 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 2050 goto err_out; 2051 ret = -EPERM; 2052 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2053 goto err_out; 2054 /* report all available features and ioctls to userland */ 2055 uffdio_api.features = UFFD_API_FEATURES; 2056 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2057 uffdio_api.features &= 2058 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2059 #endif 2060 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2061 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2062 #endif 2063 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2064 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2065 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2066 #endif 2067 uffdio_api.ioctls = UFFD_API_IOCTLS; 2068 ret = -EFAULT; 2069 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2070 goto out; 2071 2072 /* only enable the requested features for this uffd context */ 2073 ctx_features = uffd_ctx_features(features); 2074 ret = -EINVAL; 2075 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2076 goto err_out; 2077 2078 ret = 0; 2079 out: 2080 return ret; 2081 err_out: 2082 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2083 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2084 ret = -EFAULT; 2085 goto out; 2086 } 2087 2088 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2089 unsigned long arg) 2090 { 2091 int ret = -EINVAL; 2092 struct userfaultfd_ctx *ctx = file->private_data; 2093 2094 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2095 return -EINVAL; 2096 2097 switch(cmd) { 2098 case UFFDIO_API: 2099 ret = userfaultfd_api(ctx, arg); 2100 break; 2101 case UFFDIO_REGISTER: 2102 ret = userfaultfd_register(ctx, arg); 2103 break; 2104 case UFFDIO_UNREGISTER: 2105 ret = userfaultfd_unregister(ctx, arg); 2106 break; 2107 case UFFDIO_WAKE: 2108 ret = userfaultfd_wake(ctx, arg); 2109 break; 2110 case UFFDIO_COPY: 2111 ret = userfaultfd_copy(ctx, arg); 2112 break; 2113 case UFFDIO_ZEROPAGE: 2114 ret = userfaultfd_zeropage(ctx, arg); 2115 break; 2116 case UFFDIO_WRITEPROTECT: 2117 ret = userfaultfd_writeprotect(ctx, arg); 2118 break; 2119 case UFFDIO_CONTINUE: 2120 ret = userfaultfd_continue(ctx, arg); 2121 break; 2122 case UFFDIO_POISON: 2123 ret = userfaultfd_poison(ctx, arg); 2124 break; 2125 } 2126 return ret; 2127 } 2128 2129 #ifdef CONFIG_PROC_FS 2130 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2131 { 2132 struct userfaultfd_ctx *ctx = f->private_data; 2133 wait_queue_entry_t *wq; 2134 unsigned long pending = 0, total = 0; 2135 2136 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2137 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2138 pending++; 2139 total++; 2140 } 2141 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2142 total++; 2143 } 2144 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2145 2146 /* 2147 * If more protocols will be added, there will be all shown 2148 * separated by a space. Like this: 2149 * protocols: aa:... bb:... 2150 */ 2151 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2152 pending, total, UFFD_API, ctx->features, 2153 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2154 } 2155 #endif 2156 2157 static const struct file_operations userfaultfd_fops = { 2158 #ifdef CONFIG_PROC_FS 2159 .show_fdinfo = userfaultfd_show_fdinfo, 2160 #endif 2161 .release = userfaultfd_release, 2162 .poll = userfaultfd_poll, 2163 .read = userfaultfd_read, 2164 .unlocked_ioctl = userfaultfd_ioctl, 2165 .compat_ioctl = compat_ptr_ioctl, 2166 .llseek = noop_llseek, 2167 }; 2168 2169 static void init_once_userfaultfd_ctx(void *mem) 2170 { 2171 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2172 2173 init_waitqueue_head(&ctx->fault_pending_wqh); 2174 init_waitqueue_head(&ctx->fault_wqh); 2175 init_waitqueue_head(&ctx->event_wqh); 2176 init_waitqueue_head(&ctx->fd_wqh); 2177 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2178 } 2179 2180 static int new_userfaultfd(int flags) 2181 { 2182 struct userfaultfd_ctx *ctx; 2183 int fd; 2184 2185 BUG_ON(!current->mm); 2186 2187 /* Check the UFFD_* constants for consistency. */ 2188 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2189 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2190 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2191 2192 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2193 return -EINVAL; 2194 2195 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2196 if (!ctx) 2197 return -ENOMEM; 2198 2199 refcount_set(&ctx->refcount, 1); 2200 ctx->flags = flags; 2201 ctx->features = 0; 2202 ctx->released = false; 2203 atomic_set(&ctx->mmap_changing, 0); 2204 ctx->mm = current->mm; 2205 /* prevent the mm struct to be freed */ 2206 mmgrab(ctx->mm); 2207 2208 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2209 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2210 if (fd < 0) { 2211 mmdrop(ctx->mm); 2212 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2213 } 2214 return fd; 2215 } 2216 2217 static inline bool userfaultfd_syscall_allowed(int flags) 2218 { 2219 /* Userspace-only page faults are always allowed */ 2220 if (flags & UFFD_USER_MODE_ONLY) 2221 return true; 2222 2223 /* 2224 * The user is requesting a userfaultfd which can handle kernel faults. 2225 * Privileged users are always allowed to do this. 2226 */ 2227 if (capable(CAP_SYS_PTRACE)) 2228 return true; 2229 2230 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2231 return sysctl_unprivileged_userfaultfd; 2232 } 2233 2234 SYSCALL_DEFINE1(userfaultfd, int, flags) 2235 { 2236 if (!userfaultfd_syscall_allowed(flags)) 2237 return -EPERM; 2238 2239 return new_userfaultfd(flags); 2240 } 2241 2242 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2243 { 2244 if (cmd != USERFAULTFD_IOC_NEW) 2245 return -EINVAL; 2246 2247 return new_userfaultfd(flags); 2248 } 2249 2250 static const struct file_operations userfaultfd_dev_fops = { 2251 .unlocked_ioctl = userfaultfd_dev_ioctl, 2252 .compat_ioctl = userfaultfd_dev_ioctl, 2253 .owner = THIS_MODULE, 2254 .llseek = noop_llseek, 2255 }; 2256 2257 static struct miscdevice userfaultfd_misc = { 2258 .minor = MISC_DYNAMIC_MINOR, 2259 .name = "userfaultfd", 2260 .fops = &userfaultfd_dev_fops 2261 }; 2262 2263 static int __init userfaultfd_init(void) 2264 { 2265 int ret; 2266 2267 ret = misc_register(&userfaultfd_misc); 2268 if (ret) 2269 return ret; 2270 2271 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2272 sizeof(struct userfaultfd_ctx), 2273 0, 2274 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2275 init_once_userfaultfd_ctx); 2276 #ifdef CONFIG_SYSCTL 2277 register_sysctl_init("vm", vm_userfaultfd_table); 2278 #endif 2279 return 0; 2280 } 2281 __initcall(userfaultfd_init); 2282