1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 #include <linux/uio.h> 35 36 static int sysctl_unprivileged_userfaultfd __read_mostly; 37 38 #ifdef CONFIG_SYSCTL 39 static const struct ctl_table vm_userfaultfd_table[] = { 40 { 41 .procname = "unprivileged_userfaultfd", 42 .data = &sysctl_unprivileged_userfaultfd, 43 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 44 .mode = 0644, 45 .proc_handler = proc_dointvec_minmax, 46 .extra1 = SYSCTL_ZERO, 47 .extra2 = SYSCTL_ONE, 48 }, 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init; 53 54 struct userfaultfd_fork_ctx { 55 struct userfaultfd_ctx *orig; 56 struct userfaultfd_ctx *new; 57 struct list_head list; 58 }; 59 60 struct userfaultfd_unmap_ctx { 61 struct userfaultfd_ctx *ctx; 62 unsigned long start; 63 unsigned long end; 64 struct list_head list; 65 }; 66 67 struct userfaultfd_wait_queue { 68 struct uffd_msg msg; 69 wait_queue_entry_t wq; 70 struct userfaultfd_ctx *ctx; 71 bool waken; 72 }; 73 74 struct userfaultfd_wake_range { 75 unsigned long start; 76 unsigned long len; 77 }; 78 79 /* internal indication that UFFD_API ioctl was successfully executed */ 80 #define UFFD_FEATURE_INITIALIZED (1u << 31) 81 82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 83 { 84 return ctx->features & UFFD_FEATURE_INITIALIZED; 85 } 86 87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx) 88 { 89 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC); 90 } 91 92 /* 93 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 94 * meaningful when userfaultfd_wp()==true on the vma and when it's 95 * anonymous. 96 */ 97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 98 { 99 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 100 101 if (!ctx) 102 return false; 103 104 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 105 } 106 107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 108 int wake_flags, void *key) 109 { 110 struct userfaultfd_wake_range *range = key; 111 int ret; 112 struct userfaultfd_wait_queue *uwq; 113 unsigned long start, len; 114 115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 116 ret = 0; 117 /* len == 0 means wake all */ 118 start = range->start; 119 len = range->len; 120 if (len && (start > uwq->msg.arg.pagefault.address || 121 start + len <= uwq->msg.arg.pagefault.address)) 122 goto out; 123 WRITE_ONCE(uwq->waken, true); 124 /* 125 * The Program-Order guarantees provided by the scheduler 126 * ensure uwq->waken is visible before the task is woken. 127 */ 128 ret = wake_up_state(wq->private, mode); 129 if (ret) { 130 /* 131 * Wake only once, autoremove behavior. 132 * 133 * After the effect of list_del_init is visible to the other 134 * CPUs, the waitqueue may disappear from under us, see the 135 * !list_empty_careful() in handle_userfault(). 136 * 137 * try_to_wake_up() has an implicit smp_mb(), and the 138 * wq->private is read before calling the extern function 139 * "wake_up_state" (which in turns calls try_to_wake_up). 140 */ 141 list_del_init(&wq->entry); 142 } 143 out: 144 return ret; 145 } 146 147 /** 148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 149 * context. 150 * @ctx: [in] Pointer to the userfaultfd context. 151 */ 152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 153 { 154 refcount_inc(&ctx->refcount); 155 } 156 157 /** 158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 159 * context. 160 * @ctx: [in] Pointer to userfaultfd context. 161 * 162 * The userfaultfd context reference must have been previously acquired either 163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 164 */ 165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 166 { 167 if (refcount_dec_and_test(&ctx->refcount)) { 168 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_pending_wqh.lock)); 169 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_pending_wqh)); 170 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_wqh.lock)); 171 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_wqh)); 172 VM_WARN_ON_ONCE(spin_is_locked(&ctx->event_wqh.lock)); 173 VM_WARN_ON_ONCE(waitqueue_active(&ctx->event_wqh)); 174 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fd_wqh.lock)); 175 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fd_wqh)); 176 mmdrop(ctx->mm); 177 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 178 } 179 } 180 181 static inline void msg_init(struct uffd_msg *msg) 182 { 183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 184 /* 185 * Must use memset to zero out the paddings or kernel data is 186 * leaked to userland. 187 */ 188 memset(msg, 0, sizeof(struct uffd_msg)); 189 } 190 191 static inline struct uffd_msg userfault_msg(unsigned long address, 192 unsigned long real_address, 193 unsigned int flags, 194 unsigned long reason, 195 unsigned int features) 196 { 197 struct uffd_msg msg; 198 199 msg_init(&msg); 200 msg.event = UFFD_EVENT_PAGEFAULT; 201 202 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 203 real_address : address; 204 205 /* 206 * These flags indicate why the userfault occurred: 207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 209 * - Neither of these flags being set indicates a MISSING fault. 210 * 211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 212 * fault. Otherwise, it was a read fault. 213 */ 214 if (flags & FAULT_FLAG_WRITE) 215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 216 if (reason & VM_UFFD_WP) 217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 218 if (reason & VM_UFFD_MINOR) 219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 220 if (features & UFFD_FEATURE_THREAD_ID) 221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 222 return msg; 223 } 224 225 #ifdef CONFIG_HUGETLB_PAGE 226 /* 227 * Same functionality as userfaultfd_must_wait below with modifications for 228 * hugepmd ranges. 229 */ 230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 231 struct vm_fault *vmf, 232 unsigned long reason) 233 { 234 struct vm_area_struct *vma = vmf->vma; 235 pte_t *ptep, pte; 236 bool ret = true; 237 238 assert_fault_locked(vmf); 239 240 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); 241 if (!ptep) 242 goto out; 243 244 ret = false; 245 pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep); 246 247 /* 248 * Lockless access: we're in a wait_event so it's ok if it 249 * changes under us. PTE markers should be handled the same as none 250 * ptes here. 251 */ 252 if (huge_pte_none_mostly(pte)) 253 ret = true; 254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 255 ret = true; 256 out: 257 return ret; 258 } 259 #else 260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 261 struct vm_fault *vmf, 262 unsigned long reason) 263 { 264 return false; /* should never get here */ 265 } 266 #endif /* CONFIG_HUGETLB_PAGE */ 267 268 /* 269 * Verify the pagetables are still not ok after having reigstered into 270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 271 * userfault that has already been resolved, if userfaultfd_read_iter and 272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 273 * threads. 