1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 66 struct mm_struct *mm; 67 }; 68 69 struct userfaultfd_fork_ctx { 70 struct userfaultfd_ctx *orig; 71 struct userfaultfd_ctx *new; 72 struct list_head list; 73 }; 74 75 struct userfaultfd_unmap_ctx { 76 struct userfaultfd_ctx *ctx; 77 unsigned long start; 78 unsigned long end; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_wait_queue { 83 struct uffd_msg msg; 84 wait_queue_entry_t wq; 85 struct userfaultfd_ctx *ctx; 86 bool waken; 87 }; 88 89 struct userfaultfd_wake_range { 90 unsigned long start; 91 unsigned long len; 92 }; 93 94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 95 int wake_flags, void *key) 96 { 97 struct userfaultfd_wake_range *range = key; 98 int ret; 99 struct userfaultfd_wait_queue *uwq; 100 unsigned long start, len; 101 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 103 ret = 0; 104 /* len == 0 means wake all */ 105 start = range->start; 106 len = range->len; 107 if (len && (start > uwq->msg.arg.pagefault.address || 108 start + len <= uwq->msg.arg.pagefault.address)) 109 goto out; 110 WRITE_ONCE(uwq->waken, true); 111 /* 112 * The Program-Order guarantees provided by the scheduler 113 * ensure uwq->waken is visible before the task is woken. 114 */ 115 ret = wake_up_state(wq->private, mode); 116 if (ret) { 117 /* 118 * Wake only once, autoremove behavior. 119 * 120 * After the effect of list_del_init is visible to the other 121 * CPUs, the waitqueue may disappear from under us, see the 122 * !list_empty_careful() in handle_userfault(). 123 * 124 * try_to_wake_up() has an implicit smp_mb(), and the 125 * wq->private is read before calling the extern function 126 * "wake_up_state" (which in turns calls try_to_wake_up). 127 */ 128 list_del_init(&wq->entry); 129 } 130 out: 131 return ret; 132 } 133 134 /** 135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 136 * context. 137 * @ctx: [in] Pointer to the userfaultfd context. 138 */ 139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 140 { 141 if (!atomic_inc_not_zero(&ctx->refcount)) 142 BUG(); 143 } 144 145 /** 146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 147 * context. 148 * @ctx: [in] Pointer to userfaultfd context. 149 * 150 * The userfaultfd context reference must have been previously acquired either 151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 152 */ 153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 154 { 155 if (atomic_dec_and_test(&ctx->refcount)) { 156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 164 mmdrop(ctx->mm); 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 166 } 167 } 168 169 static inline void msg_init(struct uffd_msg *msg) 170 { 171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 172 /* 173 * Must use memset to zero out the paddings or kernel data is 174 * leaked to userland. 175 */ 176 memset(msg, 0, sizeof(struct uffd_msg)); 177 } 178 179 static inline struct uffd_msg userfault_msg(unsigned long address, 180 unsigned int flags, 181 unsigned long reason) 182 { 183 struct uffd_msg msg; 184 msg_init(&msg); 185 msg.event = UFFD_EVENT_PAGEFAULT; 186 msg.arg.pagefault.address = address; 187 if (flags & FAULT_FLAG_WRITE) 188 /* 189 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 190 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 191 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 192 * was a read fault, otherwise if set it means it's 193 * a write fault. 194 */ 195 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 196 if (reason & VM_UFFD_WP) 197 /* 198 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 199 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 200 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 201 * a missing fault, otherwise if set it means it's a 202 * write protect fault. 203 */ 204 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 205 return msg; 206 } 207 208 #ifdef CONFIG_HUGETLB_PAGE 209 /* 210 * Same functionality as userfaultfd_must_wait below with modifications for 211 * hugepmd ranges. 212 */ 213 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 214 struct vm_area_struct *vma, 215 unsigned long address, 216 unsigned long flags, 217 unsigned long reason) 218 { 219 struct mm_struct *mm = ctx->mm; 220 pte_t *pte; 221 bool ret = true; 222 223 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 224 225 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 226 if (!pte) 227 goto out; 228 229 ret = false; 230 231 /* 232 * Lockless access: we're in a wait_event so it's ok if it 233 * changes under us. 234 */ 235 if (huge_pte_none(*pte)) 236 ret = true; 237 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 238 ret = true; 239 out: 240 return ret; 241 } 242 #else 243 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 244 struct vm_area_struct *vma, 245 unsigned long address, 246 unsigned long flags, 247 unsigned long reason) 248 { 249 return false; /* should never get here */ 250 } 251 #endif /* CONFIG_HUGETLB_PAGE */ 252 253 /* 254 * Verify the pagetables are still not ok after having reigstered into 255 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 256 * userfault that has already been resolved, if userfaultfd_read and 257 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 258 * threads. 259 */ 260 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 261 unsigned long address, 262 unsigned long flags, 263 unsigned long reason) 264 { 265 struct mm_struct *mm = ctx->mm; 266 pgd_t *pgd; 267 p4d_t *p4d; 268 pud_t *pud; 269 pmd_t *pmd, _pmd; 270 pte_t *pte; 271 bool ret = true; 272 273 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 274 275 pgd = pgd_offset(mm, address); 276 if (!pgd_present(*pgd)) 277 goto out; 278 p4d = p4d_offset(pgd, address); 279 if (!p4d_present(*p4d)) 280 goto out; 281 pud = pud_offset(p4d, address); 282 if (!pud_present(*pud)) 283 goto out; 284 pmd = pmd_offset(pud, address); 285 /* 286 * READ_ONCE must function as a barrier with narrower scope 287 * and it must be equivalent to: 288 * _pmd = *pmd; barrier(); 289 * 290 * This is to deal with the instability (as in 291 * pmd_trans_unstable) of the pmd. 292 */ 293 _pmd = READ_ONCE(*pmd); 294 if (!pmd_present(_pmd)) 295 goto out; 296 297 ret = false; 298 if (pmd_trans_huge(_pmd)) 299 goto out; 300 301 /* 302 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 303 * and use the standard pte_offset_map() instead of parsing _pmd. 304 */ 305 pte = pte_offset_map(pmd, address); 306 /* 307 * Lockless access: we're in a wait_event so it's ok if it 308 * changes under us. 309 */ 310 if (pte_none(*pte)) 311 ret = true; 312 pte_unmap(pte); 313 314 out: 315 return ret; 316 } 317 318 /* 319 * The locking rules involved in returning VM_FAULT_RETRY depending on 320 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 321 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 322 * recommendation in __lock_page_or_retry is not an understatement. 