1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/seq_file.h> 21 #include <linux/file.h> 22 #include <linux/bug.h> 23 #include <linux/anon_inodes.h> 24 #include <linux/syscalls.h> 25 #include <linux/userfaultfd_k.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ioctl.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 31 int sysctl_unprivileged_userfaultfd __read_mostly; 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 * 44 * Locking order: 45 * fd_wqh.lock 46 * fault_pending_wqh.lock 47 * fault_wqh.lock 48 * event_wqh.lock 49 * 50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 52 * also taken in IRQ context. 53 */ 54 struct userfaultfd_ctx { 55 /* waitqueue head for the pending (i.e. not read) userfaults */ 56 wait_queue_head_t fault_pending_wqh; 57 /* waitqueue head for the userfaults */ 58 wait_queue_head_t fault_wqh; 59 /* waitqueue head for the pseudo fd to wakeup poll/read */ 60 wait_queue_head_t fd_wqh; 61 /* waitqueue head for events */ 62 wait_queue_head_t event_wqh; 63 /* a refile sequence protected by fault_pending_wqh lock */ 64 seqcount_spinlock_t refile_seq; 65 /* pseudo fd refcounting */ 66 refcount_t refcount; 67 /* userfaultfd syscall flags */ 68 unsigned int flags; 69 /* features requested from the userspace */ 70 unsigned int features; 71 /* state machine */ 72 enum userfaultfd_state state; 73 /* released */ 74 bool released; 75 /* memory mappings are changing because of non-cooperative event */ 76 bool mmap_changing; 77 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 78 struct mm_struct *mm; 79 }; 80 81 struct userfaultfd_fork_ctx { 82 struct userfaultfd_ctx *orig; 83 struct userfaultfd_ctx *new; 84 struct list_head list; 85 }; 86 87 struct userfaultfd_unmap_ctx { 88 struct userfaultfd_ctx *ctx; 89 unsigned long start; 90 unsigned long end; 91 struct list_head list; 92 }; 93 94 struct userfaultfd_wait_queue { 95 struct uffd_msg msg; 96 wait_queue_entry_t wq; 97 struct userfaultfd_ctx *ctx; 98 bool waken; 99 }; 100 101 struct userfaultfd_wake_range { 102 unsigned long start; 103 unsigned long len; 104 }; 105 106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 107 int wake_flags, void *key) 108 { 109 struct userfaultfd_wake_range *range = key; 110 int ret; 111 struct userfaultfd_wait_queue *uwq; 112 unsigned long start, len; 113 114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 115 ret = 0; 116 /* len == 0 means wake all */ 117 start = range->start; 118 len = range->len; 119 if (len && (start > uwq->msg.arg.pagefault.address || 120 start + len <= uwq->msg.arg.pagefault.address)) 121 goto out; 122 WRITE_ONCE(uwq->waken, true); 123 /* 124 * The Program-Order guarantees provided by the scheduler 125 * ensure uwq->waken is visible before the task is woken. 126 */ 127 ret = wake_up_state(wq->private, mode); 128 if (ret) { 129 /* 130 * Wake only once, autoremove behavior. 131 * 132 * After the effect of list_del_init is visible to the other 133 * CPUs, the waitqueue may disappear from under us, see the 134 * !list_empty_careful() in handle_userfault(). 135 * 136 * try_to_wake_up() has an implicit smp_mb(), and the 137 * wq->private is read before calling the extern function 138 * "wake_up_state" (which in turns calls try_to_wake_up). 139 */ 140 list_del_init(&wq->entry); 141 } 142 out: 143 return ret; 144 } 145 146 /** 147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 148 * context. 149 * @ctx: [in] Pointer to the userfaultfd context. 150 */ 151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 152 { 153 refcount_inc(&ctx->refcount); 154 } 155 156 /** 157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 158 * context. 159 * @ctx: [in] Pointer to userfaultfd context. 160 * 161 * The userfaultfd context reference must have been previously acquired either 162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 163 */ 164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 165 { 166 if (refcount_dec_and_test(&ctx->refcount)) { 167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 175 mmdrop(ctx->mm); 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 177 } 178 } 179 180 static inline void msg_init(struct uffd_msg *msg) 181 { 182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 183 /* 184 * Must use memset to zero out the paddings or kernel data is 185 * leaked to userland. 186 */ 187 memset(msg, 0, sizeof(struct uffd_msg)); 188 } 189 190 static inline struct uffd_msg userfault_msg(unsigned long address, 191 unsigned int flags, 192 unsigned long reason, 193 unsigned int features) 194 { 195 struct uffd_msg msg; 196 msg_init(&msg); 197 msg.event = UFFD_EVENT_PAGEFAULT; 198 msg.arg.pagefault.address = address; 199 if (flags & FAULT_FLAG_WRITE) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 204 * was a read fault, otherwise if set it means it's 205 * a write fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 208 if (reason & VM_UFFD_WP) 209 /* 210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 213 * a missing fault, otherwise if set it means it's a 214 * write protect fault. 215 */ 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 217 if (features & UFFD_FEATURE_THREAD_ID) 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 219 return msg; 220 } 221 222 #ifdef CONFIG_HUGETLB_PAGE 223 /* 224 * Same functionality as userfaultfd_must_wait below with modifications for 225 * hugepmd ranges. 