xref: /linux/fs/userfaultfd.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	refcount_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* memory mappings are changing because of non-cooperative event */
66 	bool mmap_changing;
67 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
68 	struct mm_struct *mm;
69 };
70 
71 struct userfaultfd_fork_ctx {
72 	struct userfaultfd_ctx *orig;
73 	struct userfaultfd_ctx *new;
74 	struct list_head list;
75 };
76 
77 struct userfaultfd_unmap_ctx {
78 	struct userfaultfd_ctx *ctx;
79 	unsigned long start;
80 	unsigned long end;
81 	struct list_head list;
82 };
83 
84 struct userfaultfd_wait_queue {
85 	struct uffd_msg msg;
86 	wait_queue_entry_t wq;
87 	struct userfaultfd_ctx *ctx;
88 	bool waken;
89 };
90 
91 struct userfaultfd_wake_range {
92 	unsigned long start;
93 	unsigned long len;
94 };
95 
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97 				     int wake_flags, void *key)
98 {
99 	struct userfaultfd_wake_range *range = key;
100 	int ret;
101 	struct userfaultfd_wait_queue *uwq;
102 	unsigned long start, len;
103 
104 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105 	ret = 0;
106 	/* len == 0 means wake all */
107 	start = range->start;
108 	len = range->len;
109 	if (len && (start > uwq->msg.arg.pagefault.address ||
110 		    start + len <= uwq->msg.arg.pagefault.address))
111 		goto out;
112 	WRITE_ONCE(uwq->waken, true);
113 	/*
114 	 * The Program-Order guarantees provided by the scheduler
115 	 * ensure uwq->waken is visible before the task is woken.
116 	 */
117 	ret = wake_up_state(wq->private, mode);
118 	if (ret) {
119 		/*
120 		 * Wake only once, autoremove behavior.
121 		 *
122 		 * After the effect of list_del_init is visible to the other
123 		 * CPUs, the waitqueue may disappear from under us, see the
124 		 * !list_empty_careful() in handle_userfault().
125 		 *
126 		 * try_to_wake_up() has an implicit smp_mb(), and the
127 		 * wq->private is read before calling the extern function
128 		 * "wake_up_state" (which in turns calls try_to_wake_up).
129 		 */
130 		list_del_init(&wq->entry);
131 	}
132 out:
133 	return ret;
134 }
135 
136 /**
137  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138  * context.
139  * @ctx: [in] Pointer to the userfaultfd context.
140  */
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
142 {
143 	refcount_inc(&ctx->refcount);
144 }
145 
146 /**
147  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to userfaultfd context.
150  *
151  * The userfaultfd context reference must have been previously acquired either
152  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
153  */
154 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
155 {
156 	if (refcount_dec_and_test(&ctx->refcount)) {
157 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
158 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
159 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
160 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
161 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
162 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
163 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
164 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
165 		mmdrop(ctx->mm);
166 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
167 	}
168 }
169 
170 static inline void msg_init(struct uffd_msg *msg)
171 {
172 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
173 	/*
174 	 * Must use memset to zero out the paddings or kernel data is
175 	 * leaked to userland.
176 	 */
177 	memset(msg, 0, sizeof(struct uffd_msg));
178 }
179 
180 static inline struct uffd_msg userfault_msg(unsigned long address,
181 					    unsigned int flags,
182 					    unsigned long reason,
183 					    unsigned int features)
184 {
185 	struct uffd_msg msg;
186 	msg_init(&msg);
187 	msg.event = UFFD_EVENT_PAGEFAULT;
188 	msg.arg.pagefault.address = address;
189 	if (flags & FAULT_FLAG_WRITE)
190 		/*
191 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
192 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
193 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
194 		 * was a read fault, otherwise if set it means it's
195 		 * a write fault.
196 		 */
197 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
198 	if (reason & VM_UFFD_WP)
199 		/*
200 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
201 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
202 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
203 		 * a missing fault, otherwise if set it means it's a
204 		 * write protect fault.
205 		 */
206 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
207 	if (features & UFFD_FEATURE_THREAD_ID)
208 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
209 	return msg;
210 }
211 
212 #ifdef CONFIG_HUGETLB_PAGE
213 /*
214  * Same functionality as userfaultfd_must_wait below with modifications for
215  * hugepmd ranges.
216  */
217 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
218 					 struct vm_area_struct *vma,
219 					 unsigned long address,
220 					 unsigned long flags,
221 					 unsigned long reason)
222 {
223 	struct mm_struct *mm = ctx->mm;
224 	pte_t *ptep, pte;
225 	bool ret = true;
226 
227 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
228 
229 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
230 
231 	if (!ptep)
232 		goto out;
233 
234 	ret = false;
235 	pte = huge_ptep_get(ptep);
236 
237 	/*
238 	 * Lockless access: we're in a wait_event so it's ok if it
239 	 * changes under us.
240 	 */
241 	if (huge_pte_none(pte))
242 		ret = true;
243 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
244 		ret = true;
245 out:
246 	return ret;
247 }
248 #else
249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
250 					 struct vm_area_struct *vma,
251 					 unsigned long address,
252 					 unsigned long flags,
253 					 unsigned long reason)
254 {
255 	return false;	/* should never get here */
256 }
257 #endif /* CONFIG_HUGETLB_PAGE */
258 
259 /*
260  * Verify the pagetables are still not ok after having reigstered into
261  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
262  * userfault that has already been resolved, if userfaultfd_read and
263  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
264  * threads.
265  */
266 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
267 					 unsigned long address,
268 					 unsigned long flags,
269 					 unsigned long reason)
270 {
271 	struct mm_struct *mm = ctx->mm;
272 	pgd_t *pgd;
273 	p4d_t *p4d;
274 	pud_t *pud;
275 	pmd_t *pmd, _pmd;
276 	pte_t *pte;
277 	bool ret = true;
278 
279 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
280 
281 	pgd = pgd_offset(mm, address);
282 	if (!pgd_present(*pgd))
283 		goto out;
284 	p4d = p4d_offset(pgd, address);
285 	if (!p4d_present(*p4d))
286 		goto out;
287 	pud = pud_offset(p4d, address);
288 	if (!pud_present(*pud))
289 		goto out;
290 	pmd = pmd_offset(pud, address);
291 	/*
292 	 * READ_ONCE must function as a barrier with narrower scope
293 	 * and it must be equivalent to:
294 	 *	_pmd = *pmd; barrier();
295 	 *
296 	 * This is to deal with the instability (as in
297 	 * pmd_trans_unstable) of the pmd.
298 	 */
299 	_pmd = READ_ONCE(*pmd);
300 	if (pmd_none(_pmd))
301 		goto out;
302 
303 	ret = false;
304 	if (!pmd_present(_pmd))
305 		goto out;
306 
307 	if (pmd_trans_huge(_pmd))
308 		goto out;
309 
310 	/*
311 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
312 	 * and use the standard pte_offset_map() instead of parsing _pmd.
313 	 */
314 	pte = pte_offset_map(pmd, address);
315 	/*
316 	 * Lockless access: we're in a wait_event so it's ok if it
317 	 * changes under us.
318 	 */
319 	if (pte_none(*pte))
320 		ret = true;
321 	pte_unmap(pte);
322 
323 out:
324 	return ret;
325 }
326 
327 /*
328  * The locking rules involved in returning VM_FAULT_RETRY depending on
329  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
330  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
331  * recommendation in __lock_page_or_retry is not an understatement.