323 * 324 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 325 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 326 * not set. 327 * 328 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 329 * set, VM_FAULT_RETRY can still be returned if and only if there are 330 * fatal_signal_pending()s, and the mmap_sem must be released before 331 * returning it. 332 */ 333 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 334 { 335 struct mm_struct *mm = vmf->vma->vm_mm; 336 struct userfaultfd_ctx *ctx; 337 struct userfaultfd_wait_queue uwq; 338 int ret; 339 bool must_wait, return_to_userland; 340 long blocking_state; 341 342 ret = VM_FAULT_SIGBUS; 343 344 /* 345 * We don't do userfault handling for the final child pid update. 346 * 347 * We also don't do userfault handling during 348 * coredumping. hugetlbfs has the special 349 * follow_hugetlb_page() to skip missing pages in the 350 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 351 * the no_page_table() helper in follow_page_mask(), but the 352 * shmem_vm_ops->fault method is invoked even during 353 * coredumping without mmap_sem and it ends up here. 354 */ 355 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 356 goto out; 357 358 /* 359 * Coredumping runs without mmap_sem so we can only check that 360 * the mmap_sem is held, if PF_DUMPCORE was not set. 361 */ 362 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 363 364 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 365 if (!ctx) 366 goto out; 367 368 BUG_ON(ctx->mm != mm); 369 370 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 371 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 372 373 /* 374 * If it's already released don't get it. This avoids to loop 375 * in __get_user_pages if userfaultfd_release waits on the 376 * caller of handle_userfault to release the mmap_sem. 377 */ 378 if (unlikely(ACCESS_ONCE(ctx->released))) 379 goto out; 380 381 /* 382 * Check that we can return VM_FAULT_RETRY. 383 * 384 * NOTE: it should become possible to return VM_FAULT_RETRY 385 * even if FAULT_FLAG_TRIED is set without leading to gup() 386 * -EBUSY failures, if the userfaultfd is to be extended for 387 * VM_UFFD_WP tracking and we intend to arm the userfault 388 * without first stopping userland access to the memory. For 389 * VM_UFFD_MISSING userfaults this is enough for now. 390 */ 391 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 392 /* 393 * Validate the invariant that nowait must allow retry 394 * to be sure not to return SIGBUS erroneously on 395 * nowait invocations. 396 */ 397 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 398 #ifdef CONFIG_DEBUG_VM 399 if (printk_ratelimit()) { 400 printk(KERN_WARNING 401 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 402 vmf->flags); 403 dump_stack(); 404 } 405 #endif 406 goto out; 407 } 408 409 /* 410 * Handle nowait, not much to do other than tell it to retry 411 * and wait. 412 */ 413 ret = VM_FAULT_RETRY; 414 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 415 goto out; 416 417 /* take the reference before dropping the mmap_sem */ 418 userfaultfd_ctx_get(ctx); 419 420 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 421 uwq.wq.private = current; 422 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 423 uwq.ctx = ctx; 424 uwq.waken = false; 425 426 return_to_userland = 427 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 428 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 429 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 430 TASK_KILLABLE; 431 432 spin_lock(&ctx->fault_pending_wqh.lock); 433 /* 434 * After the __add_wait_queue the uwq is visible to userland 435 * through poll/read(). 436 */ 437 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 438 /* 439 * The smp_mb() after __set_current_state prevents the reads 440 * following the spin_unlock to happen before the list_add in 441 * __add_wait_queue. 442 */ 443 set_current_state(blocking_state); 444 spin_unlock(&ctx->fault_pending_wqh.lock); 445 446 if (!is_vm_hugetlb_page(vmf->vma)) 447 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 448 reason); 449 else 450 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 451 vmf->address, 452 vmf->flags, reason); 453 up_read(&mm->mmap_sem); 454 455 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 456 (return_to_userland ? !signal_pending(current) : 457 !fatal_signal_pending(current)))) { 458 wake_up_poll(&ctx->fd_wqh, POLLIN); 459 schedule(); 460 ret |= VM_FAULT_MAJOR; 461 462 /* 463 * False wakeups can orginate even from rwsem before 464 * up_read() however userfaults will wait either for a 465 * targeted wakeup on the specific uwq waitqueue from 466 * wake_userfault() or for signals or for uffd 467 * release. 468 */ 469 while (!READ_ONCE(uwq.waken)) { 470 /* 471 * This needs the full smp_store_mb() 472 * guarantee as the state write must be 473 * visible to other CPUs before reading 474 * uwq.waken from other CPUs. 475 */ 476 set_current_state(blocking_state); 477 if (READ_ONCE(uwq.waken) || 478 READ_ONCE(ctx->released) || 479 (return_to_userland ? signal_pending(current) : 480 fatal_signal_pending(current))) 481 break; 482 schedule(); 483 } 484 } 485 486 __set_current_state(TASK_RUNNING); 487 488 if (return_to_userland) { 489 if (signal_pending(current) && 490 !fatal_signal_pending(current)) { 491 /* 492 * If we got a SIGSTOP or SIGCONT and this is 493 * a normal userland page fault, just let 494 * userland return so the signal will be 495 * handled and gdb debugging works. The page 496 * fault code immediately after we return from 497 * this function is going to release the 498 * mmap_sem and it's not depending on it 499 * (unlike gup would if we were not to return 500 * VM_FAULT_RETRY). 