226 */ 227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 228 struct vm_area_struct *vma, 229 unsigned long address, 230 unsigned long flags, 231 unsigned long reason) 232 { 233 struct mm_struct *mm = ctx->mm; 234 pte_t *ptep, pte; 235 bool ret = true; 236 237 mmap_assert_locked(mm); 238 239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 240 241 if (!ptep) 242 goto out; 243 244 ret = false; 245 pte = huge_ptep_get(ptep); 246 247 /* 248 * Lockless access: we're in a wait_event so it's ok if it 249 * changes under us. 250 */ 251 if (huge_pte_none(pte)) 252 ret = true; 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 254 ret = true; 255 out: 256 return ret; 257 } 258 #else 259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 260 struct vm_area_struct *vma, 261 unsigned long address, 262 unsigned long flags, 263 unsigned long reason) 264 { 265 return false; /* should never get here */ 266 } 267 #endif /* CONFIG_HUGETLB_PAGE */ 268 269 /* 270 * Verify the pagetables are still not ok after having reigstered into 271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 272 * userfault that has already been resolved, if userfaultfd_read and 273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 274 * threads. 275 */ 276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 277 unsigned long address, 278 unsigned long flags, 279 unsigned long reason) 280 { 281 struct mm_struct *mm = ctx->mm; 282 pgd_t *pgd; 283 p4d_t *p4d; 284 pud_t *pud; 285 pmd_t *pmd, _pmd; 286 pte_t *pte; 287 bool ret = true; 288 289 mmap_assert_locked(mm); 290 291 pgd = pgd_offset(mm, address); 292 if (!pgd_present(*pgd)) 293 goto out; 294 p4d = p4d_offset(pgd, address); 295 if (!p4d_present(*p4d)) 296 goto out; 297 pud = pud_offset(p4d, address); 298 if (!pud_present(*pud)) 299 goto out; 300 pmd = pmd_offset(pud, address); 301 /* 302 * READ_ONCE must function as a barrier with narrower scope 303 * and it must be equivalent to: 304 * _pmd = *pmd; barrier(); 305 * 306 * This is to deal with the instability (as in 307 * pmd_trans_unstable) of the pmd. 308 */ 309 _pmd = READ_ONCE(*pmd); 310 if (pmd_none(_pmd)) 311 goto out; 312 313 ret = false; 314 if (!pmd_present(_pmd)) 315 goto out; 316 317 if (pmd_trans_huge(_pmd)) { 318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 319 ret = true; 320 goto out; 321 } 322 323 /* 324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 325 * and use the standard pte_offset_map() instead of parsing _pmd. 326 */ 327 pte = pte_offset_map(pmd, address); 328 /* 329 * Lockless access: we're in a wait_event so it's ok if it 330 * changes under us. 331 */ 332 if (pte_none(*pte)) 333 ret = true; 334 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 335 ret = true; 336 pte_unmap(pte); 337 338 out: 339 return ret; 340 } 341 342 static inline long userfaultfd_get_blocking_state(unsigned int flags) 343 { 344 if (flags & FAULT_FLAG_INTERRUPTIBLE) 345 return TASK_INTERRUPTIBLE; 346 347 if (flags & FAULT_FLAG_KILLABLE) 348 return TASK_KILLABLE; 349 350 return TASK_UNINTERRUPTIBLE; 351 } 352 353 /* 354 * The locking rules involved in returning VM_FAULT_RETRY depending on 355 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 356 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 357 * recommendation in __lock_page_or_retry is not an understatement. 358 * 359 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 360 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 361 * not set. 362 * 363 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 364 * set, VM_FAULT_RETRY can still be returned if and only if there are 365 * fatal_signal_pending()s, and the mmap_lock must be released before 366 * returning it. 367 */ 368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 369 { 370 struct mm_struct *mm = vmf->vma->vm_mm; 371 struct userfaultfd_ctx *ctx; 372 struct userfaultfd_wait_queue uwq; 373 vm_fault_t ret = VM_FAULT_SIGBUS; 374 bool must_wait; 375 long blocking_state; 376 377 /* 378 * We don't do userfault handling for the final child pid update. 379 * 380 * We also don't do userfault handling during 381 * coredumping. hugetlbfs has the special 382 * follow_hugetlb_page() to skip missing pages in the 383 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 384 * the no_page_table() helper in follow_page_mask(), but the 385 * shmem_vm_ops->fault method is invoked even during 386 * coredumping without mmap_lock and it ends up here. 387 */ 388 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 389 goto out; 390 391 /* 392 * Coredumping runs without mmap_lock so we can only check that 393 * the mmap_lock is held, if PF_DUMPCORE was not set. 394 */ 395 mmap_assert_locked(mm); 396 397 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 398 if (!ctx) 399 goto out; 400 401 BUG_ON(ctx->mm != mm); 402 403 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 404 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 405 406 if (ctx->features & UFFD_FEATURE_SIGBUS) 407 goto out; 408 if ((vmf->flags & FAULT_FLAG_USER) == 0 && 409 ctx->flags & UFFD_USER_MODE_ONLY) { 410 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 411 "sysctl knob to 1 if kernel faults must be handled " 412 "without obtaining CAP_SYS_PTRACE capability\n"); 413 goto out; 414 } 415 416 /* 417 * If it's already released don't get it. This avoids to loop 418 * in __get_user_pages if userfaultfd_release waits on the 419 * caller of handle_userfault to release the mmap_lock. 420 */ 421 if (unlikely(READ_ONCE(ctx->released))) { 422 /* 423 * Don't return VM_FAULT_SIGBUS in this case, so a non 424 * cooperative manager can close the uffd after the 425 * last UFFDIO_COPY, without risking to trigger an 426 * involuntary SIGBUS if the process was starting the 427 * userfaultfd while the userfaultfd was still armed 428 * (but after the last UFFDIO_COPY). If the uffd 429 * wasn't already closed when the userfault reached 430 * this point, that would normally be solved by 431 * userfaultfd_must_wait returning 'false'. 