1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 #ifdef CONFIG_SYSCTL 38 static struct ctl_table vm_userfaultfd_table[] = { 39 { 40 .procname = "unprivileged_userfaultfd", 41 .data = &sysctl_unprivileged_userfaultfd, 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 43 .mode = 0644, 44 .proc_handler = proc_dointvec_minmax, 45 .extra1 = SYSCTL_ZERO, 46 .extra2 = SYSCTL_ONE, 47 }, 48 }; 49 #endif 50 51 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init; 52 53 struct userfaultfd_fork_ctx { 54 struct userfaultfd_ctx *orig; 55 struct userfaultfd_ctx *new; 56 struct list_head list; 57 }; 58 59 struct userfaultfd_unmap_ctx { 60 struct userfaultfd_ctx *ctx; 61 unsigned long start; 62 unsigned long end; 63 struct list_head list; 64 }; 65 66 struct userfaultfd_wait_queue { 67 struct uffd_msg msg; 68 wait_queue_entry_t wq; 69 struct userfaultfd_ctx *ctx; 70 bool waken; 71 }; 72 73 struct userfaultfd_wake_range { 74 unsigned long start; 75 unsigned long len; 76 }; 77 78 /* internal indication that UFFD_API ioctl was successfully executed */ 79 #define UFFD_FEATURE_INITIALIZED (1u << 31) 80 81 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 82 { 83 return ctx->features & UFFD_FEATURE_INITIALIZED; 84 } 85 86 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx) 87 { 88 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC); 89 } 90 91 /* 92 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 93 * meaningful when userfaultfd_wp()==true on the vma and when it's 94 * anonymous. 95 */ 96 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 97 { 98 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 99 100 if (!ctx) 101 return false; 102 103 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 104 } 105 106 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 107 vm_flags_t flags) 108 { 109 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 110 111 vm_flags_reset(vma, flags); 112 /* 113 * For shared mappings, we want to enable writenotify while 114 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 115 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 116 */ 117 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 118 vma_set_page_prot(vma); 119 } 120 121 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 122 int wake_flags, void *key) 123 { 124 struct userfaultfd_wake_range *range = key; 125 int ret; 126 struct userfaultfd_wait_queue *uwq; 127 unsigned long start, len; 128 129 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 130 ret = 0; 131 /* len == 0 means wake all */ 132 start = range->start; 133 len = range->len; 134 if (len && (start > uwq->msg.arg.pagefault.address || 135 start + len <= uwq->msg.arg.pagefault.address)) 136 goto out; 137 WRITE_ONCE(uwq->waken, true); 138 /* 139 * The Program-Order guarantees provided by the scheduler 140 * ensure uwq->waken is visible before the task is woken. 141 */ 142 ret = wake_up_state(wq->private, mode); 143 if (ret) { 144 /* 145 * Wake only once, autoremove behavior. 146 * 147 * After the effect of list_del_init is visible to the other 148 * CPUs, the waitqueue may disappear from under us, see the 149 * !list_empty_careful() in handle_userfault(). 150 * 151 * try_to_wake_up() has an implicit smp_mb(), and the 152 * wq->private is read before calling the extern function 153 * "wake_up_state" (which in turns calls try_to_wake_up). 154 */ 155 list_del_init(&wq->entry); 156 } 157 out: 158 return ret; 159 } 160 161 /** 162 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 163 * context. 164 * @ctx: [in] Pointer to the userfaultfd context. 165 */ 166 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 167 { 168 refcount_inc(&ctx->refcount); 169 } 170 171 /** 172 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 173 * context. 174 * @ctx: [in] Pointer to userfaultfd context. 175 * 176 * The userfaultfd context reference must have been previously acquired either 177 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 178 */ 179 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 180 { 181 if (refcount_dec_and_test(&ctx->refcount)) { 182 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 183 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 184 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 185 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 186 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 187 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 188 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 189 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 190 mmdrop(ctx->mm); 191 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 192 } 193 } 194 195 static inline void msg_init(struct uffd_msg *msg) 196 { 197 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 198 /* 199 * Must use memset to zero out the paddings or kernel data is 200 * leaked to userland. 201 */ 202 memset(msg, 0, sizeof(struct uffd_msg)); 203 } 204 205 static inline struct uffd_msg userfault_msg(unsigned long address, 206 unsigned long real_address, 207 unsigned int flags, 208 unsigned long reason, 209 unsigned int features) 210 { 211 struct uffd_msg msg; 212 213 msg_init(&msg); 214 msg.event = UFFD_EVENT_PAGEFAULT; 215 216 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 217 real_address : address; 218 219 /* 220 * These flags indicate why the userfault occurred: 221 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 222 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 223 * - Neither of these flags being set indicates a MISSING fault. 224 * 225 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 226 * fault. Otherwise, it was a read fault. 227 */ 228 if (flags & FAULT_FLAG_WRITE) 229 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 230 if (reason & VM_UFFD_WP) 231 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 232 if (reason & VM_UFFD_MINOR) 233 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 234 if (features & UFFD_FEATURE_THREAD_ID) 235 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 236 return msg; 237 } 238 239 #ifdef CONFIG_HUGETLB_PAGE 240 /* 241 * Same functionality as userfaultfd_must_wait below with modifications for 242 * hugepmd ranges. 243 */ 244 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 245 struct vm_fault *vmf, 246 unsigned long reason) 247 { 248 struct vm_area_struct *vma = vmf->vma; 249 pte_t *ptep, pte; 250 bool ret = true; 251 252 assert_fault_locked(vmf); 253 254 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); 255 if (!ptep) 256 goto out; 257 258 ret = false; 259 pte = huge_ptep_get(ptep); 260 261 /* 262 * Lockless access: we're in a wait_event so it's ok if it 263 * changes under us. PTE markers should be handled the same as none 264 * ptes here. 265 */ 266 if (huge_pte_none_mostly(pte)) 267 ret = true; 268 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 269 ret = true; 270 out: 271 return ret; 272 } 273 #else 274 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 275 struct vm_fault *vmf, 276 unsigned long reason) 277 { 278 return false; /* should never get here */ 279 } 280 #endif /* CONFIG_HUGETLB_PAGE */ 281 282 /* 283 * Verify the pagetables are still not ok after having reigstered into 284 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 285 * userfault that has already been resolved, if userfaultfd_read and 286 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 287 * threads. 