501 * 502 * If a fatal signal is pending we still take 503 * the streamlined VM_FAULT_RETRY failure path 504 * and there's no need to retake the mmap_sem 505 * in such case. 506 */ 507 down_read(&mm->mmap_sem); 508 ret = VM_FAULT_NOPAGE; 509 } 510 } 511 512 /* 513 * Here we race with the list_del; list_add in 514 * userfaultfd_ctx_read(), however because we don't ever run 515 * list_del_init() to refile across the two lists, the prev 516 * and next pointers will never point to self. list_add also 517 * would never let any of the two pointers to point to 518 * self. So list_empty_careful won't risk to see both pointers 519 * pointing to self at any time during the list refile. The 520 * only case where list_del_init() is called is the full 521 * removal in the wake function and there we don't re-list_add 522 * and it's fine not to block on the spinlock. The uwq on this 523 * kernel stack can be released after the list_del_init. 524 */ 525 if (!list_empty_careful(&uwq.wq.entry)) { 526 spin_lock(&ctx->fault_pending_wqh.lock); 527 /* 528 * No need of list_del_init(), the uwq on the stack 529 * will be freed shortly anyway. 530 */ 531 list_del(&uwq.wq.entry); 532 spin_unlock(&ctx->fault_pending_wqh.lock); 533 } 534 535 /* 536 * ctx may go away after this if the userfault pseudo fd is 537 * already released. 538 */ 539 userfaultfd_ctx_put(ctx); 540 541 out: 542 return ret; 543 } 544 545 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 546 struct userfaultfd_wait_queue *ewq) 547 { 548 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 549 goto out; 550 551 ewq->ctx = ctx; 552 init_waitqueue_entry(&ewq->wq, current); 553 554 spin_lock(&ctx->event_wqh.lock); 555 /* 556 * After the __add_wait_queue the uwq is visible to userland 557 * through poll/read(). 558 */ 559 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 560 for (;;) { 561 set_current_state(TASK_KILLABLE); 562 if (ewq->msg.event == 0) 563 break; 564 if (ACCESS_ONCE(ctx->released) || 565 fatal_signal_pending(current)) { 566 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 567 if (ewq->msg.event == UFFD_EVENT_FORK) { 568 struct userfaultfd_ctx *new; 569 570 new = (struct userfaultfd_ctx *) 571 (unsigned long) 572 ewq->msg.arg.reserved.reserved1; 573 574 userfaultfd_ctx_put(new); 575 } 576 break; 577 } 578 579 spin_unlock(&ctx->event_wqh.lock); 580 581 wake_up_poll(&ctx->fd_wqh, POLLIN); 582 schedule(); 583 584 spin_lock(&ctx->event_wqh.lock); 585 } 586 __set_current_state(TASK_RUNNING); 587 spin_unlock(&ctx->event_wqh.lock); 588 589 /* 590 * ctx may go away after this if the userfault pseudo fd is 591 * already released. 592 */ 593 out: 594 userfaultfd_ctx_put(ctx); 595 } 596 597 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 598 struct userfaultfd_wait_queue *ewq) 599 { 600 ewq->msg.event = 0; 601 wake_up_locked(&ctx->event_wqh); 602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 603 } 604 605 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 606 { 607 struct userfaultfd_ctx *ctx = NULL, *octx; 608 struct userfaultfd_fork_ctx *fctx; 609 610 octx = vma->vm_userfaultfd_ctx.ctx; 611 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 612 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 613 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 614 return 0; 615 } 616 617 list_for_each_entry(fctx, fcs, list) 618 if (fctx->orig == octx) { 619 ctx = fctx->new; 620 break; 621 } 622 623 if (!ctx) { 624 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 625 if (!fctx) 626 return -ENOMEM; 627 628 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 629 if (!ctx) { 630 kfree(fctx); 631 return -ENOMEM; 632 } 633 634 atomic_set(&ctx->refcount, 1); 635 ctx->flags = octx->flags; 636 ctx->state = UFFD_STATE_RUNNING; 637 ctx->features = octx->features; 638 ctx->released = false; 639 ctx->mm = vma->vm_mm; 640 atomic_inc(&ctx->mm->mm_count); 641 642 userfaultfd_ctx_get(octx); 643 fctx->orig = octx; 644 fctx->new = ctx; 645 list_add_tail(&fctx->list, fcs); 646 } 647 648 vma->vm_userfaultfd_ctx.ctx = ctx; 649 return 0; 650 } 651 652 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 653 { 654 struct userfaultfd_ctx *ctx = fctx->orig; 655 struct userfaultfd_wait_queue ewq; 656 657 msg_init(&ewq.msg); 658 659 ewq.msg.event = UFFD_EVENT_FORK; 660 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 661 662 userfaultfd_event_wait_completion(ctx, &ewq); 663 } 664 665 void dup_userfaultfd_complete(struct list_head *fcs) 666 { 667 struct userfaultfd_fork_ctx *fctx, *n; 668 669 list_for_each_entry_safe(fctx, n, fcs, list) { 670 dup_fctx(fctx); 671 list_del(&fctx->list); 672 kfree(fctx); 673 } 674 } 675 676 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 677 struct vm_userfaultfd_ctx *vm_ctx) 678 { 679 struct userfaultfd_ctx *ctx; 680 681 ctx = vma->vm_userfaultfd_ctx.ctx; 682 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 683 vm_ctx->ctx = ctx; 684 userfaultfd_ctx_get(ctx); 685 } 686 } 687 688 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 689 unsigned long from, unsigned long to, 690 unsigned long len) 691 { 692 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 693 struct userfaultfd_wait_queue ewq; 694 695 if (!ctx) 696 return; 697 698 if (to & ~PAGE_MASK) { 699 userfaultfd_ctx_put(ctx); 700 return; 701 } 702 703 msg_init(&ewq.msg); 704 705 ewq.msg.event = UFFD_EVENT_REMAP; 706 ewq.msg.arg.remap.from = from; 707 ewq.msg.arg.remap.to = to; 708 ewq.msg.arg.remap.len = len; 709 710 userfaultfd_event_wait_completion(ctx, &ewq); 711 } 712 713 bool userfaultfd_remove(struct vm_area_struct *vma, 714 unsigned long start, unsigned long end) 715 { 716 struct mm_struct *mm = vma->vm_mm; 717 struct userfaultfd_ctx *ctx; 718 struct userfaultfd_wait_queue ewq; 719 720 ctx = vma->vm_userfaultfd_ctx.ctx; 721 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 722 return true; 723 724 userfaultfd_ctx_get(ctx); 725 up_read(&mm->mmap_sem); 726 727 msg_init(&ewq.msg); 728 729 ewq.msg.event = UFFD_EVENT_REMOVE; 730 ewq.msg.arg.remove.start = start; 731 ewq.msg.arg.remove.end = end; 732 733 userfaultfd_event_wait_completion(ctx, &ewq); 734 735 return false; 736 } 737 738 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 739 unsigned long start, unsigned long end) 740 { 741 struct userfaultfd_unmap_ctx *unmap_ctx; 742 743 list_for_each_entry(unmap_ctx, unmaps, list) 744 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 745 unmap_ctx->end == end) 746 return true; 747 748 return false; 749 } 750 751 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 