1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 66 struct mm_struct *mm; 67 }; 68 69 struct userfaultfd_fork_ctx { 70 struct userfaultfd_ctx *orig; 71 struct userfaultfd_ctx *new; 72 struct list_head list; 73 }; 74 75 struct userfaultfd_unmap_ctx { 76 struct userfaultfd_ctx *ctx; 77 unsigned long start; 78 unsigned long end; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_wait_queue { 83 struct uffd_msg msg; 84 wait_queue_entry_t wq; 85 struct userfaultfd_ctx *ctx; 86 bool waken; 87 }; 88 89 struct userfaultfd_wake_range { 90 unsigned long start; 91 unsigned long len; 92 }; 93 94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 95 int wake_flags, void *key) 96 { 97 struct userfaultfd_wake_range *range = key; 98 int ret; 99 struct userfaultfd_wait_queue *uwq; 100 unsigned long start, len; 101 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 103 ret = 0; 104 /* len == 0 means wake all */ 105 start = range->start; 106 len = range->len; 107 if (len && (start > uwq->msg.arg.pagefault.address || 108 start + len <= uwq->msg.arg.pagefault.address)) 109 goto out; 110 WRITE_ONCE(uwq->waken, true); 111 /* 112 * The Program-Order guarantees provided by the scheduler 113 * ensure uwq->waken is visible before the task is woken. 114 */ 115 ret = wake_up_state(wq->private, mode); 116 if (ret) { 117 /* 118 * Wake only once, autoremove behavior. 119 * 120 * After the effect of list_del_init is visible to the other 121 * CPUs, the waitqueue may disappear from under us, see the 122 * !list_empty_careful() in handle_userfault(). 123 * 124 * try_to_wake_up() has an implicit smp_mb(), and the 125 * wq->private is read before calling the extern function 126 * "wake_up_state" (which in turns calls try_to_wake_up). 127 */ 128 list_del_init(&wq->entry); 129 } 130 out: 131 return ret; 132 } 133 134 /** 135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 136 * context. 137 * @ctx: [in] Pointer to the userfaultfd context. 138 */ 139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 140 { 141 if (!atomic_inc_not_zero(&ctx->refcount)) 142 BUG(); 143 } 144 145 /** 146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 147 * context. 148 * @ctx: [in] Pointer to userfaultfd context. 149 * 150 * The userfaultfd context reference must have been previously acquired either 151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 152 */ 153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 154 { 155 if (atomic_dec_and_test(&ctx->refcount)) { 156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 164 mmdrop(ctx->mm); 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 166 } 167 } 168 169 static inline void msg_init(struct uffd_msg *msg) 170 { 171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 172 /* 173 * Must use memset to zero out the paddings or kernel data is 174 * leaked to userland. 175 */ 176 memset(msg, 0, sizeof(struct uffd_msg)); 177 } 178 179 static inline struct uffd_msg userfault_msg(unsigned long address, 180 unsigned int flags, 181 unsigned long reason, 182 unsigned int features) 183 { 184 struct uffd_msg msg; 185 msg_init(&msg); 186 msg.event = UFFD_EVENT_PAGEFAULT; 187 msg.arg.pagefault.address = address; 188 if (flags & FAULT_FLAG_WRITE) 189 /* 190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 193 * was a read fault, otherwise if set it means it's 194 * a write fault. 195 */ 196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 197 if (reason & VM_UFFD_WP) 198 /* 199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 202 * a missing fault, otherwise if set it means it's a 203 * write protect fault. 204 */ 205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 206 if (features & UFFD_FEATURE_THREAD_ID) 207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 208 return msg; 209 } 210 211 #ifdef CONFIG_HUGETLB_PAGE 212 /* 213 * Same functionality as userfaultfd_must_wait below with modifications for 214 * hugepmd ranges. 215 */ 216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 217 struct vm_area_struct *vma, 218 unsigned long address, 219 unsigned long flags, 220 unsigned long reason) 221 { 222 struct mm_struct *mm = ctx->mm; 223 pte_t *pte; 224 bool ret = true; 225 226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 227 228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 229 if (!pte) 230 goto out; 231 232 ret = false; 233 234 /* 235 * Lockless access: we're in a wait_event so it's ok if it 236 * changes under us. 237 */ 238 if (huge_pte_none(*pte)) 239 ret = true; 240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 241 ret = true; 242 out: 243 return ret; 244 } 245 #else 246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 247 struct vm_area_struct *vma, 248 unsigned long address, 249 unsigned long flags, 250 unsigned long reason) 251 { 252 return false; /* should never get here */ 253 } 254 #endif /* CONFIG_HUGETLB_PAGE */ 255 256 /* 257 * Verify the pagetables are still not ok after having reigstered into 258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 259 * userfault that has already been resolved, if userfaultfd_read and 260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 261 * threads. 262 */ 263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 264 unsigned long address, 265 unsigned long flags, 266 unsigned long reason) 267 { 268 struct mm_struct *mm = ctx->mm; 269 pgd_t *pgd; 270 p4d_t *p4d; 271 pud_t *pud; 272 pmd_t *pmd, _pmd; 273 pte_t *pte; 274 bool ret = true; 275 276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 277 278 pgd = pgd_offset(mm, address); 279 if (!pgd_present(*pgd)) 280 goto out; 281 p4d = p4d_offset(pgd, address); 282 if (!p4d_present(*p4d)) 283 goto out; 284 pud = pud_offset(p4d, address); 285 if (!pud_present(*pud)) 286 goto out; 287 pmd = pmd_offset(pud, address); 288 /* 289 * READ_ONCE must function as a barrier with narrower scope 290 * and it must be equivalent to: 291 * _pmd = *pmd; barrier(); 292 * 293 * This is to deal with the instability (as in 294 * pmd_trans_unstable) of the pmd. 295 */ 296 _pmd = READ_ONCE(*pmd); 297 if (!pmd_present(_pmd)) 298 goto out; 299 300 ret = false; 301 if (pmd_trans_huge(_pmd)) 302 goto out; 303 304 /* 305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 306 * and use the standard pte_offset_map() instead of parsing _pmd. 307 */ 308 pte = pte_offset_map(pmd, address); 309 /* 310 * Lockless access: we're in a wait_event so it's ok if it 311 * changes under us. 312 */ 313 if (pte_none(*pte)) 314 ret = true; 315 pte_unmap(pte); 316 317 out: 318 return ret; 319 } 320 321 /* 322 * The locking rules involved in returning VM_FAULT_RETRY depending on 323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 325 * recommendation in __lock_page_or_retry is not an understatement. 