1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 #include <linux/uio.h> 35 36 static int sysctl_unprivileged_userfaultfd __read_mostly; 37 38 #ifdef CONFIG_SYSCTL 39 static const struct ctl_table vm_userfaultfd_table[] = { 40 { 41 .procname = "unprivileged_userfaultfd", 42 .data = &sysctl_unprivileged_userfaultfd, 43 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 44 .mode = 0644, 45 .proc_handler = proc_dointvec_minmax, 46 .extra1 = SYSCTL_ZERO, 47 .extra2 = SYSCTL_ONE, 48 }, 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init; 53 54 struct userfaultfd_fork_ctx { 55 struct userfaultfd_ctx *orig; 56 struct userfaultfd_ctx *new; 57 struct list_head list; 58 }; 59 60 struct userfaultfd_unmap_ctx { 61 struct userfaultfd_ctx *ctx; 62 unsigned long start; 63 unsigned long end; 64 struct list_head list; 65 }; 66 67 struct userfaultfd_wait_queue { 68 struct uffd_msg msg; 69 wait_queue_entry_t wq; 70 struct userfaultfd_ctx *ctx; 71 bool waken; 72 }; 73 74 struct userfaultfd_wake_range { 75 unsigned long start; 76 unsigned long len; 77 }; 78 79 /* internal indication that UFFD_API ioctl was successfully executed */ 80 #define UFFD_FEATURE_INITIALIZED (1u << 31) 81 82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 83 { 84 return ctx->features & UFFD_FEATURE_INITIALIZED; 85 } 86 87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx) 88 { 89 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC); 90 } 91 92 /* 93 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 94 * meaningful when userfaultfd_wp()==true on the vma and when it's 95 * anonymous. 96 */ 97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 98 { 99 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 100 101 if (!ctx) 102 return false; 103 104 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 105 } 106 107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 108 int wake_flags, void *key) 109 { 110 struct userfaultfd_wake_range *range = key; 111 int ret; 112 struct userfaultfd_wait_queue *uwq; 113 unsigned long start, len; 114 115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 116 ret = 0; 117 /* len == 0 means wake all */ 118 start = range->start; 119 len = range->len; 120 if (len && (start > uwq->msg.arg.pagefault.address || 121 start + len <= uwq->msg.arg.pagefault.address)) 122 goto out; 123 WRITE_ONCE(uwq->waken, true); 124 /* 125 * The Program-Order guarantees provided by the scheduler 126 * ensure uwq->waken is visible before the task is woken. 127 */ 128 ret = wake_up_state(wq->private, mode); 129 if (ret) { 130 /* 131 * Wake only once, autoremove behavior. 132 * 133 * After the effect of list_del_init is visible to the other 134 * CPUs, the waitqueue may disappear from under us, see the 135 * !list_empty_careful() in handle_userfault(). 136 * 137 * try_to_wake_up() has an implicit smp_mb(), and the 138 * wq->private is read before calling the extern function 139 * "wake_up_state" (which in turns calls try_to_wake_up). 140 */ 141 list_del_init(&wq->entry); 142 } 143 out: 144 return ret; 145 } 146 147 /** 148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 149 * context. 150 * @ctx: [in] Pointer to the userfaultfd context. 151 */ 152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 153 { 154 refcount_inc(&ctx->refcount); 155 } 156 157 /** 158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 159 * context. 160 * @ctx: [in] Pointer to userfaultfd context. 161 * 162 * The userfaultfd context reference must have been previously acquired either 163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 164 */ 165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 166 { 167 if (refcount_dec_and_test(&ctx->refcount)) { 168 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_pending_wqh.lock)); 169 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_pending_wqh)); 170 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_wqh.lock)); 171 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_wqh)); 172 VM_WARN_ON_ONCE(spin_is_locked(&ctx->event_wqh.lock)); 173 VM_WARN_ON_ONCE(waitqueue_active(&ctx->event_wqh)); 174 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fd_wqh.lock)); 175 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fd_wqh)); 176 mmdrop(ctx->mm); 177 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 178 } 179 } 180 181 static inline void msg_init(struct uffd_msg *msg) 182 { 183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 184 /* 185 * Must use memset to zero out the paddings or kernel data is 186 * leaked to userland. 187 */ 188 memset(msg, 0, sizeof(struct uffd_msg)); 189 } 190 191 static inline struct uffd_msg userfault_msg(unsigned long address, 192 unsigned long real_address, 193 unsigned int flags, 194 unsigned long reason, 195 unsigned int features) 196 { 197 struct uffd_msg msg; 198 199 msg_init(&msg); 200 msg.event = UFFD_EVENT_PAGEFAULT; 201 202 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 203 real_address : address; 204 205 /* 206 * These flags indicate why the userfault occurred: 207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 209 * - Neither of these flags being set indicates a MISSING fault. 210 * 211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 212 * fault. Otherwise, it was a read fault. 213 */ 214 if (flags & FAULT_FLAG_WRITE) 215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 216 if (reason & VM_UFFD_WP) 217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 218 if (reason & VM_UFFD_MINOR) 219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 220 if (features & UFFD_FEATURE_THREAD_ID) 221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 222 return msg; 223 } 224 225 #ifdef CONFIG_HUGETLB_PAGE 226 /* 227 * Same functionality as userfaultfd_must_wait below with modifications for 228 * hugepmd ranges. 229 */ 230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 231 struct vm_fault *vmf, 232 unsigned long reason) 233 { 234 struct vm_area_struct *vma = vmf->vma; 235 pte_t *ptep, pte; 236 bool ret = true; 237 238 assert_fault_locked(vmf); 239 240 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); 241 if (!ptep) 242 goto out; 243 244 ret = false; 245 pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep); 246 247 /* 248 * Lockless access: we're in a wait_event so it's ok if it 249 * changes under us. PTE markers should be handled the same as none 250 * ptes here. 251 */ 252 if (huge_pte_none_mostly(pte)) 253 ret = true; 254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 255 ret = true; 256 out: 257 return ret; 258 } 259 #else 260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 261 struct vm_fault *vmf, 262 unsigned long reason) 263 { 264 return false; /* should never get here */ 265 } 266 #endif /* CONFIG_HUGETLB_PAGE */ 267 268 /* 269 * Verify the pagetables are still not ok after having reigstered into 270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 271 * userfault that has already been resolved, if userfaultfd_read_iter and 272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 273 * threads. 