xref: /linux/fs/userfaultfd.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
66 	struct mm_struct *mm;
67 };
68 
69 struct userfaultfd_fork_ctx {
70 	struct userfaultfd_ctx *orig;
71 	struct userfaultfd_ctx *new;
72 	struct list_head list;
73 };
74 
75 struct userfaultfd_unmap_ctx {
76 	struct userfaultfd_ctx *ctx;
77 	unsigned long start;
78 	unsigned long end;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_wait_queue {
83 	struct uffd_msg msg;
84 	wait_queue_entry_t wq;
85 	struct userfaultfd_ctx *ctx;
86 	bool waken;
87 };
88 
89 struct userfaultfd_wake_range {
90 	unsigned long start;
91 	unsigned long len;
92 };
93 
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 				     int wake_flags, void *key)
96 {
97 	struct userfaultfd_wake_range *range = key;
98 	int ret;
99 	struct userfaultfd_wait_queue *uwq;
100 	unsigned long start, len;
101 
102 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 	ret = 0;
104 	/* len == 0 means wake all */
105 	start = range->start;
106 	len = range->len;
107 	if (len && (start > uwq->msg.arg.pagefault.address ||
108 		    start + len <= uwq->msg.arg.pagefault.address))
109 		goto out;
110 	WRITE_ONCE(uwq->waken, true);
111 	/*
112 	 * The Program-Order guarantees provided by the scheduler
113 	 * ensure uwq->waken is visible before the task is woken.
114 	 */
115 	ret = wake_up_state(wq->private, mode);
116 	if (ret) {
117 		/*
118 		 * Wake only once, autoremove behavior.
119 		 *
120 		 * After the effect of list_del_init is visible to the other
121 		 * CPUs, the waitqueue may disappear from under us, see the
122 		 * !list_empty_careful() in handle_userfault().
123 		 *
124 		 * try_to_wake_up() has an implicit smp_mb(), and the
125 		 * wq->private is read before calling the extern function
126 		 * "wake_up_state" (which in turns calls try_to_wake_up).
127 		 */
128 		list_del_init(&wq->entry);
129 	}
130 out:
131 	return ret;
132 }
133 
134 /**
135  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136  * context.
137  * @ctx: [in] Pointer to the userfaultfd context.
138  */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 	if (!atomic_inc_not_zero(&ctx->refcount))
142 		BUG();
143 }
144 
145 /**
146  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147  * context.
148  * @ctx: [in] Pointer to userfaultfd context.
149  *
150  * The userfaultfd context reference must have been previously acquired either
151  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152  */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 	if (atomic_dec_and_test(&ctx->refcount)) {
156 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 		mmdrop(ctx->mm);
165 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 	}
167 }
168 
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 	/*
173 	 * Must use memset to zero out the paddings or kernel data is
174 	 * leaked to userland.
175 	 */
176 	memset(msg, 0, sizeof(struct uffd_msg));
177 }
178 
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 					    unsigned int flags,
181 					    unsigned long reason,
182 					    unsigned int features)
183 {
184 	struct uffd_msg msg;
185 	msg_init(&msg);
186 	msg.event = UFFD_EVENT_PAGEFAULT;
187 	msg.arg.pagefault.address = address;
188 	if (flags & FAULT_FLAG_WRITE)
189 		/*
190 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 		 * was a read fault, otherwise if set it means it's
194 		 * a write fault.
195 		 */
196 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 	if (reason & VM_UFFD_WP)
198 		/*
199 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 		 * a missing fault, otherwise if set it means it's a
203 		 * write protect fault.
204 		 */
205 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 	if (features & UFFD_FEATURE_THREAD_ID)
207 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 	return msg;
209 }
210 
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213  * Same functionality as userfaultfd_must_wait below with modifications for
214  * hugepmd ranges.
215  */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 					 struct vm_area_struct *vma,
218 					 unsigned long address,
219 					 unsigned long flags,
220 					 unsigned long reason)
221 {
222 	struct mm_struct *mm = ctx->mm;
223 	pte_t *pte;
224 	bool ret = true;
225 
226 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227 
228 	pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 	if (!pte)
230 		goto out;
231 
232 	ret = false;
233 
234 	/*
235 	 * Lockless access: we're in a wait_event so it's ok if it
236 	 * changes under us.
237 	 */
238 	if (huge_pte_none(*pte))
239 		ret = true;
240 	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 		ret = true;
242 out:
243 	return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 					 struct vm_area_struct *vma,
248 					 unsigned long address,
249 					 unsigned long flags,
250 					 unsigned long reason)
251 {
252 	return false;	/* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255 
256 /*
257  * Verify the pagetables are still not ok after having reigstered into
258  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259  * userfault that has already been resolved, if userfaultfd_read and
260  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261  * threads.
262  */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 					 unsigned long address,
265 					 unsigned long flags,
266 					 unsigned long reason)
267 {
268 	struct mm_struct *mm = ctx->mm;
269 	pgd_t *pgd;
270 	p4d_t *p4d;
271 	pud_t *pud;
272 	pmd_t *pmd, _pmd;
273 	pte_t *pte;
274 	bool ret = true;
275 
276 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277 
278 	pgd = pgd_offset(mm, address);
279 	if (!pgd_present(*pgd))
280 		goto out;
281 	p4d = p4d_offset(pgd, address);
282 	if (!p4d_present(*p4d))
283 		goto out;
284 	pud = pud_offset(p4d, address);
285 	if (!pud_present(*pud))
286 		goto out;
287 	pmd = pmd_offset(pud, address);
288 	/*
289 	 * READ_ONCE must function as a barrier with narrower scope
290 	 * and it must be equivalent to:
291 	 *	_pmd = *pmd; barrier();
292 	 *
293 	 * This is to deal with the instability (as in
294 	 * pmd_trans_unstable) of the pmd.
295 	 */
296 	_pmd = READ_ONCE(*pmd);
297 	if (!pmd_present(_pmd))
298 		goto out;
299 
300 	ret = false;
301 	if (pmd_trans_huge(_pmd))
302 		goto out;
303 
304 	/*
305 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 	 * and use the standard pte_offset_map() instead of parsing _pmd.
307 	 */
308 	pte = pte_offset_map(pmd, address);
309 	/*
310 	 * Lockless access: we're in a wait_event so it's ok if it
311 	 * changes under us.
312 	 */
313 	if (pte_none(*pte))
314 		ret = true;
315 	pte_unmap(pte);
316 
317 out:
318 	return ret;
319 }
320 
321 /*
322  * The locking rules involved in returning VM_FAULT_RETRY depending on
323  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325  * recommendation in __lock_page_or_retry is not an understatement.
326  *
327  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329  * not set.
330  *
331  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332  * set, VM_FAULT_RETRY can still be returned if and only if there are
333  * fatal_signal_pending()s, and the mmap_sem must be released before
334  * returning it.
335  */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 	struct mm_struct *mm = vmf->vma->vm_mm;
339 	struct userfaultfd_ctx *ctx;
340 	struct userfaultfd_wait_queue uwq;
341 	int ret;
342 	bool must_wait, return_to_userland;
343 	long blocking_state;
344 
345 	ret = VM_FAULT_SIGBUS;
346 
347 	/*
348 	 * We don't do userfault handling for the final child pid update.