274 */ 275 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 276 struct vm_fault *vmf, 277 unsigned long reason) 278 { 279 struct mm_struct *mm = ctx->mm; 280 unsigned long address = vmf->address; 281 pgd_t *pgd; 282 p4d_t *p4d; 283 pud_t *pud; 284 pmd_t *pmd, _pmd; 285 pte_t *pte; 286 pte_t ptent; 287 bool ret = true; 288 289 assert_fault_locked(vmf); 290 291 pgd = pgd_offset(mm, address); 292 if (!pgd_present(*pgd)) 293 goto out; 294 p4d = p4d_offset(pgd, address); 295 if (!p4d_present(*p4d)) 296 goto out; 297 pud = pud_offset(p4d, address); 298 if (!pud_present(*pud)) 299 goto out; 300 pmd = pmd_offset(pud, address); 301 again: 302 _pmd = pmdp_get_lockless(pmd); 303 if (pmd_none(_pmd)) 304 goto out; 305 306 ret = false; 307 if (!pmd_present(_pmd)) 308 goto out; 309 310 if (pmd_trans_huge(_pmd)) { 311 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 312 ret = true; 313 goto out; 314 } 315 316 pte = pte_offset_map(pmd, address); 317 if (!pte) { 318 ret = true; 319 goto again; 320 } 321 /* 322 * Lockless access: we're in a wait_event so it's ok if it 323 * changes under us. PTE markers should be handled the same as none 324 * ptes here. 325 */ 326 ptent = ptep_get(pte); 327 if (pte_none_mostly(ptent)) 328 ret = true; 329 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 330 ret = true; 331 pte_unmap(pte); 332 333 out: 334 return ret; 335 } 336 337 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 338 { 339 if (flags & FAULT_FLAG_INTERRUPTIBLE) 340 return TASK_INTERRUPTIBLE; 341 342 if (flags & FAULT_FLAG_KILLABLE) 343 return TASK_KILLABLE; 344 345 return TASK_UNINTERRUPTIBLE; 346 } 347 348 /* 349 * The locking rules involved in returning VM_FAULT_RETRY depending on 350 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 351 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 352 * recommendation in __lock_page_or_retry is not an understatement. 353 * 354 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 355 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 356 * not set. 357 * 358 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 359 * set, VM_FAULT_RETRY can still be returned if and only if there are 360 * fatal_signal_pending()s, and the mmap_lock must be released before 361 * returning it. 362 */ 363 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 364 { 365 struct vm_area_struct *vma = vmf->vma; 366 struct mm_struct *mm = vma->vm_mm; 367 struct userfaultfd_ctx *ctx; 368 struct userfaultfd_wait_queue uwq; 369 vm_fault_t ret = VM_FAULT_SIGBUS; 370 bool must_wait; 371 unsigned int blocking_state; 372 373 /* 374 * We don't do userfault handling for the final child pid update 375 * and when coredumping (faults triggered by get_dump_page()). 376 */ 377 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 378 goto out; 379 380 assert_fault_locked(vmf); 381 382 ctx = vma->vm_userfaultfd_ctx.ctx; 383 if (!ctx) 384 goto out; 385 386 VM_WARN_ON_ONCE(ctx->mm != mm); 387 388 /* Any unrecognized flag is a bug. */ 389 VM_WARN_ON_ONCE(reason & ~__VM_UFFD_FLAGS); 390 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 391 VM_WARN_ON_ONCE(!reason || (reason & (reason - 1))); 392 393 if (ctx->features & UFFD_FEATURE_SIGBUS) 394 goto out; 395 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 396 goto out; 397 398 /* 399 * Check that we can return VM_FAULT_RETRY. 400 * 401 * NOTE: it should become possible to return VM_FAULT_RETRY 402 * even if FAULT_FLAG_TRIED is set without leading to gup() 403 * -EBUSY failures, if the userfaultfd is to be extended for 404 * VM_UFFD_WP tracking and we intend to arm the userfault 405 * without first stopping userland access to the memory. For 406 * VM_UFFD_MISSING userfaults this is enough for now. 407 */ 408 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 409 /* 410 * Validate the invariant that nowait must allow retry 411 * to be sure not to return SIGBUS erroneously on 412 * nowait invocations. 413 */ 414 VM_WARN_ON_ONCE(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 415 #ifdef CONFIG_DEBUG_VM 416 if (printk_ratelimit()) { 417 pr_warn("FAULT_FLAG_ALLOW_RETRY missing %x\n", 418 vmf->flags); 419 dump_stack(); 420 } 421 #endif 422 goto out; 423 } 424 425 /* 426 * Handle nowait, not much to do other than tell it to retry 427 * and wait. 428 */ 429 ret = VM_FAULT_RETRY; 430 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 431 goto out; 432 433 if (unlikely(READ_ONCE(ctx->released))) { 434 /* 435 * If a concurrent release is detected, do not return 436 * VM_FAULT_SIGBUS or VM_FAULT_NOPAGE, but instead always 437 * return VM_FAULT_RETRY with lock released proactively. 438 * 439 * If we were to return VM_FAULT_SIGBUS here, the non 440 * cooperative manager would be instead forced to 441 * always call UFFDIO_UNREGISTER before it can safely 442 * close the uffd, to avoid involuntary SIGBUS triggered. 443 * 444 * If we were to return VM_FAULT_NOPAGE, it would work for 445 * the fault path, in which the lock will be released 446 * later. However for GUP, faultin_page() does nothing 447 * special on NOPAGE, so GUP would spin retrying without 448 * releasing the mmap read lock, causing possible livelock. 449 * 450 * Here only VM_FAULT_RETRY would make sure the mmap lock 451 * be released immediately, so that the thread concurrently 452 * releasing the userfault would always make progress. 453 */ 454 release_fault_lock(vmf); 455 goto out; 456 } 457 458 /* take the reference before dropping the mmap_lock */ 459 userfaultfd_ctx_get(ctx); 460 461 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 462 uwq.wq.private = current; 463 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 464 reason, ctx->features); 465 uwq.ctx = ctx; 466 uwq.waken = false; 467 468 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 469 470 /* 471 * Take the vma lock now, in order to safely call 472 * userfaultfd_huge_must_wait() later. Since acquiring the 473 * (sleepable) vma lock can modify the current task state, that 474 * must be before explicitly calling set_current_state(). 475 */ 476 if (is_vm_hugetlb_page(vma)) 477 hugetlb_vma_lock_read(vma); 478 479 spin_lock_irq(&ctx->fault_pending_wqh.lock); 480 /* 481 * After the __add_wait_queue the uwq is visible to userland 482 * through poll/read(). 483 */ 484 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 485 /* 486 * The smp_mb() after __set_current_state prevents the reads 487 * following the spin_unlock to happen before the list_add in 488 * __add_wait_queue. 489 */ 490 set_current_state(blocking_state); 491 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 492 493 if (!is_vm_hugetlb_page(vma)) 494 must_wait = userfaultfd_must_wait(ctx, vmf, reason); 495 else 496 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); 497 if (is_vm_hugetlb_page(vma)) 498 hugetlb_vma_unlock_read(vma); 499 release_fault_lock(vmf); 500 501 if (likely(must_wait && !READ_ONCE(ctx->released))) { 502 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 503 schedule(); 504 } 505 506 __set_current_state(TASK_RUNNING); 507 508 /* 509 * Here we race with the list_del; list_add in 510 * userfaultfd_ctx_read(), however because we don't ever run 511 * list_del_init() to refile across the two lists, the prev 512 * and next pointers will never point to self. list_add also 513 * would never let any of the two pointers to point to 514 * self. So list_empty_careful won't risk to see both pointers 515 * pointing to self at any time during the list refile. The 516 * only case where list_del_init() is called is the full 517 * removal in the wake function and there we don't re-list_add 518 * and it's fine not to block on the spinlock. The uwq on this 519 * kernel stack can be released after the list_del_init. 520 */ 521 if (!list_empty_careful(&uwq.wq.entry)) { 522 spin_lock_irq(&ctx->fault_pending_wqh.lock); 523 /* 524 * No need of list_del_init(), the uwq on the stack 525 * will be freed shortly anyway. 526 */ 527 list_del(&uwq.wq.entry); 528 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 529 } 530 531 /* 532 * ctx may go away after this if the userfault pseudo fd is 533 * already released. 534 */ 535 userfaultfd_ctx_put(ctx); 536 537 out: 538 return ret; 539 } 540 541 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 542 struct userfaultfd_wait_queue *ewq) 543 { 544 struct userfaultfd_ctx *release_new_ctx; 545 546 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 547 goto out; 548 549 ewq->ctx = ctx; 550 init_waitqueue_entry(&ewq->wq, current); 551 release_new_ctx = NULL; 552 553 spin_lock_irq(&ctx->event_wqh.lock); 554 /* 555 * After the __add_wait_queue the uwq is visible to userland 556 * through poll/read(). 