752 unsigned long start, unsigned long end, 753 struct list_head *unmaps) 754 { 755 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 756 struct userfaultfd_unmap_ctx *unmap_ctx; 757 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 758 759 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 760 has_unmap_ctx(ctx, unmaps, start, end)) 761 continue; 762 763 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 764 if (!unmap_ctx) 765 return -ENOMEM; 766 767 userfaultfd_ctx_get(ctx); 768 unmap_ctx->ctx = ctx; 769 unmap_ctx->start = start; 770 unmap_ctx->end = end; 771 list_add_tail(&unmap_ctx->list, unmaps); 772 } 773 774 return 0; 775 } 776 777 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 778 { 779 struct userfaultfd_unmap_ctx *ctx, *n; 780 struct userfaultfd_wait_queue ewq; 781 782 list_for_each_entry_safe(ctx, n, uf, list) { 783 msg_init(&ewq.msg); 784 785 ewq.msg.event = UFFD_EVENT_UNMAP; 786 ewq.msg.arg.remove.start = ctx->start; 787 ewq.msg.arg.remove.end = ctx->end; 788 789 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 790 791 list_del(&ctx->list); 792 kfree(ctx); 793 } 794 } 795 796 static int userfaultfd_release(struct inode *inode, struct file *file) 797 { 798 struct userfaultfd_ctx *ctx = file->private_data; 799 struct mm_struct *mm = ctx->mm; 800 struct vm_area_struct *vma, *prev; 801 /* len == 0 means wake all */ 802 struct userfaultfd_wake_range range = { .len = 0, }; 803 unsigned long new_flags; 804 805 ACCESS_ONCE(ctx->released) = true; 806 807 if (!mmget_not_zero(mm)) 808 goto wakeup; 809 810 /* 811 * Flush page faults out of all CPUs. NOTE: all page faults 812 * must be retried without returning VM_FAULT_SIGBUS if 813 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 814 * changes while handle_userfault released the mmap_sem. So 815 * it's critical that released is set to true (above), before 816 * taking the mmap_sem for writing. 817 */ 818 down_write(&mm->mmap_sem); 819 prev = NULL; 820 for (vma = mm->mmap; vma; vma = vma->vm_next) { 821 cond_resched(); 822 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 823 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 824 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 825 prev = vma; 826 continue; 827 } 828 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 829 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 830 new_flags, vma->anon_vma, 831 vma->vm_file, vma->vm_pgoff, 832 vma_policy(vma), 833 NULL_VM_UFFD_CTX); 834 if (prev) 835 vma = prev; 836 else 837 prev = vma; 838 vma->vm_flags = new_flags; 839 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 840 } 841 up_write(&mm->mmap_sem); 842 mmput(mm); 843 wakeup: 844 /* 845 * After no new page faults can wait on this fault_*wqh, flush 846 * the last page faults that may have been already waiting on 847 * the fault_*wqh. 848 */ 849 spin_lock(&ctx->fault_pending_wqh.lock); 850 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 851 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 852 spin_unlock(&ctx->fault_pending_wqh.lock); 853 854 /* Flush pending events that may still wait on event_wqh */ 855 wake_up_all(&ctx->event_wqh); 856 857 wake_up_poll(&ctx->fd_wqh, POLLHUP); 858 userfaultfd_ctx_put(ctx); 859 return 0; 860 } 861 862 /* fault_pending_wqh.lock must be hold by the caller */ 863 static inline struct userfaultfd_wait_queue *find_userfault_in( 864 wait_queue_head_t *wqh) 865 { 866 wait_queue_entry_t *wq; 867 struct userfaultfd_wait_queue *uwq; 868 869 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 870 871 uwq = NULL; 872 if (!waitqueue_active(wqh)) 873 goto out; 874 /* walk in reverse to provide FIFO behavior to read userfaults */ 875 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 876 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 877 out: 878 return uwq; 879 } 880 881 static inline struct userfaultfd_wait_queue *find_userfault( 882 struct userfaultfd_ctx *ctx) 883 { 884 return find_userfault_in(&ctx->fault_pending_wqh); 885 } 886 887 static inline struct userfaultfd_wait_queue *find_userfault_evt( 888 struct userfaultfd_ctx *ctx) 889 { 890 return find_userfault_in(&ctx->event_wqh); 891 } 892 893 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 894 { 895 struct userfaultfd_ctx *ctx = file->private_data; 896 unsigned int ret; 897 898 poll_wait(file, &ctx->fd_wqh, wait); 899 900 switch (ctx->state) { 901 case UFFD_STATE_WAIT_API: 902 return POLLERR; 903 case UFFD_STATE_RUNNING: 904 /* 905 * poll() never guarantees that read won't block. 906 * userfaults can be waken before they're read(). 907 */ 908 if (unlikely(!(file->f_flags & O_NONBLOCK))) 909 return POLLERR; 910 /* 911 * lockless access to see if there are pending faults 912 * __pollwait last action is the add_wait_queue but 913 * the spin_unlock would allow the waitqueue_active to 914 * pass above the actual list_add inside 915 * add_wait_queue critical section. So use a full 916 * memory barrier to serialize the list_add write of 917 * add_wait_queue() with the waitqueue_active read 918 * below. 919 */ 920 ret = 0; 921 smp_mb(); 922 if (waitqueue_active(&ctx->fault_pending_wqh)) 923 ret = POLLIN; 924 else if (waitqueue_active(&ctx->event_wqh)) 925 ret = POLLIN; 926 927 return ret; 928 default: 929 WARN_ON_ONCE(1); 930 return POLLERR; 931 } 932 } 933 934 static const struct file_operations userfaultfd_fops; 935 936 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 937 struct userfaultfd_ctx *new, 938 struct uffd_msg *msg) 939 { 940 int fd; 941 struct file *file; 942 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 943 944 fd = get_unused_fd_flags(flags); 945 if (fd < 0) 946 return fd; 947 948 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 949 O_RDWR | flags); 950 if (IS_ERR(file)) { 951 put_unused_fd(fd); 952 return PTR_ERR(file); 953 } 954 955 fd_install(fd, file); 956 msg->arg.reserved.reserved1 = 0; 957 msg->arg.fork.ufd = fd; 958 959 return 0; 960 } 961 962 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 963 struct uffd_msg *msg) 964 { 965 ssize_t ret; 966 DECLARE_WAITQUEUE(wait, current); 967 struct userfaultfd_wait_queue *uwq; 968 /* 969 * Handling fork event requires sleeping operations, so 970 * we drop the event_wqh lock, then do these ops, then 971 * lock it back and wake up the waiter. While the lock is 972 * dropped the ewq may go away so we keep track of it 973 * carefully. 