349 	 *
350 	 * We also don't do userfault handling during
351 	 * coredumping. hugetlbfs has the special
352 	 * follow_hugetlb_page() to skip missing pages in the
353 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 	 * the no_page_table() helper in follow_page_mask(), but the
355 	 * shmem_vm_ops->fault method is invoked even during
356 	 * coredumping without mmap_sem and it ends up here.
357 	 */
358 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 		goto out;
360 
361 	/*
362 	 * Coredumping runs without mmap_sem so we can only check that
363 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 	 */
365 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366 
367 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 	if (!ctx)
369 		goto out;
370 
371 	BUG_ON(ctx->mm != mm);
372 
373 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375 
376 	if (ctx->features & UFFD_FEATURE_SIGBUS)
377 		goto out;
378 
379 	/*
380 	 * If it's already released don't get it. This avoids to loop
381 	 * in __get_user_pages if userfaultfd_release waits on the
382 	 * caller of handle_userfault to release the mmap_sem.
383 	 */
384 	if (unlikely(READ_ONCE(ctx->released))) {
385 		/*
386 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
387 		 * cooperative manager can close the uffd after the
388 		 * last UFFDIO_COPY, without risking to trigger an
389 		 * involuntary SIGBUS if the process was starting the
390 		 * userfaultfd while the userfaultfd was still armed
391 		 * (but after the last UFFDIO_COPY). If the uffd
392 		 * wasn't already closed when the userfault reached
393 		 * this point, that would normally be solved by
394 		 * userfaultfd_must_wait returning 'false'.
395 		 *
396 		 * If we were to return VM_FAULT_SIGBUS here, the non
397 		 * cooperative manager would be instead forced to
398 		 * always call UFFDIO_UNREGISTER before it can safely
399 		 * close the uffd.
400 		 */
401 		ret = VM_FAULT_NOPAGE;
402 		goto out;
403 	}
404 
405 	/*
406 	 * Check that we can return VM_FAULT_RETRY.
407 	 *
408 	 * NOTE: it should become possible to return VM_FAULT_RETRY
409 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
410 	 * -EBUSY failures, if the userfaultfd is to be extended for
411 	 * VM_UFFD_WP tracking and we intend to arm the userfault
412 	 * without first stopping userland access to the memory. For
413 	 * VM_UFFD_MISSING userfaults this is enough for now.
414 	 */
415 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
416 		/*
417 		 * Validate the invariant that nowait must allow retry
418 		 * to be sure not to return SIGBUS erroneously on
419 		 * nowait invocations.
420 		 */
421 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
422 #ifdef CONFIG_DEBUG_VM
423 		if (printk_ratelimit()) {
424 			printk(KERN_WARNING
425 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
426 			       vmf->flags);
427 			dump_stack();
428 		}
429 #endif
430 		goto out;
431 	}
432 
433 	/*
434 	 * Handle nowait, not much to do other than tell it to retry
435 	 * and wait.
436 	 */
437 	ret = VM_FAULT_RETRY;
438 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
439 		goto out;
440 
441 	/* take the reference before dropping the mmap_sem */
442 	userfaultfd_ctx_get(ctx);
443 
444 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
445 	uwq.wq.private = current;
446 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
447 			ctx->features);
448 	uwq.ctx = ctx;
449 	uwq.waken = false;
450 
451 	return_to_userland =
452 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
453 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
454 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
455 			 TASK_KILLABLE;
456 
457 	spin_lock(&ctx->fault_pending_wqh.lock);
458 	/*
459 	 * After the __add_wait_queue the uwq is visible to userland
460 	 * through poll/read().
461 	 */
462 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
463 	/*
464 	 * The smp_mb() after __set_current_state prevents the reads
465 	 * following the spin_unlock to happen before the list_add in
466 	 * __add_wait_queue.
467 	 */
468 	set_current_state(blocking_state);
469 	spin_unlock(&ctx->fault_pending_wqh.lock);
470 
471 	if (!is_vm_hugetlb_page(vmf->vma))
472 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
473 						  reason);
474 	else
475 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
476 						       vmf->address,
477 						       vmf->flags, reason);
478 	up_read(&mm->mmap_sem);
479 
480 	if (likely(must_wait && !READ_ONCE(ctx->released) &&
481 		   (return_to_userland ? !signal_pending(current) :
482 		    !fatal_signal_pending(current)))) {
483 		wake_up_poll(&ctx->fd_wqh, POLLIN);
484 		schedule();
485 		ret |= VM_FAULT_MAJOR;
486 
487 		/*
488 		 * False wakeups can orginate even from rwsem before
489 		 * up_read() however userfaults will wait either for a
490 		 * targeted wakeup on the specific uwq waitqueue from
491 		 * wake_userfault() or for signals or for uffd
492 		 * release.
493 		 */
494 		while (!READ_ONCE(uwq.waken)) {
495 			/*
496 			 * This needs the full smp_store_mb()
497 			 * guarantee as the state write must be
498 			 * visible to other CPUs before reading
499 			 * uwq.waken from other CPUs.
500 			 */
501 			set_current_state(blocking_state);
502 			if (READ_ONCE(uwq.waken) ||
503 			    READ_ONCE(ctx->released) ||
504 			    (return_to_userland ? signal_pending(current) :
505 			     fatal_signal_pending(current)))
506 				break;
507 			schedule();
508 		}
509 	}
510 
511 	__set_current_state(TASK_RUNNING);
512 
513 	if (return_to_userland) {
514 		if (signal_pending(current) &&
515 		    !fatal_signal_pending(current)) {
516 			/*
517 			 * If we got a SIGSTOP or SIGCONT and this is
518 			 * a normal userland page fault, just let
519 			 * userland return so the signal will be
520 			 * handled and gdb debugging works.  The page
521 			 * fault code immediately after we return from
522 			 * this function is going to release the
523 			 * mmap_sem and it's not depending on it
524 			 * (unlike gup would if we were not to return
525 			 * VM_FAULT_RETRY).
526 			 *
527 			 * If a fatal signal is pending we still take
528 			 * the streamlined VM_FAULT_RETRY failure path
529 			 * and there's no need to retake the mmap_sem
530 			 * in such case.
531 			 */
532 			down_read(&mm->mmap_sem);
533 			ret = VM_FAULT_NOPAGE;
534 		}
535 	}
536 
537 	/*
538 	 * Here we race with the list_del; list_add in
539 	 * userfaultfd_ctx_read(), however because we don't ever run
540 	 * list_del_init() to refile across the two lists, the prev
541 	 * and next pointers will never point to self. list_add also
542 	 * would never let any of the two pointers to point to
543 	 * self. So list_empty_careful won't risk to see both pointers
544 	 * pointing to self at any time during the list refile. The
545 	 * only case where list_del_init() is called is the full
546 	 * removal in the wake function and there we don't re-list_add
547 	 * and it's fine not to block on the spinlock. The uwq on this
548 	 * kernel stack can be released after the list_del_init.
549 	 */
550 	if (!list_empty_careful(&uwq.wq.entry)) {
551 		spin_lock(&ctx->fault_pending_wqh.lock);
552 		/*
553 		 * No need of list_del_init(), the uwq on the stack
554 		 * will be freed shortly anyway.
555 		 */
556 		list_del(&uwq.wq.entry);
557 		spin_unlock(&ctx->fault_pending_wqh.lock);
558 	}
559 
560 	/*
561 	 * ctx may go away after this if the userfault pseudo fd is
562 	 * already released.