557 */ 558 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 559 for (;;) { 560 set_current_state(TASK_KILLABLE); 561 if (ewq->msg.event == 0) 562 break; 563 if (READ_ONCE(ctx->released) || 564 fatal_signal_pending(current)) { 565 /* 566 * &ewq->wq may be queued in fork_event, but 567 * __remove_wait_queue ignores the head 568 * parameter. It would be a problem if it 569 * didn't. 570 */ 571 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 572 if (ewq->msg.event == UFFD_EVENT_FORK) { 573 struct userfaultfd_ctx *new; 574 575 new = (struct userfaultfd_ctx *) 576 (unsigned long) 577 ewq->msg.arg.reserved.reserved1; 578 release_new_ctx = new; 579 } 580 break; 581 } 582 583 spin_unlock_irq(&ctx->event_wqh.lock); 584 585 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 586 schedule(); 587 588 spin_lock_irq(&ctx->event_wqh.lock); 589 } 590 __set_current_state(TASK_RUNNING); 591 spin_unlock_irq(&ctx->event_wqh.lock); 592 593 if (release_new_ctx) { 594 userfaultfd_release_new(release_new_ctx); 595 userfaultfd_ctx_put(release_new_ctx); 596 } 597 598 /* 599 * ctx may go away after this if the userfault pseudo fd is 600 * already released. 601 */ 602 out: 603 atomic_dec(&ctx->mmap_changing); 604 VM_WARN_ON_ONCE(atomic_read(&ctx->mmap_changing) < 0); 605 userfaultfd_ctx_put(ctx); 606 } 607 608 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 609 struct userfaultfd_wait_queue *ewq) 610 { 611 ewq->msg.event = 0; 612 wake_up_locked(&ctx->event_wqh); 613 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 614 } 615 616 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 617 { 618 struct userfaultfd_ctx *ctx = NULL, *octx; 619 struct userfaultfd_fork_ctx *fctx; 620 621 octx = vma->vm_userfaultfd_ctx.ctx; 622 if (!octx) 623 return 0; 624 625 if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) { 626 userfaultfd_reset_ctx(vma); 627 return 0; 628 } 629 630 list_for_each_entry(fctx, fcs, list) 631 if (fctx->orig == octx) { 632 ctx = fctx->new; 633 break; 634 } 635 636 if (!ctx) { 637 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 638 if (!fctx) 639 return -ENOMEM; 640 641 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 642 if (!ctx) { 643 kfree(fctx); 644 return -ENOMEM; 645 } 646 647 refcount_set(&ctx->refcount, 1); 648 ctx->flags = octx->flags; 649 ctx->features = octx->features; 650 ctx->released = false; 651 init_rwsem(&ctx->map_changing_lock); 652 atomic_set(&ctx->mmap_changing, 0); 653 ctx->mm = vma->vm_mm; 654 mmgrab(ctx->mm); 655 656 userfaultfd_ctx_get(octx); 657 down_write(&octx->map_changing_lock); 658 atomic_inc(&octx->mmap_changing); 659 up_write(&octx->map_changing_lock); 660 fctx->orig = octx; 661 fctx->new = ctx; 662 list_add_tail(&fctx->list, fcs); 663 } 664 665 vma->vm_userfaultfd_ctx.ctx = ctx; 666 return 0; 667 } 668 669 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 670 { 671 struct userfaultfd_ctx *ctx = fctx->orig; 672 struct userfaultfd_wait_queue ewq; 673 674 msg_init(&ewq.msg); 675 676 ewq.msg.event = UFFD_EVENT_FORK; 677 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 678 679 userfaultfd_event_wait_completion(ctx, &ewq); 680 } 681 682 void dup_userfaultfd_complete(struct list_head *fcs) 683 { 684 struct userfaultfd_fork_ctx *fctx, *n; 685 686 list_for_each_entry_safe(fctx, n, fcs, list) { 687 dup_fctx(fctx); 688 list_del(&fctx->list); 689 kfree(fctx); 690 } 691 } 692 693 void dup_userfaultfd_fail(struct list_head *fcs) 694 { 695 struct userfaultfd_fork_ctx *fctx, *n; 696 697 /* 698 * An error has occurred on fork, we will tear memory down, but have 699 * allocated memory for fctx's and raised reference counts for both the 700 * original and child contexts (and on the mm for each as a result). 701 * 702 * These would ordinarily be taken care of by a user handling the event, 703 * but we are no longer doing so, so manually clean up here. 704 * 705 * mm tear down will take care of cleaning up VMA contexts. 706 */ 707 list_for_each_entry_safe(fctx, n, fcs, list) { 708 struct userfaultfd_ctx *octx = fctx->orig; 709 struct userfaultfd_ctx *ctx = fctx->new; 710 711 atomic_dec(&octx->mmap_changing); 712 VM_WARN_ON_ONCE(atomic_read(&octx->mmap_changing) < 0); 713 userfaultfd_ctx_put(octx); 714 userfaultfd_ctx_put(ctx); 715 716 list_del(&fctx->list); 717 kfree(fctx); 718 } 719 } 720 721 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 722 struct vm_userfaultfd_ctx *vm_ctx) 723 { 724 struct userfaultfd_ctx *ctx; 725 726 ctx = vma->vm_userfaultfd_ctx.ctx; 727 728 if (!ctx) 729 return; 730 731 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 732 vm_ctx->ctx = ctx; 733 userfaultfd_ctx_get(ctx); 734 down_write(&ctx->map_changing_lock); 735 atomic_inc(&ctx->mmap_changing); 736 up_write(&ctx->map_changing_lock); 737 } else { 738 /* Drop uffd context if remap feature not enabled */ 739 userfaultfd_reset_ctx(vma); 740 } 741 } 742 743 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 744 unsigned long from, unsigned long to, 745 unsigned long len) 746 { 747 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 748 struct userfaultfd_wait_queue ewq; 749 750 if (!ctx) 751 return; 752 753 msg_init(&ewq.msg); 754 755 ewq.msg.event = UFFD_EVENT_REMAP; 756 ewq.msg.arg.remap.from = from; 757 ewq.msg.arg.remap.to = to; 758 ewq.msg.arg.remap.len = len; 759 760 userfaultfd_event_wait_completion(ctx, &ewq); 761 } 762 763 void mremap_userfaultfd_fail(struct vm_userfaultfd_ctx *vm_ctx) 764 { 765 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 766 767 if (!ctx) 768 return; 769 770 userfaultfd_ctx_put(ctx); 771 } 772 773 bool userfaultfd_remove(struct vm_area_struct *vma, 774 unsigned long start, unsigned long end) 775 { 776 struct mm_struct *mm = vma->vm_mm; 777 struct userfaultfd_ctx *ctx; 778 struct userfaultfd_wait_queue ewq; 779 780 ctx = vma->vm_userfaultfd_ctx.ctx; 781 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 782 return true; 783 784 userfaultfd_ctx_get(ctx); 785 down_write(&ctx->map_changing_lock); 786 atomic_inc(&ctx->mmap_changing); 787 up_write(&ctx->map_changing_lock); 788 mmap_read_unlock(mm); 789 790 msg_init(&ewq.msg); 791 792 ewq.msg.event = UFFD_EVENT_REMOVE; 793 ewq.msg.arg.remove.start = start; 794 ewq.msg.arg.remove.end = end; 795 796 userfaultfd_event_wait_completion(ctx, &ewq); 797 798 return false; 799 } 800 801 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 802 unsigned long start, unsigned long end) 803 { 804 struct userfaultfd_unmap_ctx *unmap_ctx; 805 806 list_for_each_entry(unmap_ctx, unmaps, list) 807 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 808 unmap_ctx->end == end) 809 return true; 810 811 return false; 812 } 813 814 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 815 unsigned long end, struct list_head *unmaps) 816 { 817 struct userfaultfd_unmap_ctx *unmap_ctx; 818 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 819 820 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 821 has_unmap_ctx(ctx, unmaps, start, end)) 822 return 0; 823 824 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 825 if (!unmap_ctx) 826 return -ENOMEM; 827 828 userfaultfd_ctx_get(ctx); 829 down_write(&ctx->map_changing_lock); 830 atomic_inc(&ctx->mmap_changing); 831 up_write(&ctx->map_changing_lock); 832 unmap_ctx->ctx = ctx; 833 unmap_ctx->start = start; 834 unmap_ctx->end = end; 835 list_add_tail(&unmap_ctx->list, unmaps); 836 837 return 0; 838 } 839 840 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 841 { 842 struct userfaultfd_unmap_ctx *ctx, *n; 843 struct userfaultfd_wait_queue ewq; 844 845 list_for_each_entry_safe(ctx, n, uf, list) { 846 msg_init(&ewq.msg); 847 848 ewq.msg.event = UFFD_EVENT_UNMAP; 849 