288 */ 289 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 290 struct vm_fault *vmf, 291 unsigned long reason) 292 { 293 struct mm_struct *mm = ctx->mm; 294 unsigned long address = vmf->address; 295 pgd_t *pgd; 296 p4d_t *p4d; 297 pud_t *pud; 298 pmd_t *pmd, _pmd; 299 pte_t *pte; 300 pte_t ptent; 301 bool ret = true; 302 303 assert_fault_locked(vmf); 304 305 pgd = pgd_offset(mm, address); 306 if (!pgd_present(*pgd)) 307 goto out; 308 p4d = p4d_offset(pgd, address); 309 if (!p4d_present(*p4d)) 310 goto out; 311 pud = pud_offset(p4d, address); 312 if (!pud_present(*pud)) 313 goto out; 314 pmd = pmd_offset(pud, address); 315 again: 316 _pmd = pmdp_get_lockless(pmd); 317 if (pmd_none(_pmd)) 318 goto out; 319 320 ret = false; 321 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 322 goto out; 323 324 if (pmd_trans_huge(_pmd)) { 325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 326 ret = true; 327 goto out; 328 } 329 330 pte = pte_offset_map(pmd, address); 331 if (!pte) { 332 ret = true; 333 goto again; 334 } 335 /* 336 * Lockless access: we're in a wait_event so it's ok if it 337 * changes under us. PTE markers should be handled the same as none 338 * ptes here. 339 */ 340 ptent = ptep_get(pte); 341 if (pte_none_mostly(ptent)) 342 ret = true; 343 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 344 ret = true; 345 pte_unmap(pte); 346 347 out: 348 return ret; 349 } 350 351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 352 { 353 if (flags & FAULT_FLAG_INTERRUPTIBLE) 354 return TASK_INTERRUPTIBLE; 355 356 if (flags & FAULT_FLAG_KILLABLE) 357 return TASK_KILLABLE; 358 359 return TASK_UNINTERRUPTIBLE; 360 } 361 362 /* 363 * The locking rules involved in returning VM_FAULT_RETRY depending on 364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 366 * recommendation in __lock_page_or_retry is not an understatement. 367 * 368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 370 * not set. 371 * 372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 373 * set, VM_FAULT_RETRY can still be returned if and only if there are 374 * fatal_signal_pending()s, and the mmap_lock must be released before 375 * returning it. 376 */ 377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 378 { 379 struct vm_area_struct *vma = vmf->vma; 380 struct mm_struct *mm = vma->vm_mm; 381 struct userfaultfd_ctx *ctx; 382 struct userfaultfd_wait_queue uwq; 383 vm_fault_t ret = VM_FAULT_SIGBUS; 384 bool must_wait; 385 unsigned int blocking_state; 386 387 /* 388 * We don't do userfault handling for the final child pid update. 389 * 390 * We also don't do userfault handling during 391 * coredumping. hugetlbfs has the special 392 * hugetlb_follow_page_mask() to skip missing pages in the 393 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 394 * the no_page_table() helper in follow_page_mask(), but the 395 * shmem_vm_ops->fault method is invoked even during 396 * coredumping and it ends up here. 397 */ 398 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 399 goto out; 400 401 assert_fault_locked(vmf); 402 403 ctx = vma->vm_userfaultfd_ctx.ctx; 404 if (!ctx) 405 goto out; 406 407 BUG_ON(ctx->mm != mm); 408 409 /* Any unrecognized flag is a bug. */ 410 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 411 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 412 VM_BUG_ON(!reason || (reason & (reason - 1))); 413 414 if (ctx->features & UFFD_FEATURE_SIGBUS) 415 goto out; 416 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 417 goto out; 418 419 /* 420 * If it's already released don't get it. This avoids to loop 421 * in __get_user_pages if userfaultfd_release waits on the 422 * caller of handle_userfault to release the mmap_lock. 423 */ 424 if (unlikely(READ_ONCE(ctx->released))) { 425 /* 426 * Don't return VM_FAULT_SIGBUS in this case, so a non 427 * cooperative manager can close the uffd after the 428 * last UFFDIO_COPY, without risking to trigger an 429 * involuntary SIGBUS if the process was starting the 430 * userfaultfd while the userfaultfd was still armed 431 * (but after the last UFFDIO_COPY). If the uffd 432 * wasn't already closed when the userfault reached 433 * this point, that would normally be solved by 434 * userfaultfd_must_wait returning 'false'. 435 * 436 * If we were to return VM_FAULT_SIGBUS here, the non 437 * cooperative manager would be instead forced to 438 * always call UFFDIO_UNREGISTER before it can safely 439 * close the uffd. 440 */ 441 ret = VM_FAULT_NOPAGE; 442 goto out; 443 } 444 445 /* 446 * Check that we can return VM_FAULT_RETRY. 447 * 448 * NOTE: it should become possible to return VM_FAULT_RETRY 449 * even if FAULT_FLAG_TRIED is set without leading to gup() 450 * -EBUSY failures, if the userfaultfd is to be extended for 451 * VM_UFFD_WP tracking and we intend to arm the userfault 452 * without first stopping userland access to the memory. For 453 * VM_UFFD_MISSING userfaults this is enough for now. 454 */ 455 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 456 /* 457 * Validate the invariant that nowait must allow retry 458 * to be sure not to return SIGBUS erroneously on 459 * nowait invocations. 460 */ 461 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 462 #ifdef CONFIG_DEBUG_VM 463 if (printk_ratelimit()) { 464 printk(KERN_WARNING 465 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 466 vmf->flags); 467 dump_stack(); 468 } 469 #endif 470 goto out; 471 } 472 473 /* 474 * Handle nowait, not much to do other than tell it to retry 475 * and wait. 476 */ 477 ret = VM_FAULT_RETRY; 478 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 479 goto out; 480 481 /* take the reference before dropping the mmap_lock */ 482 userfaultfd_ctx_get(ctx); 483 484 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 485 uwq.wq.private = current; 486 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 487 reason, ctx->features); 488 uwq.ctx = ctx; 489 uwq.waken = false; 490 491 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 492 493 /* 494 * Take the vma lock now, in order to safely call 495 * userfaultfd_huge_must_wait() later. Since acquiring the 496 * (sleepable) vma lock can modify the current task state, that 497 * must be before explicitly calling set_current_state(). 498 */ 499 if (is_vm_hugetlb_page(vma)) 500 hugetlb_vma_lock_read(vma); 501 502 spin_lock_irq(&ctx->fault_pending_wqh.lock); 503 /* 504 * After the __add_wait_queue the uwq is visible to userland 505 * through poll/read(). 506 */ 507 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 508 /* 509 * The smp_mb() after __set_current_state prevents the reads 510 * following the spin_unlock to happen before the list_add in 511 * __add_wait_queue. 512 */ 513 set_current_state(blocking_state); 514 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 515 516 if (!is_vm_hugetlb_page(vma)) 517 must_wait = userfaultfd_must_wait(ctx, vmf, reason); 518 else 519 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); 520 if (is_vm_hugetlb_page(vma)) 521 hugetlb_vma_unlock_read(vma); 522 release_fault_lock(vmf); 523 524 if (likely(must_wait && !READ_ONCE(ctx->released))) { 525 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 526 schedule(); 527 } 528 529 __set_current_state(TASK_RUNNING); 530 531 /* 532 * Here we race with the list_del; list_add in 533 * userfaultfd_ctx_read(), however because we don't ever run 534 * list_del_init() to refile across the two lists, the prev 535 * and next pointers will never point to self. list_add also 536 * would never let any of the two pointers to point to 537 * self. So list_empty_careful won't risk to see both pointers 538 * pointing to self at any time during the list refile. The 539 * only case where list_del_init() is called is the full 540 * removal in the wake function and there we don't re-list_add 541 * and it's fine not to block on the spinlock. The uwq on this 542 * kernel stack can be released after the list_del_init. 543 */ 544 if (!list_empty_careful(&uwq.wq.entry)) { 545 spin_lock_irq(&ctx->fault_pending_wqh.lock); 546 /* 547 * No need of list_del_init(), the uwq on the stack 548 * will be freed shortly anyway. 549 */ 550 list_del(&uwq.wq.entry); 551 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 552 } 553 554 /* 555 * ctx may go away after this if the userfault pseudo fd is 556 * already released. 557 */ 558 userfaultfd_ctx_put(ctx); 559 560 out: 561 return ret; 562 } 563 564 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 565 struct userfaultfd_wait_queue *ewq) 566 { 567 struct userfaultfd_ctx *release_new_ctx; 568 569 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 570 goto out; 571 572 ewq->ctx = ctx; 573 init_waitqueue_entry(&ewq->wq, current); 574 release_new_ctx = NULL; 575 576 spin_lock_irq(&ctx->event_wqh.lock); 577 /* 578 * After the __add_wait_queue the uwq is visible to userland 579 * through poll/read(). 