326 * 327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 329 * not set. 330 * 331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 332 * set, VM_FAULT_RETRY can still be returned if and only if there are 333 * fatal_signal_pending()s, and the mmap_sem must be released before 334 * returning it. 335 */ 336 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 337 { 338 struct mm_struct *mm = vmf->vma->vm_mm; 339 struct userfaultfd_ctx *ctx; 340 struct userfaultfd_wait_queue uwq; 341 int ret; 342 bool must_wait, return_to_userland; 343 long blocking_state; 344 345 ret = VM_FAULT_SIGBUS; 346 347 /* 348 * We don't do userfault handling for the final child pid update. 349 * 350 * We also don't do userfault handling during 351 * coredumping. hugetlbfs has the special 352 * follow_hugetlb_page() to skip missing pages in the 353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 354 * the no_page_table() helper in follow_page_mask(), but the 355 * shmem_vm_ops->fault method is invoked even during 356 * coredumping without mmap_sem and it ends up here. 357 */ 358 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 359 goto out; 360 361 /* 362 * Coredumping runs without mmap_sem so we can only check that 363 * the mmap_sem is held, if PF_DUMPCORE was not set. 364 */ 365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 366 367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 368 if (!ctx) 369 goto out; 370 371 BUG_ON(ctx->mm != mm); 372 373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 375 376 if (ctx->features & UFFD_FEATURE_SIGBUS) 377 goto out; 378 379 /* 380 * If it's already released don't get it. This avoids to loop 381 * in __get_user_pages if userfaultfd_release waits on the 382 * caller of handle_userfault to release the mmap_sem. 383 */ 384 if (unlikely(READ_ONCE(ctx->released))) { 385 /* 386 * Don't return VM_FAULT_SIGBUS in this case, so a non 387 * cooperative manager can close the uffd after the 388 * last UFFDIO_COPY, without risking to trigger an 389 * involuntary SIGBUS if the process was starting the 390 * userfaultfd while the userfaultfd was still armed 391 * (but after the last UFFDIO_COPY). If the uffd 392 * wasn't already closed when the userfault reached 393 * this point, that would normally be solved by 394 * userfaultfd_must_wait returning 'false'. 395 * 396 * If we were to return VM_FAULT_SIGBUS here, the non 397 * cooperative manager would be instead forced to 398 * always call UFFDIO_UNREGISTER before it can safely 399 * close the uffd. 400 */ 401 ret = VM_FAULT_NOPAGE; 402 goto out; 403 } 404 405 /* 406 * Check that we can return VM_FAULT_RETRY. 407 * 408 * NOTE: it should become possible to return VM_FAULT_RETRY 409 * even if FAULT_FLAG_TRIED is set without leading to gup() 410 * -EBUSY failures, if the userfaultfd is to be extended for 411 * VM_UFFD_WP tracking and we intend to arm the userfault 412 * without first stopping userland access to the memory. For 413 * VM_UFFD_MISSING userfaults this is enough for now. 414 */ 415 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 416 /* 417 * Validate the invariant that nowait must allow retry 418 * to be sure not to return SIGBUS erroneously on 419 * nowait invocations. 420 */ 421 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 422 #ifdef CONFIG_DEBUG_VM 423 if (printk_ratelimit()) { 424 printk(KERN_WARNING 425 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 426 vmf->flags); 427 dump_stack(); 428 } 429 #endif 430 goto out; 431 } 432 433 /* 434 * Handle nowait, not much to do other than tell it to retry 435 * and wait. 436 */ 437 ret = VM_FAULT_RETRY; 438 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 439 goto out; 440 441 /* take the reference before dropping the mmap_sem */ 442 userfaultfd_ctx_get(ctx); 443 444 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 445 uwq.wq.private = current; 446 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 447 ctx->features); 448 uwq.ctx = ctx; 449 uwq.waken = false; 450 451 return_to_userland = 452 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 453 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 454 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 455 TASK_KILLABLE; 456 457 spin_lock(&ctx->fault_pending_wqh.lock); 458 /* 459 * After the __add_wait_queue the uwq is visible to userland 460 * through poll/read(). 461 */ 462 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 463 /* 464 * The smp_mb() after __set_current_state prevents the reads 465 * following the spin_unlock to happen before the list_add in 466 * __add_wait_queue. 467 */ 468 set_current_state(blocking_state); 469 spin_unlock(&ctx->fault_pending_wqh.lock); 470 471 if (!is_vm_hugetlb_page(vmf->vma)) 472 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 473 reason); 474 else 475 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 476 vmf->address, 477 vmf->flags, reason); 478 up_read(&mm->mmap_sem); 479 480 if (likely(must_wait && !READ_ONCE(ctx->released) && 481 (return_to_userland ? !signal_pending(current) : 482 !fatal_signal_pending(current)))) { 483 wake_up_poll(&ctx->fd_wqh, POLLIN); 484 schedule(); 485 ret |= VM_FAULT_MAJOR; 486 487 /* 488 * False wakeups can orginate even from rwsem before 489 * up_read() however userfaults will wait either for a 490 * targeted wakeup on the specific uwq waitqueue from 491 * wake_userfault() or for signals or for uffd 492 * release. 493 */ 494 while (!READ_ONCE(uwq.waken)) { 495 /* 496 * This needs the full smp_store_mb() 497 * guarantee as the state write must be 498 * visible to other CPUs before reading 499 * uwq.waken from other CPUs. 500 */ 501 set_current_state(blocking_state); 502 if (READ_ONCE(uwq.waken) || 503 READ_ONCE(ctx->released) || 504 (return_to_userland ? signal_pending(current) : 505 fatal_signal_pending(current))) 506 break; 507 schedule(); 508 } 509 } 510 511 __set_current_state(TASK_RUNNING); 512 513 if (return_to_userland) { 514 if (signal_pending(current) && 515 !fatal_signal_pending(current)) { 516 /* 517 * If we got a SIGSTOP or SIGCONT and this is 518 * a normal userland page fault, just let 519 * userland return so the signal will be 520 * handled and gdb debugging works. The page 521 * fault code immediately after we return from 522 * this function is going to release the 523 * mmap_sem and it's not depending on it 524 * (unlike gup would if we were not to return 525 * VM_FAULT_RETRY). 