ewq.msg.arg.remove.start = ctx->start; 850 ewq.msg.arg.remove.end = ctx->end; 851 852 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 853 854 list_del(&ctx->list); 855 kfree(ctx); 856 } 857 } 858 859 static int userfaultfd_release(struct inode *inode, struct file *file) 860 { 861 struct userfaultfd_ctx *ctx = file->private_data; 862 struct mm_struct *mm = ctx->mm; 863 /* len == 0 means wake all */ 864 struct userfaultfd_wake_range range = { .len = 0, }; 865 866 WRITE_ONCE(ctx->released, true); 867 868 userfaultfd_release_all(mm, ctx); 869 870 /* 871 * After no new page faults can wait on this fault_*wqh, flush 872 * the last page faults that may have been already waiting on 873 * the fault_*wqh. 874 */ 875 spin_lock_irq(&ctx->fault_pending_wqh.lock); 876 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 877 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 878 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 879 880 /* Flush pending events that may still wait on event_wqh */ 881 wake_up_all(&ctx->event_wqh); 882 883 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 884 userfaultfd_ctx_put(ctx); 885 return 0; 886 } 887 888 /* fault_pending_wqh.lock must be hold by the caller */ 889 static inline struct userfaultfd_wait_queue *find_userfault_in( 890 wait_queue_head_t *wqh) 891 { 892 wait_queue_entry_t *wq; 893 struct userfaultfd_wait_queue *uwq; 894 895 lockdep_assert_held(&wqh->lock); 896 897 uwq = NULL; 898 if (!waitqueue_active(wqh)) 899 goto out; 900 /* walk in reverse to provide FIFO behavior to read userfaults */ 901 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 902 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 903 out: 904 return uwq; 905 } 906 907 static inline struct userfaultfd_wait_queue *find_userfault( 908 struct userfaultfd_ctx *ctx) 909 { 910 return find_userfault_in(&ctx->fault_pending_wqh); 911 } 912 913 static inline struct userfaultfd_wait_queue *find_userfault_evt( 914 struct userfaultfd_ctx *ctx) 915 { 916 return find_userfault_in(&ctx->event_wqh); 917 } 918 919 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 920 { 921 struct userfaultfd_ctx *ctx = file->private_data; 922 __poll_t ret; 923 924 poll_wait(file, &ctx->fd_wqh, wait); 925 926 if (!userfaultfd_is_initialized(ctx)) 927 return EPOLLERR; 928 929 /* 930 * poll() never guarantees that read won't block. 931 * userfaults can be waken before they're read(). 932 */ 933 if (unlikely(!(file->f_flags & O_NONBLOCK))) 934 return EPOLLERR; 935 /* 936 * lockless access to see if there are pending faults 937 * __pollwait last action is the add_wait_queue but 938 * the spin_unlock would allow the waitqueue_active to 939 * pass above the actual list_add inside 940 * add_wait_queue critical section. So use a full 941 * memory barrier to serialize the list_add write of 942 * add_wait_queue() with the waitqueue_active read 943 * below. 944 */ 945 ret = 0; 946 smp_mb(); 947 if (waitqueue_active(&ctx->fault_pending_wqh)) 948 ret = EPOLLIN; 949 else if (waitqueue_active(&ctx->event_wqh)) 950 ret = EPOLLIN; 951 952 return ret; 953 } 954 955 static const struct file_operations userfaultfd_fops; 956 957 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 958 struct inode *inode, 959 struct uffd_msg *msg) 960 { 961 int fd; 962 963 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new, 964 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 965 if (fd < 0) 966 return fd; 967 968 msg->arg.reserved.reserved1 = 0; 969 msg->arg.fork.ufd = fd; 970 return 0; 971 } 972 973 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 974 struct uffd_msg *msg, struct inode *inode) 975 { 976 ssize_t ret; 977 DECLARE_WAITQUEUE(wait, current); 978 struct userfaultfd_wait_queue *uwq; 979 /* 980 * Handling fork event requires sleeping operations, so 981 * we drop the event_wqh lock, then do these ops, then 982 * lock it back and wake up the waiter. While the lock is 983 * dropped the ewq may go away so we keep track of it 984 * carefully. 985 */ 986 LIST_HEAD(fork_event); 987 struct userfaultfd_ctx *fork_nctx = NULL; 988 989 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 990 spin_lock_irq(&ctx->fd_wqh.lock); 991 __add_wait_queue(&ctx->fd_wqh, &wait); 992 for (;;) { 993 set_current_state(TASK_INTERRUPTIBLE); 994 spin_lock(&ctx->fault_pending_wqh.lock); 995 uwq = find_userfault(ctx); 996 if (uwq) { 997 /* 998 * Use a seqcount to repeat the lockless check 999 * in wake_userfault() to avoid missing 1000 * wakeups because during the refile both 1001 * waitqueue could become empty if this is the 1002 * only userfault. 1003 */ 1004 write_seqcount_begin(&ctx->refile_seq); 1005 1006 /* 1007 * The fault_pending_wqh.lock prevents the uwq 1008 * to disappear from under us. 1009 * 1010 * Refile this userfault from 1011 * fault_pending_wqh to fault_wqh, it's not 1012 * pending anymore after we read it. 1013 * 1014 * Use list_del() by hand (as 1015 * userfaultfd_wake_function also uses 1016 * list_del_init() by hand) to be sure nobody 1017 * changes __remove_wait_queue() to use 1018 * list_del_init() in turn breaking the 1019 * !list_empty_careful() check in 1020 * handle_userfault(). The uwq->wq.head list 1021 * must never be empty at any time during the 1022 * refile, or the waitqueue could disappear 1023 * from under us. The "wait_queue_head_t" 1024 * parameter of __remove_wait_queue() is unused 1025 * anyway. 1026 */ 1027 list_del(&uwq->wq.entry); 1028 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1029 1030 write_seqcount_end(&ctx->refile_seq); 1031 1032 /* careful to always initialize msg if ret == 0 */ 1033 *msg = uwq->msg; 1034 spin_unlock(&ctx->fault_pending_wqh.lock); 1035 ret = 0; 1036 break; 1037 } 1038 spin_unlock(&ctx->fault_pending_wqh.lock); 1039 1040 spin_lock(&ctx->event_wqh.lock); 1041 uwq = find_userfault_evt(ctx); 1042 if (uwq) { 1043 *msg = uwq->msg; 1044 1045 if (uwq->msg.event == UFFD_EVENT_FORK) { 1046 fork_nctx = (struct userfaultfd_ctx *) 1047 (unsigned long) 1048 uwq->msg.arg.reserved.reserved1; 1049 list_move(&uwq->wq.entry, &fork_event); 1050 /* 1051 * fork_nctx can be freed as soon as 1052 * we drop the lock, unless we take a 1053 * reference on it. 1054 */ 1055 userfaultfd_ctx_get(fork_nctx); 1056 spin_unlock(&ctx->event_wqh.lock); 1057 ret = 0; 1058 break; 1059 } 1060 1061 userfaultfd_event_complete(ctx, uwq); 1062 spin_unlock(&ctx->event_wqh.lock); 1063 ret = 0; 1064 break; 1065 } 1066 spin_unlock(&ctx->event_wqh.lock); 1067 1068 if (signal_pending(current)) { 1069 ret = -ERESTARTSYS; 1070 break; 1071 } 1072 if (no_wait) { 1073 ret = -EAGAIN; 1074 break; 1075 } 1076 spin_unlock_irq(&ctx->fd_wqh.lock); 1077 schedule(); 1078 spin_lock_irq(&ctx->fd_wqh.lock); 1079 } 1080 __remove_wait_queue(&ctx->fd_wqh, &wait); 1081 __set_current_state(TASK_RUNNING); 1082 spin_unlock_irq(&ctx->fd_wqh.lock); 1083 1084 if (!ret && msg->event == UFFD_EVENT_FORK) { 1085 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1086 spin_lock_irq(&ctx->event_wqh.lock); 1087 if (!list_empty(&fork_event)) { 1088 /* 1089 * The fork thread didn't abort, so we can 1090 * drop the temporary refcount. 1091 */ 1092 userfaultfd_ctx_put(fork_nctx); 1093 1094 uwq = list_first_entry(&fork_event, 1095 typeof(*uwq), 1096 wq.entry); 1097 /* 1098 * If fork_event list wasn't empty and in turn 1099 * the event wasn't already released by fork 1100 * (the event is allocated on fork kernel 1101 * stack), put the event back to its place in 1102 * the event_wq. fork_event head will be freed 1103 * as soon as we return so the event cannot 1104 * stay queued there no matter the current 1105 * "ret" value. 