580 */ 581 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 582 for (;;) { 583 set_current_state(TASK_KILLABLE); 584 if (ewq->msg.event == 0) 585 break; 586 if (READ_ONCE(ctx->released) || 587 fatal_signal_pending(current)) { 588 /* 589 * &ewq->wq may be queued in fork_event, but 590 * __remove_wait_queue ignores the head 591 * parameter. It would be a problem if it 592 * didn't. 593 */ 594 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 595 if (ewq->msg.event == UFFD_EVENT_FORK) { 596 struct userfaultfd_ctx *new; 597 598 new = (struct userfaultfd_ctx *) 599 (unsigned long) 600 ewq->msg.arg.reserved.reserved1; 601 release_new_ctx = new; 602 } 603 break; 604 } 605 606 spin_unlock_irq(&ctx->event_wqh.lock); 607 608 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 609 schedule(); 610 611 spin_lock_irq(&ctx->event_wqh.lock); 612 } 613 __set_current_state(TASK_RUNNING); 614 spin_unlock_irq(&ctx->event_wqh.lock); 615 616 if (release_new_ctx) { 617 struct vm_area_struct *vma; 618 struct mm_struct *mm = release_new_ctx->mm; 619 VMA_ITERATOR(vmi, mm, 0); 620 621 /* the various vma->vm_userfaultfd_ctx still points to it */ 622 mmap_write_lock(mm); 623 for_each_vma(vmi, vma) { 624 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 625 vma_start_write(vma); 626 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 627 userfaultfd_set_vm_flags(vma, 628 vma->vm_flags & ~__VM_UFFD_FLAGS); 629 } 630 } 631 mmap_write_unlock(mm); 632 633 userfaultfd_ctx_put(release_new_ctx); 634 } 635 636 /* 637 * ctx may go away after this if the userfault pseudo fd is 638 * already released. 639 */ 640 out: 641 atomic_dec(&ctx->mmap_changing); 642 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 643 userfaultfd_ctx_put(ctx); 644 } 645 646 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 647 struct userfaultfd_wait_queue *ewq) 648 { 649 ewq->msg.event = 0; 650 wake_up_locked(&ctx->event_wqh); 651 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 652 } 653 654 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 655 { 656 struct userfaultfd_ctx *ctx = NULL, *octx; 657 struct userfaultfd_fork_ctx *fctx; 658 659 octx = vma->vm_userfaultfd_ctx.ctx; 660 if (!octx) 661 return 0; 662 663 if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) { 664 vma_start_write(vma); 665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 666 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 667 return 0; 668 } 669 670 list_for_each_entry(fctx, fcs, list) 671 if (fctx->orig == octx) { 672 ctx = fctx->new; 673 break; 674 } 675 676 if (!ctx) { 677 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 678 if (!fctx) 679 return -ENOMEM; 680 681 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 682 if (!ctx) { 683 kfree(fctx); 684 return -ENOMEM; 685 } 686 687 refcount_set(&ctx->refcount, 1); 688 ctx->flags = octx->flags; 689 ctx->features = octx->features; 690 ctx->released = false; 691 init_rwsem(&ctx->map_changing_lock); 692 atomic_set(&ctx->mmap_changing, 0); 693 ctx->mm = vma->vm_mm; 694 mmgrab(ctx->mm); 695 696 userfaultfd_ctx_get(octx); 697 down_write(&octx->map_changing_lock); 698 atomic_inc(&octx->mmap_changing); 699 up_write(&octx->map_changing_lock); 700 fctx->orig = octx; 701 fctx->new = ctx; 702 list_add_tail(&fctx->list, fcs); 703 } 704 705 vma->vm_userfaultfd_ctx.ctx = ctx; 706 return 0; 707 } 708 709 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 710 { 711 struct userfaultfd_ctx *ctx = fctx->orig; 712 struct userfaultfd_wait_queue ewq; 713 714 msg_init(&ewq.msg); 715 716 ewq.msg.event = UFFD_EVENT_FORK; 717 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 718 719 userfaultfd_event_wait_completion(ctx, &ewq); 720 } 721 722 void dup_userfaultfd_complete(struct list_head *fcs) 723 { 724 struct userfaultfd_fork_ctx *fctx, *n; 725 726 list_for_each_entry_safe(fctx, n, fcs, list) { 727 dup_fctx(fctx); 728 list_del(&fctx->list); 729 kfree(fctx); 730 } 731 } 732 733 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 734 struct vm_userfaultfd_ctx *vm_ctx) 735 { 736 struct userfaultfd_ctx *ctx; 737 738 ctx = vma->vm_userfaultfd_ctx.ctx; 739 740 if (!ctx) 741 return; 742 743 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 744 vm_ctx->ctx = ctx; 745 userfaultfd_ctx_get(ctx); 746 down_write(&ctx->map_changing_lock); 747 atomic_inc(&ctx->mmap_changing); 748 up_write(&ctx->map_changing_lock); 749 } else { 750 /* Drop uffd context if remap feature not enabled */ 751 vma_start_write(vma); 752 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 753 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 754 } 755 } 756 757 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 758 unsigned long from, unsigned long to, 759 unsigned long len) 760 { 761 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 762 struct userfaultfd_wait_queue ewq; 763 764 if (!ctx) 765 return; 766 767 if (to & ~PAGE_MASK) { 768 userfaultfd_ctx_put(ctx); 769 return; 770 } 771 772 msg_init(&ewq.msg); 773 774 ewq.msg.event = UFFD_EVENT_REMAP; 775 ewq.msg.arg.remap.from = from; 776 ewq.msg.arg.remap.to = to; 777 ewq.msg.arg.remap.len = len; 778 779 userfaultfd_event_wait_completion(ctx, &ewq); 780 } 781 782 bool userfaultfd_remove(struct vm_area_struct *vma, 783 unsigned long start, unsigned long end) 784 { 785 struct mm_struct *mm = vma->vm_mm; 786 struct userfaultfd_ctx *ctx; 787 struct userfaultfd_wait_queue ewq; 788 789 ctx = vma->vm_userfaultfd_ctx.ctx; 790 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 791 return true; 792 793 userfaultfd_ctx_get(ctx); 794 down_write(&ctx->map_changing_lock); 795 atomic_inc(&ctx->mmap_changing); 796 up_write(&ctx->map_changing_lock); 797 mmap_read_unlock(mm); 798 799 msg_init(&ewq.msg); 800 801 ewq.msg.event = UFFD_EVENT_REMOVE; 802 ewq.msg.arg.remove.start = start; 803 ewq.msg.arg.remove.end = end; 804 805 userfaultfd_event_wait_completion(ctx, &ewq); 806 807 return false; 808 } 809 810 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 811 unsigned long start, unsigned long end) 812 { 813 struct userfaultfd_unmap_ctx *unmap_ctx; 814 815 list_for_each_entry(unmap_ctx, unmaps, list) 816 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 817 unmap_ctx->end == end) 818 return true; 819 820 return false; 821 } 822 823 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 824 unsigned long end, struct list_head *unmaps) 825 { 826 struct userfaultfd_unmap_ctx *unmap_ctx; 827 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 828 829 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 830 has_unmap_ctx(ctx, unmaps, start, end)) 831 return 0; 832 833 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 834 if (!unmap_ctx) 835 return -ENOMEM; 836 837 userfaultfd_ctx_get(ctx); 838 down_write(&ctx->map_changing_lock); 839 atomic_inc(&ctx->mmap_changing); 840 up_write(&ctx->map_changing_lock); 841 unmap_ctx->ctx = ctx; 842 unmap_ctx->start = start; 843 unmap_ctx->end = end; 844 list_add_tail(&unmap_ctx->list, unmaps); 845 846 return 0; 847 } 848 849 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 850 { 851 struct userfaultfd_unmap_ctx *ctx, *n; 852 struct userfaultfd_wait_queue ewq; 853 854 list_for_each_entry_safe(ctx, n, uf, list) { 855 msg_init(&ewq.msg); 856 857 ewq.msg.event = UFFD_EVENT_UNMAP; 858 ewq.msg.arg.remove.start = ctx->start; 859 ewq.msg.arg.remove.end = ctx->end; 860 861 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 862 863 list_del(&ctx->list); 864 kfree(ctx); 865 } 866 } 867 868 static int userfaultfd_release(struct inode *inode, struct file *file) 869 { 870 struct userfaultfd_ctx *ctx = file->private_data; 871 struct mm_struct *mm = ctx->mm; 872 struct vm_area_struct *vma, *prev; 873 /* len == 0 means wake all */ 874 struct userfaultfd_wake_range range = { .len = 0, }; 875 unsigned long new_flags; 876 VMA_ITERATOR(vmi, mm, 0); 877 878 WRITE_ONCE(ctx->released, true); 879 880 if (!mmget_not_zero(mm)) 881 goto wakeup; 882 883 /* 884 * Flush page faults out of all CPUs. NOTE: all page faults 885 * must be retried without returning VM_FAULT_SIGBUS if 886 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 887 * changes while handle_userfault released the mmap_lock. So 888 * it's critical that released is set to true (above), before 889 * taking the mmap_lock for writing. 