332  *
333  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
334  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
335  * not set.
336  *
337  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
338  * set, VM_FAULT_RETRY can still be returned if and only if there are
339  * fatal_signal_pending()s, and the mmap_sem must be released before
340  * returning it.
341  */
342 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
343 {
344 	struct mm_struct *mm = vmf->vma->vm_mm;
345 	struct userfaultfd_ctx *ctx;
346 	struct userfaultfd_wait_queue uwq;
347 	vm_fault_t ret = VM_FAULT_SIGBUS;
348 	bool must_wait, return_to_userland;
349 	long blocking_state;
350 
351 	/*
352 	 * We don't do userfault handling for the final child pid update.
353 	 *
354 	 * We also don't do userfault handling during
355 	 * coredumping. hugetlbfs has the special
356 	 * follow_hugetlb_page() to skip missing pages in the
357 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
358 	 * the no_page_table() helper in follow_page_mask(), but the
359 	 * shmem_vm_ops->fault method is invoked even during
360 	 * coredumping without mmap_sem and it ends up here.
361 	 */
362 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
363 		goto out;
364 
365 	/*
366 	 * Coredumping runs without mmap_sem so we can only check that
367 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
368 	 */
369 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
370 
371 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
372 	if (!ctx)
373 		goto out;
374 
375 	BUG_ON(ctx->mm != mm);
376 
377 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
378 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
379 
380 	if (ctx->features & UFFD_FEATURE_SIGBUS)
381 		goto out;
382 
383 	/*
384 	 * If it's already released don't get it. This avoids to loop
385 	 * in __get_user_pages if userfaultfd_release waits on the
386 	 * caller of handle_userfault to release the mmap_sem.
387 	 */
388 	if (unlikely(READ_ONCE(ctx->released))) {
389 		/*
390 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
391 		 * cooperative manager can close the uffd after the
392 		 * last UFFDIO_COPY, without risking to trigger an
393 		 * involuntary SIGBUS if the process was starting the
394 		 * userfaultfd while the userfaultfd was still armed
395 		 * (but after the last UFFDIO_COPY). If the uffd
396 		 * wasn't already closed when the userfault reached
397 		 * this point, that would normally be solved by
398 		 * userfaultfd_must_wait returning 'false'.
399 		 *
400 		 * If we were to return VM_FAULT_SIGBUS here, the non
401 		 * cooperative manager would be instead forced to
402 		 * always call UFFDIO_UNREGISTER before it can safely
403 		 * close the uffd.
404 		 */
405 		ret = VM_FAULT_NOPAGE;
406 		goto out;
407 	}
408 
409 	/*
410 	 * Check that we can return VM_FAULT_RETRY.
411 	 *
412 	 * NOTE: it should become possible to return VM_FAULT_RETRY
413 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
414 	 * -EBUSY failures, if the userfaultfd is to be extended for
415 	 * VM_UFFD_WP tracking and we intend to arm the userfault
416 	 * without first stopping userland access to the memory. For
417 	 * VM_UFFD_MISSING userfaults this is enough for now.
418 	 */
419 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
420 		/*
421 		 * Validate the invariant that nowait must allow retry
422 		 * to be sure not to return SIGBUS erroneously on
423 		 * nowait invocations.
424 		 */
425 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
426 #ifdef CONFIG_DEBUG_VM
427 		if (printk_ratelimit()) {
428 			printk(KERN_WARNING
429 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
430 			       vmf->flags);
431 			dump_stack();
432 		}
433 #endif
434 		goto out;
435 	}
436 
437 	/*
438 	 * Handle nowait, not much to do other than tell it to retry
439 	 * and wait.
440 	 */
441 	ret = VM_FAULT_RETRY;
442 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
443 		goto out;
444 
445 	/* take the reference before dropping the mmap_sem */
446 	userfaultfd_ctx_get(ctx);
447 
448 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
449 	uwq.wq.private = current;
450 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
451 			ctx->features);
452 	uwq.ctx = ctx;
453 	uwq.waken = false;
454 
455 	return_to_userland =
456 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
457 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
458 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
459 			 TASK_KILLABLE;
460 
461 	spin_lock(&ctx->fault_pending_wqh.lock);
462 	/*
463 	 * After the __add_wait_queue the uwq is visible to userland
464 	 * through poll/read().
465 	 */
466 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
467 	/*
468 	 * The smp_mb() after __set_current_state prevents the reads
469 	 * following the spin_unlock to happen before the list_add in
470 	 * __add_wait_queue.
471 	 */
472 	set_current_state(blocking_state);
473 	spin_unlock(&ctx->fault_pending_wqh.lock);
474 
475 	if (!is_vm_hugetlb_page(vmf->vma))
476 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
477 						  reason);
478 	else
479 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
480 						       vmf->address,
481 						       vmf->flags, reason);
482 	up_read(&mm->mmap_sem);
483 
484 	if (likely(must_wait && !READ_ONCE(ctx->released) &&
485 		   (return_to_userland ? !signal_pending(current) :
486 		    !fatal_signal_pending(current)))) {
487 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
488 		schedule();
489 		ret |= VM_FAULT_MAJOR;
490 
491 		/*
492 		 * False wakeups can orginate even from rwsem before
493 		 * up_read() however userfaults will wait either for a
494 		 * targeted wakeup on the specific uwq waitqueue from
495 		 * wake_userfault() or for signals or for uffd
496 		 * release.
497 		 */
498 		while (!READ_ONCE(uwq.waken)) {
499 			/*
500 			 * This needs the full smp_store_mb()
501 			 * guarantee as the state write must be
502 			 * visible to other CPUs before reading
503 			 * uwq.waken from other CPUs.
504 			 */
505 			set_current_state(blocking_state);
506 			if (READ_ONCE(uwq.waken) ||
507 			    READ_ONCE(ctx->released) ||
508 			    (return_to_userland ? signal_pending(current) :
509 			     fatal_signal_pending(current)))
510 				break;
511 			schedule();
512 		}
513 	}
514 
515 	__set_current_state(TASK_RUNNING);
516 
517 	if (return_to_userland) {
518 		if (signal_pending(current) &&
519 		    !fatal_signal_pending(current)) {
520 			/*
521 			 * If we got a SIGSTOP or SIGCONT and this is
522 			 * a normal userland page fault, just let
523 			 * userland return so the signal will be
524 			 * handled and gdb debugging works.  The page
525 			 * fault code immediately after we return from
526 			 * this function is going to release the
527 			 * mmap_sem and it's not depending on it
528 			 * (unlike gup would if we were not to return
529 			 * VM_FAULT_RETRY).
530 			 *
531 			 * If a fatal signal is pending we still take
532 			 * the streamlined VM_FAULT_RETRY failure path
533 			 * and there's no need to retake the mmap_sem
534 			 * in such case.
535 			 */
536 			down_read(&mm->mmap_sem);
537 			ret = VM_FAULT_NOPAGE;
538 		}
539 	}
540 
541 	/*
542 	 * Here we race with the list_del; list_add in
543 	 * userfaultfd_ctx_read(), however because we don't ever run
544 	 * list_del_init() to refile across the two lists, the prev
545 	 * and next pointers will never point to self. list_add also
546 	 * would never let any of the two pointers to point to
547 	 * self. So list_empty_careful won't risk to see both pointers
548 	 * pointing to self at any time during the list refile. The
549 	 * only case where list_del_init() is called is the full
550 	 * removal in the wake function and there we don't re-list_add
551 	 * and it's fine not to block on the spinlock. The uwq on this
552 	 * kernel stack can be released after the list_del_init.