432 * 433 * If we were to return VM_FAULT_SIGBUS here, the non 434 * cooperative manager would be instead forced to 435 * always call UFFDIO_UNREGISTER before it can safely 436 * close the uffd. 437 */ 438 ret = VM_FAULT_NOPAGE; 439 goto out; 440 } 441 442 /* 443 * Check that we can return VM_FAULT_RETRY. 444 * 445 * NOTE: it should become possible to return VM_FAULT_RETRY 446 * even if FAULT_FLAG_TRIED is set without leading to gup() 447 * -EBUSY failures, if the userfaultfd is to be extended for 448 * VM_UFFD_WP tracking and we intend to arm the userfault 449 * without first stopping userland access to the memory. For 450 * VM_UFFD_MISSING userfaults this is enough for now. 451 */ 452 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 453 /* 454 * Validate the invariant that nowait must allow retry 455 * to be sure not to return SIGBUS erroneously on 456 * nowait invocations. 457 */ 458 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 459 #ifdef CONFIG_DEBUG_VM 460 if (printk_ratelimit()) { 461 printk(KERN_WARNING 462 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 463 vmf->flags); 464 dump_stack(); 465 } 466 #endif 467 goto out; 468 } 469 470 /* 471 * Handle nowait, not much to do other than tell it to retry 472 * and wait. 473 */ 474 ret = VM_FAULT_RETRY; 475 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 476 goto out; 477 478 /* take the reference before dropping the mmap_lock */ 479 userfaultfd_ctx_get(ctx); 480 481 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 482 uwq.wq.private = current; 483 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 484 ctx->features); 485 uwq.ctx = ctx; 486 uwq.waken = false; 487 488 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 489 490 spin_lock_irq(&ctx->fault_pending_wqh.lock); 491 /* 492 * After the __add_wait_queue the uwq is visible to userland 493 * through poll/read(). 494 */ 495 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 496 /* 497 * The smp_mb() after __set_current_state prevents the reads 498 * following the spin_unlock to happen before the list_add in 499 * __add_wait_queue. 500 */ 501 set_current_state(blocking_state); 502 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 503 504 if (!is_vm_hugetlb_page(vmf->vma)) 505 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 506 reason); 507 else 508 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 509 vmf->address, 510 vmf->flags, reason); 511 mmap_read_unlock(mm); 512 513 if (likely(must_wait && !READ_ONCE(ctx->released))) { 514 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 515 schedule(); 516 } 517 518 __set_current_state(TASK_RUNNING); 519 520 /* 521 * Here we race with the list_del; list_add in 522 * userfaultfd_ctx_read(), however because we don't ever run 523 * list_del_init() to refile across the two lists, the prev 524 * and next pointers will never point to self. list_add also 525 * would never let any of the two pointers to point to 526 * self. So list_empty_careful won't risk to see both pointers 527 * pointing to self at any time during the list refile. The 528 * only case where list_del_init() is called is the full 529 * removal in the wake function and there we don't re-list_add 530 * and it's fine not to block on the spinlock. The uwq on this 531 * kernel stack can be released after the list_del_init. 532 */ 533 if (!list_empty_careful(&uwq.wq.entry)) { 534 spin_lock_irq(&ctx->fault_pending_wqh.lock); 535 /* 536 * No need of list_del_init(), the uwq on the stack 537 * will be freed shortly anyway. 538 */ 539 list_del(&uwq.wq.entry); 540 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 541 } 542 543 /* 544 * ctx may go away after this if the userfault pseudo fd is 545 * already released. 546 */ 547 userfaultfd_ctx_put(ctx); 548 549 out: 550 return ret; 551 } 552 553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 554 struct userfaultfd_wait_queue *ewq) 555 { 556 struct userfaultfd_ctx *release_new_ctx; 557 558 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 559 goto out; 560 561 ewq->ctx = ctx; 562 init_waitqueue_entry(&ewq->wq, current); 563 release_new_ctx = NULL; 564 565 spin_lock_irq(&ctx->event_wqh.lock); 566 /* 567 * After the __add_wait_queue the uwq is visible to userland 568 * through poll/read(). 