890 */ 891 mmap_write_lock(mm); 892 prev = NULL; 893 for_each_vma(vmi, vma) { 894 cond_resched(); 895 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 896 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 897 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 898 prev = vma; 899 continue; 900 } 901 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 902 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start, 903 vma->vm_end, new_flags, 904 NULL_VM_UFFD_CTX); 905 906 vma_start_write(vma); 907 userfaultfd_set_vm_flags(vma, new_flags); 908 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 909 910 prev = vma; 911 } 912 mmap_write_unlock(mm); 913 mmput(mm); 914 wakeup: 915 /* 916 * After no new page faults can wait on this fault_*wqh, flush 917 * the last page faults that may have been already waiting on 918 * the fault_*wqh. 919 */ 920 spin_lock_irq(&ctx->fault_pending_wqh.lock); 921 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 922 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 923 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 924 925 /* Flush pending events that may still wait on event_wqh */ 926 wake_up_all(&ctx->event_wqh); 927 928 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 929 userfaultfd_ctx_put(ctx); 930 return 0; 931 } 932 933 /* fault_pending_wqh.lock must be hold by the caller */ 934 static inline struct userfaultfd_wait_queue *find_userfault_in( 935 wait_queue_head_t *wqh) 936 { 937 wait_queue_entry_t *wq; 938 struct userfaultfd_wait_queue *uwq; 939 940 lockdep_assert_held(&wqh->lock); 941 942 uwq = NULL; 943 if (!waitqueue_active(wqh)) 944 goto out; 945 /* walk in reverse to provide FIFO behavior to read userfaults */ 946 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 947 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 948 out: 949 return uwq; 950 } 951 952 static inline struct userfaultfd_wait_queue *find_userfault( 953 struct userfaultfd_ctx *ctx) 954 { 955 return find_userfault_in(&ctx->fault_pending_wqh); 956 } 957 958 static inline struct userfaultfd_wait_queue *find_userfault_evt( 959 struct userfaultfd_ctx *ctx) 960 { 961 return find_userfault_in(&ctx->event_wqh); 962 } 963 964 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 965 { 966 struct userfaultfd_ctx *ctx = file->private_data; 967 __poll_t ret; 968 969 poll_wait(file, &ctx->fd_wqh, wait); 970 971 if (!userfaultfd_is_initialized(ctx)) 972 return EPOLLERR; 973 974 /* 975 * poll() never guarantees that read won't block. 976 * userfaults can be waken before they're read(). 977 */ 978 if (unlikely(!(file->f_flags & O_NONBLOCK))) 979 return EPOLLERR; 980 /* 981 * lockless access to see if there are pending faults 982 * __pollwait last action is the add_wait_queue but 983 * the spin_unlock would allow the waitqueue_active to 984 * pass above the actual list_add inside 985 * add_wait_queue critical section. So use a full 986 * memory barrier to serialize the list_add write of 987 * add_wait_queue() with the waitqueue_active read 988 * below. 989 */ 990 ret = 0; 991 smp_mb(); 992 if (waitqueue_active(&ctx->fault_pending_wqh)) 993 ret = EPOLLIN; 994 else if (waitqueue_active(&ctx->event_wqh)) 995 ret = EPOLLIN; 996 997 return ret; 998 } 999 1000 static const struct file_operations userfaultfd_fops; 1001 1002 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1003 struct inode *inode, 1004 struct uffd_msg *msg) 1005 { 1006 int fd; 1007 1008 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new, 1009 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1010 if (fd < 0) 1011 return fd; 1012 1013 msg->arg.reserved.reserved1 = 0; 1014 msg->arg.fork.ufd = fd; 1015 return 0; 1016 } 1017 1018 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1019 struct uffd_msg *msg, struct inode *inode) 1020 { 1021 ssize_t ret; 1022 DECLARE_WAITQUEUE(wait, current); 1023 struct userfaultfd_wait_queue *uwq; 1024 /* 1025 * Handling fork event requires sleeping operations, so 1026 * we drop the event_wqh lock, then do these ops, then 1027 * lock it back and wake up the waiter. While the lock is 1028 * dropped the ewq may go away so we keep track of it 1029 * carefully. 1030 */ 1031 LIST_HEAD(fork_event); 1032 struct userfaultfd_ctx *fork_nctx = NULL; 1033 1034 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1035 spin_lock_irq(&ctx->fd_wqh.lock); 1036 __add_wait_queue(&ctx->fd_wqh, &wait); 1037 for (;;) { 1038 set_current_state(TASK_INTERRUPTIBLE); 1039 spin_lock(&ctx->fault_pending_wqh.lock); 1040 uwq = find_userfault(ctx); 1041 if (uwq) { 1042 /* 1043 * Use a seqcount to repeat the lockless check 1044 * in wake_userfault() to avoid missing 1045 * wakeups because during the refile both 1046 * waitqueue could become empty if this is the 1047 * only userfault. 1048 */ 1049 write_seqcount_begin(&ctx->refile_seq); 1050 1051 /* 1052 * The fault_pending_wqh.lock prevents the uwq 1053 * to disappear from under us. 1054 * 1055 * Refile this userfault from 1056 * fault_pending_wqh to fault_wqh, it's not 1057 * pending anymore after we read it. 1058 * 1059 * Use list_del() by hand (as 1060 * userfaultfd_wake_function also uses 1061 * list_del_init() by hand) to be sure nobody 1062 * changes __remove_wait_queue() to use 1063 * list_del_init() in turn breaking the 1064 * !list_empty_careful() check in 1065 * handle_userfault(). The uwq->wq.head list 1066 * must never be empty at any time during the 1067 * refile, or the waitqueue could disappear 1068 * from under us. The "wait_queue_head_t" 1069 * parameter of __remove_wait_queue() is unused 1070 * anyway. 1071 */ 1072 list_del(&uwq->wq.entry); 1073 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1074 1075 write_seqcount_end(&ctx->refile_seq); 1076 1077 /* careful to always initialize msg if ret == 0 */ 1078 *msg = uwq->msg; 1079 spin_unlock(&ctx->fault_pending_wqh.lock); 1080 ret = 0; 1081 break; 1082 } 1083 spin_unlock(&ctx->fault_pending_wqh.lock); 1084 1085 spin_lock(&ctx->event_wqh.lock); 1086 uwq = find_userfault_evt(ctx); 1087 if (uwq) { 1088 *msg = uwq->msg; 1089 1090 if (uwq->msg.event == UFFD_EVENT_FORK) { 1091 fork_nctx = (struct userfaultfd_ctx *) 1092 (unsigned long) 1093 uwq->msg.arg.reserved.reserved1; 1094 list_move(&uwq->wq.entry, &fork_event); 1095 /* 1096 * fork_nctx can be freed as soon as 1097 * we drop the lock, unless we take a 1098 * reference on it. 1099 */ 1100 userfaultfd_ctx_get(fork_nctx); 1101 spin_unlock(&ctx->event_wqh.lock); 1102 ret = 0; 1103 break; 1104 } 1105 1106 userfaultfd_event_complete(ctx, uwq); 1107 spin_unlock(&ctx->event_wqh.lock); 1108 ret = 0; 1109 break; 1110 } 1111 spin_unlock(&ctx->event_wqh.lock); 1112 1113 if (signal_pending(current)) { 1114 ret = -ERESTARTSYS; 1115 break; 1116 } 1117 if (no_wait) { 1118 ret = -EAGAIN; 1119 break; 1120 } 1121 spin_unlock_irq(&ctx->fd_wqh.lock); 1122 schedule(); 1123 spin_lock_irq(&ctx->fd_wqh.lock); 1124 } 1125 __remove_wait_queue(&ctx->fd_wqh, &wait); 1126 __set_current_state(TASK_RUNNING); 1127 spin_unlock_irq(&ctx->fd_wqh.lock); 1128 1129 if (!ret && msg->event == UFFD_EVENT_FORK) { 1130 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1131 spin_lock_irq(&ctx->event_wqh.lock); 1132 if (!list_empty(&fork_event)) { 1133 /* 1134 * The fork thread didn't abort, so we can 1135 * drop the temporary refcount. 1136 */ 1137 userfaultfd_ctx_put(fork_nctx); 1138 1139 uwq = list_first_entry(&fork_event, 1140 typeof(*uwq), 1141 wq.entry); 1142 /* 1143 * If fork_event list wasn't empty and in turn 1144 * the event wasn't already released by fork 1145 * (the event is allocated on fork kernel 1146 * stack), put the event back to its place in 1147 * the event_wq. fork_event head will be freed 1148 * as soon as we return so the event cannot 1149 * stay queued there no matter the current 1150 * "ret" value. 