974 */ 975 LIST_HEAD(fork_event); 976 struct userfaultfd_ctx *fork_nctx = NULL; 977 978 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 979 spin_lock(&ctx->fd_wqh.lock); 980 __add_wait_queue(&ctx->fd_wqh, &wait); 981 for (;;) { 982 set_current_state(TASK_INTERRUPTIBLE); 983 spin_lock(&ctx->fault_pending_wqh.lock); 984 uwq = find_userfault(ctx); 985 if (uwq) { 986 /* 987 * Use a seqcount to repeat the lockless check 988 * in wake_userfault() to avoid missing 989 * wakeups because during the refile both 990 * waitqueue could become empty if this is the 991 * only userfault. 992 */ 993 write_seqcount_begin(&ctx->refile_seq); 994 995 /* 996 * The fault_pending_wqh.lock prevents the uwq 997 * to disappear from under us. 998 * 999 * Refile this userfault from 1000 * fault_pending_wqh to fault_wqh, it's not 1001 * pending anymore after we read it. 1002 * 1003 * Use list_del() by hand (as 1004 * userfaultfd_wake_function also uses 1005 * list_del_init() by hand) to be sure nobody 1006 * changes __remove_wait_queue() to use 1007 * list_del_init() in turn breaking the 1008 * !list_empty_careful() check in 1009 * handle_userfault(). The uwq->wq.head list 1010 * must never be empty at any time during the 1011 * refile, or the waitqueue could disappear 1012 * from under us. The "wait_queue_head_t" 1013 * parameter of __remove_wait_queue() is unused 1014 * anyway. 1015 */ 1016 list_del(&uwq->wq.entry); 1017 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1018 1019 write_seqcount_end(&ctx->refile_seq); 1020 1021 /* careful to always initialize msg if ret == 0 */ 1022 *msg = uwq->msg; 1023 spin_unlock(&ctx->fault_pending_wqh.lock); 1024 ret = 0; 1025 break; 1026 } 1027 spin_unlock(&ctx->fault_pending_wqh.lock); 1028 1029 spin_lock(&ctx->event_wqh.lock); 1030 uwq = find_userfault_evt(ctx); 1031 if (uwq) { 1032 *msg = uwq->msg; 1033 1034 if (uwq->msg.event == UFFD_EVENT_FORK) { 1035 fork_nctx = (struct userfaultfd_ctx *) 1036 (unsigned long) 1037 uwq->msg.arg.reserved.reserved1; 1038 list_move(&uwq->wq.entry, &fork_event); 1039 spin_unlock(&ctx->event_wqh.lock); 1040 ret = 0; 1041 break; 1042 } 1043 1044 userfaultfd_event_complete(ctx, uwq); 1045 spin_unlock(&ctx->event_wqh.lock); 1046 ret = 0; 1047 break; 1048 } 1049 spin_unlock(&ctx->event_wqh.lock); 1050 1051 if (signal_pending(current)) { 1052 ret = -ERESTARTSYS; 1053 break; 1054 } 1055 if (no_wait) { 1056 ret = -EAGAIN; 1057 break; 1058 } 1059 spin_unlock(&ctx->fd_wqh.lock); 1060 schedule(); 1061 spin_lock(&ctx->fd_wqh.lock); 1062 } 1063 __remove_wait_queue(&ctx->fd_wqh, &wait); 1064 __set_current_state(TASK_RUNNING); 1065 spin_unlock(&ctx->fd_wqh.lock); 1066 1067 if (!ret && msg->event == UFFD_EVENT_FORK) { 1068 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1069 1070 if (!ret) { 1071 spin_lock(&ctx->event_wqh.lock); 1072 if (!list_empty(&fork_event)) { 1073 uwq = list_first_entry(&fork_event, 1074 typeof(*uwq), 1075 wq.entry); 1076 list_del(&uwq->wq.entry); 1077 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1078 userfaultfd_event_complete(ctx, uwq); 1079 } 1080 spin_unlock(&ctx->event_wqh.lock); 1081 } 1082 } 1083 1084 return ret; 1085 } 1086 1087 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1088 size_t count, loff_t *ppos) 1089 { 1090 struct userfaultfd_ctx *ctx = file->private_data; 1091 ssize_t _ret, ret = 0; 1092 struct uffd_msg msg; 1093 int no_wait = file->f_flags & O_NONBLOCK; 1094 1095 if (ctx->state == UFFD_STATE_WAIT_API) 1096 return -EINVAL; 1097 1098 for (;;) { 1099 if (count < sizeof(msg)) 1100 return ret ? ret : -EINVAL; 1101 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1102 if (_ret < 0) 1103 return ret ? ret : _ret; 1104 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1105 return ret ? ret : -EFAULT; 1106 ret += sizeof(msg); 1107 buf += sizeof(msg); 1108 count -= sizeof(msg); 1109 /* 1110 * Allow to read more than one fault at time but only 1111 * block if waiting for the very first one. 1112 */ 1113 no_wait = O_NONBLOCK; 1114 } 1115 } 1116 1117 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1118 struct userfaultfd_wake_range *range) 1119 { 1120 spin_lock(&ctx->fault_pending_wqh.lock); 1121 /* wake all in the range and autoremove */ 1122 if (waitqueue_active(&ctx->fault_pending_wqh)) 1123 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1124 range); 1125 if (waitqueue_active(&ctx->fault_wqh)) 1126 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1127 spin_unlock(&ctx->fault_pending_wqh.lock); 1128 } 1129 1130 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1131 struct userfaultfd_wake_range *range) 1132 { 1133 unsigned seq; 1134 bool need_wakeup; 1135 1136 /* 1137 * To be sure waitqueue_active() is not reordered by the CPU 1138 * before the pagetable update, use an explicit SMP memory 1139 * barrier here. PT lock release or up_read(mmap_sem) still 1140 * have release semantics that can allow the 1141 * waitqueue_active() to be reordered before the pte update. 1142 */ 1143 smp_mb(); 1144 1145 /* 1146 * Use waitqueue_active because it's very frequent to 1147 * change the address space atomically even if there are no 1148 * userfaults yet. So we take the spinlock only when we're 1149 * sure we've userfaults to wake. 1150 */ 1151 do { 1152 seq = read_seqcount_begin(&ctx->refile_seq); 1153 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1154 waitqueue_active(&ctx->fault_wqh); 1155 cond_resched(); 1156 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1157 if (need_wakeup) 1158 __wake_userfault(ctx, range); 1159 } 1160 1161 static __always_inline int validate_range(struct mm_struct *mm, 1162 __u64 start, __u64 len) 1163 { 1164 __u64 task_size = mm->task_size; 1165 1166 if (start & ~PAGE_MASK) 1167 return -EINVAL; 1168 if (len & ~PAGE_MASK) 1169 return -EINVAL; 1170 if (!len) 1171 return -EINVAL; 1172 if (start < mmap_min_addr) 1173 return -EINVAL; 1174 if (start >= task_size) 1175 return -EINVAL; 1176 if (len > task_size - start) 1177 return -EINVAL; 1178 return 0; 1179 } 1180 1181 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1182 { 1183 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1184 vma_is_shmem(vma); 1185 } 1186 1187 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1188 unsigned long arg) 1189 { 1190 struct mm_struct *mm = ctx->mm; 1191 struct vm_area_struct *vma, *prev, *cur; 1192 int ret; 1193 struct uffdio_register uffdio_register; 