563 	 */
564 	userfaultfd_ctx_put(ctx);
565 
566 out:
567 	return ret;
568 }
569 
570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
571 					      struct userfaultfd_wait_queue *ewq)
572 {
573 	struct userfaultfd_ctx *release_new_ctx;
574 
575 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
576 		goto out;
577 
578 	ewq->ctx = ctx;
579 	init_waitqueue_entry(&ewq->wq, current);
580 	release_new_ctx = NULL;
581 
582 	spin_lock(&ctx->event_wqh.lock);
583 	/*
584 	 * After the __add_wait_queue the uwq is visible to userland
585 	 * through poll/read().
586 	 */
587 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
588 	for (;;) {
589 		set_current_state(TASK_KILLABLE);
590 		if (ewq->msg.event == 0)
591 			break;
592 		if (READ_ONCE(ctx->released) ||
593 		    fatal_signal_pending(current)) {
594 			/*
595 			 * &ewq->wq may be queued in fork_event, but
596 			 * __remove_wait_queue ignores the head
597 			 * parameter. It would be a problem if it
598 			 * didn't.
599 			 */
600 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
601 			if (ewq->msg.event == UFFD_EVENT_FORK) {
602 				struct userfaultfd_ctx *new;
603 
604 				new = (struct userfaultfd_ctx *)
605 					(unsigned long)
606 					ewq->msg.arg.reserved.reserved1;
607 				release_new_ctx = new;
608 			}
609 			break;
610 		}
611 
612 		spin_unlock(&ctx->event_wqh.lock);
613 
614 		wake_up_poll(&ctx->fd_wqh, POLLIN);
615 		schedule();
616 
617 		spin_lock(&ctx->event_wqh.lock);
618 	}
619 	__set_current_state(TASK_RUNNING);
620 	spin_unlock(&ctx->event_wqh.lock);
621 
622 	if (release_new_ctx) {
623 		struct vm_area_struct *vma;
624 		struct mm_struct *mm = release_new_ctx->mm;
625 
626 		/* the various vma->vm_userfaultfd_ctx still points to it */
627 		down_write(&mm->mmap_sem);
628 		for (vma = mm->mmap; vma; vma = vma->vm_next)
629 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
630 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
631 		up_write(&mm->mmap_sem);
632 
633 		userfaultfd_ctx_put(release_new_ctx);
634 	}
635 
636 	/*
637 	 * ctx may go away after this if the userfault pseudo fd is
638 	 * already released.
639 	 */
640 out:
641 	userfaultfd_ctx_put(ctx);
642 }
643 
644 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
645 				       struct userfaultfd_wait_queue *ewq)
646 {
647 	ewq->msg.event = 0;
648 	wake_up_locked(&ctx->event_wqh);
649 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
650 }
651 
652 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
653 {
654 	struct userfaultfd_ctx *ctx = NULL, *octx;
655 	struct userfaultfd_fork_ctx *fctx;
656 
657 	octx = vma->vm_userfaultfd_ctx.ctx;
658 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
659 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
660 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
661 		return 0;
662 	}
663 
664 	list_for_each_entry(fctx, fcs, list)
665 		if (fctx->orig == octx) {
666 			ctx = fctx->new;
667 			break;
668 		}
669 
670 	if (!ctx) {
671 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
672 		if (!fctx)
673 			return -ENOMEM;
674 
675 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
676 		if (!ctx) {
677 			kfree(fctx);
678 			return -ENOMEM;
679 		}
680 
681 		atomic_set(&ctx->refcount, 1);
682 		ctx->flags = octx->flags;
683 		ctx->state = UFFD_STATE_RUNNING;
684 		ctx->features = octx->features;
685 		ctx->released = false;
686 		ctx->mm = vma->vm_mm;
687 		mmgrab(ctx->mm);
688 
689 		userfaultfd_ctx_get(octx);
690 		fctx->orig = octx;
691 		fctx->new = ctx;
692 		list_add_tail(&fctx->list, fcs);
693 	}
694 
695 	vma->vm_userfaultfd_ctx.ctx = ctx;
696 	return 0;
697 }
698 
699 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
700 {
701 	struct userfaultfd_ctx *ctx = fctx->orig;
702 	struct userfaultfd_wait_queue ewq;
703 
704 	msg_init(&ewq.msg);
705 
706 	ewq.msg.event = UFFD_EVENT_FORK;
707 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
708 
709 	userfaultfd_event_wait_completion(ctx, &ewq);
710 }
711 
712 void dup_userfaultfd_complete(struct list_head *fcs)
713 {
714 	struct userfaultfd_fork_ctx *fctx, *n;
715 
716 	list_for_each_entry_safe(fctx, n, fcs, list) {
717 		dup_fctx(fctx);
718 		list_del(&fctx->list);
719 		kfree(fctx);
720 	}
721 }
722 
723 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
724 			     struct vm_userfaultfd_ctx *vm_ctx)
725 {
726 	struct userfaultfd_ctx *ctx;
727 
728 	ctx = vma->vm_userfaultfd_ctx.ctx;
729 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
730 		vm_ctx->ctx = ctx;
731 		userfaultfd_ctx_get(ctx);
732 	}
733 }
734 
735 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
736 				 unsigned long from, unsigned long to,
737 				 unsigned long len)
738 {
739 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
740 	struct userfaultfd_wait_queue ewq;
741 
742 	if (!ctx)
743 		return;
744 
745 	if (to & ~PAGE_MASK) {
746 		userfaultfd_ctx_put(ctx);
747 		return;
748 	}
749 
750 	msg_init(&ewq.msg);
751 
752 	ewq.msg.event = UFFD_EVENT_REMAP;
753 	ewq.msg.arg.remap.from = from;
754 	ewq.msg.arg.remap.to = to;
755 	ewq.msg.arg.remap.len = len;
756 
757 	userfaultfd_event_wait_completion(ctx, &ewq);
758 }
759 
760 bool userfaultfd_remove(struct vm_area_struct *vma,
761 			unsigned long start, unsigned long end)
762 {
763 	struct mm_struct *mm = vma->vm_mm;
764 	struct userfaultfd_ctx *ctx;
765 	struct userfaultfd_wait_queue ewq;
766 
767 	ctx = vma->vm_userfaultfd_ctx.ctx;
768 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
769 		return true;
770 
771 	userfaultfd_ctx_get(ctx);
772 	up_read(&mm->mmap_sem);
773 
774 	msg_init(&ewq.msg);
775 
776 	ewq.msg.event = UFFD_EVENT_REMOVE;
777 	ewq.msg.arg.remove.start = start;
778 	ewq.msg.arg.remove.end = end;
779 
780 	userfaultfd_event_wait_completion(ctx, &ewq);
781 
782 	return false;
783 }
784 
785 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
786 			  unsigned long start, unsigned long end)
787 {
788 	struct userfaultfd_unmap_ctx *unmap_ctx;
789 
790 	list_for_each_entry(unmap_ctx, unmaps, list)
791 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
792 		    unmap_ctx->end == end)
793 			return true;
794 
795 	return false;
796 }
797 
798 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
799 			   unsigned long start, unsigned long end,
800 			   struct list_head *unmaps)
801 {
802 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
803 		struct userfaultfd_unmap_ctx *unmap_ctx;
804 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
805 
806 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
807 		    has_unmap_ctx(ctx, unmaps, start, end))
808 			continue;
809 
810 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
811 		if (!unmap_ctx)
812 			return -ENOMEM;
813 
814 		userfaultfd_ctx_get(ctx);
815 		unmap_ctx->ctx = ctx;
816 		unmap_ctx->start = start;
817 		unmap_ctx->end = end;
818 		list_add_tail(&unmap_ctx->list, unmaps);
819 	}
820 
821 	return 0;
822 }
823 
824 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
825 {
826 	struct userfaultfd_unmap_ctx *ctx, *n;
827 	struct userfaultfd_wait_queue ewq;
828 
829 	list_for_each_entry_safe(ctx, n, uf, list) {
830 		msg_init(&ewq.msg);
831 
832 		ewq.msg.event = UFFD_EVENT_UNMAP;
833 		ewq.msg.arg.remove.start = ctx->start;
834 		ewq.msg.arg.remove.end = ctx->end;
835 
836 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
837 
838 		list_del(&ctx->list);
839 		kfree(ctx);
840 	}
841 }
842 
843 static int userfaultfd_release(struct inode *inode, struct file *file)
844 {
845 	struct userfaultfd_ctx *ctx = file->private_data;
846 	struct mm_struct *mm = ctx->mm;
847 	struct vm_area_struct *vma, *prev;
848 	/* len == 0 means wake all */
849 	struct userfaultfd_wake_range range = { .len = 0, };
850 	unsigned long new_flags;
851 
852 	WRITE_ONCE(ctx->released, true);
853 
854 	if (!mmget_not_zero(mm))
855 		goto wakeup;
856 
857 	/*
858 	 * Flush page faults out of all CPUs. NOTE: all page faults
859 	 * must be retried without returning VM_FAULT_SIGBUS if
860 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
861 	 * changes while handle_userfault released the mmap_sem. So
862 	 * it's critical that released is set to true (above), before
863 	 * taking the mmap_sem for writing.