1106 */ 1107 list_del(&uwq->wq.entry); 1108 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1109 1110 /* 1111 * Leave the event in the waitqueue and report 1112 * error to userland if we failed to resolve 1113 * the userfault fork. 1114 */ 1115 if (likely(!ret)) 1116 userfaultfd_event_complete(ctx, uwq); 1117 } else { 1118 /* 1119 * Here the fork thread aborted and the 1120 * refcount from the fork thread on fork_nctx 1121 * has already been released. We still hold 1122 * the reference we took before releasing the 1123 * lock above. If resolve_userfault_fork 1124 * failed we've to drop it because the 1125 * fork_nctx has to be freed in such case. If 1126 * it succeeded we'll hold it because the new 1127 * uffd references it. 1128 */ 1129 if (ret) 1130 userfaultfd_ctx_put(fork_nctx); 1131 } 1132 spin_unlock_irq(&ctx->event_wqh.lock); 1133 } 1134 1135 return ret; 1136 } 1137 1138 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to) 1139 { 1140 struct file *file = iocb->ki_filp; 1141 struct userfaultfd_ctx *ctx = file->private_data; 1142 ssize_t _ret, ret = 0; 1143 struct uffd_msg msg; 1144 struct inode *inode = file_inode(file); 1145 bool no_wait; 1146 1147 if (!userfaultfd_is_initialized(ctx)) 1148 return -EINVAL; 1149 1150 no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT; 1151 for (;;) { 1152 if (iov_iter_count(to) < sizeof(msg)) 1153 return ret ? ret : -EINVAL; 1154 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1155 if (_ret < 0) 1156 return ret ? ret : _ret; 1157 _ret = !copy_to_iter_full(&msg, sizeof(msg), to); 1158 if (_ret) 1159 return ret ? ret : -EFAULT; 1160 ret += sizeof(msg); 1161 /* 1162 * Allow to read more than one fault at time but only 1163 * block if waiting for the very first one. 1164 */ 1165 no_wait = true; 1166 } 1167 } 1168 1169 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1170 struct userfaultfd_wake_range *range) 1171 { 1172 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1173 /* wake all in the range and autoremove */ 1174 if (waitqueue_active(&ctx->fault_pending_wqh)) 1175 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1176 range); 1177 if (waitqueue_active(&ctx->fault_wqh)) 1178 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1179 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1180 } 1181 1182 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1183 struct userfaultfd_wake_range *range) 1184 { 1185 unsigned seq; 1186 bool need_wakeup; 1187 1188 /* 1189 * To be sure waitqueue_active() is not reordered by the CPU 1190 * before the pagetable update, use an explicit SMP memory 1191 * barrier here. PT lock release or mmap_read_unlock(mm) still 1192 * have release semantics that can allow the 1193 * waitqueue_active() to be reordered before the pte update. 1194 */ 1195 smp_mb(); 1196 1197 /* 1198 * Use waitqueue_active because it's very frequent to 1199 * change the address space atomically even if there are no 1200 * userfaults yet. So we take the spinlock only when we're 1201 * sure we've userfaults to wake. 1202 */ 1203 do { 1204 seq = read_seqcount_begin(&ctx->refile_seq); 1205 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1206 waitqueue_active(&ctx->fault_wqh); 1207 cond_resched(); 1208 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1209 if (need_wakeup) 1210 __wake_userfault(ctx, range); 1211 } 1212 1213 static __always_inline int validate_unaligned_range( 1214 struct mm_struct *mm, __u64 start, __u64 len) 1215 { 1216 __u64 task_size = mm->task_size; 1217 1218 if (len & ~PAGE_MASK) 1219 return -EINVAL; 1220 if (!len) 1221 return -EINVAL; 1222 if (start < mmap_min_addr) 1223 return -EINVAL; 1224 if (start >= task_size) 1225 return -EINVAL; 1226 if (len > task_size - start) 1227 return -EINVAL; 1228 if (start + len <= start) 1229 return -EINVAL; 1230 return 0; 1231 } 1232 1233 static __always_inline int validate_range(struct mm_struct *mm, 1234 __u64 start, __u64 len) 1235 { 1236 if (start & ~PAGE_MASK) 1237 return -EINVAL; 1238 1239 return validate_unaligned_range(mm, start, len); 1240 } 1241 1242 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1243 unsigned long arg) 1244 { 1245 struct mm_struct *mm = ctx->mm; 1246 struct vm_area_struct *vma, *cur; 1247 int ret; 1248 struct uffdio_register uffdio_register; 1249 struct uffdio_register __user *user_uffdio_register; 1250 vm_flags_t vm_flags; 1251 bool found; 1252 bool basic_ioctls; 1253 unsigned long start, end; 1254 struct vma_iterator vmi; 1255 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1256 1257 user_uffdio_register = (struct uffdio_register __user *) arg; 1258 1259 ret = -EFAULT; 1260 if (copy_from_user(&uffdio_register, user_uffdio_register, 1261 sizeof(uffdio_register)-sizeof(__u64))) 1262 goto out; 1263 1264 ret = -EINVAL; 1265 if (!uffdio_register.mode) 1266 goto out; 1267 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1268 goto out; 1269 vm_flags = 0; 1270 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1271 vm_flags |= VM_UFFD_MISSING; 1272 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1273 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1274 goto out; 1275 #endif 1276 vm_flags |= VM_UFFD_WP; 1277 } 1278 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1279 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1280 goto out; 1281 #endif 1282 vm_flags |= VM_UFFD_MINOR; 1283 } 1284 1285 ret = validate_range(mm, uffdio_register.range.start, 1286 uffdio_register.range.len); 1287 if (ret) 1288 goto out; 1289 1290 start = uffdio_register.range.start; 1291 end = start + uffdio_register.range.len; 1292 1293 ret = -ENOMEM; 1294 if (!mmget_not_zero(mm)) 1295 goto out; 1296 1297 ret = -EINVAL; 1298 mmap_write_lock(mm); 1299 vma_iter_init(&vmi, mm, start); 1300 vma = vma_find(&vmi, end); 1301 if (!vma) 1302 goto out_unlock; 1303 1304 /* 1305 * If the first vma contains huge pages, make sure start address 1306 * is aligned to huge page size. 1307 */ 1308 if (is_vm_hugetlb_page(vma)) { 1309 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1310 1311 if (start & (vma_hpagesize - 1)) 1312 goto out_unlock; 1313 } 1314 1315 /* 1316 * Search for not compatible vmas. 1317 */ 1318 found = false; 1319 basic_ioctls = false; 1320 cur = vma; 1321 do { 1322 cond_resched(); 1323 1324 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^ 1325 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1326 1327 /* check not compatible vmas */ 1328 ret = -EINVAL; 1329 if (!vma_can_userfault(cur, vm_flags, wp_async)) 1330 goto out_unlock; 1331 1332 /* 1333 * UFFDIO_COPY will fill file holes even without 1334 * PROT_WRITE. This check enforces that if this is a 1335 * MAP_SHARED, the process has write permission to the backing 1336 * file. If VM_MAYWRITE is set it also enforces that on a 1337 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1338 * F_WRITE_SEAL can be taken until the vma is destroyed. 1339 */ 1340 ret = -EPERM; 1341 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1342 goto out_unlock; 1343 1344 /* 1345 * If this vma contains ending address, and huge pages 1346 * check alignment. 1347 */ 1348 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1349 end > cur->vm_start) { 1350 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1351 1352 ret = -EINVAL; 1353 1354 if (end & (vma_hpagesize - 1)) 1355 goto out_unlock; 1356 } 1357 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1358 goto out_unlock; 1359 1360 /* 1361 * Check that this vma isn't already owned by a 1362 * different userfaultfd. We can't allow more than one 1363 * userfaultfd to own a single vma simultaneously or we 1364 * wouldn't know which one to deliver the userfaults to. 1365 */ 1366 ret = -EBUSY; 1367 if (cur->vm_userfaultfd_ctx.ctx && 1368 cur->vm_userfaultfd_ctx.ctx != ctx) 1369 goto out_unlock; 1370 1371 /* 1372 * Note vmas containing huge pages 1373 */ 1374 if (is_vm_hugetlb_page(cur)) 1375 basic_ioctls = true; 1376 1377 found = true; 1378 } for_each_vma_range(vmi, cur, end); 1379 VM_WARN_ON_ONCE(!found); 1380 1381 ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end, 1382 wp_async); 1383 1384 out_unlock: 1385 mmap_write_unlock(mm); 1386 mmput(mm); 1387 if (!ret) { 1388 __u64 ioctls_out; 1389 1390 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1391 UFFD_API_RANGE_IOCTLS; 1392 1393 /* 1394 * Declare the WP ioctl only if the WP mode is 1395 * specified and all checks passed with the range 1396 */ 1397 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1398 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1399 1400 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1401 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1402 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1403 1404 /* 1405 * Now that we scanned all vmas we can already tell 1406 * userland which ioctls methods are guaranteed to 1407 * succeed on this range. 