274 */ 275 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 276 struct vm_fault *vmf, 277 unsigned long reason) 278 { 279 struct mm_struct *mm = ctx->mm; 280 unsigned long address = vmf->address; 281 pgd_t *pgd; 282 p4d_t *p4d; 283 pud_t *pud; 284 pmd_t *pmd, _pmd; 285 pte_t *pte; 286 pte_t ptent; 287 bool ret = true; 288 289 assert_fault_locked(vmf); 290 291 pgd = pgd_offset(mm, address); 292 if (!pgd_present(*pgd)) 293 goto out; 294 p4d = p4d_offset(pgd, address); 295 if (!p4d_present(*p4d)) 296 goto out; 297 pud = pud_offset(p4d, address); 298 if (!pud_present(*pud)) 299 goto out; 300 pmd = pmd_offset(pud, address); 301 again: 302 _pmd = pmdp_get_lockless(pmd); 303 if (pmd_none(_pmd)) 304 goto out; 305 306 ret = false; 307 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 308 goto out; 309 310 if (pmd_trans_huge(_pmd)) { 311 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 312 ret = true; 313 goto out; 314 } 315 316 pte = pte_offset_map(pmd, address); 317 if (!pte) { 318 ret = true; 319 goto again; 320 } 321 /* 322 * Lockless access: we're in a wait_event so it's ok if it 323 * changes under us. PTE markers should be handled the same as none 324 * ptes here. 325 */ 326 ptent = ptep_get(pte); 327 if (pte_none_mostly(ptent)) 328 ret = true; 329 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 330 ret = true; 331 pte_unmap(pte); 332 333 out: 334 return ret; 335 } 336 337 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 338 { 339 if (flags & FAULT_FLAG_INTERRUPTIBLE) 340 return TASK_INTERRUPTIBLE; 341 342 if (flags & FAULT_FLAG_KILLABLE) 343 return TASK_KILLABLE; 344 345 return TASK_UNINTERRUPTIBLE; 346 } 347 348 /* 349 * The locking rules involved in returning VM_FAULT_RETRY depending on 350 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 351 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 352 * recommendation in __lock_page_or_retry is not an understatement. 353 * 354 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 355 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 356 * not set. 357 * 358 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 359 * set, VM_FAULT_RETRY can still be returned if and only if there are 360 * fatal_signal_pending()s, and the mmap_lock must be released before 361 * returning it. 362 */ 363 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 364 { 365 struct vm_area_struct *vma = vmf->vma; 366 struct mm_struct *mm = vma->vm_mm; 367 struct userfaultfd_ctx *ctx; 368 struct userfaultfd_wait_queue uwq; 369 vm_fault_t ret = VM_FAULT_SIGBUS; 370 bool must_wait; 371 unsigned int blocking_state; 372 373 /* 374 * We don't do userfault handling for the final child pid update 375 * and when coredumping (faults triggered by get_dump_page()). 376 */ 377 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 378 goto out; 379 380 assert_fault_locked(vmf); 381 382 ctx = vma->vm_userfaultfd_ctx.ctx; 383 if (!ctx) 384 goto out; 385 386 VM_WARN_ON_ONCE(ctx->mm != mm); 387 388 /* Any unrecognized flag is a bug. */ 389 VM_WARN_ON_ONCE(reason & ~__VM_UFFD_FLAGS); 390 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 391 VM_WARN_ON_ONCE(!reason || (reason & (reason - 1))); 392 393 if (ctx->features & UFFD_FEATURE_SIGBUS) 394 goto out; 395 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 396 goto out; 397 398 /* 399 * Check that we can return VM_FAULT_RETRY. 400 * 401 * NOTE: it should become possible to return VM_FAULT_RETRY 402 * even if FAULT_FLAG_TRIED is set without leading to gup() 403 * -EBUSY failures, if the userfaultfd is to be extended for 404 * VM_UFFD_WP tracking and we intend to arm the userfault 405 * without first stopping userland access to the memory. For 406 * VM_UFFD_MISSING userfaults this is enough for now. 407 */ 408 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 409 /* 410 * Validate the invariant that nowait must allow retry 411 * to be sure not to return SIGBUS erroneously on 412 * nowait invocations. 413 */ 414 VM_WARN_ON_ONCE(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 415 #ifdef CONFIG_DEBUG_VM 416 if (printk_ratelimit()) { 417 pr_warn("FAULT_FLAG_ALLOW_RETRY missing %x\n", 418 vmf->flags); 419 dump_stack(); 420 } 421 #endif 422 goto out; 423 } 424 425 /* 426 * Handle nowait, not much to do other than tell it to retry 427 * and wait. 428 */ 429 ret = VM_FAULT_RETRY; 430 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 431 goto out; 432 433 if (unlikely(READ_ONCE(ctx->released))) { 434 /* 435 * If a concurrent release is detected, do not return 436 * VM_FAULT_SIGBUS or VM_FAULT_NOPAGE, but instead always 437 * return VM_FAULT_RETRY with lock released proactively. 438 * 439 * If we were to return VM_FAULT_SIGBUS here, the non 440 * cooperative manager would be instead forced to 441 * always call UFFDIO_UNREGISTER before it can safely 442 * close the uffd, to avoid involuntary SIGBUS triggered. 443 * 444 * If we were to return VM_FAULT_NOPAGE, it would work for 445 * the fault path, in which the lock will be released 446 * later. However for GUP, faultin_page() does nothing 447 * special on NOPAGE, so GUP would spin retrying without 448 * releasing the mmap read lock, causing possible livelock. 449 * 450 * Here only VM_FAULT_RETRY would make sure the mmap lock 451 * be released immediately, so that the thread concurrently 452 * releasing the userfault would always make progress. 453 */ 454 release_fault_lock(vmf); 455 goto out; 456 } 457 458 /* take the reference before dropping the mmap_lock */ 459 userfaultfd_ctx_get(ctx); 460 461 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 462 uwq.wq.private = current; 463 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 464 reason, ctx->features); 465 uwq.ctx = ctx; 466 uwq.waken = false; 467 468 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 469 470 /* 471 * Take the vma lock now, in order to safely call 472 * userfaultfd_huge_must_wait() later. Since acquiring the 473 * (sleepable) vma lock can modify the current task state, that 474 * must be before explicitly calling set_current_state(). 475 */ 476 if (is_vm_hugetlb_page(vma)) 477 hugetlb_vma_lock_read(vma); 478 479 spin_lock_irq(&ctx->fault_pending_wqh.lock); 480 /* 481 * After the __add_wait_queue the uwq is visible to userland 482 * through poll/read(). 483 */ 484 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 485 /* 486 * The smp_mb() after __set_current_state prevents the reads 487 * following the spin_unlock to happen before the list_add in 488 * __add_wait_queue. 489 */ 490 set_current_state(blocking_state); 491 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 492 493 if (!is_vm_hugetlb_page(vma)) 494 must_wait = userfaultfd_must_wait(ctx, vmf, reason); 495 else 496 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); 497 if (is_vm_hugetlb_page(vma)) 498 hugetlb_vma_unlock_read(vma); 499 release_fault_lock(vmf); 500 501 if (likely(must_wait && !READ_ONCE(ctx->released))) { 502 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 503 schedule(); 504 } 505 506 __set_current_state(TASK_RUNNING); 507 508 /* 509 * Here we race with the list_del; list_add in 510 * userfaultfd_ctx_read(), however because we don't ever run 511 * list_del_init() to refile across the two lists, the prev 512 * and next pointers will never point to self. list_add also 513 * would never let any of the two pointers to point to 514 * self. So list_empty_careful won't risk to see both pointers 515 * pointing to self at any time during the list refile. The 516 * only case where list_del_init() is called is the full 517 * removal in the wake function and there we don't re-list_add 518 * and it's fine not to block on the spinlock. The uwq on this 519 * kernel stack can be released after the list_del_init. 520 */ 521 if (!list_empty_careful(&uwq.wq.entry)) { 522 spin_lock_irq(&ctx->fault_pending_wqh.lock); 523 /* 524 * No need of list_del_init(), the uwq on the stack 525 * will be freed shortly anyway. 526 */ 527 list_del(&uwq.wq.entry); 528 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 529 } 530 531 /* 532 * ctx may go away after this if the userfault pseudo fd is 533 * already released. 534 */ 535 userfaultfd_ctx_put(ctx); 536 537 out: 538 return ret; 539 } 540 541 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 542 struct userfaultfd_wait_queue *ewq) 543 { 544 struct userfaultfd_ctx *release_new_ctx; 545 546 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 547 goto out; 548 549 ewq->ctx = ctx; 550 init_waitqueue_entry(&ewq->wq, current); 551 release_new_ctx = NULL; 552 553 spin_lock_irq(&ctx->event_wqh.lock); 554 /* 555 * After the __add_wait_queue the uwq is visible to userland 556 * through poll/read(). 