864 	 */
865 	down_write(&mm->mmap_sem);
866 	prev = NULL;
867 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 		cond_resched();
869 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
870 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
871 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
872 			prev = vma;
873 			continue;
874 		}
875 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
876 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
877 				 new_flags, vma->anon_vma,
878 				 vma->vm_file, vma->vm_pgoff,
879 				 vma_policy(vma),
880 				 NULL_VM_UFFD_CTX);
881 		if (prev)
882 			vma = prev;
883 		else
884 			prev = vma;
885 		vma->vm_flags = new_flags;
886 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
887 	}
888 	up_write(&mm->mmap_sem);
889 	mmput(mm);
890 wakeup:
891 	/*
892 	 * After no new page faults can wait on this fault_*wqh, flush
893 	 * the last page faults that may have been already waiting on
894 	 * the fault_*wqh.
895 	 */
896 	spin_lock(&ctx->fault_pending_wqh.lock);
897 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
898 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
899 	spin_unlock(&ctx->fault_pending_wqh.lock);
900 
901 	/* Flush pending events that may still wait on event_wqh */
902 	wake_up_all(&ctx->event_wqh);
903 
904 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
905 	userfaultfd_ctx_put(ctx);
906 	return 0;
907 }
908 
909 /* fault_pending_wqh.lock must be hold by the caller */
910 static inline struct userfaultfd_wait_queue *find_userfault_in(
911 		wait_queue_head_t *wqh)
912 {
913 	wait_queue_entry_t *wq;
914 	struct userfaultfd_wait_queue *uwq;
915 
916 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
917 
918 	uwq = NULL;
919 	if (!waitqueue_active(wqh))
920 		goto out;
921 	/* walk in reverse to provide FIFO behavior to read userfaults */
922 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
923 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
924 out:
925 	return uwq;
926 }
927 
928 static inline struct userfaultfd_wait_queue *find_userfault(
929 		struct userfaultfd_ctx *ctx)
930 {
931 	return find_userfault_in(&ctx->fault_pending_wqh);
932 }
933 
934 static inline struct userfaultfd_wait_queue *find_userfault_evt(
935 		struct userfaultfd_ctx *ctx)
936 {
937 	return find_userfault_in(&ctx->event_wqh);
938 }
939 
940 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
941 {
942 	struct userfaultfd_ctx *ctx = file->private_data;
943 	unsigned int ret;
944 
945 	poll_wait(file, &ctx->fd_wqh, wait);
946 
947 	switch (ctx->state) {
948 	case UFFD_STATE_WAIT_API:
949 		return POLLERR;
950 	case UFFD_STATE_RUNNING:
951 		/*
952 		 * poll() never guarantees that read won't block.
953 		 * userfaults can be waken before they're read().
954 		 */
955 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
956 			return POLLERR;
957 		/*
958 		 * lockless access to see if there are pending faults
959 		 * __pollwait last action is the add_wait_queue but
960 		 * the spin_unlock would allow the waitqueue_active to
961 		 * pass above the actual list_add inside
962 		 * add_wait_queue critical section. So use a full
963 		 * memory barrier to serialize the list_add write of
964 		 * add_wait_queue() with the waitqueue_active read
965 		 * below.
966 		 */
967 		ret = 0;
968 		smp_mb();
969 		if (waitqueue_active(&ctx->fault_pending_wqh))
970 			ret = POLLIN;
971 		else if (waitqueue_active(&ctx->event_wqh))
972 			ret = POLLIN;
973 
974 		return ret;
975 	default:
976 		WARN_ON_ONCE(1);
977 		return POLLERR;
978 	}
979 }
980 
981 static const struct file_operations userfaultfd_fops;
982 
983 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
984 				  struct userfaultfd_ctx *new,
985 				  struct uffd_msg *msg)
986 {
987 	int fd;
988 	struct file *file;
989 	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
990 
991 	fd = get_unused_fd_flags(flags);
992 	if (fd < 0)
993 		return fd;
994 
995 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
996 				  O_RDWR | flags);
997 	if (IS_ERR(file)) {
998 		put_unused_fd(fd);
999 		return PTR_ERR(file);
1000 	}
1001 
1002 	fd_install(fd, file);
1003 	msg->arg.reserved.reserved1 = 0;
1004 	msg->arg.fork.ufd = fd;
1005 
1006 	return 0;
1007 }
1008 
1009 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1010 				    struct uffd_msg *msg)
1011 {
1012 	ssize_t ret;
1013 	DECLARE_WAITQUEUE(wait, current);
1014 	struct userfaultfd_wait_queue *uwq;
1015 	/*
1016 	 * Handling fork event requires sleeping operations, so
1017 	 * we drop the event_wqh lock, then do these ops, then
1018 	 * lock it back and wake up the waiter. While the lock is
1019 	 * dropped the ewq may go away so we keep track of it
1020 	 * carefully.
1021 	 */
1022 	LIST_HEAD(fork_event);
1023 	struct userfaultfd_ctx *fork_nctx = NULL;
1024 
1025 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1026 	spin_lock(&ctx->fd_wqh.lock);
1027 	__add_wait_queue(&ctx->fd_wqh, &wait);
1028 	for (;;) {
1029 		set_current_state(TASK_INTERRUPTIBLE);
1030 		spin_lock(&ctx->fault_pending_wqh.lock);
1031 		uwq = find_userfault(ctx);
1032 		if (uwq) {
1033 			/*
1034 			 * Use a seqcount to repeat the lockless check
1035 			 * in wake_userfault() to avoid missing
1036 			 * wakeups because during the refile both
1037 			 * waitqueue could become empty if this is the
1038 			 * only userfault.