1408 */ 1409 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1410 ret = -EFAULT; 1411 } 1412 out: 1413 return ret; 1414 } 1415 1416 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1417 unsigned long arg) 1418 { 1419 struct mm_struct *mm = ctx->mm; 1420 struct vm_area_struct *vma, *prev, *cur; 1421 int ret; 1422 struct uffdio_range uffdio_unregister; 1423 bool found; 1424 unsigned long start, end, vma_end; 1425 const void __user *buf = (void __user *)arg; 1426 struct vma_iterator vmi; 1427 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1428 1429 ret = -EFAULT; 1430 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1431 goto out; 1432 1433 ret = validate_range(mm, uffdio_unregister.start, 1434 uffdio_unregister.len); 1435 if (ret) 1436 goto out; 1437 1438 start = uffdio_unregister.start; 1439 end = start + uffdio_unregister.len; 1440 1441 ret = -ENOMEM; 1442 if (!mmget_not_zero(mm)) 1443 goto out; 1444 1445 mmap_write_lock(mm); 1446 ret = -EINVAL; 1447 vma_iter_init(&vmi, mm, start); 1448 vma = vma_find(&vmi, end); 1449 if (!vma) 1450 goto out_unlock; 1451 1452 /* 1453 * If the first vma contains huge pages, make sure start address 1454 * is aligned to huge page size. 1455 */ 1456 if (is_vm_hugetlb_page(vma)) { 1457 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1458 1459 if (start & (vma_hpagesize - 1)) 1460 goto out_unlock; 1461 } 1462 1463 /* 1464 * Search for not compatible vmas. 1465 */ 1466 found = false; 1467 cur = vma; 1468 do { 1469 cond_resched(); 1470 1471 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^ 1472 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1473 1474 /* 1475 * Prevent unregistering through a different userfaultfd than 1476 * the one used for registration. 1477 */ 1478 if (cur->vm_userfaultfd_ctx.ctx && 1479 cur->vm_userfaultfd_ctx.ctx != ctx) 1480 goto out_unlock; 1481 1482 /* 1483 * Check not compatible vmas, not strictly required 1484 * here as not compatible vmas cannot have an 1485 * userfaultfd_ctx registered on them, but this 1486 * provides for more strict behavior to notice 1487 * unregistration errors. 1488 */ 1489 if (!vma_can_userfault(cur, cur->vm_flags, wp_async)) 1490 goto out_unlock; 1491 1492 found = true; 1493 } for_each_vma_range(vmi, cur, end); 1494 VM_WARN_ON_ONCE(!found); 1495 1496 vma_iter_set(&vmi, start); 1497 prev = vma_prev(&vmi); 1498 if (vma->vm_start < start) 1499 prev = vma; 1500 1501 ret = 0; 1502 for_each_vma_range(vmi, vma, end) { 1503 cond_resched(); 1504 1505 /* VMA not registered with userfaultfd. */ 1506 if (!vma->vm_userfaultfd_ctx.ctx) 1507 goto skip; 1508 1509 VM_WARN_ON_ONCE(vma->vm_userfaultfd_ctx.ctx != ctx); 1510 VM_WARN_ON_ONCE(!vma_can_userfault(vma, vma->vm_flags, wp_async)); 1511 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)); 1512 1513 if (vma->vm_start > start) 1514 start = vma->vm_start; 1515 vma_end = min(end, vma->vm_end); 1516 1517 if (userfaultfd_missing(vma)) { 1518 /* 1519 * Wake any concurrent pending userfault while 1520 * we unregister, so they will not hang 1521 * permanently and it avoids userland to call 1522 * UFFDIO_WAKE explicitly. 1523 */ 1524 struct userfaultfd_wake_range range; 1525 range.start = start; 1526 range.len = vma_end - start; 1527 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1528 } 1529 1530 vma = userfaultfd_clear_vma(&vmi, prev, vma, 1531 start, vma_end); 1532 if (IS_ERR(vma)) { 1533 ret = PTR_ERR(vma); 1534 break; 1535 } 1536 1537 skip: 1538 prev = vma; 1539 start = vma->vm_end; 1540 } 1541 1542 out_unlock: 1543 mmap_write_unlock(mm); 1544 mmput(mm); 1545 out: 1546 return ret; 1547 } 1548 1549 /* 1550 * userfaultfd_wake may be used in combination with the 1551 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1552 */ 1553 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1554 unsigned long arg) 1555 { 1556 int ret; 1557 struct uffdio_range uffdio_wake; 1558 struct userfaultfd_wake_range range; 1559 const void __user *buf = (void __user *)arg; 1560 1561 ret = -EFAULT; 1562 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1563 goto out; 1564 1565 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1566 if (ret) 1567 goto out; 1568 1569 range.start = uffdio_wake.start; 1570 range.len = uffdio_wake.len; 1571 1572 /* 1573 * len == 0 means wake all and we don't want to wake all here, 1574 * so check it again to be sure. 1575 */ 1576 VM_WARN_ON_ONCE(!range.len); 1577 1578 wake_userfault(ctx, &range); 1579 ret = 0; 1580 1581 out: 1582 return ret; 1583 } 1584 1585 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1586 unsigned long arg) 1587 { 1588 __s64 ret; 1589 struct uffdio_copy uffdio_copy; 1590 struct uffdio_copy __user *user_uffdio_copy; 1591 struct userfaultfd_wake_range range; 1592 uffd_flags_t flags = 0; 1593 1594 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1595 1596 ret = -EAGAIN; 1597 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1598 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1599 return -EFAULT; 1600 goto out; 1601 } 1602 1603 ret = -EFAULT; 1604 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1605 /* don't copy "copy" last field */ 1606 sizeof(uffdio_copy)-sizeof(__s64))) 1607 goto out; 1608 1609 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1610 uffdio_copy.len); 1611 if (ret) 1612 goto out; 1613 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1614 if (ret) 1615 goto out; 1616 1617 ret = -EINVAL; 1618 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1619 goto out; 1620 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1621 flags |= MFILL_ATOMIC_WP; 1622 if (mmget_not_zero(ctx->mm)) { 1623 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src, 1624 uffdio_copy.len, flags); 1625 mmput(ctx->mm); 1626 } else { 1627 return -ESRCH; 1628 } 1629 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1630 return -EFAULT; 1631 if (ret < 0) 1632 goto out; 1633 VM_WARN_ON_ONCE(!ret); 1634 /* len == 0 would wake all */ 1635 range.len = ret; 1636 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1637 range.start = uffdio_copy.dst; 1638 wake_userfault(ctx, &range); 1639 } 1640 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1641 out: 1642 return ret; 1643 } 1644 1645 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1646 unsigned long arg) 1647 { 1648 __s64 ret; 1649 struct uffdio_zeropage uffdio_zeropage; 1650 struct uffdio_zeropage __user *user_uffdio_zeropage; 1651 struct userfaultfd_wake_range range; 1652 1653 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1654 1655 ret = -EAGAIN; 1656 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1657 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1658 return -EFAULT; 1659 goto out; 1660 } 1661 1662 ret = -EFAULT; 1663 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1664 /* don't copy "zeropage" last field */ 1665 sizeof(uffdio_zeropage)-sizeof(__s64))) 1666 goto out; 1667 1668 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1669 