1151 */ 1152 list_del(&uwq->wq.entry); 1153 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1154 1155 /* 1156 * Leave the event in the waitqueue and report 1157 * error to userland if we failed to resolve 1158 * the userfault fork. 1159 */ 1160 if (likely(!ret)) 1161 userfaultfd_event_complete(ctx, uwq); 1162 } else { 1163 /* 1164 * Here the fork thread aborted and the 1165 * refcount from the fork thread on fork_nctx 1166 * has already been released. We still hold 1167 * the reference we took before releasing the 1168 * lock above. If resolve_userfault_fork 1169 * failed we've to drop it because the 1170 * fork_nctx has to be freed in such case. If 1171 * it succeeded we'll hold it because the new 1172 * uffd references it. 1173 */ 1174 if (ret) 1175 userfaultfd_ctx_put(fork_nctx); 1176 } 1177 spin_unlock_irq(&ctx->event_wqh.lock); 1178 } 1179 1180 return ret; 1181 } 1182 1183 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1184 size_t count, loff_t *ppos) 1185 { 1186 struct userfaultfd_ctx *ctx = file->private_data; 1187 ssize_t _ret, ret = 0; 1188 struct uffd_msg msg; 1189 int no_wait = file->f_flags & O_NONBLOCK; 1190 struct inode *inode = file_inode(file); 1191 1192 if (!userfaultfd_is_initialized(ctx)) 1193 return -EINVAL; 1194 1195 for (;;) { 1196 if (count < sizeof(msg)) 1197 return ret ? ret : -EINVAL; 1198 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1199 if (_ret < 0) 1200 return ret ? ret : _ret; 1201 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1202 return ret ? ret : -EFAULT; 1203 ret += sizeof(msg); 1204 buf += sizeof(msg); 1205 count -= sizeof(msg); 1206 /* 1207 * Allow to read more than one fault at time but only 1208 * block if waiting for the very first one. 1209 */ 1210 no_wait = O_NONBLOCK; 1211 } 1212 } 1213 1214 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1215 struct userfaultfd_wake_range *range) 1216 { 1217 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1218 /* wake all in the range and autoremove */ 1219 if (waitqueue_active(&ctx->fault_pending_wqh)) 1220 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1221 range); 1222 if (waitqueue_active(&ctx->fault_wqh)) 1223 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1224 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1225 } 1226 1227 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1228 struct userfaultfd_wake_range *range) 1229 { 1230 unsigned seq; 1231 bool need_wakeup; 1232 1233 /* 1234 * To be sure waitqueue_active() is not reordered by the CPU 1235 * before the pagetable update, use an explicit SMP memory 1236 * barrier here. PT lock release or mmap_read_unlock(mm) still 1237 * have release semantics that can allow the 1238 * waitqueue_active() to be reordered before the pte update. 1239 */ 1240 smp_mb(); 1241 1242 /* 1243 * Use waitqueue_active because it's very frequent to 1244 * change the address space atomically even if there are no 1245 * userfaults yet. So we take the spinlock only when we're 1246 * sure we've userfaults to wake. 1247 */ 1248 do { 1249 seq = read_seqcount_begin(&ctx->refile_seq); 1250 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1251 waitqueue_active(&ctx->fault_wqh); 1252 cond_resched(); 1253 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1254 if (need_wakeup) 1255 __wake_userfault(ctx, range); 1256 } 1257 1258 static __always_inline int validate_unaligned_range( 1259 struct mm_struct *mm, __u64 start, __u64 len) 1260 { 1261 __u64 task_size = mm->task_size; 1262 1263 if (len & ~PAGE_MASK) 1264 return -EINVAL; 1265 if (!len) 1266 return -EINVAL; 1267 if (start < mmap_min_addr) 1268 return -EINVAL; 1269 if (start >= task_size) 1270 return -EINVAL; 1271 if (len > task_size - start) 1272 return -EINVAL; 1273 if (start + len <= start) 1274 return -EINVAL; 1275 return 0; 1276 } 1277 1278 static __always_inline int validate_range(struct mm_struct *mm, 1279 __u64 start, __u64 len) 1280 { 1281 if (start & ~PAGE_MASK) 1282 return -EINVAL; 1283 1284 return validate_unaligned_range(mm, start, len); 1285 } 1286 1287 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1288 unsigned long arg) 1289 { 1290 struct mm_struct *mm = ctx->mm; 1291 struct vm_area_struct *vma, *prev, *cur; 1292 int ret; 1293 struct uffdio_register uffdio_register; 1294 struct uffdio_register __user *user_uffdio_register; 1295 unsigned long vm_flags, new_flags; 1296 bool found; 1297 bool basic_ioctls; 1298 unsigned long start, end, vma_end; 1299 struct vma_iterator vmi; 1300 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1301 1302 user_uffdio_register = (struct uffdio_register __user *) arg; 1303 1304 ret = -EFAULT; 1305 if (copy_from_user(&uffdio_register, user_uffdio_register, 1306 sizeof(uffdio_register)-sizeof(__u64))) 1307 goto out; 1308 1309 ret = -EINVAL; 1310 if (!uffdio_register.mode) 1311 goto out; 1312 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1313 goto out; 1314 vm_flags = 0; 1315 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1316 vm_flags |= VM_UFFD_MISSING; 1317 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1318 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1319 goto out; 1320 #endif 1321 vm_flags |= VM_UFFD_WP; 1322 } 1323 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1324 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1325 goto out; 1326 #endif 1327 vm_flags |= VM_UFFD_MINOR; 1328 } 1329 1330 ret = validate_range(mm, uffdio_register.range.start, 1331 uffdio_register.range.len); 1332 if (ret) 1333 goto out; 1334 1335 start = uffdio_register.range.start; 1336 end = start + uffdio_register.range.len; 1337 1338 ret = -ENOMEM; 1339 if (!mmget_not_zero(mm)) 1340 goto out; 1341 1342 ret = -EINVAL; 1343 mmap_write_lock(mm); 1344 vma_iter_init(&vmi, mm, start); 1345 vma = vma_find(&vmi, end); 1346 if (!vma) 1347 goto out_unlock; 1348 1349 /* 1350 * If the first vma contains huge pages, make sure start address 1351 * is aligned to huge page size. 1352 */ 1353 if (is_vm_hugetlb_page(vma)) { 1354 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1355 1356 if (start & (vma_hpagesize - 1)) 1357 goto out_unlock; 1358 } 1359 1360 /* 1361 * Search for not compatible vmas. 1362 */ 1363 found = false; 1364 basic_ioctls = false; 1365 cur = vma; 1366 do { 1367 cond_resched(); 1368 1369 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1370 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1371 1372 /* check not compatible vmas */ 1373 ret = -EINVAL; 1374 if (!vma_can_userfault(cur, vm_flags, wp_async)) 1375 goto out_unlock; 1376 1377 /* 1378 * UFFDIO_COPY will fill file holes even without 1379 * PROT_WRITE. This check enforces that if this is a 1380 * MAP_SHARED, the process has write permission to the backing 1381 * file. If VM_MAYWRITE is set it also enforces that on a 1382 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1383 * F_WRITE_SEAL can be taken until the vma is destroyed. 1384 */ 1385 ret = -EPERM; 1386 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1387 goto out_unlock; 1388 1389 /* 1390 * If this vma contains ending address, and huge pages 1391 * check alignment. 