526 * 527 * If a fatal signal is pending we still take 528 * the streamlined VM_FAULT_RETRY failure path 529 * and there's no need to retake the mmap_sem 530 * in such case. 531 */ 532 down_read(&mm->mmap_sem); 533 ret = VM_FAULT_NOPAGE; 534 } 535 } 536 537 /* 538 * Here we race with the list_del; list_add in 539 * userfaultfd_ctx_read(), however because we don't ever run 540 * list_del_init() to refile across the two lists, the prev 541 * and next pointers will never point to self. list_add also 542 * would never let any of the two pointers to point to 543 * self. So list_empty_careful won't risk to see both pointers 544 * pointing to self at any time during the list refile. The 545 * only case where list_del_init() is called is the full 546 * removal in the wake function and there we don't re-list_add 547 * and it's fine not to block on the spinlock. The uwq on this 548 * kernel stack can be released after the list_del_init. 549 */ 550 if (!list_empty_careful(&uwq.wq.entry)) { 551 spin_lock(&ctx->fault_pending_wqh.lock); 552 /* 553 * No need of list_del_init(), the uwq on the stack 554 * will be freed shortly anyway. 555 */ 556 list_del(&uwq.wq.entry); 557 spin_unlock(&ctx->fault_pending_wqh.lock); 558 } 559 560 /* 561 * ctx may go away after this if the userfault pseudo fd is 562 * already released. 563 */ 564 userfaultfd_ctx_put(ctx); 565 566 out: 567 return ret; 568 } 569 570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 571 struct userfaultfd_wait_queue *ewq) 572 { 573 struct userfaultfd_ctx *release_new_ctx; 574 575 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 576 goto out; 577 578 ewq->ctx = ctx; 579 init_waitqueue_entry(&ewq->wq, current); 580 release_new_ctx = NULL; 581 582 spin_lock(&ctx->event_wqh.lock); 583 /* 584 * After the __add_wait_queue the uwq is visible to userland 585 * through poll/read(). 586 */ 587 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 588 for (;;) { 589 set_current_state(TASK_KILLABLE); 590 if (ewq->msg.event == 0) 591 break; 592 if (READ_ONCE(ctx->released) || 593 fatal_signal_pending(current)) { 594 /* 595 * &ewq->wq may be queued in fork_event, but 596 * __remove_wait_queue ignores the head 597 * parameter. It would be a problem if it 598 * didn't. 599 */ 600 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 601 if (ewq->msg.event == UFFD_EVENT_FORK) { 602 struct userfaultfd_ctx *new; 603 604 new = (struct userfaultfd_ctx *) 605 (unsigned long) 606 ewq->msg.arg.reserved.reserved1; 607 release_new_ctx = new; 608 } 609 break; 610 } 611 612 spin_unlock(&ctx->event_wqh.lock); 613 614 wake_up_poll(&ctx->fd_wqh, POLLIN); 615 schedule(); 616 617 spin_lock(&ctx->event_wqh.lock); 618 } 619 __set_current_state(TASK_RUNNING); 620 spin_unlock(&ctx->event_wqh.lock); 621 622 if (release_new_ctx) { 623 struct vm_area_struct *vma; 624 struct mm_struct *mm = release_new_ctx->mm; 625 626 /* the various vma->vm_userfaultfd_ctx still points to it */ 627 down_write(&mm->mmap_sem); 628 for (vma = mm->mmap; vma; vma = vma->vm_next) 629 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) 630 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 631 up_write(&mm->mmap_sem); 632 633 userfaultfd_ctx_put(release_new_ctx); 634 } 635 636 /* 637 * ctx may go away after this if the userfault pseudo fd is 638 * already released. 639 */ 640 out: 641 userfaultfd_ctx_put(ctx); 642 } 643 644 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 645 struct userfaultfd_wait_queue *ewq) 646 { 647 ewq->msg.event = 0; 648 wake_up_locked(&ctx->event_wqh); 649 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 650 } 651 652 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 653 { 654 struct userfaultfd_ctx *ctx = NULL, *octx; 655 struct userfaultfd_fork_ctx *fctx; 656 657 octx = vma->vm_userfaultfd_ctx.ctx; 658 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 659 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 660 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 661 return 0; 662 } 663 664 list_for_each_entry(fctx, fcs, list) 665 if (fctx->orig == octx) { 666 ctx = fctx->new; 667 break; 668 } 669 670 if (!ctx) { 671 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 672 if (!fctx) 673 return -ENOMEM; 674 675 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 676 if (!ctx) { 677 kfree(fctx); 678 return -ENOMEM; 679 } 680 681 atomic_set(&ctx->refcount, 1); 682 ctx->flags = octx->flags; 683 ctx->state = UFFD_STATE_RUNNING; 684 ctx->features = octx->features; 685 ctx->released = false; 686 ctx->mm = vma->vm_mm; 687 mmgrab(ctx->mm); 688 689 userfaultfd_ctx_get(octx); 690 fctx->orig = octx; 691 fctx->new = ctx; 692 list_add_tail(&fctx->list, fcs); 693 } 694 695 vma->vm_userfaultfd_ctx.ctx = ctx; 696 return 0; 697 } 698 699 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 700 { 701 struct userfaultfd_ctx *ctx = fctx->orig; 702 struct userfaultfd_wait_queue ewq; 703 704 msg_init(&ewq.msg); 705 706 ewq.msg.event = UFFD_EVENT_FORK; 707 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 708 709 userfaultfd_event_wait_completion(ctx, &ewq); 710 } 711 712 void dup_userfaultfd_complete(struct list_head *fcs) 713 { 714 struct userfaultfd_fork_ctx *fctx, *n; 715 716 list_for_each_entry_safe(fctx, n, fcs, list) { 717 dup_fctx(fctx); 718 list_del(&fctx->list); 719 kfree(fctx); 720 } 721 } 722 723 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 724 struct vm_userfaultfd_ctx *vm_ctx) 725 { 726 struct userfaultfd_ctx *ctx; 727 728 ctx = vma->vm_userfaultfd_ctx.ctx; 729 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 730 vm_ctx->ctx = ctx; 731 userfaultfd_ctx_get(ctx); 732 } 733 } 734 735 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 736 unsigned long from, unsigned long to, 737 unsigned long len) 738 { 739 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 740 struct userfaultfd_wait_queue ewq; 741 742 if (!ctx) 743 return; 744 745 if (to & ~PAGE_MASK) { 746 userfaultfd_ctx_put(ctx); 747 return; 748 } 749 750 msg_init(&ewq.msg); 751 752 ewq.msg.event = UFFD_EVENT_REMAP; 753 ewq.msg.arg.remap.from = from; 754 ewq.msg.arg.remap.to = to; 755 ewq.msg.arg.remap.len = len; 756 757 userfaultfd_event_wait_completion(ctx, &ewq); 758 } 759 760 bool userfaultfd_remove(struct vm_area_struct *vma, 761 unsigned long start, unsigned long end) 762 { 763 struct mm_struct *mm = vma->vm_mm; 764 struct userfaultfd_ctx *ctx; 765 struct userfaultfd_wait_queue ewq; 766 767 ctx = vma->vm_userfaultfd_ctx.ctx; 768 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 769 return true; 770 771 userfaultfd_ctx_get(ctx); 772 up_read(&mm->mmap_sem); 773 774 msg_init(&ewq.msg); 775 776 ewq.msg.event = UFFD_EVENT_REMOVE; 777 ewq.msg.arg.remove.start = start; 778 ewq.msg.arg.remove.end = end; 779 780 userfaultfd_event_wait_completion(ctx, &ewq); 781 782 return false; 783 } 784 785 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 786 unsigned long start, unsigned long end) 787 { 788 struct