1039 			 */
1040 			write_seqcount_begin(&ctx->refile_seq);
1041 
1042 			/*
1043 			 * The fault_pending_wqh.lock prevents the uwq
1044 			 * to disappear from under us.
1045 			 *
1046 			 * Refile this userfault from
1047 			 * fault_pending_wqh to fault_wqh, it's not
1048 			 * pending anymore after we read it.
1049 			 *
1050 			 * Use list_del() by hand (as
1051 			 * userfaultfd_wake_function also uses
1052 			 * list_del_init() by hand) to be sure nobody
1053 			 * changes __remove_wait_queue() to use
1054 			 * list_del_init() in turn breaking the
1055 			 * !list_empty_careful() check in
1056 			 * handle_userfault(). The uwq->wq.head list
1057 			 * must never be empty at any time during the
1058 			 * refile, or the waitqueue could disappear
1059 			 * from under us. The "wait_queue_head_t"
1060 			 * parameter of __remove_wait_queue() is unused
1061 			 * anyway.
1062 			 */
1063 			list_del(&uwq->wq.entry);
1064 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1065 
1066 			write_seqcount_end(&ctx->refile_seq);
1067 
1068 			/* careful to always initialize msg if ret == 0 */
1069 			*msg = uwq->msg;
1070 			spin_unlock(&ctx->fault_pending_wqh.lock);
1071 			ret = 0;
1072 			break;
1073 		}
1074 		spin_unlock(&ctx->fault_pending_wqh.lock);
1075 
1076 		spin_lock(&ctx->event_wqh.lock);
1077 		uwq = find_userfault_evt(ctx);
1078 		if (uwq) {
1079 			*msg = uwq->msg;
1080 
1081 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1082 				fork_nctx = (struct userfaultfd_ctx *)
1083 					(unsigned long)
1084 					uwq->msg.arg.reserved.reserved1;
1085 				list_move(&uwq->wq.entry, &fork_event);
1086 				/*
1087 				 * fork_nctx can be freed as soon as
1088 				 * we drop the lock, unless we take a
1089 				 * reference on it.
1090 				 */
1091 				userfaultfd_ctx_get(fork_nctx);
1092 				spin_unlock(&ctx->event_wqh.lock);
1093 				ret = 0;
1094 				break;
1095 			}
1096 
1097 			userfaultfd_event_complete(ctx, uwq);
1098 			spin_unlock(&ctx->event_wqh.lock);
1099 			ret = 0;
1100 			break;
1101 		}
1102 		spin_unlock(&ctx->event_wqh.lock);
1103 
1104 		if (signal_pending(current)) {
1105 			ret = -ERESTARTSYS;
1106 			break;
1107 		}
1108 		if (no_wait) {
1109 			ret = -EAGAIN;
1110 			break;
1111 		}
1112 		spin_unlock(&ctx->fd_wqh.lock);
1113 		schedule();
1114 		spin_lock(&ctx->fd_wqh.lock);
1115 	}
1116 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1117 	__set_current_state(TASK_RUNNING);
1118 	spin_unlock(&ctx->fd_wqh.lock);
1119 
1120 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1121 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1122 		spin_lock(&ctx->event_wqh.lock);
1123 		if (!list_empty(&fork_event)) {
1124 			/*
1125 			 * The fork thread didn't abort, so we can
1126 			 * drop the temporary refcount.
1127 			 */
1128 			userfaultfd_ctx_put(fork_nctx);
1129 
1130 			uwq = list_first_entry(&fork_event,
1131 					       typeof(*uwq),
1132 					       wq.entry);
1133 			/*
1134 			 * If fork_event list wasn't empty and in turn
1135 			 * the event wasn't already released by fork
1136 			 * (the event is allocated on fork kernel
1137 			 * stack), put the event back to its place in
1138 			 * the event_wq. fork_event head will be freed
1139 			 * as soon as we return so the event cannot
1140 			 * stay queued there no matter the current
1141 			 * "ret" value.
1142 			 */
1143 			list_del(&uwq->wq.entry);
1144 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1145 
1146 			/*
1147 			 * Leave the event in the waitqueue and report
1148 			 * error to userland if we failed to resolve
1149 			 * the userfault fork.
1150 			 */
1151 			if (likely(!ret))
1152 				userfaultfd_event_complete(ctx, uwq);
1153 		} else {
1154 			/*
1155 			 * Here the fork thread aborted and the
1156 			 * refcount from the fork thread on fork_nctx
1157 			 * has already been released. We still hold
1158 			 * the reference we took before releasing the
1159 			 * lock above. If resolve_userfault_fork
1160 			 * failed we've to drop it because the
1161 			 * fork_nctx has to be freed in such case. If
1162 			 * it succeeded we'll hold it because the new
1163 			 * uffd references it.
1164 			 */
1165 			if (ret)
1166 				userfaultfd_ctx_put(fork_nctx);
1167 		}
1168 		spin_unlock(&ctx->event_wqh.lock);
1169 	}
1170 
1171 	return ret;
1172 }
1173 
1174 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1175 				size_t count, loff_t *ppos)
1176 {
1177 	struct userfaultfd_ctx *ctx = file->private_data;
1178 	ssize_t _ret, ret = 0;
1179 	struct uffd_msg msg;
1180 	int no_wait = file->f_flags & O_NONBLOCK;
1181 
1182 	if (ctx->state == UFFD_STATE_WAIT_API)
1183 		return -EINVAL;
1184 
1185 	for (;;) {
1186 		if (count < sizeof(msg))
1187 			return ret ? ret : -EINVAL;
1188 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1189 		if (_ret < 0)
1190 			return ret ? ret : _ret;
1191 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1192 			return ret ? ret : -EFAULT;
1193 		ret += sizeof(msg);
1194 		buf += sizeof(msg);
1195 		count -= sizeof(msg);
1196 		/*
1197 		 * Allow to read more than one fault at time but only
1198 		 * block if waiting for the very first one.
1199 		 */
1200 		no_wait = O_NONBLOCK;
1201 	}
1202 }
1203 
1204 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1205 			     struct userfaultfd_wake_range *range)
1206 {
1207 	spin_lock(&ctx->fault_pending_wqh.lock);
1208 	/* wake all in the range and autoremove */
1209 	if (waitqueue_active(&ctx->fault_pending_wqh))
1210 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1211 				     range);
1212 	if (waitqueue_active(&ctx->fault_wqh))
1213 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1214 	spin_unlock(&ctx->fault_pending_wqh.lock);
1215 }
1216 
1217 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1218 					   struct userfaultfd_wake_range *range)
1219 {
1220 	unsigned seq;
1221 	bool need_wakeup;
1222 
1223 	/*
1224 	 * To be sure waitqueue_active() is not reordered by the CPU
1225 	 * before the pagetable update, use an explicit SMP memory
1226 	 * barrier here. PT lock release or up_read(mmap_sem) still
1227 	 * have release semantics that can allow the
1228 	 * waitqueue_active() to be reordered before the pte update.
1229 	 */
1230 	smp_mb();
1231 
1232 	/*
1233 	 * Use waitqueue_active because it's very frequent to
1234 	 * change the address space atomically even if there are no
1235 	 * userfaults yet. So we take the spinlock only when we're
1236 	 * sure we've userfaults to wake.