557 */ 558 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 559 for (;;) { 560 set_current_state(TASK_KILLABLE); 561 if (ewq->msg.event == 0) 562 break; 563 if (READ_ONCE(ctx->released) || 564 fatal_signal_pending(current)) { 565 /* 566 * &ewq->wq may be queued in fork_event, but 567 * __remove_wait_queue ignores the head 568 * parameter. It would be a problem if it 569 * didn't. 570 */ 571 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 572 if (ewq->msg.event == UFFD_EVENT_FORK) { 573 struct userfaultfd_ctx *new; 574 575 new = (struct userfaultfd_ctx *) 576 (unsigned long) 577 ewq->msg.arg.reserved.reserved1; 578 release_new_ctx = new; 579 } 580 break; 581 } 582 583 spin_unlock_irq(&ctx->event_wqh.lock); 584 585 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 586 schedule(); 587 588 spin_lock_irq(&ctx->event_wqh.lock); 589 } 590 __set_current_state(TASK_RUNNING); 591 spin_unlock_irq(&ctx->event_wqh.lock); 592 593 if (release_new_ctx) { 594 userfaultfd_release_new(release_new_ctx); 595 userfaultfd_ctx_put(release_new_ctx); 596 } 597 598 /* 599 * ctx may go away after this if the userfault pseudo fd is 600 * already released. 601 */ 602 out: 603 atomic_dec(&ctx->mmap_changing); 604 VM_WARN_ON_ONCE(atomic_read(&ctx->mmap_changing) < 0); 605 userfaultfd_ctx_put(ctx); 606 } 607 608 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 609 struct userfaultfd_wait_queue *ewq) 610 { 611 ewq->msg.event = 0; 612 wake_up_locked(&ctx->event_wqh); 613 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 614 } 615 616 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 617 { 618 struct userfaultfd_ctx *ctx = NULL, *octx; 619 struct userfaultfd_fork_ctx *fctx; 620 621 octx = vma->vm_userfaultfd_ctx.ctx; 622 if (!octx) 623 return 0; 624 625 if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) { 626 userfaultfd_reset_ctx(vma); 627 return 0; 628 } 629 630 list_for_each_entry(fctx, fcs, list) 631 if (fctx->orig == octx) { 632 ctx = fctx->new; 633 break; 634 } 635 636 if (!ctx) { 637 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 638 if (!fctx) 639 return -ENOMEM; 640 641 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 642 if (!ctx) { 643 kfree(fctx); 644 return -ENOMEM; 645 } 646 647 refcount_set(&ctx->refcount, 1); 648 ctx->flags = octx->flags; 649 ctx->features = octx->features; 650 ctx->released = false; 651 init_rwsem(&ctx->map_changing_lock); 652 atomic_set(&ctx->mmap_changing, 0); 653 ctx->mm = vma->vm_mm; 654 mmgrab(ctx->mm); 655 656 userfaultfd_ctx_get(octx); 657 down_write(&octx->map_changing_lock); 658 atomic_inc(&octx->mmap_changing); 659 up_write(&octx->map_changing_lock); 660 fctx->orig = octx; 661 fctx->new = ctx; 662 list_add_tail(&fctx->list, fcs); 663 } 664 665 vma->vm_userfaultfd_ctx.ctx = ctx; 666 return 0; 667 } 668 669 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 670 { 671 struct userfaultfd_ctx *ctx = fctx->orig; 672 struct userfaultfd_wait_queue ewq; 673 674 msg_init(&ewq.msg); 675 676 ewq.msg.event = UFFD_EVENT_FORK; 677 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 678 679 userfaultfd_event_wait_completion(ctx, &ewq); 680 } 681 682 void dup_userfaultfd_complete(struct list_head *fcs) 683 { 684 struct userfaultfd_fork_ctx *fctx, *n; 685 686 list_for_each_entry_safe(fctx, n, fcs, list) { 687 dup_fctx(fctx); 688 list_del(&fctx->list); 689 kfree(fctx); 690 } 691 } 692 693 void dup_userfaultfd_fail(struct list_head *fcs) 694 { 695 struct userfaultfd_fork_ctx *fctx, *n; 696 697 /* 698 * An error has occurred on fork, we will tear memory down, but have 699 * allocated memory for fctx's and raised reference counts for both the 700 * original and child contexts (and on the mm for each as a result). 701 * 702 * These would ordinarily be taken care of by a user handling the event, 703 * but we are no longer doing so, so manually clean up here. 704 * 705 * mm tear down will take care of cleaning up VMA contexts. 706 */ 707 list_for_each_entry_safe(fctx, n, fcs, list) { 708 struct userfaultfd_ctx *octx = fctx->orig; 709 struct userfaultfd_ctx *ctx = fctx->new; 710 711 atomic_dec(&octx->mmap_changing); 712 VM_WARN_ON_ONCE(atomic_read(&octx->mmap_changing) < 0); 713 userfaultfd_ctx_put(octx); 714 userfaultfd_ctx_put(ctx); 715 716 list_del(&fctx->list); 717 kfree(fctx); 718 } 719 } 720 721 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 722 struct vm_userfaultfd_ctx *vm_ctx) 723 { 724 struct userfaultfd_ctx *ctx; 725 726 ctx = vma->vm_userfaultfd_ctx.ctx; 727 728 if (!ctx) 729 return; 730 731 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 732 vm_ctx->ctx = ctx; 733 userfaultfd_ctx_get(ctx); 734 down_write(&ctx->map_changing_lock); 735 atomic_inc(&ctx->mmap_changing); 736 up_write(&ctx->map_changing_lock); 737 } else { 738 /* Drop uffd context if remap feature not enabled */ 739 userfaultfd_reset_ctx(vma); 740 } 741 } 742 743 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 744 unsigned long from, unsigned long to, 745 unsigned long len) 746 { 747 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 748 struct userfaultfd_wait_queue ewq; 749 750 if (!ctx) 751 return; 752 753 if (to & ~PAGE_MASK) { 754 userfaultfd_ctx_put(ctx); 755 return; 756 } 757 758 msg_init(&ewq.msg); 759 760 ewq.msg.event = UFFD_EVENT_REMAP; 761 ewq.msg.arg.remap.from = from; 762 ewq.msg.arg.remap.to = to; 763 ewq.msg.arg.remap.len = len; 764 765 userfaultfd_event_wait_completion(ctx, &ewq); 766 } 767 768 bool userfaultfd_remove(struct vm_area_struct *vma, 769 unsigned long start, unsigned long end) 770 { 771 struct mm_struct *mm = vma->vm_mm; 772 struct userfaultfd_ctx *ctx; 773 struct userfaultfd_wait_queue ewq; 774 775 ctx = vma->vm_userfaultfd_ctx.ctx; 776 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 777 return true; 778 779 userfaultfd_ctx_get(ctx); 780 down_write(&ctx->map_changing_lock); 781 atomic_inc(&ctx->mmap_changing); 782 up_write(&ctx->map_changing_lock); 783 mmap_read_unlock(mm); 784 785 msg_init(&ewq.msg); 786 787 ewq.msg.event = UFFD_EVENT_REMOVE; 788 ewq.msg.arg.remove.start = start; 789 ewq.msg.arg.remove.end = end; 790 791 userfaultfd_event_wait_completion(ctx, &ewq); 792 793 return false; 794 } 795 796 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 797 unsigned long start, unsigned long end) 798 { 799 struct userfaultfd_unmap_ctx *unmap_ctx; 800 801 list_for_each_entry(unmap_ctx, unmaps, list) 802 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 803 unmap_ctx->end == end) 804 return true; 805 806 return false; 807 } 808 809 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 810 unsigned long end, struct list_head *unmaps) 811 { 812 struct userfaultfd_unmap_ctx *unmap_ctx; 813 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 814 815 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 816 has_unmap_ctx(ctx, unmaps, start, end)) 817 return 0; 818 819 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 820 if (!unmap_ctx) 821 return -ENOMEM; 822 823 userfaultfd_ctx_get(ctx); 824 down_write(&ctx->map_changing_lock); 825 atomic_inc(&ctx->mmap_changing); 826 up_write(&ctx->map_changing_lock); 827 unmap_ctx->ctx = ctx; 828 unmap_ctx->start = start; 829 unmap_ctx->end = end; 830 list_add_tail(&unmap_ctx->list, unmaps); 831 832 return 0; 833 } 834 835 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 836 { 837 struct userfaultfd_unmap_ctx *ctx, *n; 838 struct userfaultfd_wait_queue ewq; 839 840 list_for_each_entry_safe(ctx, n, uf, list) { 841 msg_init(&ewq.msg); 842 843 ewq.msg.event = UFFD_EVENT_UNMAP; 844 ewq.msg.arg.remove.start = ctx->start; 845 ewq.msg.arg.remove.end = ctx->end; 846 847 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 848 849 list_del(&ctx->list); 850 kfree(ctx); 851 } 852 } 853 854 static int userfaultfd_release(struct inode *inode, struct file *file) 855 { 856 struct userfaultfd_ctx *ctx = file->private_data; 857 struct mm_struct *mm = ctx->mm; 858 /* len == 0 means wake all */ 859 struct userfaultfd_wake_range range = { .len = 0, }; 860 861 WRITE_ONCE(ctx->released, true); 862 863 userfaultfd_release_all(mm, ctx); 864 865 /* 866 * After no new page faults can wait on this fault_*wqh, flush 867 * the last page faults that may have been already waiting on 868 * the fault_*wqh. 869 */ 870 spin_lock_irq(&ctx->fault_pending_wqh.lock); 871 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 872 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 873 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 874 875 /* Flush pending events that may still wait on event_wqh */ 876 wake_up_all(&ctx->event_wqh); 877 878 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 879 userfaultfd_ctx_put(ctx); 880 return 0; 881 } 882 883 /* fault_pending_wqh.lock must be hold by the caller */ 884 static inline struct userfaultfd_wait_queue *find_userfault_in( 885 wait_queue_head_t *wqh) 886 { 887 wait_queue_entry_t *wq; 888 struct userfaultfd_wait_queue *uwq; 889 890 lockdep_assert_held(&wqh->lock); 891 892 uwq = NULL; 893 if (!waitqueue_active(wqh)) 894 goto out; 895 /* walk in reverse to provide FIFO behavior to read userfaults */ 896 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 897 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 898 out: 899 return uwq; 900 } 901 902 static inline struct userfaultfd_wait_queue *find_userfault( 903 struct userfaultfd_ctx *ctx) 904 { 905 return find_userfault_in(&ctx->fault_pending_wqh); 906 } 907 908 static inline struct userfaultfd_wait_queue *find_userfault_evt( 909 struct userfaultfd_ctx *ctx) 910 { 911 return find_userfault_in(&ctx->event_wqh); 912 } 913 914 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 915 { 916 struct userfaultfd_ctx *ctx = file->private_data; 917 __poll_t ret; 918 919 poll_wait(file, &ctx->fd_wqh, wait); 920 921 if (!userfaultfd_is_initialized(ctx)) 922 return EPOLLERR; 923 924 /* 925 * poll() never guarantees that read won't block. 926 * userfaults can be waken before they're read(). 927 */ 928 if (unlikely(!(file->f_flags & O_NONBLOCK))) 929 return EPOLLERR; 930 /* 931 * lockless access to see if there are pending faults 932 * __pollwait last action is the add_wait_queue but 933 * the spin_unlock would allow the waitqueue_active to 934 * pass above the actual list_add inside 935 * add_wait_queue critical section. So use a full 936 * memory barrier to serialize the list_add write of 937 * add_wait_queue() with the waitqueue_active read 938 * below. 939 */ 940 ret = 0; 941 smp_mb(); 942 if (waitqueue_active(&ctx->fault_pending_wqh)) 943 ret = EPOLLIN; 944 else if (waitqueue_active(&ctx->event_wqh)) 945 ret = EPOLLIN; 946 947 return ret; 948 } 949 950 static const struct file_operations userfaultfd_fops; 951 952 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 953 struct inode *inode, 954 struct uffd_msg *msg) 955 { 956 int fd; 957 958 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new, 959 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 960 if (fd < 0) 961 return fd; 962 963 msg->arg.reserved.reserved1 = 0; 964 msg->arg.fork.ufd = fd; 965 return 0; 966 } 967 968 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 969 struct uffd_msg *msg, struct inode *inode) 970 { 971 ssize_t ret; 972 DECLARE_WAITQUEUE(wait, current); 973 struct userfaultfd_wait_queue *uwq; 974 /* 975 * Handling fork event requires sleeping operations, so 976 * we drop the event_wqh lock, then do these ops, then 977 * lock it back and wake up the waiter. While the lock is 978 * dropped the ewq may go away so we keep track of it 979 * carefully. 980 */ 981 LIST_HEAD(fork_event); 982 struct userfaultfd_ctx *fork_nctx = NULL; 983 984 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 985 spin_lock_irq(&ctx->fd_wqh.lock); 986 __add_wait_queue(&ctx->fd_wqh, &wait); 987 for (;;) { 988 set_current_state(TASK_INTERRUPTIBLE); 989 spin_lock(&ctx->fault_pending_wqh.lock); 990 uwq = find_userfault(ctx); 991 if (uwq) { 992 /* 993 * Use a seqcount to repeat the lockless check 994 * in wake_userfault() to avoid missing 995 * wakeups because during the refile both 996 * waitqueue could become empty if this is the 997 * only userfault. 998 */ 999 write_seqcount_begin(&ctx->refile_seq); 1000 1001 /* 1002 * The fault_pending_wqh.lock prevents the uwq 1003 * to disappear from under us. 1004 * 1005 * Refile this userfault from 1006 * fault_pending_wqh to fault_wqh, it's not 1007 * pending anymore after we read it. 1008 * 1009 * Use list_del() by hand (as 1010 * userfaultfd_wake_function also uses 1011 * list_del_init() by hand) to be sure nobody 1012 * changes __remove_wait_queue() to use 1013 * list_del_init() in turn breaking the 1014 * !list_empty_careful() check in 1015 * handle_userfault(). The uwq->wq.head list 1016 * must never be empty at any time during the 1017 * refile, or the waitqueue could disappear 1018 * from under us. The "wait_queue_head_t" 1019 * parameter of __remove_wait_queue() is unused 1020 * anyway. 1021 */ 1022 list_del(&uwq->wq.entry); 1023 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1024 1025 write_seqcount_end(&ctx->refile_seq); 1026 1027 /* careful to always initialize msg if ret == 0 */ 1028 *msg = uwq->msg; 1029 spin_unlock(&ctx->fault_pending_wqh.lock); 1030 ret = 0; 1031 break; 1032 } 1033 spin_unlock(&ctx->fault_pending_wqh.lock); 1034 1035 spin_lock(&ctx->event_wqh.lock); 1036 uwq = find_userfault_evt(ctx); 1037 if (uwq) { 1038 *msg = uwq->msg; 1039 1040 if (uwq->msg.event == UFFD_EVENT_FORK) { 1041 fork_nctx = (struct userfaultfd_ctx *) 1042 (unsigned long) 1043 uwq->msg.arg.reserved.reserved1; 1044 list_move(&uwq->wq.entry, &fork_event); 1045 /* 1046 * fork_nctx can be freed as soon as 1047 * we drop the lock, unless we take a 1048 * reference on it. 1049 */ 1050 userfaultfd_ctx_get(fork_nctx); 1051 spin_unlock(&ctx->event_wqh.lock); 1052 ret = 0; 1053 break; 1054 } 1055 1056 userfaultfd_event_complete(ctx, uwq); 1057 spin_unlock(&ctx->event_wqh.lock); 1058 ret = 0; 1059 break; 1060 } 1061 spin_unlock(&ctx->event_wqh.lock); 1062 1063 if (signal_pending(current)) { 1064 ret = -ERESTARTSYS; 1065 break; 1066 } 1067 if (no_wait) { 1068 ret = -EAGAIN; 1069 break; 1070 } 1071 spin_unlock_irq(&ctx->fd_wqh.lock); 1072 schedule(); 1073 spin_lock_irq(&ctx->fd_wqh.lock); 1074 } 1075 __remove_wait_queue(&ctx->fd_wqh, &wait); 1076 __set_current_state(TASK_RUNNING); 1077 spin_unlock_irq(&ctx->fd_wqh.lock); 1078 1079 if (!ret && msg->event == UFFD_EVENT_FORK) { 1080 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1081 spin_lock_irq(&ctx->event_wqh.lock); 1082 if (!list_empty(&fork_event)) { 1083 /* 1084 * The fork thread didn't abort, so we can 1085 * drop the temporary refcount. 1086 */ 1087 userfaultfd_ctx_put(fork_nctx); 1088 1089 uwq = list_first_entry(&fork_event, 1090 typeof(*uwq), 1091 wq.entry); 1092 /* 1093 * If fork_event list wasn't empty and in turn 1094 * the event wasn't already released by fork 1095 * (the event is allocated on fork kernel 1096 * stack), put the event back to its place in 1097 * the event_wq. fork_event head will be freed 1098 * as soon as we return so the event cannot 1099 * stay queued there no matter the current 1100 * "ret" value. 