569 */ 570 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 571 for (;;) { 572 set_current_state(TASK_KILLABLE); 573 if (ewq->msg.event == 0) 574 break; 575 if (READ_ONCE(ctx->released) || 576 fatal_signal_pending(current)) { 577 /* 578 * &ewq->wq may be queued in fork_event, but 579 * __remove_wait_queue ignores the head 580 * parameter. It would be a problem if it 581 * didn't. 582 */ 583 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 584 if (ewq->msg.event == UFFD_EVENT_FORK) { 585 struct userfaultfd_ctx *new; 586 587 new = (struct userfaultfd_ctx *) 588 (unsigned long) 589 ewq->msg.arg.reserved.reserved1; 590 release_new_ctx = new; 591 } 592 break; 593 } 594 595 spin_unlock_irq(&ctx->event_wqh.lock); 596 597 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 598 schedule(); 599 600 spin_lock_irq(&ctx->event_wqh.lock); 601 } 602 __set_current_state(TASK_RUNNING); 603 spin_unlock_irq(&ctx->event_wqh.lock); 604 605 if (release_new_ctx) { 606 struct vm_area_struct *vma; 607 struct mm_struct *mm = release_new_ctx->mm; 608 609 /* the various vma->vm_userfaultfd_ctx still points to it */ 610 mmap_write_lock(mm); 611 for (vma = mm->mmap; vma; vma = vma->vm_next) 612 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 613 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 614 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 615 } 616 mmap_write_unlock(mm); 617 618 userfaultfd_ctx_put(release_new_ctx); 619 } 620 621 /* 622 * ctx may go away after this if the userfault pseudo fd is 623 * already released. 624 */ 625 out: 626 WRITE_ONCE(ctx->mmap_changing, false); 627 userfaultfd_ctx_put(ctx); 628 } 629 630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 631 struct userfaultfd_wait_queue *ewq) 632 { 633 ewq->msg.event = 0; 634 wake_up_locked(&ctx->event_wqh); 635 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 636 } 637 638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 639 { 640 struct userfaultfd_ctx *ctx = NULL, *octx; 641 struct userfaultfd_fork_ctx *fctx; 642 643 octx = vma->vm_userfaultfd_ctx.ctx; 644 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 646 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 647 return 0; 648 } 649 650 list_for_each_entry(fctx, fcs, list) 651 if (fctx->orig == octx) { 652 ctx = fctx->new; 653 break; 654 } 655 656 if (!ctx) { 657 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 658 if (!fctx) 659 return -ENOMEM; 660 661 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 662 if (!ctx) { 663 kfree(fctx); 664 return -ENOMEM; 665 } 666 667 refcount_set(&ctx->refcount, 1); 668 ctx->flags = octx->flags; 669 ctx->state = UFFD_STATE_RUNNING; 670 ctx->features = octx->features; 671 ctx->released = false; 672 ctx->mmap_changing = false; 673 ctx->mm = vma->vm_mm; 674 mmgrab(ctx->mm); 675 676 userfaultfd_ctx_get(octx); 677 WRITE_ONCE(octx->mmap_changing, true); 678 fctx->orig = octx; 679 fctx->new = ctx; 680 list_add_tail(&fctx->list, fcs); 681 } 682 683 vma->vm_userfaultfd_ctx.ctx = ctx; 684 return 0; 685 } 686 687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 688 { 689 struct userfaultfd_ctx *ctx = fctx->orig; 690 struct userfaultfd_wait_queue ewq; 691 692 msg_init(&ewq.msg); 693 694 ewq.msg.event = UFFD_EVENT_FORK; 695 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 696 697 userfaultfd_event_wait_completion(ctx, &ewq); 698 } 699 700 void dup_userfaultfd_complete(struct list_head *fcs) 701 { 702 struct userfaultfd_fork_ctx *fctx, *n; 703 704 list_for_each_entry_safe(fctx, n, fcs, list) { 705 dup_fctx(fctx); 706 list_del(&fctx->list); 707 kfree(fctx); 708 } 709 } 710 711 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 712 struct vm_userfaultfd_ctx *vm_ctx) 713 { 714 struct userfaultfd_ctx *ctx; 715 716 ctx = vma->vm_userfaultfd_ctx.ctx; 717 718 if (!ctx) 719 return; 720 721 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 722 vm_ctx->ctx = ctx; 723 userfaultfd_ctx_get(ctx); 724 WRITE_ONCE(ctx->mmap_changing, true); 725 } else { 726 /* Drop uffd context if remap feature not enabled */ 727 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 728 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 729 } 730 } 731 732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 733 unsigned long from, unsigned long to, 734 unsigned long len) 735 { 736 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 737 struct userfaultfd_wait_queue ewq; 738 739 if (!ctx) 740 return; 741 742 if (to & ~PAGE_MASK) { 743 userfaultfd_ctx_put(ctx); 744 return; 745 } 746 747 msg_init(&ewq.msg); 748 749 ewq.msg.event = UFFD_EVENT_REMAP; 750 ewq.msg.arg.remap.from = from; 751 ewq.msg.arg.remap.to = to; 752 ewq.msg.arg.remap.len = len; 753 754 userfaultfd_event_wait_completion(ctx, &ewq); 755 } 756 757 bool userfaultfd_remove(struct vm_area_struct *vma, 758 unsigned long start, unsigned long end) 759 { 760 struct mm_struct *mm = vma->vm_mm; 761 struct userfaultfd_ctx *ctx; 762 struct userfaultfd_wait_queue ewq; 763 764 ctx = vma->vm_userfaultfd_ctx.ctx; 765 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 766 return true; 767 768 userfaultfd_ctx_get(ctx); 769 WRITE_ONCE(ctx->mmap_changing, true); 770 mmap_read_unlock(mm); 771 772 msg_init(&ewq.msg); 773 774 ewq.msg.event = UFFD_EVENT_REMOVE; 775 ewq.msg.arg.remove.start = start; 776 ewq.msg.arg.remove.end = end; 777 778 userfaultfd_event_wait_completion(ctx, &ewq); 779 780 return false; 781 } 782 783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 784 unsigned long start, unsigned long end) 785 { 786 struct userfaultfd_unmap_ctx *unmap_ctx; 787 788 list_for_each_entry(unmap_ctx, unmaps, list) 789 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 790 unmap_ctx->end == end) 791 return true; 792 793 return