1392 */ 1393 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1394 end > cur->vm_start) { 1395 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1396 1397 ret = -EINVAL; 1398 1399 if (end & (vma_hpagesize - 1)) 1400 goto out_unlock; 1401 } 1402 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1403 goto out_unlock; 1404 1405 /* 1406 * Check that this vma isn't already owned by a 1407 * different userfaultfd. We can't allow more than one 1408 * userfaultfd to own a single vma simultaneously or we 1409 * wouldn't know which one to deliver the userfaults to. 1410 */ 1411 ret = -EBUSY; 1412 if (cur->vm_userfaultfd_ctx.ctx && 1413 cur->vm_userfaultfd_ctx.ctx != ctx) 1414 goto out_unlock; 1415 1416 /* 1417 * Note vmas containing huge pages 1418 */ 1419 if (is_vm_hugetlb_page(cur)) 1420 basic_ioctls = true; 1421 1422 found = true; 1423 } for_each_vma_range(vmi, cur, end); 1424 BUG_ON(!found); 1425 1426 vma_iter_set(&vmi, start); 1427 prev = vma_prev(&vmi); 1428 if (vma->vm_start < start) 1429 prev = vma; 1430 1431 ret = 0; 1432 for_each_vma_range(vmi, vma, end) { 1433 cond_resched(); 1434 1435 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async)); 1436 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1437 vma->vm_userfaultfd_ctx.ctx != ctx); 1438 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1439 1440 /* 1441 * Nothing to do: this vma is already registered into this 1442 * userfaultfd and with the right tracking mode too. 1443 */ 1444 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1445 (vma->vm_flags & vm_flags) == vm_flags) 1446 goto skip; 1447 1448 if (vma->vm_start > start) 1449 start = vma->vm_start; 1450 vma_end = min(end, vma->vm_end); 1451 1452 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1453 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end, 1454 new_flags, 1455 (struct vm_userfaultfd_ctx){ctx}); 1456 if (IS_ERR(vma)) { 1457 ret = PTR_ERR(vma); 1458 break; 1459 } 1460 1461 /* 1462 * In the vma_merge() successful mprotect-like case 8: 1463 * the next vma was merged into the current one and 1464 * the current one has not been updated yet. 1465 */ 1466 vma_start_write(vma); 1467 userfaultfd_set_vm_flags(vma, new_flags); 1468 vma->vm_userfaultfd_ctx.ctx = ctx; 1469 1470 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1471 hugetlb_unshare_all_pmds(vma); 1472 1473 skip: 1474 prev = vma; 1475 start = vma->vm_end; 1476 } 1477 1478 out_unlock: 1479 mmap_write_unlock(mm); 1480 mmput(mm); 1481 if (!ret) { 1482 __u64 ioctls_out; 1483 1484 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1485 UFFD_API_RANGE_IOCTLS; 1486 1487 /* 1488 * Declare the WP ioctl only if the WP mode is 1489 * specified and all checks passed with the range 1490 */ 1491 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1492 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1493 1494 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1495 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1496 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1497 1498 /* 1499 * Now that we scanned all vmas we can already tell 1500 * userland which ioctls methods are guaranteed to 1501 * succeed on this range. 1502 */ 1503 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1504 ret = -EFAULT; 1505 } 1506 out: 1507 return ret; 1508 } 1509 1510 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1511 unsigned long arg) 1512 { 1513 struct mm_struct *mm = ctx->mm; 1514 struct vm_area_struct *vma, *prev, *cur; 1515 int ret; 1516 struct uffdio_range uffdio_unregister; 1517 unsigned long new_flags; 1518 bool found; 1519 unsigned long start, end, vma_end; 1520 const void __user *buf = (void __user *)arg; 1521 struct vma_iterator vmi; 1522 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1523 1524 ret = -EFAULT; 1525 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1526 goto out; 1527 1528 ret = validate_range(mm, uffdio_unregister.start, 1529 uffdio_unregister.len); 1530 if (ret) 1531 goto out; 1532 1533 start = uffdio_unregister.start; 1534 end = start + uffdio_unregister.len; 1535 1536 ret = -ENOMEM; 1537 if (!mmget_not_zero(mm)) 1538 goto out; 1539 1540 mmap_write_lock(mm); 1541 ret = -EINVAL; 1542 vma_iter_init(&vmi, mm, start); 1543 vma = vma_find(&vmi, end); 1544 if (!vma) 1545 goto out_unlock; 1546 1547 /* 1548 * If the first vma contains huge pages, make sure start address 1549 * is aligned to huge page size. 1550 */ 1551 if (is_vm_hugetlb_page(vma)) { 1552 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1553 1554 if (start & (vma_hpagesize - 1)) 1555 goto out_unlock; 1556 } 1557 1558 /* 1559 * Search for not compatible vmas. 1560 */ 1561 found = false; 1562 cur = vma; 1563 do { 1564 cond_resched(); 1565 1566 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1567 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1568 1569 /* 1570 * Check not compatible vmas, not strictly required 1571 * here as not compatible vmas cannot have an 1572 * userfaultfd_ctx registered on them, but this 1573 * provides for more strict behavior to notice 1574 * unregistration errors. 1575 */ 1576 if (!vma_can_userfault(cur, cur->vm_flags, wp_async)) 1577 goto out_unlock; 1578 1579 found = true; 1580 } for_each_vma_range(vmi, cur, end); 1581 BUG_ON(!found); 1582 1583 vma_iter_set(&vmi, start); 1584 prev = vma_prev(&vmi); 1585 if (vma->vm_start < start) 1586 prev = vma; 1587 1588 ret = 0; 1589 for_each_vma_range(vmi, vma, end) { 1590 cond_resched(); 1591 1592 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async)); 1593 1594 /* 1595 * Nothing to do: this vma is already registered into this 1596 * userfaultfd and with the right tracking mode too. 1597 */ 1598 if (!vma->vm_userfaultfd_ctx.ctx) 1599 goto skip; 1600 1601 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1602 1603 if (vma->vm_start > start) 1604 start = vma->vm_start; 1605 vma_end = min(end, vma->vm_end); 1606 1607 if (userfaultfd_missing(vma)) { 1608 /* 1609 * Wake any concurrent pending userfault while 1610 * we unregister, so they will not hang 1611 * permanently and it avoids userland to call 1612 * UFFDIO_WAKE explicitly. 1613 */ 1614 struct userfaultfd_wake_range range; 1615 range.start = start; 1616 range.len = vma_end - start; 1617 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1618 } 1619 1620 /* Reset ptes for the whole vma range if wr-protected */ 1621 if (userfaultfd_wp(vma)) 1622 uffd_wp_range(vma, start, vma_end - start, false); 1623 1624 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1625 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end, 1626 new_flags, NULL_VM_UFFD_CTX); 1627 if (IS_ERR(vma)) { 1628 ret = PTR_ERR(vma); 1629 break; 1630 } 1631 1632 /* 1633 * In the vma_merge() successful mprotect-like case 8: 1634 * the next vma was merged into the current one and 1635 * the current one has not been updated yet. 1636 */ 1637 vma_start_write(vma); 1638 userfaultfd_set_vm_flags(vma, new_flags); 1639 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1640 1641 skip: 1642 prev = vma; 1643 start = vma->vm_end; 1644 } 1645 1646 out_unlock: 1647 mmap_write_unlock(mm); 1648 mmput(mm); 1649 out: 1650 return ret; 1651 } 1652 1653 /* 1654 * userfaultfd_wake may be used in combination with the 1655 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1656 */ 1657 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1658 unsigned long arg) 1659 { 1660 int ret; 1661 struct uffdio_range uffdio_wake; 1662 struct userfaultfd_wake_range range; 1663 const void __user *buf = (void __user *)arg; 1664 1665 ret = -EFAULT; 1666 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1667 goto out; 1668 1669 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1670 if (ret) 1671 goto out; 1672 1673 range.start = uffdio_wake.start; 1674 range.len = uffdio_wake.len; 1675 1676 /* 1677 * len == 0 means wake all and we don't want to wake all here, 1678 * so check it again to be sure. 1679 */ 1680 VM_BUG_ON(!range.len); 1681 1682 wake_userfault(ctx, &range); 1683 ret = 0; 1684 1685 out: 1686 return ret; 1687 } 1688 1689 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1690 unsigned long arg) 1691 { 1692 __s64 ret; 1693 struct uffdio_copy uffdio_copy; 1694 struct uffdio_copy __user *user_uffdio_copy; 1695 struct userfaultfd_wake_range range; 1696 uffd_flags_t flags = 0; 1697 1698 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1699 1700 ret = -EAGAIN; 1701 if (atomic_read(&ctx->mmap_changing)) 1702 goto out; 1703 1704 ret = -EFAULT; 1705 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1706 /* don't copy "copy" last field */ 1707 sizeof(uffdio_copy)-sizeof(__s64))) 1708 goto out; 1709 1710 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1711 uffdio_copy.len); 1712 if (ret) 1713 goto out; 1714 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1715 if (ret) 1716 goto out; 1717 1718 ret = -EINVAL; 1719 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1720 goto out; 1721 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1722 flags |= MFILL_ATOMIC_WP; 1723 if (mmget_not_zero(ctx->mm)) { 1724 