1101 */ 1102 list_del(&uwq->wq.entry); 1103 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1104 1105 /* 1106 * Leave the event in the waitqueue and report 1107 * error to userland if we failed to resolve 1108 * the userfault fork. 1109 */ 1110 if (likely(!ret)) 1111 userfaultfd_event_complete(ctx, uwq); 1112 } else { 1113 /* 1114 * Here the fork thread aborted and the 1115 * refcount from the fork thread on fork_nctx 1116 * has already been released. We still hold 1117 * the reference we took before releasing the 1118 * lock above. If resolve_userfault_fork 1119 * failed we've to drop it because the 1120 * fork_nctx has to be freed in such case. If 1121 * it succeeded we'll hold it because the new 1122 * uffd references it. 1123 */ 1124 if (ret) 1125 userfaultfd_ctx_put(fork_nctx); 1126 } 1127 spin_unlock_irq(&ctx->event_wqh.lock); 1128 } 1129 1130 return ret; 1131 } 1132 1133 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to) 1134 { 1135 struct file *file = iocb->ki_filp; 1136 struct userfaultfd_ctx *ctx = file->private_data; 1137 ssize_t _ret, ret = 0; 1138 struct uffd_msg msg; 1139 struct inode *inode = file_inode(file); 1140 bool no_wait; 1141 1142 if (!userfaultfd_is_initialized(ctx)) 1143 return -EINVAL; 1144 1145 no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT; 1146 for (;;) { 1147 if (iov_iter_count(to) < sizeof(msg)) 1148 return ret ? ret : -EINVAL; 1149 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1150 if (_ret < 0) 1151 return ret ? ret : _ret; 1152 _ret = !copy_to_iter_full(&msg, sizeof(msg), to); 1153 if (_ret) 1154 return ret ? ret : -EFAULT; 1155 ret += sizeof(msg); 1156 /* 1157 * Allow to read more than one fault at time but only 1158 * block if waiting for the very first one. 1159 */ 1160 no_wait = true; 1161 } 1162 } 1163 1164 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1165 struct userfaultfd_wake_range *range) 1166 { 1167 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1168 /* wake all in the range and autoremove */ 1169 if (waitqueue_active(&ctx->fault_pending_wqh)) 1170 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1171 range); 1172 if (waitqueue_active(&ctx->fault_wqh)) 1173 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1174 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1175 } 1176 1177 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1178 struct userfaultfd_wake_range *range) 1179 { 1180 unsigned seq; 1181 bool need_wakeup; 1182 1183 /* 1184 * To be sure waitqueue_active() is not reordered by the CPU 1185 * before the pagetable update, use an explicit SMP memory 1186 * barrier here. PT lock release or mmap_read_unlock(mm) still 1187 * have release semantics that can allow the 1188 * waitqueue_active() to be reordered before the pte update. 1189 */ 1190 smp_mb(); 1191 1192 /* 1193 * Use waitqueue_active because it's very frequent to 1194 * change the address space atomically even if there are no 1195 * userfaults yet. So we take the spinlock only when we're 1196 * sure we've userfaults to wake. 1197 */ 1198 do { 1199 seq = read_seqcount_begin(&ctx->refile_seq); 1200 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1201 waitqueue_active(&ctx->fault_wqh); 1202 cond_resched(); 1203 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1204 if (need_wakeup) 1205 __wake_userfault(ctx, range); 1206 } 1207 1208 static __always_inline int validate_unaligned_range( 1209 struct mm_struct *mm, __u64 start, __u64 len) 1210 { 1211 __u64 task_size = mm->task_size; 1212 1213 if (len & ~PAGE_MASK) 1214 return -EINVAL; 1215 if (!len) 1216 return -EINVAL; 1217 if (start < mmap_min_addr) 1218 return -EINVAL; 1219 if (start >= task_size) 1220 return -EINVAL; 1221 if (len > task_size - start) 1222 return -EINVAL; 1223 if (start + len <= start) 1224 return -EINVAL; 1225 return 0; 1226 } 1227 1228 static __always_inline int validate_range(struct mm_struct *mm, 1229 __u64 start, __u64 len) 1230 { 1231 if (start & ~PAGE_MASK) 1232 return -EINVAL; 1233 1234 return validate_unaligned_range(mm, start, len); 1235 } 1236 1237 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1238 unsigned long arg) 1239 { 1240 struct mm_struct *mm = ctx->mm; 1241 struct vm_area_struct *vma, *cur; 1242 int ret; 1243 struct uffdio_register uffdio_register; 1244 struct uffdio_register __user *user_uffdio_register; 1245 unsigned long vm_flags; 1246 bool found; 1247 bool basic_ioctls; 1248 unsigned long start, end; 1249 struct vma_iterator vmi; 1250 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1251 1252 user_uffdio_register = (struct uffdio_register __user *) arg; 1253 1254 ret = -EFAULT; 1255 if (copy_from_user(&uffdio_register, user_uffdio_register, 1256 sizeof(uffdio_register)-sizeof(__u64))) 1257 goto out; 1258 1259 ret = -EINVAL; 1260 if (!uffdio_register.mode) 1261 goto out; 1262 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1263 goto out; 1264 vm_flags = 0; 1265 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1266 vm_flags |= VM_UFFD_MISSING; 1267 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1268 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1269 goto out; 1270 #endif 1271 vm_flags |= VM_UFFD_WP; 1272 } 1273 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1274 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1275 goto out; 1276 #endif 1277 vm_flags |= VM_UFFD_MINOR; 1278 } 1279 1280 ret = validate_range(mm, uffdio_register.range.start, 1281 uffdio_register.range.len); 1282 if (ret) 1283 goto out; 1284 1285 start = uffdio_register.range.start; 1286 end = start + uffdio_register.range.len; 1287 1288 ret = -ENOMEM; 1289 if (!mmget_not_zero(mm)) 1290 goto out; 1291 1292 ret = -EINVAL; 1293 mmap_write_lock(mm); 1294 vma_iter_init(&vmi, mm, start); 1295 vma = vma_find(&vmi, end); 1296 if (!vma) 1297 goto out_unlock; 1298 1299 /* 1300 * If the first vma contains huge pages, make sure start address 1301 * is aligned to huge page size. 1302 */ 1303 if (is_vm_hugetlb_page(vma)) { 1304 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1305 1306 if (start & (vma_hpagesize - 1)) 1307 goto out_unlock; 1308 } 1309 1310 /* 1311 * Search for not compatible vmas. 1312 */ 1313 found = false; 1314 basic_ioctls = false; 1315 cur = vma; 1316 do { 1317 cond_resched(); 1318 1319 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^ 1320 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1321 1322 /* check not compatible vmas */ 1323 ret = -EINVAL; 1324 if (!vma_can_userfault(cur, vm_flags, wp_async)) 1325 goto out_unlock; 1326 1327 /* 1328 * UFFDIO_COPY will fill file holes even without 1329 * PROT_WRITE. This check enforces that if this is a 1330 * MAP_SHARED, the process has write permission to the backing 1331 * file. If VM_MAYWRITE is set it also enforces that on a 1332 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1333 * F_WRITE_SEAL can be taken until the vma is destroyed. 1334 */ 1335 ret = -EPERM; 1336 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1337 goto out_unlock; 1338 1339 /* 1340 * If this vma contains ending address, and huge pages 1341 * check alignment. 1342 */ 1343 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1344 end > cur->vm_start) { 1345 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1346 1347 ret = -EINVAL; 1348 1349 if (end & (vma_hpagesize - 1)) 1350 goto out_unlock; 1351 } 1352 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1353 goto out_unlock; 1354 1355 /* 1356 * Check that this vma isn't already owned by a 1357 * different userfaultfd. We can't allow more than one 1358 * userfaultfd to own a single vma simultaneously or we 1359 * wouldn't know which one to deliver the userfaults to. 1360 */ 1361 ret = -EBUSY; 1362 if (cur->vm_userfaultfd_ctx.ctx && 1363 cur->vm_userfaultfd_ctx.ctx != ctx) 1364 goto out_unlock; 1365 1366 /* 1367 * Note vmas containing huge pages 1368 */ 1369 if (is_vm_hugetlb_page(cur)) 1370 basic_ioctls = true; 1371 1372 found = true; 1373 } for_each_vma_range(vmi, cur, end); 1374 VM_WARN_ON_ONCE(!found); 1375 1376 ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end, 1377 wp_async); 1378 1379 out_unlock: 1380 mmap_write_unlock(mm); 1381 mmput(mm); 1382 if (!ret) { 1383 __u64 ioctls_out; 1384 1385 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1386 UFFD_API_RANGE_IOCTLS; 1387 1388 /* 1389 * Declare the WP ioctl only if the WP mode is 1390 * specified and all checks passed with the range 1391 */ 1392 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1393 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1394 1395 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1396 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1397 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1398 1399 /* 1400 * Now that we scanned all vmas we can already tell 1401 * userland which ioctls methods are guaranteed to 1402 * succeed on this range. 