1237 	 */
1238 	do {
1239 		seq = read_seqcount_begin(&ctx->refile_seq);
1240 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1241 			waitqueue_active(&ctx->fault_wqh);
1242 		cond_resched();
1243 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1244 	if (need_wakeup)
1245 		__wake_userfault(ctx, range);
1246 }
1247 
1248 static __always_inline int validate_range(struct mm_struct *mm,
1249 					  __u64 start, __u64 len)
1250 {
1251 	__u64 task_size = mm->task_size;
1252 
1253 	if (start & ~PAGE_MASK)
1254 		return -EINVAL;
1255 	if (len & ~PAGE_MASK)
1256 		return -EINVAL;
1257 	if (!len)
1258 		return -EINVAL;
1259 	if (start < mmap_min_addr)
1260 		return -EINVAL;
1261 	if (start >= task_size)
1262 		return -EINVAL;
1263 	if (len > task_size - start)
1264 		return -EINVAL;
1265 	return 0;
1266 }
1267 
1268 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1269 {
1270 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1271 		vma_is_shmem(vma);
1272 }
1273 
1274 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1275 				unsigned long arg)
1276 {
1277 	struct mm_struct *mm = ctx->mm;
1278 	struct vm_area_struct *vma, *prev, *cur;
1279 	int ret;
1280 	struct uffdio_register uffdio_register;
1281 	struct uffdio_register __user *user_uffdio_register;
1282 	unsigned long vm_flags, new_flags;
1283 	bool found;
1284 	bool basic_ioctls;
1285 	unsigned long start, end, vma_end;
1286 
1287 	user_uffdio_register = (struct uffdio_register __user *) arg;
1288 
1289 	ret = -EFAULT;
1290 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1291 			   sizeof(uffdio_register)-sizeof(__u64)))
1292 		goto out;
1293 
1294 	ret = -EINVAL;
1295 	if (!uffdio_register.mode)
1296 		goto out;
1297 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1298 				     UFFDIO_REGISTER_MODE_WP))
1299 		goto out;
1300 	vm_flags = 0;
1301 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1302 		vm_flags |= VM_UFFD_MISSING;
1303 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1304 		vm_flags |= VM_UFFD_WP;
1305 		/*
1306 		 * FIXME: remove the below error constraint by
1307 		 * implementing the wprotect tracking mode.
1308 		 */
1309 		ret = -EINVAL;
1310 		goto out;
1311 	}
1312 
1313 	ret = validate_range(mm, uffdio_register.range.start,
1314 			     uffdio_register.range.len);
1315 	if (ret)
1316 		goto out;
1317 
1318 	start = uffdio_register.range.start;
1319 	end = start + uffdio_register.range.len;
1320 
1321 	ret = -ENOMEM;
1322 	if (!mmget_not_zero(mm))
1323 		goto out;
1324 
1325 	down_write(&mm->mmap_sem);
1326 	vma = find_vma_prev(mm, start, &prev);
1327 	if (!vma)
1328 		goto out_unlock;
1329 
1330 	/* check that there's at least one vma in the range */
1331 	ret = -EINVAL;
1332 	if (vma->vm_start >= end)
1333 		goto out_unlock;
1334 
1335 	/*
1336 	 * If the first vma contains huge pages, make sure start address
1337 	 * is aligned to huge page size.
1338 	 */
1339 	if (is_vm_hugetlb_page(vma)) {
1340 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1341 
1342 		if (start & (vma_hpagesize - 1))
1343 			goto out_unlock;
1344 	}
1345 
1346 	/*
1347 	 * Search for not compatible vmas.
1348 	 */
1349 	found = false;
1350 	basic_ioctls = false;
1351 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1352 		cond_resched();
1353 
1354 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1355 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1356 
1357 		/* check not compatible vmas */
1358 		ret = -EINVAL;
1359 		if (!vma_can_userfault(cur))
1360 			goto out_unlock;
1361 		/*
1362 		 * If this vma contains ending address, and huge pages
1363 		 * check alignment.
1364 		 */
1365 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1366 		    end > cur->vm_start) {
1367 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1368 
1369 			ret = -EINVAL;
1370 
1371 			if (end & (vma_hpagesize - 1))
1372 				goto out_unlock;
1373 		}
1374 
1375 		/*
1376 		 * Check that this vma isn't already owned by a
1377 		 * different userfaultfd. We can't allow more than one
1378 		 * userfaultfd to own a single vma simultaneously or we
1379 		 * wouldn't know which one to deliver the userfaults to.
1380 		 */
1381 		ret = -EBUSY;
1382 		if (cur->vm_userfaultfd_ctx.ctx &&
1383 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1384 			goto out_unlock;
1385 
1386 		/*
1387 		 * Note vmas containing huge pages
1388 		 */
1389 		if (is_vm_hugetlb_page(cur))
1390 			basic_ioctls = true;
1391 
1392 		found = true;
1393 	}
1394 	BUG_ON(!found);
1395 
1396 	if (vma->vm_start < start)
1397 		prev = vma;
1398 
1399 	ret = 0;
1400 	do {
1401 		cond_resched();
1402 
1403 		BUG_ON(!vma_can_userfault(vma));
1404 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1405 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1406 
1407 		/*
1408 		 * Nothing to do: this vma is already registered into this
1409 		 * userfaultfd and with the right tracking mode too.
1410 		 */
1411 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1412 		    (vma->vm_flags & vm_flags) == vm_flags)
1413 			goto skip;
1414 
1415 		if (vma->vm_start > start)
1416 			start = vma->vm_start;
1417 		vma_end = min(end, vma->vm_end);
1418 
1419 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1420 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1421 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1422 				 vma_policy(vma),
1423 				 ((struct vm_userfaultfd_ctx){ ctx }));
1424 		if (prev) {
1425 			vma = prev;
1426 			goto next;
1427 		}
1428 		if (vma->vm_start < start) {
1429 			ret = split_vma(mm, vma, start, 1);
1430 			if (ret)
1431 				break;
1432 		}
1433 		if (vma->vm_end > end) {
1434 			ret = split_vma(mm, vma, end, 0);
1435 			if (ret)
1436 				break;
1437 		}
1438 	next:
1439 		/*
1440 		 * In the vma_merge() successful mprotect-like case 8:
1441 		 * the next vma was merged into the current one and
1442 		 * the current one has not been updated yet.
1443 		 */
1444 		vma->vm_flags = new_flags;
1445 		vma->vm_userfaultfd_ctx.ctx = ctx;
1446 
1447 	skip:
1448 		prev = vma;
1449 		start = vma->vm_end;
1450 		vma = vma->vm_next;
1451 	} while (vma && vma->vm_start < end);
1452 out_unlock:
1453 	up_write(&mm->mmap_sem);
1454 	mmput(mm);
1455 	if (!ret) {
1456 		/*
1457 		 * Now that we scanned all vmas we can already tell
1458 		 * userland which ioctls methods are guaranteed to
1459 		 * succeed on this range.