userfaultfd_unmap_ctx *unmap_ctx; 789 790 list_for_each_entry(unmap_ctx, unmaps, list) 791 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 792 unmap_ctx->end == end) 793 return true; 794 795 return false; 796 } 797 798 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 799 unsigned long start, unsigned long end, 800 struct list_head *unmaps) 801 { 802 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 803 struct userfaultfd_unmap_ctx *unmap_ctx; 804 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 805 806 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 807 has_unmap_ctx(ctx, unmaps, start, end)) 808 continue; 809 810 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 811 if (!unmap_ctx) 812 return -ENOMEM; 813 814 userfaultfd_ctx_get(ctx); 815 unmap_ctx->ctx = ctx; 816 unmap_ctx->start = start; 817 unmap_ctx->end = end; 818 list_add_tail(&unmap_ctx->list, unmaps); 819 } 820 821 return 0; 822 } 823 824 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 825 { 826 struct userfaultfd_unmap_ctx *ctx, *n; 827 struct userfaultfd_wait_queue ewq; 828 829 list_for_each_entry_safe(ctx, n, uf, list) { 830 msg_init(&ewq.msg); 831 832 ewq.msg.event = UFFD_EVENT_UNMAP; 833 ewq.msg.arg.remove.start = ctx->start; 834 ewq.msg.arg.remove.end = ctx->end; 835 836 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 837 838 list_del(&ctx->list); 839 kfree(ctx); 840 } 841 } 842 843 static int userfaultfd_release(struct inode *inode, struct file *file) 844 { 845 struct userfaultfd_ctx *ctx = file->private_data; 846 struct mm_struct *mm = ctx->mm; 847 struct vm_area_struct *vma, *prev; 848 /* len == 0 means wake all */ 849 struct userfaultfd_wake_range range = { .len = 0, }; 850 unsigned long new_flags; 851 852 WRITE_ONCE(ctx->released, true); 853 854 if (!mmget_not_zero(mm)) 855 goto wakeup; 856 857 /* 858 * Flush page faults out of all CPUs. NOTE: all page faults 859 * must be retried without returning VM_FAULT_SIGBUS if 860 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 861 * changes while handle_userfault released the mmap_sem. So 862 * it's critical that released is set to true (above), before 863 * taking the mmap_sem for writing. 864 */ 865 down_write(&mm->mmap_sem); 866 prev = NULL; 867 for (vma = mm->mmap; vma; vma = vma->vm_next) { 868 cond_resched(); 869 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 870 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 871 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 872 prev = vma; 873 continue; 874 } 875 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 876 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 877 new_flags, vma->anon_vma, 878 vma->vm_file, vma->vm_pgoff, 879 vma_policy(vma), 880 NULL_VM_UFFD_CTX); 881 if (prev) 882 vma = prev; 883 else 884 prev = vma; 885 vma->vm_flags = new_flags; 886 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 887 } 888 up_write(&mm->mmap_sem); 889 mmput(mm); 890 wakeup: 891 /* 892 * After no new page faults can wait on this fault_*wqh, flush 893 * the last page faults that may have been already waiting on 894 * the fault_*wqh. 895 */ 896 spin_lock(&ctx->fault_pending_wqh.lock); 897 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 898 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 899 spin_unlock(&ctx->fault_pending_wqh.lock); 900 901 /* Flush pending events that may still wait on event_wqh */ 902 wake_up_all(&ctx->event_wqh); 903 904 wake_up_poll(&ctx->fd_wqh, POLLHUP); 905 userfaultfd_ctx_put(ctx); 906 return 0; 907 } 908 909 /* fault_pending_wqh.lock must be hold by the caller */ 910 static inline struct userfaultfd_wait_queue *find_userfault_in( 911 wait_queue_head_t *wqh) 912 { 913 wait_queue_entry_t *wq; 914 struct userfaultfd_wait_queue *uwq; 915 916 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 917 918 uwq = NULL; 919 if (!waitqueue_active(wqh)) 920 goto out; 921 /* walk in reverse to provide FIFO behavior to read userfaults */ 922 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 923 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 924 out: 925 return uwq; 926 } 927 928 static inline struct userfaultfd_wait_queue *find_userfault( 929 struct userfaultfd_ctx *ctx) 930 { 931 return find_userfault_in(&ctx->fault_pending_wqh); 932 } 933 934 static inline struct userfaultfd_wait_queue *find_userfault_evt( 935 struct userfaultfd_ctx *ctx) 936 { 937 return find_userfault_in(&ctx->event_wqh); 938 } 939 940 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 941 { 942 struct userfaultfd_ctx *ctx = file->private_data; 943 unsigned int ret; 944 945 poll_wait(file, &ctx->fd_wqh, wait); 946 947 switch (ctx->state) { 948 case UFFD_STATE_WAIT_API: 949 return POLLERR; 950 case UFFD_STATE_RUNNING: 951 /* 952 * poll() never guarantees that read won't block. 953 * userfaults can be waken before they're read(). 954 */ 955 if (unlikely(!(file->f_flags & O_NONBLOCK))) 956 return POLLERR; 957 /* 958 * lockless access to see if there are pending faults 959 * __pollwait last action is the add_wait_queue but 960 * the spin_unlock would allow the waitqueue_active to 961 * pass above the actual list_add inside 962 * add_wait_queue critical section. So use a full 963 * memory barrier to serialize the list_add write of 964 * add_wait_queue() with the waitqueue_active read 965 * below. 966 */ 967 ret = 0; 968 smp_mb(); 969 if (waitqueue_active(&ctx->fault_pending_wqh)) 970 ret = POLLIN; 971 else if (waitqueue_active(&ctx->event_wqh)) 972 ret = POLLIN; 973 974 return ret; 975 default: 976 WARN_ON_ONCE(1); 977 return POLLERR; 978 } 979 } 980 981 static const struct file_operations userfaultfd_fops; 982 983 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 984 struct userfaultfd_ctx *new, 985 struct uffd_msg *msg) 986 { 987 int fd; 988 struct file *file; 989 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 990 991 fd = get_unused_fd_flags(flags); 992 if (fd < 0) 993 return fd; 994 995 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 996 O_RDWR | flags); 997 if (IS_ERR(file)) { 998 put_unused_fd(fd); 999 return PTR_ERR(file); 1000 } 1001 1002 fd_install(fd, file); 1003 msg->arg.reserved.reserved1 = 0; 1004 msg->arg.fork.ufd = fd; 1005 1006 return 0; 1007 } 1008 1009 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1010 struct uffd_msg *msg) 1011 { 1012 ssize_t ret; 1013 DECLARE_WAITQUEUE(wait, current); 1014 struct userfaultfd_wait_queue *uwq; 1015 /* 1016 * Handling fork event requires sleeping operations, so 1017 * we drop the event_wqh lock, then do these ops, then 1018 * lock it back and wake up the waiter. While the lock is 1019 * dropped the ewq may go away so we keep track of it 1020 * carefully. 