1194 struct uffdio_register __user *user_uffdio_register; 1195 unsigned long vm_flags, new_flags; 1196 bool found; 1197 bool non_anon_pages; 1198 unsigned long start, end, vma_end; 1199 1200 user_uffdio_register = (struct uffdio_register __user *) arg; 1201 1202 ret = -EFAULT; 1203 if (copy_from_user(&uffdio_register, user_uffdio_register, 1204 sizeof(uffdio_register)-sizeof(__u64))) 1205 goto out; 1206 1207 ret = -EINVAL; 1208 if (!uffdio_register.mode) 1209 goto out; 1210 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1211 UFFDIO_REGISTER_MODE_WP)) 1212 goto out; 1213 vm_flags = 0; 1214 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1215 vm_flags |= VM_UFFD_MISSING; 1216 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1217 vm_flags |= VM_UFFD_WP; 1218 /* 1219 * FIXME: remove the below error constraint by 1220 * implementing the wprotect tracking mode. 1221 */ 1222 ret = -EINVAL; 1223 goto out; 1224 } 1225 1226 ret = validate_range(mm, uffdio_register.range.start, 1227 uffdio_register.range.len); 1228 if (ret) 1229 goto out; 1230 1231 start = uffdio_register.range.start; 1232 end = start + uffdio_register.range.len; 1233 1234 ret = -ENOMEM; 1235 if (!mmget_not_zero(mm)) 1236 goto out; 1237 1238 down_write(&mm->mmap_sem); 1239 vma = find_vma_prev(mm, start, &prev); 1240 if (!vma) 1241 goto out_unlock; 1242 1243 /* check that there's at least one vma in the range */ 1244 ret = -EINVAL; 1245 if (vma->vm_start >= end) 1246 goto out_unlock; 1247 1248 /* 1249 * If the first vma contains huge pages, make sure start address 1250 * is aligned to huge page size. 1251 */ 1252 if (is_vm_hugetlb_page(vma)) { 1253 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1254 1255 if (start & (vma_hpagesize - 1)) 1256 goto out_unlock; 1257 } 1258 1259 /* 1260 * Search for not compatible vmas. 1261 */ 1262 found = false; 1263 non_anon_pages = false; 1264 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1265 cond_resched(); 1266 1267 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1268 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1269 1270 /* check not compatible vmas */ 1271 ret = -EINVAL; 1272 if (!vma_can_userfault(cur)) 1273 goto out_unlock; 1274 /* 1275 * If this vma contains ending address, and huge pages 1276 * check alignment. 1277 */ 1278 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1279 end > cur->vm_start) { 1280 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1281 1282 ret = -EINVAL; 1283 1284 if (end & (vma_hpagesize - 1)) 1285 goto out_unlock; 1286 } 1287 1288 /* 1289 * Check that this vma isn't already owned by a 1290 * different userfaultfd. We can't allow more than one 1291 * userfaultfd to own a single vma simultaneously or we 1292 * wouldn't know which one to deliver the userfaults to. 1293 */ 1294 ret = -EBUSY; 1295 if (cur->vm_userfaultfd_ctx.ctx && 1296 cur->vm_userfaultfd_ctx.ctx != ctx) 1297 goto out_unlock; 1298 1299 /* 1300 * Note vmas containing huge pages 1301 */ 1302 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur)) 1303 non_anon_pages = true; 1304 1305 found = true; 1306 } 1307 BUG_ON(!found); 1308 1309 if (vma->vm_start < start) 1310 prev = vma; 1311 1312 ret = 0; 1313 do { 1314 cond_resched(); 1315 1316 BUG_ON(!vma_can_userfault(vma)); 1317 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1318 vma->vm_userfaultfd_ctx.ctx != ctx); 1319 1320 /* 1321 * Nothing to do: this vma is already registered into this 1322 * userfaultfd and with the right tracking mode too. 1323 */ 1324 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1325 (vma->vm_flags & vm_flags) == vm_flags) 1326 goto skip; 1327 1328 if (vma->vm_start > start) 1329 start = vma->vm_start; 1330 vma_end = min(end, vma->vm_end); 1331 1332 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1333 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1334 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1335 vma_policy(vma), 1336 ((struct vm_userfaultfd_ctx){ ctx })); 1337 if (prev) { 1338 vma = prev; 1339 goto next; 1340 } 1341 if (vma->vm_start < start) { 1342 ret = split_vma(mm, vma, start, 1); 1343 if (ret) 1344 break; 1345 } 1346 if (vma->vm_end > end) { 1347 ret = split_vma(mm, vma, end, 0); 1348 if (ret) 1349 break; 1350 } 1351 next: 1352 /* 1353 * In the vma_merge() successful mprotect-like case 8: 1354 * the next vma was merged into the current one and 1355 * the current one has not been updated yet. 1356 */ 1357 vma->vm_flags = new_flags; 1358 vma->vm_userfaultfd_ctx.ctx = ctx; 1359 1360 skip: 1361 prev = vma; 1362 start = vma->vm_end; 1363 vma = vma->vm_next; 1364 } while (vma && vma->vm_start < end); 1365 out_unlock: 1366 up_write(&mm->mmap_sem); 1367 mmput(mm); 1368 if (!ret) { 1369 /* 1370 * Now that we scanned all vmas we can already tell 1371 * userland which ioctls methods are guaranteed to 1372 * succeed on this range. 1373 */ 1374 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC : 1375 UFFD_API_RANGE_IOCTLS, 1376 &user_uffdio_register->ioctls)) 1377 ret = -EFAULT; 1378 } 1379 out: 1380 return ret; 1381 } 1382 1383 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1384 unsigned long arg) 1385 { 1386 struct mm_struct *mm = ctx->mm; 1387 struct vm_area_struct *vma, *prev, *cur; 1388 int ret; 1389 struct uffdio_range uffdio_unregister; 1390 unsigned long new_flags; 1391 bool found; 1392 unsigned long start, end, vma_end; 1393 const void __user *buf = (void __user *)arg; 1394 1395 ret = -EFAULT; 1396 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1397 goto out; 1398 1399 ret = validate_range(mm, uffdio_unregister.start, 1400 uffdio_unregister.len); 1401 if (ret) 1402 goto out; 1403 1404 start = uffdio_unregister.start; 1405 end = start + uffdio_unregister.len; 1406 1407 ret = -ENOMEM; 1408 if (!mmget_not_zero(mm)) 1409 goto out; 1410 1411 down_write(&mm->mmap_sem); 1412 vma = find_vma_prev(mm, start, &prev); 1413 if (!vma) 1414 goto out_unlock; 1415 1416 /* check that there's at least one vma in the range */ 1417 ret = -EINVAL; 1418 if (vma->vm_start >= end) 1419 goto out_unlock; 1420 1421 /* 1422 * If the first vma contains huge pages, make sure start address 1423 * is aligned to huge page size. 1424 */ 1425 if (is_vm_hugetlb_page(vma)) { 1426 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1427 1428 if (start & (vma_hpagesize - 1)) 1429 goto out_unlock; 1430 } 1431 1432 /* 1433 * Search for not compatible vmas. 1434 */ 1435 found = false; 1436 ret = -EINVAL; 1437 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1438 cond_resched(); 1439 1440 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1441 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1442 1443 /* 1444 * Check not compatible vmas, not strictly required 1445 * here as not compatible vmas cannot have an 1446 * userfaultfd_ctx registered on them, but this 1447 * provides for more strict behavior to notice 1448 * unregistration errors. 