1460 		 */
1461 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1462 			     UFFD_API_RANGE_IOCTLS,
1463 			     &user_uffdio_register->ioctls))
1464 			ret = -EFAULT;
1465 	}
1466 out:
1467 	return ret;
1468 }
1469 
1470 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1471 				  unsigned long arg)
1472 {
1473 	struct mm_struct *mm = ctx->mm;
1474 	struct vm_area_struct *vma, *prev, *cur;
1475 	int ret;
1476 	struct uffdio_range uffdio_unregister;
1477 	unsigned long new_flags;
1478 	bool found;
1479 	unsigned long start, end, vma_end;
1480 	const void __user *buf = (void __user *)arg;
1481 
1482 	ret = -EFAULT;
1483 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1484 		goto out;
1485 
1486 	ret = validate_range(mm, uffdio_unregister.start,
1487 			     uffdio_unregister.len);
1488 	if (ret)
1489 		goto out;
1490 
1491 	start = uffdio_unregister.start;
1492 	end = start + uffdio_unregister.len;
1493 
1494 	ret = -ENOMEM;
1495 	if (!mmget_not_zero(mm))
1496 		goto out;
1497 
1498 	down_write(&mm->mmap_sem);
1499 	vma = find_vma_prev(mm, start, &prev);
1500 	if (!vma)
1501 		goto out_unlock;
1502 
1503 	/* check that there's at least one vma in the range */
1504 	ret = -EINVAL;
1505 	if (vma->vm_start >= end)
1506 		goto out_unlock;
1507 
1508 	/*
1509 	 * If the first vma contains huge pages, make sure start address
1510 	 * is aligned to huge page size.
1511 	 */
1512 	if (is_vm_hugetlb_page(vma)) {
1513 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1514 
1515 		if (start & (vma_hpagesize - 1))
1516 			goto out_unlock;
1517 	}
1518 
1519 	/*
1520 	 * Search for not compatible vmas.
1521 	 */
1522 	found = false;
1523 	ret = -EINVAL;
1524 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1525 		cond_resched();
1526 
1527 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1528 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1529 
1530 		/*
1531 		 * Check not compatible vmas, not strictly required
1532 		 * here as not compatible vmas cannot have an
1533 		 * userfaultfd_ctx registered on them, but this
1534 		 * provides for more strict behavior to notice
1535 		 * unregistration errors.
1536 		 */
1537 		if (!vma_can_userfault(cur))
1538 			goto out_unlock;
1539 
1540 		found = true;
1541 	}
1542 	BUG_ON(!found);
1543 
1544 	if (vma->vm_start < start)
1545 		prev = vma;
1546 
1547 	ret = 0;
1548 	do {
1549 		cond_resched();
1550 
1551 		BUG_ON(!vma_can_userfault(vma));
1552 
1553 		/*
1554 		 * Nothing to do: this vma is already registered into this
1555 		 * userfaultfd and with the right tracking mode too.
1556 		 */
1557 		if (!vma->vm_userfaultfd_ctx.ctx)
1558 			goto skip;
1559 
1560 		if (vma->vm_start > start)
1561 			start = vma->vm_start;
1562 		vma_end = min(end, vma->vm_end);
1563 
1564 		if (userfaultfd_missing(vma)) {
1565 			/*
1566 			 * Wake any concurrent pending userfault while
1567 			 * we unregister, so they will not hang
1568 			 * permanently and it avoids userland to call
1569 			 * UFFDIO_WAKE explicitly.
1570 			 */
1571 			struct userfaultfd_wake_range range;
1572 			range.start = start;
1573 			range.len = vma_end - start;
1574 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1575 		}
1576 
1577 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1578 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1579 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1580 				 vma_policy(vma),
1581 				 NULL_VM_UFFD_CTX);
1582 		if (prev) {
1583 			vma = prev;
1584 			goto next;
1585 		}
1586 		if (vma->vm_start < start) {
1587 			ret = split_vma(mm, vma, start, 1);
1588 			if (ret)
1589 				break;
1590 		}
1591 		if (vma->vm_end > end) {
1592 			ret = split_vma(mm, vma, end, 0);
1593 			if (ret)
1594 				break;
1595 		}
1596 	next:
1597 		/*
1598 		 * In the vma_merge() successful mprotect-like case 8:
1599 		 * the next vma was merged into the current one and
1600 		 * the current one has not been updated yet.
1601 		 */
1602 		vma->vm_flags = new_flags;
1603 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1604 
1605 	skip:
1606 		prev = vma;
1607 		start = vma->vm_end;
1608 		vma = vma->vm_next;
1609 	} while (vma && vma->vm_start < end);
1610 out_unlock:
1611 	up_write(&mm->mmap_sem);
1612 	mmput(mm);
1613 out:
1614 	return ret;
1615 }
1616 
1617 /*
1618  * userfaultfd_wake may be used in combination with the
1619  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1620  */
1621 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1622 			    unsigned long arg)
1623 {
1624 	int ret;
1625 	struct uffdio_range uffdio_wake;
1626 	struct userfaultfd_wake_range range;
1627 	const void __user *buf = (void __user *)arg;
1628 
1629 	ret = -EFAULT;
1630 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1631 		goto out;
1632 
1633 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1634 	if (ret)
1635 		goto out;
1636 
1637 	range.start = uffdio_wake.start;
1638 	range.len = uffdio_wake.len;
1639 
1640 	/*
1641 	 * len == 0 means wake all and we don't want to wake all here,
1642 	 * so check it again to be sure.
1643 	 */
1644 	VM_BUG_ON(!range.len);
1645 
1646 	wake_userfault(ctx, &range);
1647 	ret = 0;
1648 
1649 out:
1650 	return ret;
1651 }
1652 
1653 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1654 			    unsigned long arg)
1655 {
1656 	__s64 ret;
1657 	struct uffdio_copy uffdio_copy;
1658 	struct uffdio_copy __user *user_uffdio_copy;
1659 	struct userfaultfd_wake_range range;
1660 
1661 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1662 
1663 	ret = -EFAULT;
1664 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1665 			   /* don't copy "copy" last field */
1666 			   sizeof(uffdio_copy)-sizeof(__s64)))
1667 		goto out;
1668 
1669 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1670 	if (ret)
1671 		goto out;
1672 	/*
1673 	 * double check for wraparound just in case. copy_from_user()
1674 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1675 	 * in the userland range.
1676 	 */
1677 	ret = -EINVAL;
1678 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1679 		goto out;
1680 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1681 		goto out;
1682 	if (mmget_not_zero(ctx->mm)) {
1683 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1684 				   uffdio_copy.len);
1685 		mmput(ctx->mm);
1686 	} else {
1687 		return -ESRCH;
1688 	}
1689 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1690 		return -EFAULT;
1691 	if (ret < 0)
1692 		goto out;
1693 	BUG_ON(!ret);
1694 	/* len == 0 would wake all */
1695 	range.len = ret;
1696 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1697 		range.start = uffdio_copy.dst;
1698 		wake_userfault(ctx, &range);
1699 	}
1700 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1701 out:
1702 	return ret;
1703 }
1704 
1705 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1706 				unsigned long arg)
1707 {
1708 	__s64 ret;
1709 	struct uffdio_zeropage uffdio_zeropage;
1710 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1711 	struct userfaultfd_wake_range range;
1712 
1713 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1714 
1715 	ret = -EFAULT;
1716 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1717 			   /* don't copy "zeropage" last field */
1718 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1719 		goto out;
1720 
1721 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1722 			     uffdio_zeropage.range.len);
1723 	if (ret)
1724 		goto out;
1725 	ret = -EINVAL;
1726 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1727 		goto out;
1728 
1729 	if (mmget_not_zero(ctx->mm)) {
1730 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1731 				     uffdio_zeropage.range.len);
1732 		mmput(ctx->mm);
1733 	} else {
1734 		return -ESRCH;
1735 	}
1736 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1737 		return -EFAULT;
1738 	if (ret < 0)
1739 		goto out;
1740 	/* len == 0 would wake all */
1741 	BUG_ON(!ret);
1742 	range.len = ret;
1743 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1744 		range.start = uffdio_zeropage.range.start;
1745 		wake_userfault(ctx, &range);
1746 	}
1747 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1748 out:
1749 	return ret;
1750 }
1751 
1752 static inline unsigned int uffd_ctx_features(__u64 user_features)
1753 {
1754 	/*
1755 	 * For the current set of features the bits just coincide
1756 	 */
1757 	return (unsigned int)user_features;
1758 }
1759 
1760 /*
1761  * userland asks for a certain API version and we return which bits
1762  * and ioctl commands are implemented in this kernel for such API
1763  * version or -EINVAL if unknown.