1021 */ 1022 LIST_HEAD(fork_event); 1023 struct userfaultfd_ctx *fork_nctx = NULL; 1024 1025 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1026 spin_lock(&ctx->fd_wqh.lock); 1027 __add_wait_queue(&ctx->fd_wqh, &wait); 1028 for (;;) { 1029 set_current_state(TASK_INTERRUPTIBLE); 1030 spin_lock(&ctx->fault_pending_wqh.lock); 1031 uwq = find_userfault(ctx); 1032 if (uwq) { 1033 /* 1034 * Use a seqcount to repeat the lockless check 1035 * in wake_userfault() to avoid missing 1036 * wakeups because during the refile both 1037 * waitqueue could become empty if this is the 1038 * only userfault. 1039 */ 1040 write_seqcount_begin(&ctx->refile_seq); 1041 1042 /* 1043 * The fault_pending_wqh.lock prevents the uwq 1044 * to disappear from under us. 1045 * 1046 * Refile this userfault from 1047 * fault_pending_wqh to fault_wqh, it's not 1048 * pending anymore after we read it. 1049 * 1050 * Use list_del() by hand (as 1051 * userfaultfd_wake_function also uses 1052 * list_del_init() by hand) to be sure nobody 1053 * changes __remove_wait_queue() to use 1054 * list_del_init() in turn breaking the 1055 * !list_empty_careful() check in 1056 * handle_userfault(). The uwq->wq.head list 1057 * must never be empty at any time during the 1058 * refile, or the waitqueue could disappear 1059 * from under us. The "wait_queue_head_t" 1060 * parameter of __remove_wait_queue() is unused 1061 * anyway. 1062 */ 1063 list_del(&uwq->wq.entry); 1064 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1065 1066 write_seqcount_end(&ctx->refile_seq); 1067 1068 /* careful to always initialize msg if ret == 0 */ 1069 *msg = uwq->msg; 1070 spin_unlock(&ctx->fault_pending_wqh.lock); 1071 ret = 0; 1072 break; 1073 } 1074 spin_unlock(&ctx->fault_pending_wqh.lock); 1075 1076 spin_lock(&ctx->event_wqh.lock); 1077 uwq = find_userfault_evt(ctx); 1078 if (uwq) { 1079 *msg = uwq->msg; 1080 1081 if (uwq->msg.event == UFFD_EVENT_FORK) { 1082 fork_nctx = (struct userfaultfd_ctx *) 1083 (unsigned long) 1084 uwq->msg.arg.reserved.reserved1; 1085 list_move(&uwq->wq.entry, &fork_event); 1086 /* 1087 * fork_nctx can be freed as soon as 1088 * we drop the lock, unless we take a 1089 * reference on it. 1090 */ 1091 userfaultfd_ctx_get(fork_nctx); 1092 spin_unlock(&ctx->event_wqh.lock); 1093 ret = 0; 1094 break; 1095 } 1096 1097 userfaultfd_event_complete(ctx, uwq); 1098 spin_unlock(&ctx->event_wqh.lock); 1099 ret = 0; 1100 break; 1101 } 1102 spin_unlock(&ctx->event_wqh.lock); 1103 1104 if (signal_pending(current)) { 1105 ret = -ERESTARTSYS; 1106 break; 1107 } 1108 if (no_wait) { 1109 ret = -EAGAIN; 1110 break; 1111 } 1112 spin_unlock(&ctx->fd_wqh.lock); 1113 schedule(); 1114 spin_lock(&ctx->fd_wqh.lock); 1115 } 1116 __remove_wait_queue(&ctx->fd_wqh, &wait); 1117 __set_current_state(TASK_RUNNING); 1118 spin_unlock(&ctx->fd_wqh.lock); 1119 1120 if (!ret && msg->event == UFFD_EVENT_FORK) { 1121 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1122 spin_lock(&ctx->event_wqh.lock); 1123 if (!list_empty(&fork_event)) { 1124 /* 1125 * The fork thread didn't abort, so we can 1126 * drop the temporary refcount. 1127 */ 1128 userfaultfd_ctx_put(fork_nctx); 1129 1130 uwq = list_first_entry(&fork_event, 1131 typeof(*uwq), 1132 wq.entry); 1133 /* 1134 * If fork_event list wasn't empty and in turn 1135 * the event wasn't already released by fork 1136 * (the event is allocated on fork kernel 1137 * stack), put the event back to its place in 1138 * the event_wq. fork_event head will be freed 1139 * as soon as we return so the event cannot 1140 * stay queued there no matter the current 1141 * "ret" value. 1142 */ 1143 list_del(&uwq->wq.entry); 1144 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1145 1146 /* 1147 * Leave the event in the waitqueue and report 1148 * error to userland if we failed to resolve 1149 * the userfault fork. 1150 */ 1151 if (likely(!ret)) 1152 userfaultfd_event_complete(ctx, uwq); 1153 } else { 1154 /* 1155 * Here the fork thread aborted and the 1156 * refcount from the fork thread on fork_nctx 1157 * has already been released. We still hold 1158 * the reference we took before releasing the 1159 * lock above. If resolve_userfault_fork 1160 * failed we've to drop it because the 1161 * fork_nctx has to be freed in such case. If 1162 * it succeeded we'll hold it because the new 1163 * uffd references it. 1164 */ 1165 if (ret) 1166 userfaultfd_ctx_put(fork_nctx); 1167 } 1168 spin_unlock(&ctx->event_wqh.lock); 1169 } 1170 1171 return ret; 1172 } 1173 1174 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1175 size_t count, loff_t *ppos) 1176 { 1177 struct userfaultfd_ctx *ctx = file->private_data; 1178 ssize_t _ret, ret = 0; 1179 struct uffd_msg msg; 1180 int no_wait = file->f_flags & O_NONBLOCK; 1181 1182 if (ctx->state == UFFD_STATE_WAIT_API) 1183 return -EINVAL; 1184 1185 for (;;) { 1186 if (count < sizeof(msg)) 1187 return ret ? ret : -EINVAL; 1188 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1189 if (_ret < 0) 1190 return ret ? ret : _ret; 1191 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1192 return ret ? ret : -EFAULT; 1193 ret += sizeof(msg); 1194 buf += sizeof(msg); 1195 count -= sizeof(msg); 1196 /* 1197 * Allow to read more than one fault at time but only 1198 * block if waiting for the very first one. 1199 */ 1200 no_wait = O_NONBLOCK; 1201 } 1202 } 1203 1204 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1205 struct userfaultfd_wake_range *range) 1206 { 1207 spin_lock(&ctx->fault_pending_wqh.lock); 1208 /* wake all in the range and autoremove */ 1209 if (waitqueue_active(&ctx->fault_pending_wqh)) 1210 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1211 range); 1212 if (waitqueue_active(&ctx->fault_wqh)) 1213 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1214 spin_unlock(&ctx->fault_pending_wqh.lock); 1215 } 1216 1217 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1218 struct userfaultfd_wake_range *range) 1219 { 1220 unsigned seq; 1221 bool need_wakeup; 1222 1223 /* 1224 * To be sure waitqueue_active() is not reordered by the CPU 1225 * before the pagetable update, use an explicit SMP memory 1226 * barrier here. PT lock release or up_read(mmap_sem) still 1227 * have release semantics that can allow the 1228 * waitqueue_active() to be reordered before the pte update. 