1403 */ 1404 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1405 ret = -EFAULT; 1406 } 1407 out: 1408 return ret; 1409 } 1410 1411 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1412 unsigned long arg) 1413 { 1414 struct mm_struct *mm = ctx->mm; 1415 struct vm_area_struct *vma, *prev, *cur; 1416 int ret; 1417 struct uffdio_range uffdio_unregister; 1418 bool found; 1419 unsigned long start, end, vma_end; 1420 const void __user *buf = (void __user *)arg; 1421 struct vma_iterator vmi; 1422 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1423 1424 ret = -EFAULT; 1425 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1426 goto out; 1427 1428 ret = validate_range(mm, uffdio_unregister.start, 1429 uffdio_unregister.len); 1430 if (ret) 1431 goto out; 1432 1433 start = uffdio_unregister.start; 1434 end = start + uffdio_unregister.len; 1435 1436 ret = -ENOMEM; 1437 if (!mmget_not_zero(mm)) 1438 goto out; 1439 1440 mmap_write_lock(mm); 1441 ret = -EINVAL; 1442 vma_iter_init(&vmi, mm, start); 1443 vma = vma_find(&vmi, end); 1444 if (!vma) 1445 goto out_unlock; 1446 1447 /* 1448 * If the first vma contains huge pages, make sure start address 1449 * is aligned to huge page size. 1450 */ 1451 if (is_vm_hugetlb_page(vma)) { 1452 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1453 1454 if (start & (vma_hpagesize - 1)) 1455 goto out_unlock; 1456 } 1457 1458 /* 1459 * Search for not compatible vmas. 1460 */ 1461 found = false; 1462 cur = vma; 1463 do { 1464 cond_resched(); 1465 1466 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^ 1467 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1468 1469 /* 1470 * Prevent unregistering through a different userfaultfd than 1471 * the one used for registration. 1472 */ 1473 if (cur->vm_userfaultfd_ctx.ctx && 1474 cur->vm_userfaultfd_ctx.ctx != ctx) 1475 goto out_unlock; 1476 1477 /* 1478 * Check not compatible vmas, not strictly required 1479 * here as not compatible vmas cannot have an 1480 * userfaultfd_ctx registered on them, but this 1481 * provides for more strict behavior to notice 1482 * unregistration errors. 1483 */ 1484 if (!vma_can_userfault(cur, cur->vm_flags, wp_async)) 1485 goto out_unlock; 1486 1487 found = true; 1488 } for_each_vma_range(vmi, cur, end); 1489 VM_WARN_ON_ONCE(!found); 1490 1491 vma_iter_set(&vmi, start); 1492 prev = vma_prev(&vmi); 1493 if (vma->vm_start < start) 1494 prev = vma; 1495 1496 ret = 0; 1497 for_each_vma_range(vmi, vma, end) { 1498 cond_resched(); 1499 1500 /* VMA not registered with userfaultfd. */ 1501 if (!vma->vm_userfaultfd_ctx.ctx) 1502 goto skip; 1503 1504 VM_WARN_ON_ONCE(vma->vm_userfaultfd_ctx.ctx != ctx); 1505 VM_WARN_ON_ONCE(!vma_can_userfault(vma, vma->vm_flags, wp_async)); 1506 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)); 1507 1508 if (vma->vm_start > start) 1509 start = vma->vm_start; 1510 vma_end = min(end, vma->vm_end); 1511 1512 if (userfaultfd_missing(vma)) { 1513 /* 1514 * Wake any concurrent pending userfault while 1515 * we unregister, so they will not hang 1516 * permanently and it avoids userland to call 1517 * UFFDIO_WAKE explicitly. 1518 */ 1519 struct userfaultfd_wake_range range; 1520 range.start = start; 1521 range.len = vma_end - start; 1522 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1523 } 1524 1525 vma = userfaultfd_clear_vma(&vmi, prev, vma, 1526 start, vma_end); 1527 if (IS_ERR(vma)) { 1528 ret = PTR_ERR(vma); 1529 break; 1530 } 1531 1532 skip: 1533 prev = vma; 1534 start = vma->vm_end; 1535 } 1536 1537 out_unlock: 1538 mmap_write_unlock(mm); 1539 mmput(mm); 1540 out: 1541 return ret; 1542 } 1543 1544 /* 1545 * userfaultfd_wake may be used in combination with the 1546 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1547 */ 1548 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1549 unsigned long arg) 1550 { 1551 int ret; 1552 struct uffdio_range uffdio_wake; 1553 struct userfaultfd_wake_range range; 1554 const void __user *buf = (void __user *)arg; 1555 1556 ret = -EFAULT; 1557 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1558 goto out; 1559 1560 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1561 if (ret) 1562 goto out; 1563 1564 range.start = uffdio_wake.start; 1565 range.len = uffdio_wake.len; 1566 1567 /* 1568 * len == 0 means wake all and we don't want to wake all here, 1569 * so check it again to be sure. 1570 */ 1571 VM_WARN_ON_ONCE(!range.len); 1572 1573 wake_userfault(ctx, &range); 1574 ret = 0; 1575 1576 out: 1577 return ret; 1578 } 1579 1580 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1581 unsigned long arg) 1582 { 1583 __s64 ret; 1584 struct uffdio_copy uffdio_copy; 1585 struct uffdio_copy __user *user_uffdio_copy; 1586 struct userfaultfd_wake_range range; 1587 uffd_flags_t flags = 0; 1588 1589 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1590 1591 ret = -EAGAIN; 1592 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1593 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1594 return -EFAULT; 1595 goto out; 1596 } 1597 1598 ret = -EFAULT; 1599 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1600 /* don't copy "copy" last field */ 1601 sizeof(uffdio_copy)-sizeof(__s64))) 1602 goto out; 1603 1604 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1605 uffdio_copy.len); 1606 if (ret) 1607 goto out; 1608 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1609 if (ret) 1610 goto out; 1611 1612 ret = -EINVAL; 1613 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1614 goto out; 1615 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1616 flags |= MFILL_ATOMIC_WP; 1617 if (mmget_not_zero(ctx->mm)) { 1618 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src, 1619 uffdio_copy.len, flags); 1620 mmput(ctx->mm); 1621 } else { 1622 return -ESRCH; 1623 } 1624 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1625 return -EFAULT; 1626 if (ret < 0) 1627 goto out; 1628 VM_WARN_ON_ONCE(!ret); 1629 /* len == 0 would wake all */ 1630 range.len = ret; 1631 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1632 range.start = uffdio_copy.dst; 1633 wake_userfault(ctx, &range); 1634 } 1635 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1636 out: 1637 return ret; 1638 } 1639 1640 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1641 unsigned long arg) 1642 { 1643 __s64 ret; 1644 struct uffdio_zeropage uffdio_zeropage; 1645 struct uffdio_zeropage __user *user_uffdio_zeropage; 1646 struct userfaultfd_wake_range range; 1647 1648 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1649 1650 ret = -EAGAIN; 1651 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1652 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1653 return -EFAULT; 1654 goto out; 1655 } 1656 1657 ret = -EFAULT; 1658 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1659 /* don't copy "zeropage" last field */ 1660 sizeof(uffdio_zeropage)-sizeof(__s64))) 1661 goto out; 1662 1663 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1664 