1764  */
1765 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1766 			   unsigned long arg)
1767 {
1768 	struct uffdio_api uffdio_api;
1769 	void __user *buf = (void __user *)arg;
1770 	int ret;
1771 	__u64 features;
1772 
1773 	ret = -EINVAL;
1774 	if (ctx->state != UFFD_STATE_WAIT_API)
1775 		goto out;
1776 	ret = -EFAULT;
1777 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1778 		goto out;
1779 	features = uffdio_api.features;
1780 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1781 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1782 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1783 			goto out;
1784 		ret = -EINVAL;
1785 		goto out;
1786 	}
1787 	/* report all available features and ioctls to userland */
1788 	uffdio_api.features = UFFD_API_FEATURES;
1789 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1790 	ret = -EFAULT;
1791 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1792 		goto out;
1793 	ctx->state = UFFD_STATE_RUNNING;
1794 	/* only enable the requested features for this uffd context */
1795 	ctx->features = uffd_ctx_features(features);
1796 	ret = 0;
1797 out:
1798 	return ret;
1799 }
1800 
1801 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1802 			      unsigned long arg)
1803 {
1804 	int ret = -EINVAL;
1805 	struct userfaultfd_ctx *ctx = file->private_data;
1806 
1807 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1808 		return -EINVAL;
1809 
1810 	switch(cmd) {
1811 	case UFFDIO_API:
1812 		ret = userfaultfd_api(ctx, arg);
1813 		break;
1814 	case UFFDIO_REGISTER:
1815 		ret = userfaultfd_register(ctx, arg);
1816 		break;
1817 	case UFFDIO_UNREGISTER:
1818 		ret = userfaultfd_unregister(ctx, arg);
1819 		break;
1820 	case UFFDIO_WAKE:
1821 		ret = userfaultfd_wake(ctx, arg);
1822 		break;
1823 	case UFFDIO_COPY:
1824 		ret = userfaultfd_copy(ctx, arg);
1825 		break;
1826 	case UFFDIO_ZEROPAGE:
1827 		ret = userfaultfd_zeropage(ctx, arg);
1828 		break;
1829 	}
1830 	return ret;
1831 }
1832 
1833 #ifdef CONFIG_PROC_FS
1834 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1835 {
1836 	struct userfaultfd_ctx *ctx = f->private_data;
1837 	wait_queue_entry_t *wq;
1838 	struct userfaultfd_wait_queue *uwq;
1839 	unsigned long pending = 0, total = 0;
1840 
1841 	spin_lock(&ctx->fault_pending_wqh.lock);
1842 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1843 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1844 		pending++;
1845 		total++;
1846 	}
1847 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1848 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1849 		total++;
1850 	}
1851 	spin_unlock(&ctx->fault_pending_wqh.lock);
1852 
1853 	/*
1854 	 * If more protocols will be added, there will be all shown
1855 	 * separated by a space. Like this:
1856 	 *	protocols: aa:... bb:...
1857 	 */
1858 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1859 		   pending, total, UFFD_API, ctx->features,
1860 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1861 }
1862 #endif
1863 
1864 static const struct file_operations userfaultfd_fops = {
1865 #ifdef CONFIG_PROC_FS
1866 	.show_fdinfo	= userfaultfd_show_fdinfo,
1867 #endif
1868 	.release	= userfaultfd_release,
1869 	.poll		= userfaultfd_poll,
1870 	.read		= userfaultfd_read,
1871 	.unlocked_ioctl = userfaultfd_ioctl,
1872 	.compat_ioctl	= userfaultfd_ioctl,
1873 	.llseek		= noop_llseek,
1874 };
1875 
1876 static void init_once_userfaultfd_ctx(void *mem)
1877 {
1878 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1879 
1880 	init_waitqueue_head(&ctx->fault_pending_wqh);
1881 	init_waitqueue_head(&ctx->fault_wqh);
1882 	init_waitqueue_head(&ctx->event_wqh);
1883 	init_waitqueue_head(&ctx->fd_wqh);
1884 	seqcount_init(&ctx->refile_seq);
1885 }
1886 
1887 /**
1888  * userfaultfd_file_create - Creates a userfaultfd file pointer.
1889  * @flags: Flags for the userfaultfd file.
1890  *
1891  * This function creates a userfaultfd file pointer, w/out installing
1892  * it into the fd table. This is useful when the userfaultfd file is
1893  * used during the initialization of data structures that require
1894  * extra setup after the userfaultfd creation. So the userfaultfd
1895  * creation is split into the file pointer creation phase, and the
1896  * file descriptor installation phase.  In this way races with
1897  * userspace closing the newly installed file descriptor can be
1898  * avoided.  Returns a userfaultfd file pointer, or a proper error
1899  * pointer.
1900  */
1901 static struct file *userfaultfd_file_create(int flags)
1902 {
1903 	struct file *file;
1904 	struct userfaultfd_ctx *ctx;
1905 
1906 	BUG_ON(!current->mm);
1907 
1908 	/* Check the UFFD_* constants for consistency.  */
1909 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1910 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1911 
1912 	file = ERR_PTR(-EINVAL);
1913 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1914 		goto out;
1915 
1916 	file = ERR_PTR(-ENOMEM);
1917 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1918 	if (!ctx)
1919 		goto out;
1920 
1921 	atomic_set(&ctx->refcount, 1);
1922 	ctx->flags = flags;
1923 	ctx->features = 0;
1924 	ctx->state = UFFD_STATE_WAIT_API;
1925 	ctx->released = false;
1926 	ctx->mm = current->mm;
1927 	/* prevent the mm struct to be freed */
1928 	mmgrab(ctx->mm);
1929 
1930 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1931 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1932 	if (IS_ERR(file)) {
1933 		mmdrop(ctx->mm);
1934 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1935 	}
1936 out:
1937 	return file;
1938 }
1939 
1940 SYSCALL_DEFINE1(userfaultfd, int, flags)
1941 {
1942 	int fd, error;
1943 	struct file *file;
1944 
1945 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1946 	if (error < 0)
1947 		return error;
1948 	fd = error;
1949 
1950 	file = userfaultfd_file_create(flags);
1951 	if (IS_ERR(file)) {
1952 		error = PTR_ERR(file);
1953 		goto err_put_unused_fd;
1954 	}
1955 	fd_install(fd, file);
1956 
1957 	return fd;
1958 
1959 err_put_unused_fd:
1960 	put_unused_fd(fd);
1961 
1962 	return error;
1963 }
1964 
1965 static int __init userfaultfd_init(void)
1966 {
1967 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1968 						sizeof(struct userfaultfd_ctx),
1969 						0,
1970 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1971 						init_once_userfaultfd_ctx);
1972 	return 0;
1973 }
1974 __initcall(userfaultfd_init);
1975