uffdio_zeropage.range.len); 1670 if (ret) 1671 goto out; 1672 ret = -EINVAL; 1673 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1674 goto out; 1675 1676 if (mmget_not_zero(ctx->mm)) { 1677 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start, 1678 uffdio_zeropage.range.len); 1679 mmput(ctx->mm); 1680 } else { 1681 return -ESRCH; 1682 } 1683 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1684 return -EFAULT; 1685 if (ret < 0) 1686 goto out; 1687 /* len == 0 would wake all */ 1688 VM_WARN_ON_ONCE(!ret); 1689 range.len = ret; 1690 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1691 range.start = uffdio_zeropage.range.start; 1692 wake_userfault(ctx, &range); 1693 } 1694 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1695 out: 1696 return ret; 1697 } 1698 1699 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1700 unsigned long arg) 1701 { 1702 int ret; 1703 struct uffdio_writeprotect uffdio_wp; 1704 struct uffdio_writeprotect __user *user_uffdio_wp; 1705 struct userfaultfd_wake_range range; 1706 bool mode_wp, mode_dontwake; 1707 1708 if (atomic_read(&ctx->mmap_changing)) 1709 return -EAGAIN; 1710 1711 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1712 1713 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1714 sizeof(struct uffdio_writeprotect))) 1715 return -EFAULT; 1716 1717 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1718 uffdio_wp.range.len); 1719 if (ret) 1720 return ret; 1721 1722 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1723 UFFDIO_WRITEPROTECT_MODE_WP)) 1724 return -EINVAL; 1725 1726 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1727 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1728 1729 if (mode_wp && mode_dontwake) 1730 return -EINVAL; 1731 1732 if (mmget_not_zero(ctx->mm)) { 1733 ret = mwriteprotect_range(ctx, uffdio_wp.range.start, 1734 uffdio_wp.range.len, mode_wp); 1735 mmput(ctx->mm); 1736 } else { 1737 return -ESRCH; 1738 } 1739 1740 if (ret) 1741 return ret; 1742 1743 if (!mode_wp && !mode_dontwake) { 1744 range.start = uffdio_wp.range.start; 1745 range.len = uffdio_wp.range.len; 1746 wake_userfault(ctx, &range); 1747 } 1748 return ret; 1749 } 1750 1751 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1752 { 1753 __s64 ret; 1754 struct uffdio_continue uffdio_continue; 1755 struct uffdio_continue __user *user_uffdio_continue; 1756 struct userfaultfd_wake_range range; 1757 uffd_flags_t flags = 0; 1758 1759 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1760 1761 ret = -EAGAIN; 1762 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1763 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1764 return -EFAULT; 1765 goto out; 1766 } 1767 1768 ret = -EFAULT; 1769 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1770 /* don't copy the output fields */ 1771 sizeof(uffdio_continue) - (sizeof(__s64)))) 1772 goto out; 1773 1774 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1775 uffdio_continue.range.len); 1776 if (ret) 1777 goto out; 1778 1779 ret = -EINVAL; 1780 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1781 UFFDIO_CONTINUE_MODE_WP)) 1782 goto out; 1783 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1784 flags |= MFILL_ATOMIC_WP; 1785 1786 if (mmget_not_zero(ctx->mm)) { 1787 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start, 1788 uffdio_continue.range.len, flags); 1789 mmput(ctx->mm); 1790 } else { 1791 return -ESRCH; 1792 } 1793 1794 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1795 return -EFAULT; 1796 if (ret < 0) 1797 goto out; 1798 1799 /* len == 0 would wake all */ 1800 VM_WARN_ON_ONCE(!ret); 1801 range.len = ret; 1802 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1803 range.start = uffdio_continue.range.start; 1804 wake_userfault(ctx, &range); 1805 } 1806 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1807 1808 out: 1809 return ret; 1810 } 1811 1812 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1813 { 1814 __s64 ret; 1815 struct uffdio_poison uffdio_poison; 1816 struct uffdio_poison __user *user_uffdio_poison; 1817 struct userfaultfd_wake_range range; 1818 1819 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1820 1821 ret = -EAGAIN; 1822 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1823 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1824 return -EFAULT; 1825 goto out; 1826 } 1827 1828 ret = -EFAULT; 1829 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1830 /* don't copy the output fields */ 1831 sizeof(uffdio_poison) - (sizeof(__s64)))) 1832 goto out; 1833 1834 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1835 uffdio_poison.range.len); 1836 if (ret) 1837 goto out; 1838 1839 ret = -EINVAL; 1840 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1841 goto out; 1842 1843 if (mmget_not_zero(ctx->mm)) { 1844 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start, 1845 uffdio_poison.range.len, 0); 1846 mmput(ctx->mm); 1847 } else { 1848 return -ESRCH; 1849 } 1850 1851 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1852 return -EFAULT; 1853 if (ret < 0) 1854 goto out; 1855 1856 /* len == 0 would wake all */ 1857 VM_WARN_ON_ONCE(!ret); 1858 range.len = ret; 1859 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 1860 range.start = uffdio_poison.range.start; 1861 wake_userfault(ctx, &range); 1862 } 1863 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 1864 1865 out: 1866 return ret; 1867 } 1868 1869 bool userfaultfd_wp_async(struct vm_area_struct *vma) 1870 { 1871 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx); 1872 } 1873 1874 static inline unsigned int uffd_ctx_features(__u64 user_features) 1875 { 1876 /* 1877 * For the current set of features the bits just coincide. Set 1878 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1879 */ 1880 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1881 } 1882 1883 static int userfaultfd_move(struct userfaultfd_ctx *ctx, 1884 unsigned long arg) 1885 { 1886 __s64 ret; 1887 struct uffdio_move uffdio_move; 1888 struct uffdio_move __user *user_uffdio_move; 1889 struct userfaultfd_wake_range range; 1890 struct mm_struct *mm = ctx->mm; 1891 1892 user_uffdio_move = (struct uffdio_move __user *) arg; 1893 1894 ret = -EAGAIN; 1895 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1896 if (unlikely(put_user(ret, &user_uffdio_move->move))) 1897 return -EFAULT; 1898 goto out; 1899 } 1900 1901 if (copy_from_user(&uffdio_move, user_uffdio_move, 1902 /* don't copy "move" last field */ 1903 sizeof(uffdio_move)-sizeof(__s64))) 1904 return -EFAULT; 1905 1906 /* Do not allow cross-mm moves. */ 1907 if (mm != current->mm) 1908 return -EINVAL; 1909 1910 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len); 1911 if (ret) 1912 return ret; 1913 1914 ret = validate_range(mm, uffdio_move.src, uffdio_move.len); 1915 if (ret) 1916 return ret; 1917 1918 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES| 1919 UFFDIO_MOVE_MODE_DONTWAKE)) 1920 return -EINVAL; 1921 1922 if (mmget_not_zero(mm)) { 1923 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src, 1924 uffdio_move.len, uffdio_move.mode); 1925 mmput(mm); 1926 } else { 1927 return -ESRCH; 1928 } 1929 1930 if (unlikely(put_user(ret, &user_uffdio_move->move))) 1931 return -EFAULT; 1932 if (ret < 0) 1933 goto out; 1934 1935 /* len == 0 would wake all */ 1936 VM_WARN_ON(!ret); 1937 range.len = ret; 1938 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) { 1939 range.start = uffdio_move.dst; 1940 wake_userfault(ctx, &range); 1941 } 1942 ret = range.len == uffdio_move.len ? 0 : -EAGAIN; 1943 1944 out: 1945 return ret; 1946 } 1947 1948 /* 1949 * userland asks for a certain API version and we return which bits 1950 * and ioctl commands are implemented in this kernel for such API 1951 * version or -EINVAL if unknown. 