uffdio_zeropage.range.len); 1665 if (ret) 1666 goto out; 1667 ret = -EINVAL; 1668 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1669 goto out; 1670 1671 if (mmget_not_zero(ctx->mm)) { 1672 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start, 1673 uffdio_zeropage.range.len); 1674 mmput(ctx->mm); 1675 } else { 1676 return -ESRCH; 1677 } 1678 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1679 return -EFAULT; 1680 if (ret < 0) 1681 goto out; 1682 /* len == 0 would wake all */ 1683 VM_WARN_ON_ONCE(!ret); 1684 range.len = ret; 1685 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1686 range.start = uffdio_zeropage.range.start; 1687 wake_userfault(ctx, &range); 1688 } 1689 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1690 out: 1691 return ret; 1692 } 1693 1694 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1695 unsigned long arg) 1696 { 1697 int ret; 1698 struct uffdio_writeprotect uffdio_wp; 1699 struct uffdio_writeprotect __user *user_uffdio_wp; 1700 struct userfaultfd_wake_range range; 1701 bool mode_wp, mode_dontwake; 1702 1703 if (atomic_read(&ctx->mmap_changing)) 1704 return -EAGAIN; 1705 1706 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1707 1708 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1709 sizeof(struct uffdio_writeprotect))) 1710 return -EFAULT; 1711 1712 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1713 uffdio_wp.range.len); 1714 if (ret) 1715 return ret; 1716 1717 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1718 UFFDIO_WRITEPROTECT_MODE_WP)) 1719 return -EINVAL; 1720 1721 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1722 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1723 1724 if (mode_wp && mode_dontwake) 1725 return -EINVAL; 1726 1727 if (mmget_not_zero(ctx->mm)) { 1728 ret = mwriteprotect_range(ctx, uffdio_wp.range.start, 1729 uffdio_wp.range.len, mode_wp); 1730 mmput(ctx->mm); 1731 } else { 1732 return -ESRCH; 1733 } 1734 1735 if (ret) 1736 return ret; 1737 1738 if (!mode_wp && !mode_dontwake) { 1739 range.start = uffdio_wp.range.start; 1740 range.len = uffdio_wp.range.len; 1741 wake_userfault(ctx, &range); 1742 } 1743 return ret; 1744 } 1745 1746 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1747 { 1748 __s64 ret; 1749 struct uffdio_continue uffdio_continue; 1750 struct uffdio_continue __user *user_uffdio_continue; 1751 struct userfaultfd_wake_range range; 1752 uffd_flags_t flags = 0; 1753 1754 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1755 1756 ret = -EAGAIN; 1757 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1758 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1759 return -EFAULT; 1760 goto out; 1761 } 1762 1763 ret = -EFAULT; 1764 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1765 /* don't copy the output fields */ 1766 sizeof(uffdio_continue) - (sizeof(__s64)))) 1767 goto out; 1768 1769 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1770 uffdio_continue.range.len); 1771 if (ret) 1772 goto out; 1773 1774 ret = -EINVAL; 1775 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1776 UFFDIO_CONTINUE_MODE_WP)) 1777 goto out; 1778 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1779 flags |= MFILL_ATOMIC_WP; 1780 1781 if (mmget_not_zero(ctx->mm)) { 1782 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start, 1783 uffdio_continue.range.len, flags); 1784 mmput(ctx->mm); 1785 } else { 1786 return -ESRCH; 1787 } 1788 1789 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1790 return -EFAULT; 1791 if (ret < 0) 1792 goto out; 1793 1794 /* len == 0 would wake all */ 1795 VM_WARN_ON_ONCE(!ret); 1796 range.len = ret; 1797 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1798 range.start = uffdio_continue.range.start; 1799 wake_userfault(ctx, &range); 1800 } 1801 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1802 1803 out: 1804 return ret; 1805 } 1806 1807 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1808 { 1809 __s64 ret; 1810 struct uffdio_poison uffdio_poison; 1811 struct uffdio_poison __user *user_uffdio_poison; 1812 struct userfaultfd_wake_range range; 1813 1814 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1815 1816 ret = -EAGAIN; 1817 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1818 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1819 return -EFAULT; 1820 goto out; 1821 } 1822 1823 ret = -EFAULT; 1824 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1825 /* don't copy the output fields */ 1826 sizeof(uffdio_poison) - (sizeof(__s64)))) 1827 goto out; 1828 1829 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1830 uffdio_poison.range.len); 1831 if (ret) 1832 goto out; 1833 1834 ret = -EINVAL; 1835 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1836 goto out; 1837 1838 if (mmget_not_zero(ctx->mm)) { 1839 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start, 1840 uffdio_poison.range.len, 0); 1841 mmput(ctx->mm); 1842 } else { 1843 return -ESRCH; 1844 } 1845 1846 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1847 return -EFAULT; 1848 if (ret < 0) 1849 goto out; 1850 1851 /* len == 0 would wake all */ 1852 VM_WARN_ON_ONCE(!ret); 1853 range.len = ret; 1854 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 1855 range.start = uffdio_poison.range.start; 1856 wake_userfault(ctx, &range); 1857 } 1858 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 1859 1860 out: 1861 return ret; 1862 } 1863 1864 bool userfaultfd_wp_async(struct vm_area_struct *vma) 1865 { 1866 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx); 1867 } 1868 1869 static inline unsigned int uffd_ctx_features(__u64 user_features) 1870 { 1871 /* 1872 * For the current set of features the bits just coincide. Set 1873 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1874 */ 1875 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1876 } 1877 1878 static int userfaultfd_move(struct userfaultfd_ctx *ctx, 1879 unsigned long arg) 1880 { 1881 __s64 ret; 1882 struct uffdio_move uffdio_move; 1883 struct uffdio_move __user *user_uffdio_move; 1884 struct userfaultfd_wake_range range; 1885 struct mm_struct *mm = ctx->mm; 1886 1887 user_uffdio_move = (struct uffdio_move __user *) arg; 1888 1889 ret = -EAGAIN; 1890 if (unlikely(atomic_read(&ctx->mmap_changing))) { 1891 if (unlikely(put_user(ret, &user_uffdio_move->move))) 1892 return -EFAULT; 1893 goto out; 1894 } 1895 1896 if (copy_from_user(&uffdio_move, user_uffdio_move, 1897 /* don't copy "move" last field */ 1898 sizeof(uffdio_move)-sizeof(__s64))) 1899 return -EFAULT; 1900 1901 /* Do not allow cross-mm moves. */ 1902 if (mm != current->mm) 1903 return -EINVAL; 1904 1905 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len); 1906 if (ret) 1907 return ret; 1908 1909 ret = validate_range(mm, uffdio_move.src, uffdio_move.len); 1910 if (ret) 1911 return ret; 1912 1913 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES| 1914 UFFDIO_MOVE_MODE_DONTWAKE)) 1915 return -EINVAL; 1916 1917 if (mmget_not_zero(mm)) { 1918 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src, 1919 uffdio_move.len, uffdio_move.mode); 1920 mmput(mm); 1921 } else { 1922 return -ESRCH; 1923 } 1924 1925 if (unlikely(put_user(ret, &user_uffdio_move->move))) 1926 return -EFAULT; 1927 if (ret < 0) 1928 goto out; 1929 1930 /* len == 0 would wake all */ 1931 VM_WARN_ON(!ret); 1932 range.len = ret; 1933 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) { 1934 range.start = uffdio_move.dst; 1935 wake_userfault(ctx, &range); 1936 } 1937 ret = range.len == uffdio_move.len ? 0 : -EAGAIN; 1938 1939 out: 1940 return ret; 1941 } 1942 1943 /* 1944 * userland asks for a certain API version and we return which bits 1945 * and ioctl commands are implemented in this kernel for such API 1946 * version or -EINVAL if unknown. 