false; 794 } 795 796 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 797 unsigned long start, unsigned long end, 798 struct list_head *unmaps) 799 { 800 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 801 struct userfaultfd_unmap_ctx *unmap_ctx; 802 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 803 804 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 805 has_unmap_ctx(ctx, unmaps, start, end)) 806 continue; 807 808 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 809 if (!unmap_ctx) 810 return -ENOMEM; 811 812 userfaultfd_ctx_get(ctx); 813 WRITE_ONCE(ctx->mmap_changing, true); 814 unmap_ctx->ctx = ctx; 815 unmap_ctx->start = start; 816 unmap_ctx->end = end; 817 list_add_tail(&unmap_ctx->list, unmaps); 818 } 819 820 return 0; 821 } 822 823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 824 { 825 struct userfaultfd_unmap_ctx *ctx, *n; 826 struct userfaultfd_wait_queue ewq; 827 828 list_for_each_entry_safe(ctx, n, uf, list) { 829 msg_init(&ewq.msg); 830 831 ewq.msg.event = UFFD_EVENT_UNMAP; 832 ewq.msg.arg.remove.start = ctx->start; 833 ewq.msg.arg.remove.end = ctx->end; 834 835 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 836 837 list_del(&ctx->list); 838 kfree(ctx); 839 } 840 } 841 842 static int userfaultfd_release(struct inode *inode, struct file *file) 843 { 844 struct userfaultfd_ctx *ctx = file->private_data; 845 struct mm_struct *mm = ctx->mm; 846 struct vm_area_struct *vma, *prev; 847 /* len == 0 means wake all */ 848 struct userfaultfd_wake_range range = { .len = 0, }; 849 unsigned long new_flags; 850 851 WRITE_ONCE(ctx->released, true); 852 853 if (!mmget_not_zero(mm)) 854 goto wakeup; 855 856 /* 857 * Flush page faults out of all CPUs. NOTE: all page faults 858 * must be retried without returning VM_FAULT_SIGBUS if 859 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 860 * changes while handle_userfault released the mmap_lock. So 861 * it's critical that released is set to true (above), before 862 * taking the mmap_lock for writing. 863 */ 864 mmap_write_lock(mm); 865 prev = NULL; 866 for (vma = mm->mmap; vma; vma = vma->vm_next) { 867 cond_resched(); 868 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 869 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 870 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 871 prev = vma; 872 continue; 873 } 874 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 875 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 876 new_flags, vma->anon_vma, 877 vma->vm_file, vma->vm_pgoff, 878 vma_policy(vma), 879 NULL_VM_UFFD_CTX); 880 if (prev) 881 vma = prev; 882 else 883 prev = vma; 884 vma->vm_flags = new_flags; 885 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 886 } 887 mmap_write_unlock(mm); 888 mmput(mm); 889 wakeup: 890 /* 891 * After no new page faults can wait on this fault_*wqh, flush 892 * the last page faults that may have been already waiting on 893 * the fault_*wqh. 894 */ 895 spin_lock_irq(&ctx->fault_pending_wqh.lock); 896 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 897 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 898 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 899 900 /* Flush pending events that may still wait on event_wqh */ 901 wake_up_all(&ctx->event_wqh); 902 903 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 904 userfaultfd_ctx_put(ctx); 905 return 0; 906 } 907 908 /* fault_pending_wqh.lock must be hold by the caller */ 909 static inline struct userfaultfd_wait_queue *find_userfault_in( 910 wait_queue_head_t *wqh) 911 { 912 wait_queue_entry_t *wq; 913 struct userfaultfd_wait_queue *uwq; 914 915 lockdep_assert_held(&wqh->lock); 916 917 uwq = NULL; 918 if (!waitqueue_active(wqh)) 919 goto out; 920 /* walk in reverse to provide FIFO behavior to read userfaults */ 921 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 922 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 923 out: 924 return uwq; 925 } 926 927 static inline struct userfaultfd_wait_queue *find_userfault( 928 struct userfaultfd_ctx *ctx) 929 { 930 return find_userfault_in(&ctx->fault_pending_wqh); 931 } 932 933 static inline struct userfaultfd_wait_queue *find_userfault_evt( 934 struct userfaultfd_ctx *ctx) 935 { 936 return find_userfault_in(&ctx->event_wqh); 937 } 938 939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 940 { 941 struct userfaultfd_ctx *ctx = file->private_data; 942 __poll_t ret; 943 944 poll_wait(file, &ctx->fd_wqh, wait); 945 946 switch (ctx->state) { 947 case UFFD_STATE_WAIT_API: 948 return EPOLLERR; 949 case UFFD_STATE_RUNNING: 950 /* 951 * poll() never guarantees that read won't block. 952 * userfaults can be waken before they're read(). 953 */ 954 if (unlikely(!(file->f_flags & O_NONBLOCK))) 955 return EPOLLERR; 956 /* 957 * lockless access to see if there are pending faults 958 * __pollwait last action is the add_wait_queue but 959 * the spin_unlock would allow the waitqueue_active to 960 * pass above the actual list_add inside 961 * add_wait_queue critical section. So use a full 962 * memory barrier to serialize the list_add write of 963 * add_wait_queue() with the waitqueue_active read 964 * below. 