1229 */ 1230 smp_mb(); 1231 1232 /* 1233 * Use waitqueue_active because it's very frequent to 1234 * change the address space atomically even if there are no 1235 * userfaults yet. So we take the spinlock only when we're 1236 * sure we've userfaults to wake. 1237 */ 1238 do { 1239 seq = read_seqcount_begin(&ctx->refile_seq); 1240 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1241 waitqueue_active(&ctx->fault_wqh); 1242 cond_resched(); 1243 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1244 if (need_wakeup) 1245 __wake_userfault(ctx, range); 1246 } 1247 1248 static __always_inline int validate_range(struct mm_struct *mm, 1249 __u64 start, __u64 len) 1250 { 1251 __u64 task_size = mm->task_size; 1252 1253 if (start & ~PAGE_MASK) 1254 return -EINVAL; 1255 if (len & ~PAGE_MASK) 1256 return -EINVAL; 1257 if (!len) 1258 return -EINVAL; 1259 if (start < mmap_min_addr) 1260 return -EINVAL; 1261 if (start >= task_size) 1262 return -EINVAL; 1263 if (len > task_size - start) 1264 return -EINVAL; 1265 return 0; 1266 } 1267 1268 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1269 { 1270 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1271 vma_is_shmem(vma); 1272 } 1273 1274 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1275 unsigned long arg) 1276 { 1277 struct mm_struct *mm = ctx->mm; 1278 struct vm_area_struct *vma, *prev, *cur; 1279 int ret; 1280 struct uffdio_register uffdio_register; 1281 struct uffdio_register __user *user_uffdio_register; 1282 unsigned long vm_flags, new_flags; 1283 bool found; 1284 bool basic_ioctls; 1285 unsigned long start, end, vma_end; 1286 1287 user_uffdio_register = (struct uffdio_register __user *) arg; 1288 1289 ret = -EFAULT; 1290 if (copy_from_user(&uffdio_register, user_uffdio_register, 1291 sizeof(uffdio_register)-sizeof(__u64))) 1292 goto out; 1293 1294 ret = -EINVAL; 1295 if (!uffdio_register.mode) 1296 goto out; 1297 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1298 UFFDIO_REGISTER_MODE_WP)) 1299 goto out; 1300 vm_flags = 0; 1301 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1302 vm_flags |= VM_UFFD_MISSING; 1303 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1304 vm_flags |= VM_UFFD_WP; 1305 /* 1306 * FIXME: remove the below error constraint by 1307 * implementing the wprotect tracking mode. 1308 */ 1309 ret = -EINVAL; 1310 goto out; 1311 } 1312 1313 ret = validate_range(mm, uffdio_register.range.start, 1314 uffdio_register.range.len); 1315 if (ret) 1316 goto out; 1317 1318 start = uffdio_register.range.start; 1319 end = start + uffdio_register.range.len; 1320 1321 ret = -ENOMEM; 1322 if (!mmget_not_zero(mm)) 1323 goto out; 1324 1325 down_write(&mm->mmap_sem); 1326 vma = find_vma_prev(mm, start, &prev); 1327 if (!vma) 1328 goto out_unlock; 1329 1330 /* check that there's at least one vma in the range */ 1331 ret = -EINVAL; 1332 if (vma->vm_start >= end) 1333 goto out_unlock; 1334 1335 /* 1336 * If the first vma contains huge pages, make sure start address 1337 * is aligned to huge page size. 1338 */ 1339 if (is_vm_hugetlb_page(vma)) { 1340 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1341 1342 if (start & (vma_hpagesize - 1)) 1343 goto out_unlock; 1344 } 1345 1346 /* 1347 * Search for not compatible vmas. 1348 */ 1349 found = false; 1350 basic_ioctls = false; 1351 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1352 cond_resched(); 1353 1354 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1355 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1356 1357 /* check not compatible vmas */ 1358 ret = -EINVAL; 1359 if (!vma_can_userfault(cur)) 1360 goto out_unlock; 1361 /* 1362 * If this vma contains ending address, and huge pages 1363 * check alignment. 1364 */ 1365 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1366 end > cur->vm_start) { 1367 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1368 1369 ret = -EINVAL; 1370 1371 if (end & (vma_hpagesize - 1)) 1372 goto out_unlock; 1373 } 1374 1375 /* 1376 * Check that this vma isn't already owned by a 1377 * different userfaultfd. We can't allow more than one 1378 * userfaultfd to own a single vma simultaneously or we 1379 * wouldn't know which one to deliver the userfaults to. 1380 */ 1381 ret = -EBUSY; 1382 if (cur->vm_userfaultfd_ctx.ctx && 1383 cur->vm_userfaultfd_ctx.ctx != ctx) 1384 goto out_unlock; 1385 1386 /* 1387 * Note vmas containing huge pages 1388 */ 1389 if (is_vm_hugetlb_page(cur)) 1390 basic_ioctls = true; 1391 1392 found = true; 1393 } 1394 BUG_ON(!found); 1395 1396 if (vma->vm_start < start) 1397 prev = vma; 1398 1399 ret = 0; 1400 do { 1401 cond_resched(); 1402 1403 BUG_ON(!vma_can_userfault(vma)); 1404 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1405 vma->vm_userfaultfd_ctx.ctx != ctx); 1406 1407 /* 1408 * Nothing to do: this vma is already registered into this 1409 * userfaultfd and with the right tracking mode too. 1410 */ 1411 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1412 (vma->vm_flags & vm_flags) == vm_flags) 1413 goto skip; 1414 1415 if (vma->vm_start > start) 1416 start = vma->vm_start; 1417 vma_end = min(end, vma->vm_end); 1418 1419 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1420 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1421 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1422 vma_policy(vma), 1423 ((struct vm_userfaultfd_ctx){ ctx })); 1424 if (prev) { 1425 vma = prev; 1426 goto next; 1427 } 1428 if (vma->vm_start < start) { 1429 ret = split_vma(mm, vma, start, 1); 1430 if (ret) 1431 break; 1432 } 1433 if (vma->vm_end > end) { 1434 ret = split_vma(mm, vma, end, 0); 1435 if (ret) 1436 break; 1437 } 1438 next: 1439 /* 1440 * In the vma_merge() successful mprotect-like case 8: 1441 * the next vma was merged into the current one and 1442 * the current one has not been updated yet. 1443 */ 1444 vma->vm_flags = new_flags; 1445 vma->vm_userfaultfd_ctx.ctx = ctx; 1446 1447 skip: 1448 prev = vma; 1449 start = vma->vm_end; 1450 vma = vma->vm_next; 1451 } while (vma && vma->vm_start < end); 1452 out_unlock: 1453 up_write(&mm->mmap_sem); 1454 mmput(mm); 1455 if (!ret) { 1456 /* 1457 * Now that we scanned all vmas we can already tell 1458 * userland which ioctls methods are guaranteed to 1459 * succeed on this range. 