1947 */ 1948 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1949 unsigned long arg) 1950 { 1951 struct uffdio_api uffdio_api; 1952 void __user *buf = (void __user *)arg; 1953 unsigned int ctx_features; 1954 int ret; 1955 __u64 features; 1956 1957 ret = -EFAULT; 1958 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1959 goto out; 1960 features = uffdio_api.features; 1961 ret = -EINVAL; 1962 if (uffdio_api.api != UFFD_API) 1963 goto err_out; 1964 ret = -EPERM; 1965 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1966 goto err_out; 1967 1968 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */ 1969 if (features & UFFD_FEATURE_WP_ASYNC) 1970 features |= UFFD_FEATURE_WP_UNPOPULATED; 1971 1972 /* report all available features and ioctls to userland */ 1973 uffdio_api.features = UFFD_API_FEATURES; 1974 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1975 uffdio_api.features &= 1976 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1977 #endif 1978 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1979 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1980 #endif 1981 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1982 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 1983 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 1984 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC; 1985 #endif 1986 1987 ret = -EINVAL; 1988 if (features & ~uffdio_api.features) 1989 goto err_out; 1990 1991 uffdio_api.ioctls = UFFD_API_IOCTLS; 1992 ret = -EFAULT; 1993 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1994 goto out; 1995 1996 /* only enable the requested features for this uffd context */ 1997 ctx_features = uffd_ctx_features(features); 1998 ret = -EINVAL; 1999 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2000 goto err_out; 2001 2002 ret = 0; 2003 out: 2004 return ret; 2005 err_out: 2006 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2007 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2008 ret = -EFAULT; 2009 goto out; 2010 } 2011 2012 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2013 unsigned long arg) 2014 { 2015 int ret = -EINVAL; 2016 struct userfaultfd_ctx *ctx = file->private_data; 2017 2018 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2019 return -EINVAL; 2020 2021 switch(cmd) { 2022 case UFFDIO_API: 2023 ret = userfaultfd_api(ctx, arg); 2024 break; 2025 case UFFDIO_REGISTER: 2026 ret = userfaultfd_register(ctx, arg); 2027 break; 2028 case UFFDIO_UNREGISTER: 2029 ret = userfaultfd_unregister(ctx, arg); 2030 break; 2031 case UFFDIO_WAKE: 2032 ret = userfaultfd_wake(ctx, arg); 2033 break; 2034 case UFFDIO_COPY: 2035 ret = userfaultfd_copy(ctx, arg); 2036 break; 2037 case UFFDIO_ZEROPAGE: 2038 ret = userfaultfd_zeropage(ctx, arg); 2039 break; 2040 case UFFDIO_MOVE: 2041 ret = userfaultfd_move(ctx, arg); 2042 break; 2043 case UFFDIO_WRITEPROTECT: 2044 ret = userfaultfd_writeprotect(ctx, arg); 2045 break; 2046 case UFFDIO_CONTINUE: 2047 ret = userfaultfd_continue(ctx, arg); 2048 break; 2049 case UFFDIO_POISON: 2050 ret = userfaultfd_poison(ctx, arg); 2051 break; 2052 } 2053 return ret; 2054 } 2055 2056 #ifdef CONFIG_PROC_FS 2057 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2058 { 2059 struct userfaultfd_ctx *ctx = f->private_data; 2060 wait_queue_entry_t *wq; 2061 unsigned long pending = 0, total = 0; 2062 2063 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2064 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2065 pending++; 2066 total++; 2067 } 2068 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2069 total++; 2070 } 2071 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2072 2073 /* 2074 * If more protocols will be added, there will be all shown 2075 * separated by a space. Like this: 2076 * protocols: aa:... bb:... 2077 */ 2078 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2079 pending, total, UFFD_API, ctx->features, 2080 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2081 } 2082 #endif 2083 2084 static const struct file_operations userfaultfd_fops = { 2085 #ifdef CONFIG_PROC_FS 2086 .show_fdinfo = userfaultfd_show_fdinfo, 2087 #endif 2088 .release = userfaultfd_release, 2089 .poll = userfaultfd_poll, 2090 .read_iter = userfaultfd_read_iter, 2091 .unlocked_ioctl = userfaultfd_ioctl, 2092 .compat_ioctl = compat_ptr_ioctl, 2093 .llseek = noop_llseek, 2094 }; 2095 2096 static void init_once_userfaultfd_ctx(void *mem) 2097 { 2098 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2099 2100 init_waitqueue_head(&ctx->fault_pending_wqh); 2101 init_waitqueue_head(&ctx->fault_wqh); 2102 init_waitqueue_head(&ctx->event_wqh); 2103 init_waitqueue_head(&ctx->fd_wqh); 2104 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2105 } 2106 2107 static int new_userfaultfd(int flags) 2108 { 2109 struct userfaultfd_ctx *ctx; 2110 struct file *file; 2111 int fd; 2112 2113 VM_WARN_ON_ONCE(!current->mm); 2114 2115 /* Check the UFFD_* constants for consistency. */ 2116 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2117 2118 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2119 return -EINVAL; 2120 2121 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2122 if (!ctx) 2123 return -ENOMEM; 2124 2125 refcount_set(&ctx->refcount, 1); 2126 ctx->flags = flags; 2127 ctx->features = 0; 2128 ctx->released = false; 2129 init_rwsem(&ctx->map_changing_lock); 2130 atomic_set(&ctx->mmap_changing, 0); 2131 ctx->mm = current->mm; 2132 2133 fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 2134 if (fd < 0) 2135 goto err_out; 2136 2137 /* Create a new inode so that the LSM can block the creation. */ 2138 file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 2139 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2140 if (IS_ERR(file)) { 2141 put_unused_fd(fd); 2142 fd = PTR_ERR(file); 2143 goto err_out; 2144 } 2145 /* prevent the mm struct to be freed */ 2146 mmgrab(ctx->mm); 2147 file->f_mode |= FMODE_NOWAIT; 2148 fd_install(fd, file); 2149 return fd; 2150 err_out: 2151 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2152 return fd; 2153 } 2154 2155 static inline bool userfaultfd_syscall_allowed(int flags) 2156 { 2157 /* Userspace-only page faults are always allowed */ 2158 if (flags & UFFD_USER_MODE_ONLY) 2159 return true; 2160 2161 /* 2162 * The user is requesting a userfaultfd which can handle kernel faults. 2163 * Privileged users are always allowed to do this. 2164 */ 2165 if (capable(CAP_SYS_PTRACE)) 2166 return true; 2167 2168 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2169 return sysctl_unprivileged_userfaultfd; 2170 } 2171 2172 SYSCALL_DEFINE1(userfaultfd, int, flags) 2173 { 2174 if (!userfaultfd_syscall_allowed(flags)) 2175 return -EPERM; 2176 2177 return new_userfaultfd(flags); 2178 } 2179 2180 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2181 { 2182 if (cmd != USERFAULTFD_IOC_NEW) 2183 return -EINVAL; 2184 2185 return new_userfaultfd(flags); 2186 } 2187 2188 static const struct file_operations userfaultfd_dev_fops = { 2189 .unlocked_ioctl = userfaultfd_dev_ioctl, 2190 .compat_ioctl = userfaultfd_dev_ioctl, 2191 .owner = THIS_MODULE, 2192 .llseek = noop_llseek, 2193 }; 2194 2195 static struct miscdevice userfaultfd_misc = { 2196 .minor = MISC_DYNAMIC_MINOR, 2197 .name = "userfaultfd", 2198 .fops = &userfaultfd_dev_fops 2199 }; 2200 2201 static int __init userfaultfd_init(void) 2202 { 2203 int ret; 2204 2205 ret = misc_register(&userfaultfd_misc); 2206 if (ret) 2207 return ret; 2208 2209 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2210 sizeof(struct userfaultfd_ctx), 2211 0, 2212 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2213 init_once_userfaultfd_ctx); 2214 #ifdef CONFIG_SYSCTL 2215 register_sysctl_init("vm", vm_userfaultfd_table); 2216 #endif 2217 return 0; 2218 } 2219 __initcall(userfaultfd_init); 2220