1952 */ 1953 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1954 unsigned long arg) 1955 { 1956 struct uffdio_api uffdio_api; 1957 void __user *buf = (void __user *)arg; 1958 unsigned int ctx_features; 1959 int ret; 1960 __u64 features; 1961 1962 ret = -EFAULT; 1963 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1964 goto out; 1965 features = uffdio_api.features; 1966 ret = -EINVAL; 1967 if (uffdio_api.api != UFFD_API) 1968 goto err_out; 1969 ret = -EPERM; 1970 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1971 goto err_out; 1972 1973 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */ 1974 if (features & UFFD_FEATURE_WP_ASYNC) 1975 features |= UFFD_FEATURE_WP_UNPOPULATED; 1976 1977 /* report all available features and ioctls to userland */ 1978 uffdio_api.features = UFFD_API_FEATURES; 1979 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1980 uffdio_api.features &= 1981 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1982 #endif 1983 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1984 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1985 #endif 1986 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1987 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 1988 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 1989 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC; 1990 #endif 1991 1992 ret = -EINVAL; 1993 if (features & ~uffdio_api.features) 1994 goto err_out; 1995 1996 uffdio_api.ioctls = UFFD_API_IOCTLS; 1997 ret = -EFAULT; 1998 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1999 goto out; 2000 2001 /* only enable the requested features for this uffd context */ 2002 ctx_features = uffd_ctx_features(features); 2003 ret = -EINVAL; 2004 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2005 goto err_out; 2006 2007 ret = 0; 2008 out: 2009 return ret; 2010 err_out: 2011 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2012 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2013 ret = -EFAULT; 2014 goto out; 2015 } 2016 2017 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2018 unsigned long arg) 2019 { 2020 int ret = -EINVAL; 2021 struct userfaultfd_ctx *ctx = file->private_data; 2022 2023 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2024 return -EINVAL; 2025 2026 switch(cmd) { 2027 case UFFDIO_API: 2028 ret = userfaultfd_api(ctx, arg); 2029 break; 2030 case UFFDIO_REGISTER: 2031 ret = userfaultfd_register(ctx, arg); 2032 break; 2033 case UFFDIO_UNREGISTER: 2034 ret = userfaultfd_unregister(ctx, arg); 2035 break; 2036 case UFFDIO_WAKE: 2037 ret = userfaultfd_wake(ctx, arg); 2038 break; 2039 case UFFDIO_COPY: 2040 ret = userfaultfd_copy(ctx, arg); 2041 break; 2042 case UFFDIO_ZEROPAGE: 2043 ret = userfaultfd_zeropage(ctx, arg); 2044 break; 2045 case UFFDIO_MOVE: 2046 ret = userfaultfd_move(ctx, arg); 2047 break; 2048 case UFFDIO_WRITEPROTECT: 2049 ret = userfaultfd_writeprotect(ctx, arg); 2050 break; 2051 case UFFDIO_CONTINUE: 2052 ret = userfaultfd_continue(ctx, arg); 2053 break; 2054 case UFFDIO_POISON: 2055 ret = userfaultfd_poison(ctx, arg); 2056 break; 2057 } 2058 return ret; 2059 } 2060 2061 #ifdef CONFIG_PROC_FS 2062 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2063 { 2064 struct userfaultfd_ctx *ctx = f->private_data; 2065 wait_queue_entry_t *wq; 2066 unsigned long pending = 0, total = 0; 2067 2068 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2069 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2070 pending++; 2071 total++; 2072 } 2073 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2074 total++; 2075 } 2076 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2077 2078 /* 2079 * If more protocols will be added, there will be all shown 2080 * separated by a space. Like this: 2081 * protocols: aa:... bb:... 2082 */ 2083 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2084 pending, total, UFFD_API, ctx->features, 2085 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2086 } 2087 #endif 2088 2089 static const struct file_operations userfaultfd_fops = { 2090 #ifdef CONFIG_PROC_FS 2091 .show_fdinfo = userfaultfd_show_fdinfo, 2092 #endif 2093 .release = userfaultfd_release, 2094 .poll = userfaultfd_poll, 2095 .read_iter = userfaultfd_read_iter, 2096 .unlocked_ioctl = userfaultfd_ioctl, 2097 .compat_ioctl = compat_ptr_ioctl, 2098 .llseek = noop_llseek, 2099 }; 2100 2101 static void init_once_userfaultfd_ctx(void *mem) 2102 { 2103 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2104 2105 init_waitqueue_head(&ctx->fault_pending_wqh); 2106 init_waitqueue_head(&ctx->fault_wqh); 2107 init_waitqueue_head(&ctx->event_wqh); 2108 init_waitqueue_head(&ctx->fd_wqh); 2109 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2110 } 2111 2112 static int new_userfaultfd(int flags) 2113 { 2114 struct userfaultfd_ctx *ctx; 2115 struct file *file; 2116 int fd; 2117 2118 VM_WARN_ON_ONCE(!current->mm); 2119 2120 /* Check the UFFD_* constants for consistency. */ 2121 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2122 2123 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2124 return -EINVAL; 2125 2126 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2127 if (!ctx) 2128 return -ENOMEM; 2129 2130 refcount_set(&ctx->refcount, 1); 2131 ctx->flags = flags; 2132 ctx->features = 0; 2133 ctx->released = false; 2134 init_rwsem(&ctx->map_changing_lock); 2135 atomic_set(&ctx->mmap_changing, 0); 2136 ctx->mm = current->mm; 2137 2138 fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 2139 if (fd < 0) 2140 goto err_out; 2141 2142 /* Create a new inode so that the LSM can block the creation. */ 2143 file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 2144 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2145 if (IS_ERR(file)) { 2146 put_unused_fd(fd); 2147 fd = PTR_ERR(file); 2148 goto err_out; 2149 } 2150 /* prevent the mm struct to be freed */ 2151 mmgrab(ctx->mm); 2152 file->f_mode |= FMODE_NOWAIT; 2153 fd_install(fd, file); 2154 return fd; 2155 err_out: 2156 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2157 return fd; 2158 } 2159 2160 static inline bool userfaultfd_syscall_allowed(int flags) 2161 { 2162 /* Userspace-only page faults are always allowed */ 2163 if (flags & UFFD_USER_MODE_ONLY) 2164 return true; 2165 2166 /* 2167 * The user is requesting a userfaultfd which can handle kernel faults. 2168 * Privileged users are always allowed to do this. 2169 */ 2170 if (capable(CAP_SYS_PTRACE)) 2171 return true; 2172 2173 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2174 return sysctl_unprivileged_userfaultfd; 2175 } 2176 2177 SYSCALL_DEFINE1(userfaultfd, int, flags) 2178 { 2179 if (!userfaultfd_syscall_allowed(flags)) 2180 return -EPERM; 2181 2182 return new_userfaultfd(flags); 2183 } 2184 2185 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2186 { 2187 if (cmd != USERFAULTFD_IOC_NEW) 2188 return -EINVAL; 2189 2190 return new_userfaultfd(flags); 2191 } 2192 2193 static const struct file_operations userfaultfd_dev_fops = { 2194 .unlocked_ioctl = userfaultfd_dev_ioctl, 2195 .compat_ioctl = userfaultfd_dev_ioctl, 2196 .owner = THIS_MODULE, 2197 .llseek = noop_llseek, 2198 }; 2199 2200 static struct miscdevice userfaultfd_misc = { 2201 .minor = MISC_DYNAMIC_MINOR, 2202 .name = "userfaultfd", 2203 .fops = &userfaultfd_dev_fops 2204 }; 2205 2206 static int __init userfaultfd_init(void) 2207 { 2208 int ret; 2209 2210 ret = misc_register(&userfaultfd_misc); 2211 if (ret) 2212 return ret; 2213 2214 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2215 sizeof(struct userfaultfd_ctx), 2216 0, 2217 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2218 init_once_userfaultfd_ctx); 2219 #ifdef CONFIG_SYSCTL 2220 register_sysctl_init("vm", vm_userfaultfd_table); 2221 #endif 2222 return 0; 2223 } 2224 __initcall(userfaultfd_init); 2225