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src, 1725 uffdio_copy.len, flags); 1726 mmput(ctx->mm); 1727 } else { 1728 return -ESRCH; 1729 } 1730 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1731 return -EFAULT; 1732 if (ret < 0) 1733 goto out; 1734 BUG_ON(!ret); 1735 /* len == 0 would wake all */ 1736 range.len = ret; 1737 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1738 range.start = uffdio_copy.dst; 1739 wake_userfault(ctx, &range); 1740 } 1741 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1742 out: 1743 return ret; 1744 } 1745 1746 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1747 unsigned long arg) 1748 { 1749 __s64 ret; 1750 struct uffdio_zeropage uffdio_zeropage; 1751 struct uffdio_zeropage __user *user_uffdio_zeropage; 1752 struct userfaultfd_wake_range range; 1753 1754 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1755 1756 ret = -EAGAIN; 1757 if (atomic_read(&ctx->mmap_changing)) 1758 goto out; 1759 1760 ret = -EFAULT; 1761 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1762 /* don't copy "zeropage" last field */ 1763 sizeof(uffdio_zeropage)-sizeof(__s64))) 1764 goto out; 1765 1766 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1767 uffdio_zeropage.range.len); 1768 if (ret) 1769 goto out; 1770 ret = -EINVAL; 1771 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1772 goto out; 1773 1774 if (mmget_not_zero(ctx->mm)) { 1775 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start, 1776 uffdio_zeropage.range.len); 1777 mmput(ctx->mm); 1778 } else { 1779 return -ESRCH; 1780 } 1781 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1782 return -EFAULT; 1783 if (ret < 0) 1784 goto out; 1785 /* len == 0 would wake all */ 1786 BUG_ON(!ret); 1787 range.len = ret; 1788 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1789 range.start = uffdio_zeropage.range.start; 1790 wake_userfault(ctx, &range); 1791 } 1792 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1793 out: 1794 return ret; 1795 } 1796 1797 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1798 unsigned long arg) 1799 { 1800 int ret; 1801 struct uffdio_writeprotect uffdio_wp; 1802 struct uffdio_writeprotect __user *user_uffdio_wp; 1803 struct userfaultfd_wake_range range; 1804 bool mode_wp, mode_dontwake; 1805 1806 if (atomic_read(&ctx->mmap_changing)) 1807 return -EAGAIN; 1808 1809 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1810 1811 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1812 sizeof(struct uffdio_writeprotect))) 1813 return -EFAULT; 1814 1815 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1816 uffdio_wp.range.len); 1817 if (ret) 1818 return ret; 1819 1820 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1821 UFFDIO_WRITEPROTECT_MODE_WP)) 1822 return -EINVAL; 1823 1824 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1825 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1826 1827 if (mode_wp && mode_dontwake) 1828 return -EINVAL; 1829 1830 if (mmget_not_zero(ctx->mm)) { 1831 ret = mwriteprotect_range(ctx, uffdio_wp.range.start, 1832 uffdio_wp.range.len, mode_wp); 1833 mmput(ctx->mm); 1834 } else { 1835 return -ESRCH; 1836 } 1837 1838 if (ret) 1839 return ret; 1840 1841 if (!mode_wp && !mode_dontwake) { 1842 range.start = uffdio_wp.range.start; 1843 range.len = uffdio_wp.range.len; 1844 wake_userfault(ctx, &range); 1845 } 1846 return ret; 1847 } 1848 1849 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1850 { 1851 __s64 ret; 1852 struct uffdio_continue uffdio_continue; 1853 struct uffdio_continue __user *user_uffdio_continue; 1854 struct userfaultfd_wake_range range; 1855 uffd_flags_t flags = 0; 1856 1857 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1858 1859 ret = -EAGAIN; 1860 if (atomic_read(&ctx->mmap_changing)) 1861 goto out; 1862 1863 ret = -EFAULT; 1864 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1865 /* don't copy the output fields */ 1866 sizeof(uffdio_continue) - (sizeof(__s64)))) 1867 goto out; 1868 1869 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1870 uffdio_continue.range.len); 1871 if (ret) 1872 goto out; 1873 1874 ret = -EINVAL; 1875 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1876 UFFDIO_CONTINUE_MODE_WP)) 1877 goto out; 1878 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1879 flags |= MFILL_ATOMIC_WP; 1880 1881 if (mmget_not_zero(ctx->mm)) { 1882 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start, 1883 uffdio_continue.range.len, flags); 1884 mmput(ctx->mm); 1885 } else { 1886 return -ESRCH; 1887 } 1888 1889 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1890 return -EFAULT; 1891 if (ret < 0) 1892 goto out; 1893 1894 /* len == 0 would wake all */ 1895 BUG_ON(!ret); 1896 range.len = ret; 1897 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1898 range.start = uffdio_continue.range.start; 1899 wake_userfault(ctx, &range); 1900 } 1901 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1902 1903 out: 1904 return ret; 1905 } 1906 1907 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1908 { 1909 __s64 ret; 1910 struct uffdio_poison uffdio_poison; 1911 struct uffdio_poison __user *user_uffdio_poison; 1912 struct userfaultfd_wake_range range; 1913 1914 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1915 1916 ret = -EAGAIN; 1917 if (atomic_read(&ctx->mmap_changing)) 1918 goto out; 1919 1920 ret = -EFAULT; 1921 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1922 /* don't copy the output fields */ 1923 sizeof(uffdio_poison) - (sizeof(__s64)))) 1924 goto out; 1925 1926 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1927 uffdio_poison.range.len); 1928 if (ret) 1929 goto out; 1930 1931 ret = -EINVAL; 1932 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1933 goto out; 1934 1935 if (mmget_not_zero(ctx->mm)) { 1936 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start, 1937 uffdio_poison.range.len, 0); 1938 mmput(ctx->mm); 1939 } else { 1940 return -ESRCH; 1941 } 1942 1943 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1944 return -EFAULT; 1945 if (ret < 0) 1946 goto out; 1947 1948 /* len == 0 would wake all */ 1949 BUG_ON(!ret); 1950 range.len = ret; 1951 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 1952 range.start = uffdio_poison.range.start; 1953 wake_userfault(ctx, &range); 1954 } 1955 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 1956 1957 out: 1958 return ret; 1959 } 1960 1961 bool userfaultfd_wp_async(struct vm_area_struct *vma) 1962 { 1963 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx); 1964 } 1965 1966 static inline unsigned int uffd_ctx_features(__u64 user_features) 1967 { 1968 /* 1969 * For the current set of features the bits just coincide. Set 1970 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1971 */ 1972 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1973 } 1974 1975 static int userfaultfd_move(struct userfaultfd_ctx *ctx, 1976 unsigned long arg) 1977 { 1978 __s64 ret; 1979 struct uffdio_move uffdio_move; 1980 struct uffdio_move __user *user_uffdio_move; 1981 struct userfaultfd_wake_range range; 1982 struct mm_struct *mm = ctx->mm; 1983 1984 user_uffdio_move = (struct uffdio_move __user *) arg; 1985 1986 if (atomic_read(&ctx->mmap_changing)) 1987 return -EAGAIN; 1988 1989 if (copy_from_user(&uffdio_move, user_uffdio_move, 1990 /* don't copy "move" last field */ 1991 sizeof(uffdio_move)-sizeof(__s64))) 1992 return -EFAULT; 1993 1994 /* Do not allow cross-mm moves. */ 1995 if (mm != current->mm) 1996 return -EINVAL; 1997 1998 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len); 1999 if (ret) 2000 return ret; 2001 2002 ret = validate_range(mm, uffdio_move.src, uffdio_move.len); 2003 if (ret) 2004 return ret; 2005 2006 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES| 2007 UFFDIO_MOVE_MODE_DONTWAKE)) 2008 return -EINVAL; 2009 2010 if (mmget_not_zero(mm)) { 2011 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src, 2012 uffdio_move.len, uffdio_move.mode); 2013 mmput(mm); 2014 } else { 2015 return -ESRCH; 2016 } 2017 2018 if (unlikely(put_user(ret, &user_uffdio_move->move))) 2019 return -EFAULT; 2020 if (ret < 0) 2021 goto out; 2022 2023 /* len == 0 would wake all */ 2024 VM_WARN_ON(!ret); 2025 range.len = ret; 2026 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) { 2027 range.start = uffdio_move.dst; 2028 wake_userfault(ctx, &range); 2029 } 2030 ret = range.len == uffdio_move.len ? 