1460 */ 1461 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1462 UFFD_API_RANGE_IOCTLS, 1463 &user_uffdio_register->ioctls)) 1464 ret = -EFAULT; 1465 } 1466 out: 1467 return ret; 1468 } 1469 1470 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1471 unsigned long arg) 1472 { 1473 struct mm_struct *mm = ctx->mm; 1474 struct vm_area_struct *vma, *prev, *cur; 1475 int ret; 1476 struct uffdio_range uffdio_unregister; 1477 unsigned long new_flags; 1478 bool found; 1479 unsigned long start, end, vma_end; 1480 const void __user *buf = (void __user *)arg; 1481 1482 ret = -EFAULT; 1483 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1484 goto out; 1485 1486 ret = validate_range(mm, uffdio_unregister.start, 1487 uffdio_unregister.len); 1488 if (ret) 1489 goto out; 1490 1491 start = uffdio_unregister.start; 1492 end = start + uffdio_unregister.len; 1493 1494 ret = -ENOMEM; 1495 if (!mmget_not_zero(mm)) 1496 goto out; 1497 1498 down_write(&mm->mmap_sem); 1499 vma = find_vma_prev(mm, start, &prev); 1500 if (!vma) 1501 goto out_unlock; 1502 1503 /* check that there's at least one vma in the range */ 1504 ret = -EINVAL; 1505 if (vma->vm_start >= end) 1506 goto out_unlock; 1507 1508 /* 1509 * If the first vma contains huge pages, make sure start address 1510 * is aligned to huge page size. 1511 */ 1512 if (is_vm_hugetlb_page(vma)) { 1513 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1514 1515 if (start & (vma_hpagesize - 1)) 1516 goto out_unlock; 1517 } 1518 1519 /* 1520 * Search for not compatible vmas. 1521 */ 1522 found = false; 1523 ret = -EINVAL; 1524 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1525 cond_resched(); 1526 1527 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1528 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1529 1530 /* 1531 * Check not compatible vmas, not strictly required 1532 * here as not compatible vmas cannot have an 1533 * userfaultfd_ctx registered on them, but this 1534 * provides for more strict behavior to notice 1535 * unregistration errors. 1536 */ 1537 if (!vma_can_userfault(cur)) 1538 goto out_unlock; 1539 1540 found = true; 1541 } 1542 BUG_ON(!found); 1543 1544 if (vma->vm_start < start) 1545 prev = vma; 1546 1547 ret = 0; 1548 do { 1549 cond_resched(); 1550 1551 BUG_ON(!vma_can_userfault(vma)); 1552 1553 /* 1554 * Nothing to do: this vma is already registered into this 1555 * userfaultfd and with the right tracking mode too. 1556 */ 1557 if (!vma->vm_userfaultfd_ctx.ctx) 1558 goto skip; 1559 1560 if (vma->vm_start > start) 1561 start = vma->vm_start; 1562 vma_end = min(end, vma->vm_end); 1563 1564 if (userfaultfd_missing(vma)) { 1565 /* 1566 * Wake any concurrent pending userfault while 1567 * we unregister, so they will not hang 1568 * permanently and it avoids userland to call 1569 * UFFDIO_WAKE explicitly. 1570 */ 1571 struct userfaultfd_wake_range range; 1572 range.start = start; 1573 range.len = vma_end - start; 1574 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1575 } 1576 1577 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1578 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1579 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1580 vma_policy(vma), 1581 NULL_VM_UFFD_CTX); 1582 if (prev) { 1583 vma = prev; 1584 goto next; 1585 } 1586 if (vma->vm_start < start) { 1587 ret = split_vma(mm, vma, start, 1); 1588 if (ret) 1589 break; 1590 } 1591 if (vma->vm_end > end) { 1592 ret = split_vma(mm, vma, end, 0); 1593 if (ret) 1594 break; 1595 } 1596 next: 1597 /* 1598 * In the vma_merge() successful mprotect-like case 8: 1599 * the next vma was merged into the current one and 1600 * the current one has not been updated yet. 1601 */ 1602 vma->vm_flags = new_flags; 1603 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1604 1605 skip: 1606 prev = vma; 1607 start = vma->vm_end; 1608 vma = vma->vm_next; 1609 } while (vma && vma->vm_start < end); 1610 out_unlock: 1611 up_write(&mm->mmap_sem); 1612 mmput(mm); 1613 out: 1614 return ret; 1615 } 1616 1617 /* 1618 * userfaultfd_wake may be used in combination with the 1619 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1620 */ 1621 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1622 unsigned long arg) 1623 { 1624 int ret; 1625 struct uffdio_range uffdio_wake; 1626 struct userfaultfd_wake_range range; 1627 const void __user *buf = (void __user *)arg; 1628 1629 ret = -EFAULT; 1630 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1631 goto out; 1632 1633 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1634 if (ret) 1635 goto out; 1636 1637 range.start = uffdio_wake.start; 1638 range.len = uffdio_wake.len; 1639 1640 /* 1641 * len == 0 means wake all and we don't want to wake all here, 1642 * so check it again to be sure. 1643 */ 1644 VM_BUG_ON(!range.len); 1645 1646 wake_userfault(ctx, &range); 1647 ret = 0; 1648 1649 out: 1650 return ret; 1651 } 1652 1653 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1654 unsigned long arg) 1655 { 1656 __s64 ret; 1657 struct uffdio_copy uffdio_copy; 1658 struct uffdio_copy __user *user_uffdio_copy; 1659 struct userfaultfd_wake_range range; 1660 1661 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1662 1663 ret = -EFAULT; 1664 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1665 /* don't copy "copy" last field */ 1666 sizeof(uffdio_copy)-sizeof(__s64))) 1667 goto out; 1668 1669 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1670 if (ret) 1671 goto out; 1672 /* 1673 * double check for wraparound just in case. copy_from_user() 1674 * will later check uffdio_copy.src + uffdio_copy.len to fit 1675 * in the userland range. 1676 */ 1677 ret = -EINVAL; 1678 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1679 goto out; 1680 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1681 goto out; 1682 if (mmget_not_zero(ctx->mm)) { 1683 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1684 uffdio_copy.len); 1685 mmput(ctx->mm); 1686 } else { 1687 return -ESRCH; 1688 } 1689 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1690 return -EFAULT; 1691 if (ret < 0) 1692 goto out; 1693 BUG_ON(!ret); 1694 /* len == 0 would wake all */ 1695 range.len = ret; 1696 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1697 range.start = uffdio_copy.dst; 1698 wake_userfault(ctx, &range); 1699 } 1700 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1701 out: 1702 return ret; 1703 } 1704 1705 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1706 unsigned long arg) 1707 { 1708 __s64 ret; 1709 struct uffdio_zeropage uffdio_zeropage; 1710 struct uffdio_zeropage __user *user_uffdio_zeropage; 1711 struct userfaultfd_wake_range range; 1712 1713 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1714 1715 ret = -EFAULT; 1716 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1717 /* don't copy "zeropage" last field */ 1718 sizeof(uffdio_zeropage)-sizeof(__s64))) 1719 goto out; 1720 1721 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1722 uffdio_zeropage.range.len); 1723 if (ret) 1724 goto out; 1725 ret = -EINVAL; 1726 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1727 goto out; 1728 1729 if (mmget_not_zero(ctx->mm)) { 1730 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1731 uffdio_zeropage.range.len); 1732 mmput(ctx->mm); 1733 } else { 1734 return -ESRCH; 1735 } 1736 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1737 return -EFAULT; 1738 if (ret < 0) 1739 goto out; 1740 /* len == 0 would wake all */ 1741 BUG_ON(!ret); 1742 range.len = ret; 1743 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1744 range.start = uffdio_zeropage.range.start; 1745 wake_userfault(ctx, &range); 1746 } 1747 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1748 out: 1749 return ret; 1750 } 1751 1752 static inline unsigned int uffd_ctx_features(__u64 user_features) 1753 { 1754 /* 1755 * For the current set of features the bits just coincide 1756 */ 1757 return (unsigned int)user_features; 1758 } 1759 1760 /* 1761 * userland asks for a certain API version and we return which bits 1762 * and ioctl commands are implemented in this kernel for such API 1763 * version or -EINVAL if unknown. 