965 */ 966 ret = 0; 967 smp_mb(); 968 if (waitqueue_active(&ctx->fault_pending_wqh)) 969 ret = EPOLLIN; 970 else if (waitqueue_active(&ctx->event_wqh)) 971 ret = EPOLLIN; 972 973 return ret; 974 default: 975 WARN_ON_ONCE(1); 976 return EPOLLERR; 977 } 978 } 979 980 static const struct file_operations userfaultfd_fops; 981 982 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 983 struct userfaultfd_ctx *new, 984 struct uffd_msg *msg) 985 { 986 int fd; 987 988 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 990 if (fd < 0) 991 return fd; 992 993 msg->arg.reserved.reserved1 = 0; 994 msg->arg.fork.ufd = fd; 995 return 0; 996 } 997 998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 999 struct uffd_msg *msg) 1000 { 1001 ssize_t ret; 1002 DECLARE_WAITQUEUE(wait, current); 1003 struct userfaultfd_wait_queue *uwq; 1004 /* 1005 * Handling fork event requires sleeping operations, so 1006 * we drop the event_wqh lock, then do these ops, then 1007 * lock it back and wake up the waiter. While the lock is 1008 * dropped the ewq may go away so we keep track of it 1009 * carefully. 1010 */ 1011 LIST_HEAD(fork_event); 1012 struct userfaultfd_ctx *fork_nctx = NULL; 1013 1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1015 spin_lock_irq(&ctx->fd_wqh.lock); 1016 __add_wait_queue(&ctx->fd_wqh, &wait); 1017 for (;;) { 1018 set_current_state(TASK_INTERRUPTIBLE); 1019 spin_lock(&ctx->fault_pending_wqh.lock); 1020 uwq = find_userfault(ctx); 1021 if (uwq) { 1022 /* 1023 * Use a seqcount to repeat the lockless check 1024 * in wake_userfault() to avoid missing 1025 * wakeups because during the refile both 1026 * waitqueue could become empty if this is the 1027 * only userfault. 1028 */ 1029 write_seqcount_begin(&ctx->refile_seq); 1030 1031 /* 1032 * The fault_pending_wqh.lock prevents the uwq 1033 * to disappear from under us. 1034 * 1035 * Refile this userfault from 1036 * fault_pending_wqh to fault_wqh, it's not 1037 * pending anymore after we read it. 1038 * 1039 * Use list_del() by hand (as 1040 * userfaultfd_wake_function also uses 1041 * list_del_init() by hand) to be sure nobody 1042 * changes __remove_wait_queue() to use 1043 * list_del_init() in turn breaking the 1044 * !list_empty_careful() check in 1045 * handle_userfault(). The uwq->wq.head list 1046 * must never be empty at any time during the 1047 * refile, or the waitqueue could disappear 1048 * from under us. The "wait_queue_head_t" 1049 * parameter of __remove_wait_queue() is unused 1050 * anyway. 1051 */ 1052 list_del(&uwq->wq.entry); 1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1054 1055 write_seqcount_end(&ctx->refile_seq); 1056 1057 /* careful to always initialize msg if ret == 0 */ 1058 *msg = uwq->msg; 1059 spin_unlock(&ctx->fault_pending_wqh.lock); 1060 ret = 0; 1061 break; 1062 } 1063 spin_unlock(&ctx->fault_pending_wqh.lock); 1064 1065 spin_lock(&ctx->event_wqh.lock); 1066 uwq = find_userfault_evt(ctx); 1067 if (uwq) { 1068 *msg = uwq->msg; 1069 1070 if (uwq->msg.event == UFFD_EVENT_FORK) { 1071 fork_nctx = (struct userfaultfd_ctx *) 1072 (unsigned long) 1073 uwq->msg.arg.reserved.reserved1; 1074 list_move(&uwq->wq.entry, &fork_event); 1075 /* 1076 * fork_nctx can be freed as soon as 1077 * we drop the lock, unless we take a 1078 * reference on it. 1079 */ 1080 userfaultfd_ctx_get(fork_nctx); 1081 spin_unlock(&ctx->event_wqh.lock); 1082 ret = 0; 1083 break; 1084 } 1085 1086 userfaultfd_event_complete(ctx, uwq); 1087 spin_unlock(&ctx->event_wqh.lock); 1088 ret = 0; 1089 break; 1090 } 1091 spin_unlock(&ctx->event_wqh.lock); 1092 1093 if (signal_pending(current)) { 1094 ret = -ERESTARTSYS; 1095 break; 1096 } 1097 if (no_wait) { 1098 ret = -EAGAIN; 1099 break; 1100 } 1101 spin_unlock_irq(&ctx->fd_wqh.lock); 1102 schedule(); 1103 spin_lock_irq(&ctx->fd_wqh.lock); 1104 } 1105 __remove_wait_queue(&ctx->fd_wqh, &wait); 1106 __set_current_state(TASK_RUNNING); 1107 spin_unlock_irq(&ctx->fd_wqh.lock); 1108 1109 if (!ret && msg->event == UFFD_EVENT_FORK) { 1110 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1111 spin_lock_irq(&ctx->event_wqh.lock); 1112 if (!list_empty(&fork_event)) { 1113 /* 1114 * The fork thread didn't abort, so we can 1115 * drop the temporary refcount. 1116 */ 1117 userfaultfd_ctx_put(fork_nctx); 1118 1119 uwq = list_first_entry(&fork_event, 1120 typeof(*uwq), 1121 wq.entry); 1122 /* 1123 * If fork_event list wasn't empty and in turn 1124 * the event wasn't already released by fork 1125 * (the event is allocated on fork kernel 1126 * stack), put the event back to its place in 1127 * the event_wq. fork_event head will be freed 1128 * as soon as we return so the event cannot 1129 * stay queued there no matter the current 1130 * "ret" value. 1131 */ 1132 list_del(&uwq->wq.entry); 1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1134 1135 /* 1136 * Leave the event in the waitqueue and report 1137 * error to userland if we failed to resolve 1138 * the userfault fork. 1139 */ 1140 if (likely(!ret)) 1141 userfaultfd_event_complete(ctx, uwq); 1142 } else { 1143 /* 1144 * Here the fork thread aborted and the 1145 * refcount from the fork thread on fork_nctx 1146 * has already been released. We still hold 1147 * the reference we took before releasing the 1148 * lock above. If resolve_userfault_fork 1149 * failed we've to drop it because the 1150 * fork_nctx has to be freed in such case. If 1151 * it succeeded we'll hold it because the new 1152 * uffd references it. 1153 */ 1154 if (ret) 1155 userfaultfd_ctx_put(fork_nctx); 1156 } 1157 