0 : -EAGAIN; 2031 2032 out: 2033 return ret; 2034 } 2035 2036 /* 2037 * userland asks for a certain API version and we return which bits 2038 * and ioctl commands are implemented in this kernel for such API 2039 * version or -EINVAL if unknown. 2040 */ 2041 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2042 unsigned long arg) 2043 { 2044 struct uffdio_api uffdio_api; 2045 void __user *buf = (void __user *)arg; 2046 unsigned int ctx_features; 2047 int ret; 2048 __u64 features; 2049 2050 ret = -EFAULT; 2051 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2052 goto out; 2053 features = uffdio_api.features; 2054 ret = -EINVAL; 2055 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 2056 goto err_out; 2057 ret = -EPERM; 2058 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2059 goto err_out; 2060 2061 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */ 2062 if (features & UFFD_FEATURE_WP_ASYNC) 2063 features |= UFFD_FEATURE_WP_UNPOPULATED; 2064 2065 /* report all available features and ioctls to userland */ 2066 uffdio_api.features = UFFD_API_FEATURES; 2067 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2068 uffdio_api.features &= 2069 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2070 #endif 2071 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2072 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2073 #endif 2074 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2075 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2076 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2077 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC; 2078 #endif 2079 uffdio_api.ioctls = UFFD_API_IOCTLS; 2080 ret = -EFAULT; 2081 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2082 goto out; 2083 2084 /* only enable the requested features for this uffd context */ 2085 ctx_features = uffd_ctx_features(features); 2086 ret = -EINVAL; 2087 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2088 goto err_out; 2089 2090 ret = 0; 2091 out: 2092 return ret; 2093 err_out: 2094 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2095 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2096 ret = -EFAULT; 2097 goto out; 2098 } 2099 2100 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2101 unsigned long arg) 2102 { 2103 int ret = -EINVAL; 2104 struct userfaultfd_ctx *ctx = file->private_data; 2105 2106 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2107 return -EINVAL; 2108 2109 switch(cmd) { 2110 case UFFDIO_API: 2111 ret = userfaultfd_api(ctx, arg); 2112 break; 2113 case UFFDIO_REGISTER: 2114 ret = userfaultfd_register(ctx, arg); 2115 break; 2116 case UFFDIO_UNREGISTER: 2117 ret = userfaultfd_unregister(ctx, arg); 2118 break; 2119 case UFFDIO_WAKE: 2120 ret = userfaultfd_wake(ctx, arg); 2121 break; 2122 case UFFDIO_COPY: 2123 ret = userfaultfd_copy(ctx, arg); 2124 break; 2125 case UFFDIO_ZEROPAGE: 2126 ret = userfaultfd_zeropage(ctx, arg); 2127 break; 2128 case UFFDIO_MOVE: 2129 ret = userfaultfd_move(ctx, arg); 2130 break; 2131 case UFFDIO_WRITEPROTECT: 2132 ret = userfaultfd_writeprotect(ctx, arg); 2133 break; 2134 case UFFDIO_CONTINUE: 2135 ret = userfaultfd_continue(ctx, arg); 2136 break; 2137 case UFFDIO_POISON: 2138 ret = userfaultfd_poison(ctx, arg); 2139 break; 2140 } 2141 return ret; 2142 } 2143 2144 #ifdef CONFIG_PROC_FS 2145 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2146 { 2147 struct userfaultfd_ctx *ctx = f->private_data; 2148 wait_queue_entry_t *wq; 2149 unsigned long pending = 0, total = 0; 2150 2151 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2152 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2153 pending++; 2154 total++; 2155 } 2156 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2157 total++; 2158 } 2159 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2160 2161 /* 2162 * If more protocols will be added, there will be all shown 2163 * separated by a space. Like this: 2164 * protocols: aa:... bb:... 2165 */ 2166 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2167 pending, total, UFFD_API, ctx->features, 2168 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2169 } 2170 #endif 2171 2172 static const struct file_operations userfaultfd_fops = { 2173 #ifdef CONFIG_PROC_FS 2174 .show_fdinfo = userfaultfd_show_fdinfo, 2175 #endif 2176 .release = userfaultfd_release, 2177 .poll = userfaultfd_poll, 2178 .read = userfaultfd_read, 2179 .unlocked_ioctl = userfaultfd_ioctl, 2180 .compat_ioctl = compat_ptr_ioctl, 2181 .llseek = noop_llseek, 2182 }; 2183 2184 static void init_once_userfaultfd_ctx(void *mem) 2185 { 2186 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2187 2188 init_waitqueue_head(&ctx->fault_pending_wqh); 2189 init_waitqueue_head(&ctx->fault_wqh); 2190 init_waitqueue_head(&ctx->event_wqh); 2191 init_waitqueue_head(&ctx->fd_wqh); 2192 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2193 } 2194 2195 static int new_userfaultfd(int flags) 2196 { 2197 struct userfaultfd_ctx *ctx; 2198 int fd; 2199 2200 BUG_ON(!current->mm); 2201 2202 /* Check the UFFD_* constants for consistency. */ 2203 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2204 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2205 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2206 2207 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2208 return -EINVAL; 2209 2210 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2211 if (!ctx) 2212 return -ENOMEM; 2213 2214 refcount_set(&ctx->refcount, 1); 2215 ctx->flags = flags; 2216 ctx->features = 0; 2217 ctx->released = false; 2218 init_rwsem(&ctx->map_changing_lock); 2219 atomic_set(&ctx->mmap_changing, 0); 2220 ctx->mm = current->mm; 2221 /* prevent the mm struct to be freed */ 2222 mmgrab(ctx->mm); 2223 2224 /* Create a new inode so that the LSM can block the creation. */ 2225 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 2226 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2227 if (fd < 0) { 2228 mmdrop(ctx->mm); 2229 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2230 } 2231 return fd; 2232 } 2233 2234 static inline bool userfaultfd_syscall_allowed(int flags) 2235 { 2236 /* Userspace-only page faults are always allowed */ 2237 if (flags & UFFD_USER_MODE_ONLY) 2238 return true; 2239 2240 /* 2241 * The user is requesting a userfaultfd which can handle kernel faults. 2242 * Privileged users are always allowed to do this. 2243 */ 2244 if (capable(CAP_SYS_PTRACE)) 2245 return true; 2246 2247 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2248 return sysctl_unprivileged_userfaultfd; 2249 } 2250 2251 SYSCALL_DEFINE1(userfaultfd, int, flags) 2252 { 2253 if (!userfaultfd_syscall_allowed(flags)) 2254 return -EPERM; 2255 2256 return new_userfaultfd(flags); 2257 } 2258 2259 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2260 { 2261 if (cmd != USERFAULTFD_IOC_NEW) 2262 return -EINVAL; 2263 2264 return new_userfaultfd(flags); 2265 } 2266 2267 static const struct file_operations userfaultfd_dev_fops = { 2268 .unlocked_ioctl = userfaultfd_dev_ioctl, 2269 .compat_ioctl = userfaultfd_dev_ioctl, 2270 .owner = THIS_MODULE, 2271 .llseek = noop_llseek, 2272 }; 2273 2274 static struct miscdevice userfaultfd_misc = { 2275 .minor = MISC_DYNAMIC_MINOR, 2276 .name = "userfaultfd", 2277 .fops = &userfaultfd_dev_fops 2278 }; 2279 2280 static int __init userfaultfd_init(void) 2281 { 2282 int ret; 2283 2284 ret = misc_register(&userfaultfd_misc); 2285 if (ret) 2286 return ret; 2287 2288 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2289 sizeof(struct userfaultfd_ctx), 2290 0, 2291 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2292 init_once_userfaultfd_ctx); 2293 #ifdef CONFIG_SYSCTL 2294 register_sysctl_init("vm", vm_userfaultfd_table); 2295 #endif 2296 return 0; 2297 } 2298 __initcall(userfaultfd_init); 2299