553 	 */
554 	if (!list_empty_careful(&uwq.wq.entry)) {
555 		spin_lock(&ctx->fault_pending_wqh.lock);
556 		/*
557 		 * No need of list_del_init(), the uwq on the stack
558 		 * will be freed shortly anyway.
559 		 */
560 		list_del(&uwq.wq.entry);
561 		spin_unlock(&ctx->fault_pending_wqh.lock);
562 	}
563 
564 	/*
565 	 * ctx may go away after this if the userfault pseudo fd is
566 	 * already released.
567 	 */
568 	userfaultfd_ctx_put(ctx);
569 
570 out:
571 	return ret;
572 }
573 
574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
575 					      struct userfaultfd_wait_queue *ewq)
576 {
577 	struct userfaultfd_ctx *release_new_ctx;
578 
579 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
580 		goto out;
581 
582 	ewq->ctx = ctx;
583 	init_waitqueue_entry(&ewq->wq, current);
584 	release_new_ctx = NULL;
585 
586 	spin_lock(&ctx->event_wqh.lock);
587 	/*
588 	 * After the __add_wait_queue the uwq is visible to userland
589 	 * through poll/read().
590 	 */
591 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
592 	for (;;) {
593 		set_current_state(TASK_KILLABLE);
594 		if (ewq->msg.event == 0)
595 			break;
596 		if (READ_ONCE(ctx->released) ||
597 		    fatal_signal_pending(current)) {
598 			/*
599 			 * &ewq->wq may be queued in fork_event, but
600 			 * __remove_wait_queue ignores the head
601 			 * parameter. It would be a problem if it
602 			 * didn't.
603 			 */
604 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
605 			if (ewq->msg.event == UFFD_EVENT_FORK) {
606 				struct userfaultfd_ctx *new;
607 
608 				new = (struct userfaultfd_ctx *)
609 					(unsigned long)
610 					ewq->msg.arg.reserved.reserved1;
611 				release_new_ctx = new;
612 			}
613 			break;
614 		}
615 
616 		spin_unlock(&ctx->event_wqh.lock);
617 
618 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
619 		schedule();
620 
621 		spin_lock(&ctx->event_wqh.lock);
622 	}
623 	__set_current_state(TASK_RUNNING);
624 	spin_unlock(&ctx->event_wqh.lock);
625 
626 	if (release_new_ctx) {
627 		struct vm_area_struct *vma;
628 		struct mm_struct *mm = release_new_ctx->mm;
629 
630 		/* the various vma->vm_userfaultfd_ctx still points to it */
631 		down_write(&mm->mmap_sem);
632 		for (vma = mm->mmap; vma; vma = vma->vm_next)
633 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
634 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
635 				vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
636 			}
637 		up_write(&mm->mmap_sem);
638 
639 		userfaultfd_ctx_put(release_new_ctx);
640 	}
641 
642 	/*
643 	 * ctx may go away after this if the userfault pseudo fd is
644 	 * already released.
645 	 */
646 out:
647 	WRITE_ONCE(ctx->mmap_changing, false);
648 	userfaultfd_ctx_put(ctx);
649 }
650 
651 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
652 				       struct userfaultfd_wait_queue *ewq)
653 {
654 	ewq->msg.event = 0;
655 	wake_up_locked(&ctx->event_wqh);
656 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
657 }
658 
659 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
660 {
661 	struct userfaultfd_ctx *ctx = NULL, *octx;
662 	struct userfaultfd_fork_ctx *fctx;
663 
664 	octx = vma->vm_userfaultfd_ctx.ctx;
665 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
666 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
667 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
668 		return 0;
669 	}
670 
671 	list_for_each_entry(fctx, fcs, list)
672 		if (fctx->orig == octx) {
673 			ctx = fctx->new;
674 			break;
675 		}
676 
677 	if (!ctx) {
678 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
679 		if (!fctx)
680 			return -ENOMEM;
681 
682 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
683 		if (!ctx) {
684 			kfree(fctx);
685 			return -ENOMEM;
686 		}
687 
688 		refcount_set(&ctx->refcount, 1);
689 		ctx->flags = octx->flags;
690 		ctx->state = UFFD_STATE_RUNNING;
691 		ctx->features = octx->features;
692 		ctx->released = false;
693 		ctx->mmap_changing = false;
694 		ctx->mm = vma->vm_mm;
695 		mmgrab(ctx->mm);
696 
697 		userfaultfd_ctx_get(octx);
698 		WRITE_ONCE(octx->mmap_changing, true);
699 		fctx->orig = octx;
700 		fctx->new = ctx;
701 		list_add_tail(&fctx->list, fcs);
702 	}
703 
704 	vma->vm_userfaultfd_ctx.ctx = ctx;
705 	return 0;
706 }
707 
708 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
709 {
710 	struct userfaultfd_ctx *ctx = fctx->orig;
711 	struct userfaultfd_wait_queue ewq;
712 
713 	msg_init(&ewq.msg);
714 
715 	ewq.msg.event = UFFD_EVENT_FORK;
716 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
717 
718 	userfaultfd_event_wait_completion(ctx, &ewq);
719 }
720 
721 void dup_userfaultfd_complete(struct list_head *fcs)
722 {
723 	struct userfaultfd_fork_ctx *fctx, *n;
724 
725 	list_for_each_entry_safe(fctx, n, fcs, list) {
726 		dup_fctx(fctx);
727 		list_del(&fctx->list);
728 		kfree(fctx);
729 	}
730 }
731 
732 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
733 			     struct vm_userfaultfd_ctx *vm_ctx)
734 {
735 	struct userfaultfd_ctx *ctx;
736 
737 	ctx = vma->vm_userfaultfd_ctx.ctx;
738 
739 	if (!ctx)
740 		return;
741 
742 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
743 		vm_ctx->ctx = ctx;
744 		userfaultfd_ctx_get(ctx);
745 		WRITE_ONCE(ctx->mmap_changing, true);
746 	} else {
747 		/* Drop uffd context if remap feature not enabled */
748 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
749 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
750 	}
751 }
752 
753 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
754 				 unsigned long from, unsigned long to,
755 				 unsigned long len)
756 {
757 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
758 	struct userfaultfd_wait_queue ewq;
759 
760 	if (!ctx)
761 		return;
762 
763 	if (to & ~PAGE_MASK) {
764 		userfaultfd_ctx_put(ctx);
765 		return;
766 	}
767 
768 	msg_init(&ewq.msg);
769 
770 	ewq.msg.event = UFFD_EVENT_REMAP;
771 	ewq.msg.arg.remap.from = from;
772 	ewq.msg.arg.remap.to = to;
773 	ewq.msg.arg.remap.len = len;
774 
775 	userfaultfd_event_wait_completion(ctx, &ewq);
776 }
777 
778 bool userfaultfd_remove(struct vm_area_struct *vma,
779 			unsigned long start, unsigned long end)
780 {
781 	struct mm_struct *mm = vma->vm_mm;
782 	struct userfaultfd_ctx *ctx;
783 	struct userfaultfd_wait_queue ewq;
784 
785 	ctx = vma->vm_userfaultfd_ctx.ctx;
786 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
787 		return true;
788 
789 	userfaultfd_ctx_get(ctx);
790 	WRITE_ONCE(ctx->mmap_changing, true);
791 	up_read(&mm->mmap_sem);
792 
793 	msg_init(&ewq.msg);
794 
795 	ewq.msg.event = UFFD_EVENT_REMOVE;
796 	ewq.msg.arg.remove.start = start;
797 	ewq.msg.arg.remove.end = end;
798 
799 	userfaultfd_event_wait_completion(ctx, &ewq);
800 
801 	return false;
802 }
803 
804 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
805 			  unsigned long start, unsigned long end)
806 {