spin_unlock_irq(&ctx->event_wqh.lock); 1158 } 1159 1160 return ret; 1161 } 1162 1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1164 size_t count, loff_t *ppos) 1165 { 1166 struct userfaultfd_ctx *ctx = file->private_data; 1167 ssize_t _ret, ret = 0; 1168 struct uffd_msg msg; 1169 int no_wait = file->f_flags & O_NONBLOCK; 1170 1171 if (ctx->state == UFFD_STATE_WAIT_API) 1172 return -EINVAL; 1173 1174 for (;;) { 1175 if (count < sizeof(msg)) 1176 return ret ? ret : -EINVAL; 1177 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1178 if (_ret < 0) 1179 return ret ? ret : _ret; 1180 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1181 return ret ? ret : -EFAULT; 1182 ret += sizeof(msg); 1183 buf += sizeof(msg); 1184 count -= sizeof(msg); 1185 /* 1186 * Allow to read more than one fault at time but only 1187 * block if waiting for the very first one. 1188 */ 1189 no_wait = O_NONBLOCK; 1190 } 1191 } 1192 1193 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1194 struct userfaultfd_wake_range *range) 1195 { 1196 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1197 /* wake all in the range and autoremove */ 1198 if (waitqueue_active(&ctx->fault_pending_wqh)) 1199 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1200 range); 1201 if (waitqueue_active(&ctx->fault_wqh)) 1202 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1203 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1204 } 1205 1206 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1207 struct userfaultfd_wake_range *range) 1208 { 1209 unsigned seq; 1210 bool need_wakeup; 1211 1212 /* 1213 * To be sure waitqueue_active() is not reordered by the CPU 1214 * before the pagetable update, use an explicit SMP memory 1215 * barrier here. PT lock release or mmap_read_unlock(mm) still 1216 * have release semantics that can allow the 1217 * waitqueue_active() to be reordered before the pte update. 1218 */ 1219 smp_mb(); 1220 1221 /* 1222 * Use waitqueue_active because it's very frequent to 1223 * change the address space atomically even if there are no 1224 * userfaults yet. So we take the spinlock only when we're 1225 * sure we've userfaults to wake. 1226 */ 1227 do { 1228 seq = read_seqcount_begin(&ctx->refile_seq); 1229 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1230 waitqueue_active(&ctx->fault_wqh); 1231 cond_resched(); 1232 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1233 if (need_wakeup) 1234 __wake_userfault(ctx, range); 1235 } 1236 1237 static __always_inline int validate_range(struct mm_struct *mm, 1238 __u64 *start, __u64 len) 1239 { 1240 __u64 task_size = mm->task_size; 1241 1242 *start = untagged_addr(*start); 1243 1244 if (*start & ~PAGE_MASK) 1245 return -EINVAL; 1246 if (len & ~PAGE_MASK) 1247 return -EINVAL; 1248 if (!len) 1249 return -EINVAL; 1250 if (*start < mmap_min_addr) 1251 return -EINVAL; 1252 if (*start >= task_size) 1253 return -EINVAL; 1254 if (len > task_size - *start) 1255 return -EINVAL; 1256 return 0; 1257 } 1258 1259 static inline bool vma_can_userfault(struct vm_area_struct *vma, 1260 unsigned long vm_flags) 1261 { 1262 /* FIXME: add WP support to hugetlbfs and shmem */ 1263 return vma_is_anonymous(vma) || 1264 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && 1265 !(vm_flags & VM_UFFD_WP)); 1266 } 1267 1268 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1269 unsigned long arg) 1270 { 1271 struct mm_struct *mm = ctx->mm; 1272 struct vm_area_struct *vma, *prev, *cur; 1273 int ret; 1274 struct uffdio_register uffdio_register; 1275 struct uffdio_register __user *user_uffdio_register; 1276 unsigned long vm_flags, new_flags; 1277 bool found; 1278 bool basic_ioctls; 1279 unsigned long start, end, vma_end; 1280 1281 user_uffdio_register = (struct uffdio_register __user *) arg; 1282 1283 ret = -EFAULT; 1284 if (copy_from_user(&uffdio_register, user_uffdio_register, 1285 sizeof(uffdio_register)-sizeof(__u64))) 1286 goto out; 1287 1288 ret = -EINVAL; 1289 if (!uffdio_register.mode) 1290 goto out; 1291 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1292 UFFDIO_REGISTER_MODE_WP)) 1293 goto out; 1294 vm_flags = 0; 1295 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1296 vm_flags |= VM_UFFD_MISSING; 1297 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) 1298 vm_flags |= VM_UFFD_WP; 1299 1300 ret = validate_range(mm, &uffdio_register.range.start, 1301 uffdio_register.range.len); 1302 if (ret) 1303 goto out; 1304 1305 start = uffdio_register.range.start; 1306 end = start + uffdio_register.range.len; 1307 1308 ret = -ENOMEM; 1309 if (!mmget_not_zero(mm)) 1310 goto out; 1311 1312 mmap_write_lock(mm); 1313 vma = find_vma_prev(mm, start, &prev); 1314 if (!vma) 1315 goto out_unlock; 1316 1317 /* check that there's at least one vma in the range */ 1318 ret = -EINVAL; 1319 if (vma->vm_start >= end) 1320 goto out_unlock; 1321 1322 /* 1323 * If the first vma contains huge pages, make sure start address 1324 * is aligned to huge page size. 1325 */ 1326 if (is_vm_hugetlb_page(vma)) { 1327 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1328 1329 if (start & (vma_hpagesize - 1)) 1330 goto out_unlock; 1331 } 1332 1333 /* 1334 * Search for not compatible vmas. 1335 */ 1336 found = false; 1337 basic_ioctls = false; 1338 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1339 cond_resched(); 1340 1341 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1342 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1343 1344 /* check not compatible vmas */ 1345 ret = -EINVAL; 1346 if (!vma_can_userfault(cur, vm_flags)) 1347 goto out_unlock; 1348 1349 /* 1350 * UFFDIO_COPY will fill file holes even without 1351 * PROT_WRITE. This check enforces that if this is a 1352 * MAP_SHARED, the process has write permission to the backing 1353 * file. If VM_MAYWRITE is set it also enforces that on a 1354 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1355 * F_WRITE_SEAL can be taken until the vma is destroyed. 