1449 */ 1450 if (!vma_can_userfault(cur)) 1451 goto out_unlock; 1452 1453 found = true; 1454 } 1455 BUG_ON(!found); 1456 1457 if (vma->vm_start < start) 1458 prev = vma; 1459 1460 ret = 0; 1461 do { 1462 cond_resched(); 1463 1464 BUG_ON(!vma_can_userfault(vma)); 1465 1466 /* 1467 * Nothing to do: this vma is already registered into this 1468 * userfaultfd and with the right tracking mode too. 1469 */ 1470 if (!vma->vm_userfaultfd_ctx.ctx) 1471 goto skip; 1472 1473 if (vma->vm_start > start) 1474 start = vma->vm_start; 1475 vma_end = min(end, vma->vm_end); 1476 1477 if (userfaultfd_missing(vma)) { 1478 /* 1479 * Wake any concurrent pending userfault while 1480 * we unregister, so they will not hang 1481 * permanently and it avoids userland to call 1482 * UFFDIO_WAKE explicitly. 1483 */ 1484 struct userfaultfd_wake_range range; 1485 range.start = start; 1486 range.len = vma_end - start; 1487 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1488 } 1489 1490 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1491 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1492 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1493 vma_policy(vma), 1494 NULL_VM_UFFD_CTX); 1495 if (prev) { 1496 vma = prev; 1497 goto next; 1498 } 1499 if (vma->vm_start < start) { 1500 ret = split_vma(mm, vma, start, 1); 1501 if (ret) 1502 break; 1503 } 1504 if (vma->vm_end > end) { 1505 ret = split_vma(mm, vma, end, 0); 1506 if (ret) 1507 break; 1508 } 1509 next: 1510 /* 1511 * In the vma_merge() successful mprotect-like case 8: 1512 * the next vma was merged into the current one and 1513 * the current one has not been updated yet. 1514 */ 1515 vma->vm_flags = new_flags; 1516 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1517 1518 skip: 1519 prev = vma; 1520 start = vma->vm_end; 1521 vma = vma->vm_next; 1522 } while (vma && vma->vm_start < end); 1523 out_unlock: 1524 up_write(&mm->mmap_sem); 1525 mmput(mm); 1526 out: 1527 return ret; 1528 } 1529 1530 /* 1531 * userfaultfd_wake may be used in combination with the 1532 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1533 */ 1534 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1535 unsigned long arg) 1536 { 1537 int ret; 1538 struct uffdio_range uffdio_wake; 1539 struct userfaultfd_wake_range range; 1540 const void __user *buf = (void __user *)arg; 1541 1542 ret = -EFAULT; 1543 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1544 goto out; 1545 1546 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1547 if (ret) 1548 goto out; 1549 1550 range.start = uffdio_wake.start; 1551 range.len = uffdio_wake.len; 1552 1553 /* 1554 * len == 0 means wake all and we don't want to wake all here, 1555 * so check it again to be sure. 1556 */ 1557 VM_BUG_ON(!range.len); 1558 1559 wake_userfault(ctx, &range); 1560 ret = 0; 1561 1562 out: 1563 return ret; 1564 } 1565 1566 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1567 unsigned long arg) 1568 { 1569 __s64 ret; 1570 struct uffdio_copy uffdio_copy; 1571 struct uffdio_copy __user *user_uffdio_copy; 1572 struct userfaultfd_wake_range range; 1573 1574 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1575 1576 ret = -EFAULT; 1577 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1578 /* don't copy "copy" last field */ 1579 sizeof(uffdio_copy)-sizeof(__s64))) 1580 goto out; 1581 1582 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1583 if (ret) 1584 goto out; 1585 /* 1586 * double check for wraparound just in case. copy_from_user() 1587 * will later check uffdio_copy.src + uffdio_copy.len to fit 1588 * in the userland range. 1589 */ 1590 ret = -EINVAL; 1591 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1592 goto out; 1593 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1594 goto out; 1595 if (mmget_not_zero(ctx->mm)) { 1596 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1597 uffdio_copy.len); 1598 mmput(ctx->mm); 1599 } else { 1600 return -ESRCH; 1601 } 1602 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1603 return -EFAULT; 1604 if (ret < 0) 1605 goto out; 1606 BUG_ON(!ret); 1607 /* len == 0 would wake all */ 1608 range.len = ret; 1609 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1610 range.start = uffdio_copy.dst; 1611 wake_userfault(ctx, &range); 1612 } 1613 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1614 out: 1615 return ret; 1616 } 1617 1618 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1619 unsigned long arg) 1620 { 1621 __s64 ret; 1622 struct uffdio_zeropage uffdio_zeropage; 1623 struct uffdio_zeropage __user *user_uffdio_zeropage; 1624 struct userfaultfd_wake_range range; 1625 1626 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1627 1628 ret = -EFAULT; 1629 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1630 /* don't copy "zeropage" last field */ 1631 sizeof(uffdio_zeropage)-sizeof(__s64))) 1632 goto out; 1633 1634 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1635 uffdio_zeropage.range.len); 1636 if (ret) 1637 goto out; 1638 ret = -EINVAL; 1639 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1640 goto out; 1641 1642 if (mmget_not_zero(ctx->mm)) { 1643 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1644 uffdio_zeropage.range.len); 1645 mmput(ctx->mm); 1646 } else { 1647 return -ESRCH; 1648 } 1649 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1650 return -EFAULT; 1651 if (ret < 0) 1652 goto out; 1653 /* len == 0 would wake all */ 1654 BUG_ON(!ret); 1655 range.len = ret; 1656 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1657 range.start = uffdio_zeropage.range.start; 1658 wake_userfault(ctx, &range); 1659 } 1660 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1661 out: 1662 return ret; 1663 } 1664 1665 static inline unsigned int uffd_ctx_features(__u64 user_features) 1666 { 1667 /* 1668 * For the current set of features the bits just coincide 1669 */ 1670 return (unsigned int)user_features; 1671 } 1672 1673 /* 1674 * userland asks for a certain API version and we return which bits 1675 * and ioctl commands are implemented in this kernel for such API 1676 * version or -EINVAL if unknown. 