807 	struct userfaultfd_unmap_ctx *unmap_ctx;
808 
809 	list_for_each_entry(unmap_ctx, unmaps, list)
810 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
811 		    unmap_ctx->end == end)
812 			return true;
813 
814 	return false;
815 }
816 
817 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
818 			   unsigned long start, unsigned long end,
819 			   struct list_head *unmaps)
820 {
821 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
822 		struct userfaultfd_unmap_ctx *unmap_ctx;
823 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
824 
825 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
826 		    has_unmap_ctx(ctx, unmaps, start, end))
827 			continue;
828 
829 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
830 		if (!unmap_ctx)
831 			return -ENOMEM;
832 
833 		userfaultfd_ctx_get(ctx);
834 		WRITE_ONCE(ctx->mmap_changing, true);
835 		unmap_ctx->ctx = ctx;
836 		unmap_ctx->start = start;
837 		unmap_ctx->end = end;
838 		list_add_tail(&unmap_ctx->list, unmaps);
839 	}
840 
841 	return 0;
842 }
843 
844 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
845 {
846 	struct userfaultfd_unmap_ctx *ctx, *n;
847 	struct userfaultfd_wait_queue ewq;
848 
849 	list_for_each_entry_safe(ctx, n, uf, list) {
850 		msg_init(&ewq.msg);
851 
852 		ewq.msg.event = UFFD_EVENT_UNMAP;
853 		ewq.msg.arg.remove.start = ctx->start;
854 		ewq.msg.arg.remove.end = ctx->end;
855 
856 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
857 
858 		list_del(&ctx->list);
859 		kfree(ctx);
860 	}
861 }
862 
863 static int userfaultfd_release(struct inode *inode, struct file *file)
864 {
865 	struct userfaultfd_ctx *ctx = file->private_data;
866 	struct mm_struct *mm = ctx->mm;
867 	struct vm_area_struct *vma, *prev;
868 	/* len == 0 means wake all */
869 	struct userfaultfd_wake_range range = { .len = 0, };
870 	unsigned long new_flags;
871 
872 	WRITE_ONCE(ctx->released, true);
873 
874 	if (!mmget_not_zero(mm))
875 		goto wakeup;
876 
877 	/*
878 	 * Flush page faults out of all CPUs. NOTE: all page faults
879 	 * must be retried without returning VM_FAULT_SIGBUS if
880 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
881 	 * changes while handle_userfault released the mmap_sem. So
882 	 * it's critical that released is set to true (above), before
883 	 * taking the mmap_sem for writing.
884 	 */
885 	down_write(&mm->mmap_sem);
886 	prev = NULL;
887 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
888 		cond_resched();
889 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
890 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
891 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
892 			prev = vma;
893 			continue;
894 		}
895 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
896 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
897 				 new_flags, vma->anon_vma,
898 				 vma->vm_file, vma->vm_pgoff,
899 				 vma_policy(vma),
900 				 NULL_VM_UFFD_CTX);
901 		if (prev)
902 			vma = prev;
903 		else
904 			prev = vma;
905 		vma->vm_flags = new_flags;
906 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
907 	}
908 	up_write(&mm->mmap_sem);
909 	mmput(mm);
910 wakeup:
911 	/*
912 	 * After no new page faults can wait on this fault_*wqh, flush
913 	 * the last page faults that may have been already waiting on
914 	 * the fault_*wqh.
915 	 */
916 	spin_lock(&ctx->fault_pending_wqh.lock);
917 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
918 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
919 	spin_unlock(&ctx->fault_pending_wqh.lock);
920 
921 	/* Flush pending events that may still wait on event_wqh */
922 	wake_up_all(&ctx->event_wqh);
923 
924 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
925 	userfaultfd_ctx_put(ctx);
926 	return 0;
927 }
928 
929 /* fault_pending_wqh.lock must be hold by the caller */
930 static inline struct userfaultfd_wait_queue *find_userfault_in(
931 		wait_queue_head_t *wqh)
932 {
933 	wait_queue_entry_t *wq;
934 	struct userfaultfd_wait_queue *uwq;
935 
936 	lockdep_assert_held(&wqh->lock);
937 
938 	uwq = NULL;
939 	if (!waitqueue_active(wqh))
940 		goto out;
941 	/* walk in reverse to provide FIFO behavior to read userfaults */
942 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
943 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
944 out:
945 	return uwq;
946 }
947 
948 static inline struct userfaultfd_wait_queue *find_userfault(
949 		struct userfaultfd_ctx *ctx)
950 {
951 	return find_userfault_in(&ctx->fault_pending_wqh);
952 }
953 
954 static inline struct userfaultfd_wait_queue *find_userfault_evt(
955 		struct userfaultfd_ctx *ctx)
956 {
957 	return find_userfault_in(&ctx->event_wqh);
958 }
959 
960 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
961 {
962 	struct userfaultfd_ctx *ctx = file->private_data;
963 	__poll_t ret;
964 
965 	poll_wait(file, &ctx->fd_wqh, wait);
966 
967 	switch (ctx->state) {
968 	case UFFD_STATE_WAIT_API:
969 		return EPOLLERR;
970 	case UFFD_STATE_RUNNING:
971 		/*
972 		 * poll() never guarantees that read won't block.
973 		 * userfaults can be waken before they're read().
974 		 */
975 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
976 			return EPOLLERR;
977 		/*
978 		 * lockless access to see if there are pending faults
979 		 * __pollwait last action is the add_wait_queue but
980 		 * the spin_unlock would allow the waitqueue_active to
981 		 * pass above the actual list_add inside
982 		 * add_wait_queue critical section. So use a full
983 		 * memory barrier to serialize the list_add write of
984 		 * add_wait_queue() with the waitqueue_active read
985 		 * below.
986 		 */
987 		ret = 0;
988 		smp_mb();
989 		if (waitqueue_active(&ctx->fault_pending_wqh))
990 			ret = EPOLLIN;
991 		else if (waitqueue_active(&ctx->event_wqh))
992 			ret = EPOLLIN;
993 
994 		return ret;
995 	default:
996 		WARN_ON_ONCE(1);
997 		return EPOLLERR;
998 	}
999 }
1000 
1001 static const struct file_operations userfaultfd_fops;
1002 
1003 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1004 				  struct userfaultfd_ctx *new,
1005 				  struct uffd_msg *msg)
1006 {
1007 	int fd;
1008 
1009 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1010 			      O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1011 	if (fd < 0)
1012 		return fd;
1013 
1014 	msg->arg.reserved.reserved1 = 0;
1015 	msg->arg.fork.ufd = fd;
1016 	return 0;
1017 }
1018 
1019 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1020 				    struct uffd_msg *msg)
1021 {
1022 	ssize_t ret;
1023 	DECLARE_WAITQUEUE(wait, current);
1024 	struct userfaultfd_wait_queue *uwq;
1025 	/*
1026 	 * Handling fork event requires sleeping operations, so
1027 	 * we drop the event_wqh lock, then do these ops, then
1028 	 * lock it back and wake up the waiter. While the lock is
1029 	 * dropped the ewq may go away so we keep track of it
1030 	 * carefully.