1764 */ 1765 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1766 unsigned long arg) 1767 { 1768 struct uffdio_api uffdio_api; 1769 void __user *buf = (void __user *)arg; 1770 int ret; 1771 __u64 features; 1772 1773 ret = -EINVAL; 1774 if (ctx->state != UFFD_STATE_WAIT_API) 1775 goto out; 1776 ret = -EFAULT; 1777 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1778 goto out; 1779 features = uffdio_api.features; 1780 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1781 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1782 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1783 goto out; 1784 ret = -EINVAL; 1785 goto out; 1786 } 1787 /* report all available features and ioctls to userland */ 1788 uffdio_api.features = UFFD_API_FEATURES; 1789 uffdio_api.ioctls = UFFD_API_IOCTLS; 1790 ret = -EFAULT; 1791 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1792 goto out; 1793 ctx->state = UFFD_STATE_RUNNING; 1794 /* only enable the requested features for this uffd context */ 1795 ctx->features = uffd_ctx_features(features); 1796 ret = 0; 1797 out: 1798 return ret; 1799 } 1800 1801 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1802 unsigned long arg) 1803 { 1804 int ret = -EINVAL; 1805 struct userfaultfd_ctx *ctx = file->private_data; 1806 1807 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1808 return -EINVAL; 1809 1810 switch(cmd) { 1811 case UFFDIO_API: 1812 ret = userfaultfd_api(ctx, arg); 1813 break; 1814 case UFFDIO_REGISTER: 1815 ret = userfaultfd_register(ctx, arg); 1816 break; 1817 case UFFDIO_UNREGISTER: 1818 ret = userfaultfd_unregister(ctx, arg); 1819 break; 1820 case UFFDIO_WAKE: 1821 ret = userfaultfd_wake(ctx, arg); 1822 break; 1823 case UFFDIO_COPY: 1824 ret = userfaultfd_copy(ctx, arg); 1825 break; 1826 case UFFDIO_ZEROPAGE: 1827 ret = userfaultfd_zeropage(ctx, arg); 1828 break; 1829 } 1830 return ret; 1831 } 1832 1833 #ifdef CONFIG_PROC_FS 1834 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1835 { 1836 struct userfaultfd_ctx *ctx = f->private_data; 1837 wait_queue_entry_t *wq; 1838 struct userfaultfd_wait_queue *uwq; 1839 unsigned long pending = 0, total = 0; 1840 1841 spin_lock(&ctx->fault_pending_wqh.lock); 1842 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1843 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1844 pending++; 1845 total++; 1846 } 1847 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1848 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1849 total++; 1850 } 1851 spin_unlock(&ctx->fault_pending_wqh.lock); 1852 1853 /* 1854 * If more protocols will be added, there will be all shown 1855 * separated by a space. Like this: 1856 * protocols: aa:... bb:... 1857 */ 1858 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1859 pending, total, UFFD_API, ctx->features, 1860 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1861 } 1862 #endif 1863 1864 static const struct file_operations userfaultfd_fops = { 1865 #ifdef CONFIG_PROC_FS 1866 .show_fdinfo = userfaultfd_show_fdinfo, 1867 #endif 1868 .release = userfaultfd_release, 1869 .poll = userfaultfd_poll, 1870 .read = userfaultfd_read, 1871 .unlocked_ioctl = userfaultfd_ioctl, 1872 .compat_ioctl = userfaultfd_ioctl, 1873 .llseek = noop_llseek, 1874 }; 1875 1876 static void init_once_userfaultfd_ctx(void *mem) 1877 { 1878 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1879 1880 init_waitqueue_head(&ctx->fault_pending_wqh); 1881 init_waitqueue_head(&ctx->fault_wqh); 1882 init_waitqueue_head(&ctx->event_wqh); 1883 init_waitqueue_head(&ctx->fd_wqh); 1884 seqcount_init(&ctx->refile_seq); 1885 } 1886 1887 /** 1888 * userfaultfd_file_create - Creates a userfaultfd file pointer. 1889 * @flags: Flags for the userfaultfd file. 1890 * 1891 * This function creates a userfaultfd file pointer, w/out installing 1892 * it into the fd table. This is useful when the userfaultfd file is 1893 * used during the initialization of data structures that require 1894 * extra setup after the userfaultfd creation. So the userfaultfd 1895 * creation is split into the file pointer creation phase, and the 1896 * file descriptor installation phase. In this way races with 1897 * userspace closing the newly installed file descriptor can be 1898 * avoided. Returns a userfaultfd file pointer, or a proper error 1899 * pointer. 1900 */ 1901 static struct file *userfaultfd_file_create(int flags) 1902 { 1903 struct file *file; 1904 struct userfaultfd_ctx *ctx; 1905 1906 BUG_ON(!current->mm); 1907 1908 /* Check the UFFD_* constants for consistency. */ 1909 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1910 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1911 1912 file = ERR_PTR(-EINVAL); 1913 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1914 goto out; 1915 1916 file = ERR_PTR(-ENOMEM); 1917 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1918 if (!ctx) 1919 goto out; 1920 1921 atomic_set(&ctx->refcount, 1); 1922 ctx->flags = flags; 1923 ctx->features = 0; 1924 ctx->state = UFFD_STATE_WAIT_API; 1925 ctx->released = false; 1926 ctx->mm = current->mm; 1927 /* prevent the mm struct to be freed */ 1928 mmgrab(ctx->mm); 1929 1930 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1931 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1932 if (IS_ERR(file)) { 1933 mmdrop(ctx->mm); 1934 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1935 } 1936 out: 1937 return file; 1938 } 1939 1940 SYSCALL_DEFINE1(userfaultfd, int, flags) 1941 { 1942 int fd, error; 1943 struct file *file; 1944 1945 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1946 if (error < 0) 1947 return error; 1948 fd = error; 1949 1950 file = userfaultfd_file_create(flags); 1951 if (IS_ERR(file)) { 1952 error = PTR_ERR(file); 1953 goto err_put_unused_fd; 1954 } 1955 fd_install(fd, file); 1956 1957 return fd; 1958 1959 err_put_unused_fd: 1960 put_unused_fd(fd); 1961 1962 return error; 1963 } 1964 1965 static int __init userfaultfd_init(void) 1966 { 1967 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1968 sizeof(struct userfaultfd_ctx), 1969 0, 1970 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1971 init_once_userfaultfd_ctx); 1972 return 0; 1973 } 1974 __initcall(userfaultfd_init); 1975