1677 */ 1678 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1679 unsigned long arg) 1680 { 1681 struct uffdio_api uffdio_api; 1682 void __user *buf = (void __user *)arg; 1683 int ret; 1684 __u64 features; 1685 1686 ret = -EINVAL; 1687 if (ctx->state != UFFD_STATE_WAIT_API) 1688 goto out; 1689 ret = -EFAULT; 1690 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1691 goto out; 1692 features = uffdio_api.features; 1693 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1694 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1695 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1696 goto out; 1697 ret = -EINVAL; 1698 goto out; 1699 } 1700 /* report all available features and ioctls to userland */ 1701 uffdio_api.features = UFFD_API_FEATURES; 1702 uffdio_api.ioctls = UFFD_API_IOCTLS; 1703 ret = -EFAULT; 1704 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1705 goto out; 1706 ctx->state = UFFD_STATE_RUNNING; 1707 /* only enable the requested features for this uffd context */ 1708 ctx->features = uffd_ctx_features(features); 1709 ret = 0; 1710 out: 1711 return ret; 1712 } 1713 1714 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1715 unsigned long arg) 1716 { 1717 int ret = -EINVAL; 1718 struct userfaultfd_ctx *ctx = file->private_data; 1719 1720 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1721 return -EINVAL; 1722 1723 switch(cmd) { 1724 case UFFDIO_API: 1725 ret = userfaultfd_api(ctx, arg); 1726 break; 1727 case UFFDIO_REGISTER: 1728 ret = userfaultfd_register(ctx, arg); 1729 break; 1730 case UFFDIO_UNREGISTER: 1731 ret = userfaultfd_unregister(ctx, arg); 1732 break; 1733 case UFFDIO_WAKE: 1734 ret = userfaultfd_wake(ctx, arg); 1735 break; 1736 case UFFDIO_COPY: 1737 ret = userfaultfd_copy(ctx, arg); 1738 break; 1739 case UFFDIO_ZEROPAGE: 1740 ret = userfaultfd_zeropage(ctx, arg); 1741 break; 1742 } 1743 return ret; 1744 } 1745 1746 #ifdef CONFIG_PROC_FS 1747 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1748 { 1749 struct userfaultfd_ctx *ctx = f->private_data; 1750 wait_queue_entry_t *wq; 1751 struct userfaultfd_wait_queue *uwq; 1752 unsigned long pending = 0, total = 0; 1753 1754 spin_lock(&ctx->fault_pending_wqh.lock); 1755 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1756 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1757 pending++; 1758 total++; 1759 } 1760 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1761 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1762 total++; 1763 } 1764 spin_unlock(&ctx->fault_pending_wqh.lock); 1765 1766 /* 1767 * If more protocols will be added, there will be all shown 1768 * separated by a space. Like this: 1769 * protocols: aa:... bb:... 1770 */ 1771 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1772 pending, total, UFFD_API, ctx->features, 1773 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1774 } 1775 #endif 1776 1777 static const struct file_operations userfaultfd_fops = { 1778 #ifdef CONFIG_PROC_FS 1779 .show_fdinfo = userfaultfd_show_fdinfo, 1780 #endif 1781 .release = userfaultfd_release, 1782 .poll = userfaultfd_poll, 1783 .read = userfaultfd_read, 1784 .unlocked_ioctl = userfaultfd_ioctl, 1785 .compat_ioctl = userfaultfd_ioctl, 1786 .llseek = noop_llseek, 1787 }; 1788 1789 static void init_once_userfaultfd_ctx(void *mem) 1790 { 1791 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1792 1793 init_waitqueue_head(&ctx->fault_pending_wqh); 1794 init_waitqueue_head(&ctx->fault_wqh); 1795 init_waitqueue_head(&ctx->event_wqh); 1796 init_waitqueue_head(&ctx->fd_wqh); 1797 seqcount_init(&ctx->refile_seq); 1798 } 1799 1800 /** 1801 * userfaultfd_file_create - Creates a userfaultfd file pointer. 1802 * @flags: Flags for the userfaultfd file. 1803 * 1804 * This function creates a userfaultfd file pointer, w/out installing 1805 * it into the fd table. This is useful when the userfaultfd file is 1806 * used during the initialization of data structures that require 1807 * extra setup after the userfaultfd creation. So the userfaultfd 1808 * creation is split into the file pointer creation phase, and the 1809 * file descriptor installation phase. In this way races with 1810 * userspace closing the newly installed file descriptor can be 1811 * avoided. Returns a userfaultfd file pointer, or a proper error 1812 * pointer. 1813 */ 1814 static struct file *userfaultfd_file_create(int flags) 1815 { 1816 struct file *file; 1817 struct userfaultfd_ctx *ctx; 1818 1819 BUG_ON(!current->mm); 1820 1821 /* Check the UFFD_* constants for consistency. */ 1822 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1823 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1824 1825 file = ERR_PTR(-EINVAL); 1826 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1827 goto out; 1828 1829 file = ERR_PTR(-ENOMEM); 1830 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1831 if (!ctx) 1832 goto out; 1833 1834 atomic_set(&ctx->refcount, 1); 1835 ctx->flags = flags; 1836 ctx->features = 0; 1837 ctx->state = UFFD_STATE_WAIT_API; 1838 ctx->released = false; 1839 ctx->mm = current->mm; 1840 /* prevent the mm struct to be freed */ 1841 mmgrab(ctx->mm); 1842 1843 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1844 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1845 if (IS_ERR(file)) { 1846 mmdrop(ctx->mm); 1847 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1848 } 1849 out: 1850 return file; 1851 } 1852 1853 SYSCALL_DEFINE1(userfaultfd, int, flags) 1854 { 1855 int fd, error; 1856 struct file *file; 1857 1858 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1859 if (error < 0) 1860 return error; 1861 fd = error; 1862 1863 file = userfaultfd_file_create(flags); 1864 if (IS_ERR(file)) { 1865 error = PTR_ERR(file); 1866 goto err_put_unused_fd; 1867 } 1868 fd_install(fd, file); 1869 1870 return fd; 1871 1872 err_put_unused_fd: 1873 put_unused_fd(fd); 1874 1875 return error; 1876 } 1877 1878 static int __init userfaultfd_init(void) 1879 { 1880 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1881 sizeof(struct userfaultfd_ctx), 1882 0, 1883 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1884 init_once_userfaultfd_ctx); 1885 return 0; 1886 } 1887 __initcall(userfaultfd_init); 1888