1031 	 */
1032 	LIST_HEAD(fork_event);
1033 	struct userfaultfd_ctx *fork_nctx = NULL;
1034 
1035 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1036 	spin_lock_irq(&ctx->fd_wqh.lock);
1037 	__add_wait_queue(&ctx->fd_wqh, &wait);
1038 	for (;;) {
1039 		set_current_state(TASK_INTERRUPTIBLE);
1040 		spin_lock(&ctx->fault_pending_wqh.lock);
1041 		uwq = find_userfault(ctx);
1042 		if (uwq) {
1043 			/*
1044 			 * Use a seqcount to repeat the lockless check
1045 			 * in wake_userfault() to avoid missing
1046 			 * wakeups because during the refile both
1047 			 * waitqueue could become empty if this is the
1048 			 * only userfault.
1049 			 */
1050 			write_seqcount_begin(&ctx->refile_seq);
1051 
1052 			/*
1053 			 * The fault_pending_wqh.lock prevents the uwq
1054 			 * to disappear from under us.
1055 			 *
1056 			 * Refile this userfault from
1057 			 * fault_pending_wqh to fault_wqh, it's not
1058 			 * pending anymore after we read it.
1059 			 *
1060 			 * Use list_del() by hand (as
1061 			 * userfaultfd_wake_function also uses
1062 			 * list_del_init() by hand) to be sure nobody
1063 			 * changes __remove_wait_queue() to use
1064 			 * list_del_init() in turn breaking the
1065 			 * !list_empty_careful() check in
1066 			 * handle_userfault(). The uwq->wq.head list
1067 			 * must never be empty at any time during the
1068 			 * refile, or the waitqueue could disappear
1069 			 * from under us. The "wait_queue_head_t"
1070 			 * parameter of __remove_wait_queue() is unused
1071 			 * anyway.
1072 			 */
1073 			list_del(&uwq->wq.entry);
1074 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1075 
1076 			write_seqcount_end(&ctx->refile_seq);
1077 
1078 			/* careful to always initialize msg if ret == 0 */
1079 			*msg = uwq->msg;
1080 			spin_unlock(&ctx->fault_pending_wqh.lock);
1081 			ret = 0;
1082 			break;
1083 		}
1084 		spin_unlock(&ctx->fault_pending_wqh.lock);
1085 
1086 		spin_lock(&ctx->event_wqh.lock);
1087 		uwq = find_userfault_evt(ctx);
1088 		if (uwq) {
1089 			*msg = uwq->msg;
1090 
1091 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1092 				fork_nctx = (struct userfaultfd_ctx *)
1093 					(unsigned long)
1094 					uwq->msg.arg.reserved.reserved1;
1095 				list_move(&uwq->wq.entry, &fork_event);
1096 				/*
1097 				 * fork_nctx can be freed as soon as
1098 				 * we drop the lock, unless we take a
1099 				 * reference on it.
1100 				 */
1101 				userfaultfd_ctx_get(fork_nctx);
1102 				spin_unlock(&ctx->event_wqh.lock);
1103 				ret = 0;
1104 				break;
1105 			}
1106 
1107 			userfaultfd_event_complete(ctx, uwq);
1108 			spin_unlock(&ctx->event_wqh.lock);
1109 			ret = 0;
1110 			break;
1111 		}
1112 		spin_unlock(&ctx->event_wqh.lock);
1113 
1114 		if (signal_pending(current)) {
1115 			ret = -ERESTARTSYS;
1116 			break;
1117 		}
1118 		if (no_wait) {
1119 			ret = -EAGAIN;
1120 			break;
1121 		}
1122 		spin_unlock_irq(&ctx->fd_wqh.lock);
1123 		schedule();
1124 		spin_lock_irq(&ctx->fd_wqh.lock);
1125 	}
1126 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1127 	__set_current_state(TASK_RUNNING);
1128 	spin_unlock_irq(&ctx->fd_wqh.lock);
1129 
1130 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1131 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1132 		spin_lock(&ctx->event_wqh.lock);
1133 		if (!list_empty(&fork_event)) {
1134 			/*
1135 			 * The fork thread didn't abort, so we can
1136 			 * drop the temporary refcount.
1137 			 */
1138 			userfaultfd_ctx_put(fork_nctx);
1139 
1140 			uwq = list_first_entry(&fork_event,
1141 					       typeof(*uwq),
1142 					       wq.entry);
1143 			/*
1144 			 * If fork_event list wasn't empty and in turn
1145 			 * the event wasn't already released by fork
1146 			 * (the event is allocated on fork kernel
1147 			 * stack), put the event back to its place in
1148 			 * the event_wq. fork_event head will be freed
1149 			 * as soon as we return so the event cannot
1150 			 * stay queued there no matter the current
1151 			 * "ret" value.
1152 			 */
1153 			list_del(&uwq->wq.entry);
1154 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1155 
1156 			/*
1157 			 * Leave the event in the waitqueue and report
1158 			 * error to userland if we failed to resolve
1159 			 * the userfault fork.
1160 			 */
1161 			if (likely(!ret))
1162 				userfaultfd_event_complete(ctx, uwq);
1163 		} else {
1164 			/*
1165 			 * Here the fork thread aborted and the
1166 			 * refcount from the fork thread on fork_nctx
1167 			 * has already been released. We still hold
1168 			 * the reference we took before releasing the
1169 			 * lock above. If resolve_userfault_fork
1170 			 * failed we've to drop it because the
1171 			 * fork_nctx has to be freed in such case. If
1172 			 * it succeeded we'll hold it because the new
1173 			 * uffd references it.
1174 			 */
1175 			if (ret)
1176 				userfaultfd_ctx_put(fork_nctx);
1177 		}
1178 		spin_unlock(&ctx->event_wqh.lock);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185 				size_t count, loff_t *ppos)
1186 {
1187 	struct userfaultfd_ctx *ctx = file->private_data;
1188 	ssize_t _ret, ret = 0;
1189 	struct uffd_msg msg;
1190 	int no_wait = file->f_flags & O_NONBLOCK;
1191 
1192 	if (ctx->state == UFFD_STATE_WAIT_API)
1193 		return -EINVAL;
1194 
1195 	for (;;) {
1196 		if (count < sizeof(msg))
1197 			return ret ? ret : -EINVAL;
1198 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1199 		if (_ret < 0)
1200 			return ret ? ret : _ret;
1201 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1202 			return ret ? ret : -EFAULT;
1203 		ret += sizeof(msg);
1204 		buf += sizeof(msg);
1205 		count -= sizeof(msg);
1206 		/*
1207 		 * Allow to read more than one fault at time but only
1208 		 * block if waiting for the very first one.
1209 		 */
1210 		no_wait = O_NONBLOCK;
1211 	}
1212 }
1213 
1214 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1215 			     struct userfaultfd_wake_range *range)
1216 {
1217 	spin_lock(&ctx->fault_pending_wqh.lock);
1218 	/* wake all in the range and autoremove */
1219 	if (waitqueue_active(&ctx->fault_pending_wqh))
1220 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1221 				     range);
1222 	if (waitqueue_active(&ctx->fault_wqh))
1223 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1224 	spin_unlock(&ctx->fault_pending_wqh.lock);
1225 }
1226 
1227 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1228 					   struct userfaultfd_wake_range *range)
1229 {
1230 	unsigned seq;
1231 	bool need_wakeup;
1232 
1233 	/*
1234 	 * To be sure waitqueue_active() is not reordered by the CPU
1235 	 * before the pagetable update, use an explicit SMP memory
1236 	 * barrier here. PT lock release or up_read(mmap_sem) still
1237 	 * have release semantics that can allow the
1238 	 * waitqueue_active() to be reordered before the pte update.
1239 	 */
1240 	smp_mb();
1241 
1242 	/*
1243 	 * Use waitqueue_active because it's very frequent to
1244 	 * change the address space atomically even if there are no
1245 	 * userfaults yet. So we take the spinlock only when we're
1246 	 * sure we've userfaults to wake.
1247 	 */
1248 	do {
1249 		seq = read_seqcount_begin(&ctx->refile_seq);
1250 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1251 			waitqueue_active(&ctx->fault_wqh);
1252 		cond_resched();
1253 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1254 	if (need_wakeup)
1255 		__wake_userfault(ctx, range);
1256 }
1257 
1258 static __always_inline int validate_range(struct mm_struct *mm,
1259 					  __u64 start, __u64 len)
1260 {
1261 	__u64 task_size = mm->task_size;
1262 
1263 	if (start & ~PAGE_MASK)
1264 		return -EINVAL;
1265 	if (len & ~PAGE_MASK)
1266 		return -EINVAL;
1267 	if (!len)
1268 		return -EINVAL;
1269 	if (start < mmap_min_addr)
1270 		return -EINVAL;
1271 	if (start >= task_size)
1272 		return -EINVAL;
1273 	if (len > task_size - start)
1274 		return -EINVAL;
1275 	return 0;
1276 }
1277 
1278 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1279 {
1280 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1281 		vma_is_shmem(vma);
1282 }
1283 
1284 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1285 				unsigned long arg)
1286 {
1287 	struct mm_struct *mm = ctx->mm;
1288 	struct vm_area_struct *vma, *prev, *cur;
1289 	int ret;
1290 	struct uffdio_register uffdio_register;
1291 	struct uffdio_register __user *user_uffdio_register;
1292 	unsigned long vm_flags, new_flags;
1293 	bool found;
1294 	bool basic_ioctls;
1295 	unsigned long start, end, vma_end;
1296 
1297 	user_uffdio_register = (struct uffdio_register __user *) arg;
1298 
1299 	ret = -EFAULT;
1300 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1301 			   sizeof(uffdio_register)-sizeof(__u64)))
1302 		goto out;
1303 
1304 	ret = -EINVAL;
1305 	if (!uffdio_register.mode)
1306 		goto out;
1307 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1308 				     UFFDIO_REGISTER_MODE_WP))
1309 		goto out;
1310 	vm_flags = 0;
1311 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1312 		vm_flags |= VM_UFFD_MISSING;
1313 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1314 		vm_flags |= VM_UFFD_WP;
1315 		/*
1316 		 * FIXME: remove the below error constraint by
1317 		 * implementing the wprotect tracking mode.
1318 		 */
1319 		ret = -EINVAL;
1320 		goto out;
1321 	}
1322 
1323 	ret = validate_range(mm, uffdio_register.range.start,
1324 			     uffdio_register.range.len);
1325 	if (ret)
1326 		goto out;
1327 
1328 	start = uffdio_register.range.start;
1329 	end = start + uffdio_register.range.len;
1330 
1331 	ret = -ENOMEM;
1332 	if (!mmget_not_zero(mm))
1333 		goto out;
1334 
1335 	down_write(&mm->mmap_sem);
1336 	vma = find_vma_prev(mm, start, &prev);
1337 	if (!vma)
1338 		goto out_unlock;
1339 
1340 	/* check that there's at least one vma in the range */
1341 	ret = -EINVAL;
1342 	if (vma->vm_start >= end)
1343 		goto out_unlock;
1344 
1345 	/*
1346 	 * If the first vma contains huge pages, make sure start address
1347 	 * is aligned to huge page size.
1348 	 */
1349 	if (is_vm_hugetlb_page(vma)) {
1350 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1351 
1352 		if (start & (vma_hpagesize - 1))
1353 			goto out_unlock;
1354 	}
1355 
1356 	/*
1357 	 * Search for not compatible vmas.
1358 	 */
1359 	found = false;
1360 	basic_ioctls = false;
1361 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1362 		cond_resched();
1363 
1364 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1365 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1366 
1367 		/* check not compatible vmas */
1368 		ret = -EINVAL;
1369 		if (!vma_can_userfault(cur))
1370 			goto out_unlock;
1371 
1372 		/*
1373 		 * UFFDIO_COPY will fill file holes even without
1374 		 * PROT_WRITE. This check enforces that if this is a
1375 		 * MAP_SHARED, the process has write permission to the backing
1376 		 * file. If VM_MAYWRITE is set it also enforces that on a
1377 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1378 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1379 		 */
1380 		ret = -EPERM;
1381 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1382 			goto out_unlock;
1383 
1384 		/*
1385 		 * If this vma contains ending address, and huge pages
1386 		 * check alignment.
1387 		 */
1388 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1389 		    end > cur->vm_start) {
1390 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1391 
1392 			ret = -EINVAL;
1393 
1394 			if (end & (vma_hpagesize - 1))
1395 				goto out_unlock;
1396 		}
1397 
1398 		/*
1399 		 * Check that this vma isn't already owned by a
1400 		 * different userfaultfd. We can't allow more than one
1401 		 * userfaultfd to own a single vma simultaneously or we
1402 		 * wouldn't know which one to deliver the userfaults to.
1403 		 */
1404 		ret = -EBUSY;
1405 		if (cur->vm_userfaultfd_ctx.ctx &&
1406 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1407 			goto out_unlock;
1408 
1409 		/*
1410 		 * Note vmas containing huge pages
1411 		 */
1412 		if (is_vm_hugetlb_page(cur))
1413 			basic_ioctls = true;
1414 
1415 		found = true;
1416 	}
1417 	BUG_ON(!found);
1418 
1419 	if (vma->vm_start < start)
1420 		prev = vma;
1421 
1422 	ret = 0;
1423 	do {
1424 		cond_resched();
1425 
1426 		BUG_ON(!vma_can_userfault(vma));
1427 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1428 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1429 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1430 
1431 		/*
1432 		 * Nothing to do: this vma is already registered into this
1433 		 * userfaultfd and with the right tracking mode too.
1434 		 */
1435 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1436 		    (vma->vm_flags & vm_flags) == vm_flags)
1437 			goto skip;
1438 
1439 		if (vma->vm_start > start)
1440 			start = vma->vm_start;
1441 		vma_end = min(end, vma->vm_end);
1442 
1443 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1444 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1445 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1446 				 vma_policy(vma),
1447 				 ((struct vm_userfaultfd_ctx){ ctx }));
1448 		if (prev) {
1449 			vma = prev;
1450 			goto next;
1451 		}
1452 		if (vma->vm_start < start) {
1453 			ret = split_vma(mm, vma, start, 1);
1454 			if (ret)
1455 				break;
1456 		}
1457 		if (vma->vm_end > end) {
1458 			ret = split_vma(mm, vma, end, 0);
1459 			if (ret)
1460 				break;
1461 		}
1462 	next:
1463 		/*
1464 		 * In the vma_merge() successful mprotect-like case 8:
1465 		 * the next vma was merged into the current one and
1466 		 * the current one has not been updated yet.
1467 		 */
1468 		vma->vm_flags = new_flags;
1469 		vma->vm_userfaultfd_ctx.ctx = ctx;
1470 
1471 	skip:
1472 		prev = vma;
1473 		start = vma->vm_end;
1474 		vma = vma->vm_next;
1475 	} while (vma && vma->vm_start < end);
1476 out_unlock:
1477 	up_write(&mm->mmap_sem);
1478 	mmput(mm);
1479 	if (!ret) {
1480 		/*
1481 		 * Now that we scanned all vmas we can already tell
1482 		 * userland which ioctls methods are guaranteed to
1483 		 * succeed on this range.
1484 		 */
1485 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1486 			     UFFD_API_RANGE_IOCTLS,
1487 			     &user_uffdio_register->ioctls))
1488 			ret = -EFAULT;
1489 	}
1490 out:
1491 	return ret;
1492 }
1493 
1494 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1495 				  unsigned long arg)
1496 {
1497 	struct mm_struct *mm = ctx->mm;
1498 	struct vm_area_struct *vma, *prev, *cur;
1499 	int ret;
1500 	struct uffdio_range uffdio_unregister;
1501 	unsigned long new_flags;
1502 	bool found;
1503 	unsigned long start, end, vma_end;
1504 	const void __user *buf = (void __user *)arg;
1505 
1506 	ret = -EFAULT;
1507 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1508 		goto out;
1509 
1510 	ret = validate_range(mm, uffdio_unregister.start,
1511 			     uffdio_unregister.len);
1512 	if (ret)
1513 		goto out;
1514 
1515 	start = uffdio_unregister.start;
1516 	end = start + uffdio_unregister.len;
1517 
1518 	ret = -ENOMEM;
1519 	if (!mmget_not_zero(mm))
1520 		goto out;
1521 
1522 	down_write(&mm->mmap_sem);
1523 	vma = find_vma_prev(mm, start, &prev);
1524 	if (!vma)
1525 		goto out_unlock;
1526 
1527 	/* check that there's at least one vma in the range */
1528 	ret = -EINVAL;
1529 	if (vma->vm_start >= end)
1530 		goto out_unlock;
1531 
1532 	/*
1533 	 * If the first vma contains huge pages, make sure start address
1534 	 * is aligned to huge page size.
1535 	 */
1536 	if (is_vm_hugetlb_page(vma)) {
1537 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1538 
1539 		if (start & (vma_hpagesize - 1))
1540 			goto out_unlock;
1541 	}
1542 
1543 	/*
1544 	 * Search for not compatible vmas.
1545 	 */
1546 	found = false;
1547 	ret = -EINVAL;
1548 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1549 		cond_resched();
1550 
1551 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1552 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1553 
1554 		/*
1555 		 * Check not compatible vmas, not strictly required
1556 		 * here as not compatible vmas cannot have an
1557 		 * userfaultfd_ctx registered on them, but this
1558 		 * provides for more strict behavior to notice
1559 		 * unregistration errors.
1560 		 */
1561 		if (!vma_can_userfault(cur))
1562 			goto out_unlock;
1563 
1564 		found = true;
1565 	}
1566 	BUG_ON(!found);
1567 
1568 	if (vma->vm_start < start)
1569 		prev = vma;
1570 
1571 	ret = 0;
1572 	do {
1573 		cond_resched();
1574 
1575 		BUG_ON(!vma_can_userfault(vma));
1576 
1577 		/*
1578 		 * Nothing to do: this vma is already registered into this
1579 		 * userfaultfd and with the right tracking mode too.
1580 		 */
1581 		if (!vma->vm_userfaultfd_ctx.ctx)
1582 			goto skip;
1583 
1584 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1585 
1586 		if (vma->vm_start > start)
1587 			start = vma->vm_start;
1588 		vma_end = min(end, vma->vm_end);
1589 
1590 		if (userfaultfd_missing(vma)) {
1591 			/*
1592 			 * Wake any concurrent pending userfault while
1593 			 * we unregister, so they will not hang
1594 			 * permanently and it avoids userland to call
1595 			 * UFFDIO_WAKE explicitly.
1596 			 */
1597 			struct userfaultfd_wake_range range;
1598 			range.start = start;
1599 			range.len = vma_end - start;
1600 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1601 		}
1602 
1603 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1604 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1605 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1606 				 vma_policy(vma),
1607 				 NULL_VM_UFFD_CTX);
1608 		if (prev) {
1609 			vma = prev;
1610 			goto next;
1611 		}
1612 		if (vma->vm_start < start) {
1613 			ret = split_vma(mm, vma, start, 1);
1614 			if (ret)
1615 				break;
1616 		}
1617 		if (vma->vm_end > end) {
1618 			ret = split_vma(mm, vma, end, 0);
1619 			if (ret)
1620 				break;
1621 		}
1622 	next:
1623 		/*
1624 		 * In the vma_merge() successful mprotect-like case 8:
1625 		 * the next vma was merged into the current one and
1626 		 * the current one has not been updated yet.
1627 		 */
1628 		vma->vm_flags = new_flags;
1629 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1630 
1631 	skip:
1632 		prev = vma;
1633 		start = vma->vm_end;
1634 		vma = vma->vm_next;
1635 	} while (vma && vma->vm_start < end);
1636 out_unlock:
1637 	up_write(&mm->mmap_sem);
1638 	mmput(mm);
1639 out:
1640 	return ret;
1641 }
1642 
1643 /*
1644  * userfaultfd_wake may be used in combination with the
1645  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1646  */
1647 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1648 			    unsigned long arg)
1649 {
1650 	int ret;
1651 	struct uffdio_range uffdio_wake;
1652 	struct userfaultfd_wake_range range;
1653 	const void __user *buf = (void __user *)arg;
1654 
1655 	ret = -EFAULT;
1656 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1657 		goto out;
1658 
1659 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1660 	if (ret)
1661 		goto out;
1662 
1663 	range.start = uffdio_wake.start;
1664 	range.len = uffdio_wake.len;
1665 
1666 	/*
1667 	 * len == 0 means wake all and we don't want to wake all here,
1668 	 * so check it again to be sure.
1669 	 */
1670 	VM_BUG_ON(!range.len);
1671 
1672 	wake_userfault(ctx, &range);
1673 	ret = 0;
1674 
1675 out:
1676 	return ret;
1677 }
1678 
1679 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1680 			    unsigned long arg)
1681 {
1682 	__s64 ret;
1683 	struct uffdio_copy uffdio_copy;
1684 	struct uffdio_copy __user *user_uffdio_copy;
1685 	struct userfaultfd_wake_range range;
1686 
1687 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1688 
1689 	ret = -EAGAIN;
1690 	if (READ_ONCE(ctx->mmap_changing))
1691 		goto out;
1692 
1693 	ret = -EFAULT;
1694 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1695 			   /* don't copy "copy" last field */
1696 			   sizeof(uffdio_copy)-sizeof(__s64)))
1697 		goto out;
1698 
1699 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1700 	if (ret)
1701 		goto out;
1702 	/*
1703 	 * double check for wraparound just in case. copy_from_user()
1704 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1705 	 * in the userland range.
1706 	 */
1707 	ret = -EINVAL;
1708 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1709 		goto out;
1710 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1711 		goto out;
1712 	if (mmget_not_zero(ctx->mm)) {
1713 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1714 				   uffdio_copy.len, &ctx->mmap_changing);
1715 		mmput(ctx->mm);
1716 	} else {
1717 		return -ESRCH;
1718 	}
1719 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1720 		return -EFAULT;
1721 	if (ret < 0)
1722 		goto out;
1723 	BUG_ON(!ret);
1724 	/* len == 0 would wake all */
1725 	range.len = ret;
1726 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1727 		range.start = uffdio_copy.dst;
1728 		wake_userfault(ctx, &range);
1729 	}
1730 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1731 out:
1732 	return ret;
1733 }
1734 
1735 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1736 				unsigned long arg)
1737 {
1738 	__s64 ret;
1739 	struct uffdio_zeropage uffdio_zeropage;
1740 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1741 	struct userfaultfd_wake_range range;
1742 
1743 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1744 
1745 	ret = -EAGAIN;
1746 	if (READ_ONCE(ctx->mmap_changing))
1747 		goto out;
1748 
1749 	ret = -EFAULT;
1750 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1751 			   /* don't copy "zeropage" last field */
1752 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1753 		goto out;
1754 
1755 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1756 			     uffdio_zeropage.range.len);
1757 	if (ret)
1758 		goto out;
1759 	ret = -EINVAL;
1760 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1761 		goto out;
1762 
1763 	if (mmget_not_zero(ctx->mm)) {
1764 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1765 				     uffdio_zeropage.range.len,
1766 				     &ctx->mmap_changing);
1767 		mmput(ctx->mm);
1768 	} else {
1769 		return -ESRCH;
1770 	}
1771 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1772 		return -EFAULT;
1773 	if (ret < 0)
1774 		goto out;
1775 	/* len == 0 would wake all */
1776 	BUG_ON(!ret);
1777 	range.len = ret;
1778 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1779 		range.start = uffdio_zeropage.range.start;
1780 		wake_userfault(ctx, &range);
1781 	}
1782 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1783 out:
1784 	return ret;
1785 }
1786 
1787 static inline unsigned int uffd_ctx_features(__u64 user_features)
1788 {
1789 	/*
1790 	 * For the current set of features the bits just coincide
1791 	 */
1792 	return (unsigned int)user_features;
1793 }
1794 
1795 /*
1796  * userland asks for a certain API version and we return which bits
1797  * and ioctl commands are implemented in this kernel for such API
1798  * version or -EINVAL if unknown.
1799  */
1800 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1801 			   unsigned long arg)
1802 {
1803 	struct uffdio_api uffdio_api;
1804 	void __user *buf = (void __user *)arg;
1805 	int ret;
1806 	__u64 features;
1807 
1808 	ret = -EINVAL;
1809 	if (ctx->state != UFFD_STATE_WAIT_API)
1810 		goto out;
1811 	ret = -EFAULT;
1812 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1813 		goto out;
1814 	features = uffdio_api.features;
1815 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1816 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1817 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1818 			goto out;
1819 		ret = -EINVAL;
1820 		goto out;
1821 	}
1822 	/* report all available features and ioctls to userland */
1823 	uffdio_api.features = UFFD_API_FEATURES;
1824 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1825 	ret = -EFAULT;
1826 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1827 		goto out;
1828 	ctx->state = UFFD_STATE_RUNNING;
1829 	/* only enable the requested features for this uffd context */
1830 	ctx->features = uffd_ctx_features(features);
1831 	ret = 0;
1832 out:
1833 	return ret;
1834 }
1835 
1836 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1837 			      unsigned long arg)
1838 {
1839 	int ret = -EINVAL;
1840 	struct userfaultfd_ctx *ctx = file->private_data;
1841 
1842 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1843 		return -EINVAL;
1844 
1845 	switch(cmd) {
1846 	case UFFDIO_API:
1847 		ret = userfaultfd_api(ctx, arg);
1848 		break;
1849 	case UFFDIO_REGISTER:
1850 		ret = userfaultfd_register(ctx, arg);
1851 		break;
1852 	case UFFDIO_UNREGISTER:
1853 		ret = userfaultfd_unregister(ctx, arg);
1854 		break;
1855 	case UFFDIO_WAKE:
1856 		ret = userfaultfd_wake(ctx, arg);
1857 		break;
1858 	case UFFDIO_COPY:
1859 		ret = userfaultfd_copy(ctx, arg);
1860 		break;
1861 	case UFFDIO_ZEROPAGE:
1862 		ret = userfaultfd_zeropage(ctx, arg);
1863 		break;
1864 	}
1865 	return ret;
1866 }
1867 
1868 #ifdef CONFIG_PROC_FS
1869 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1870 {
1871 	struct userfaultfd_ctx *ctx = f->private_data;
1872 	wait_queue_entry_t *wq;
1873 	unsigned long pending = 0, total = 0;
1874 
1875 	spin_lock(&ctx->fault_pending_wqh.lock);
1876 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1877 		pending++;
1878 		total++;
1879 	}
1880 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1881 		total++;
1882 	}
1883 	spin_unlock(&ctx->fault_pending_wqh.lock);
1884 
1885 	/*
1886 	 * If more protocols will be added, there will be all shown
1887 	 * separated by a space. Like this:
1888 	 *	protocols: aa:... bb:...
1889 	 */
1890 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1891 		   pending, total, UFFD_API, ctx->features,
1892 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1893 }
1894 #endif
1895 
1896 static const struct file_operations userfaultfd_fops = {
1897 #ifdef CONFIG_PROC_FS
1898 	.show_fdinfo	= userfaultfd_show_fdinfo,
1899 #endif
1900 	.release	= userfaultfd_release,
1901 	.poll		= userfaultfd_poll,
1902 	.read		= userfaultfd_read,
1903 	.unlocked_ioctl = userfaultfd_ioctl,
1904 	.compat_ioctl	= userfaultfd_ioctl,
1905 	.llseek		= noop_llseek,
1906 };
1907 
1908 static void init_once_userfaultfd_ctx(void *mem)
1909 {
1910 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1911 
1912 	init_waitqueue_head(&ctx->fault_pending_wqh);
1913 	init_waitqueue_head(&ctx->fault_wqh);
1914 	init_waitqueue_head(&ctx->event_wqh);
1915 	init_waitqueue_head(&ctx->fd_wqh);
1916 	seqcount_init(&ctx->refile_seq);
1917 }
1918 
1919 SYSCALL_DEFINE1(userfaultfd, int, flags)
1920 {
1921 	struct userfaultfd_ctx *ctx;
1922 	int fd;
1923 
1924 	BUG_ON(!current->mm);
1925 
1926 	/* Check the UFFD_* constants for consistency.  */
1927 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1928 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1929 
1930 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1931 		return -EINVAL;
1932 
1933 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1934 	if (!ctx)
1935 		return -ENOMEM;
1936 
1937 	refcount_set(&ctx->refcount, 1);
1938 	ctx->flags = flags;
1939 	ctx->features = 0;
1940 	ctx->state = UFFD_STATE_WAIT_API;
1941 	ctx->released = false;
1942 	ctx->mmap_changing = false;
1943 	ctx->mm = current->mm;
1944 	/* prevent the mm struct to be freed */
1945 	mmgrab(ctx->mm);
1946 
1947 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1948 			      O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1949 	if (fd < 0) {
1950 		mmdrop(ctx->mm);
1951 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1952 	}
1953 	return fd;
1954 }
1955 
1956 static int __init userfaultfd_init(void)
1957 {
1958 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1959 						sizeof(struct userfaultfd_ctx),
1960 						0,
1961 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1962 						init_once_userfaultfd_ctx);
1963 	return 0;
1964 }
1965 __initcall(userfaultfd_init);
1966