1356 */ 1357 ret = -EPERM; 1358 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1359 goto out_unlock; 1360 1361 /* 1362 * If this vma contains ending address, and huge pages 1363 * check alignment. 1364 */ 1365 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1366 end > cur->vm_start) { 1367 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1368 1369 ret = -EINVAL; 1370 1371 if (end & (vma_hpagesize - 1)) 1372 goto out_unlock; 1373 } 1374 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1375 goto out_unlock; 1376 1377 /* 1378 * Check that this vma isn't already owned by a 1379 * different userfaultfd. We can't allow more than one 1380 * userfaultfd to own a single vma simultaneously or we 1381 * wouldn't know which one to deliver the userfaults to. 1382 */ 1383 ret = -EBUSY; 1384 if (cur->vm_userfaultfd_ctx.ctx && 1385 cur->vm_userfaultfd_ctx.ctx != ctx) 1386 goto out_unlock; 1387 1388 /* 1389 * Note vmas containing huge pages 1390 */ 1391 if (is_vm_hugetlb_page(cur)) 1392 basic_ioctls = true; 1393 1394 found = true; 1395 } 1396 BUG_ON(!found); 1397 1398 if (vma->vm_start < start) 1399 prev = vma; 1400 1401 ret = 0; 1402 do { 1403 cond_resched(); 1404 1405 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1406 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1407 vma->vm_userfaultfd_ctx.ctx != ctx); 1408 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1409 1410 /* 1411 * Nothing to do: this vma is already registered into this 1412 * userfaultfd and with the right tracking mode too. 1413 */ 1414 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1415 (vma->vm_flags & vm_flags) == vm_flags) 1416 goto skip; 1417 1418 if (vma->vm_start > start) 1419 start = vma->vm_start; 1420 vma_end = min(end, vma->vm_end); 1421 1422 new_flags = (vma->vm_flags & 1423 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; 1424 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1425 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1426 vma_policy(vma), 1427 ((struct vm_userfaultfd_ctx){ ctx })); 1428 if (prev) { 1429 vma = prev; 1430 goto next; 1431 } 1432 if (vma->vm_start < start) { 1433 ret = split_vma(mm, vma, start, 1); 1434 if (ret) 1435 break; 1436 } 1437 if (vma->vm_end > end) { 1438 ret = split_vma(mm, vma, end, 0); 1439 if (ret) 1440 break; 1441 } 1442 next: 1443 /* 1444 * In the vma_merge() successful mprotect-like case 8: 1445 * the next vma was merged into the current one and 1446 * the current one has not been updated yet. 1447 */ 1448 vma->vm_flags = new_flags; 1449 vma->vm_userfaultfd_ctx.ctx = ctx; 1450 1451 skip: 1452 prev = vma; 1453 start = vma->vm_end; 1454 vma = vma->vm_next; 1455 } while (vma && vma->vm_start < end); 1456 out_unlock: 1457 mmap_write_unlock(mm); 1458 mmput(mm); 1459 if (!ret) { 1460 __u64 ioctls_out; 1461 1462 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1463 UFFD_API_RANGE_IOCTLS; 1464 1465 /* 1466 * Declare the WP ioctl only if the WP mode is 1467 * specified and all checks passed with the range 1468 */ 1469 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1470 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1471 1472 /* 1473 * Now that we scanned all vmas we can already tell 1474 * userland which ioctls methods are guaranteed to 1475 * succeed on this range. 1476 */ 1477 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1478 ret = -EFAULT; 1479 } 1480 out: 1481 return ret; 1482 } 1483 1484 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1485 unsigned long arg) 1486 { 1487 struct mm_struct *mm = ctx->mm; 1488 struct vm_area_struct *vma, *prev, *cur; 1489 int ret; 1490 struct uffdio_range uffdio_unregister; 1491 unsigned long new_flags; 1492 bool found; 1493 unsigned long start, end, vma_end; 1494 const void __user *buf = (void __user *)arg; 1495 1496 ret = -EFAULT; 1497 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1498 goto out; 1499 1500 ret = validate_range(mm, &uffdio_unregister.start, 1501 uffdio_unregister.len); 1502 if (ret) 1503 goto out; 1504 1505 start = uffdio_unregister.start; 1506 end = start + uffdio_unregister.len; 1507 1508 ret = -ENOMEM; 1509 if (!mmget_not_zero(mm)) 1510 goto out; 1511 1512 mmap_write_lock(mm); 1513 vma = find_vma_prev(mm, start, &prev); 1514 if (!vma) 1515 goto out_unlock; 1516 1517 /* check that there's at least one vma in the range */ 1518 ret = -EINVAL; 1519 if (vma->vm_start >= end) 1520 goto out_unlock; 1521 1522 /* 1523 * If the first vma contains huge pages, make sure start address 1524 * is aligned to huge page size. 1525 */ 1526 if (is_vm_hugetlb_page(vma)) { 1527 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1528 1529 if (start & (vma_hpagesize - 1)) 1530 goto out_unlock; 1531 } 1532 1533 /* 1534 * Search for not compatible vmas. 1535 */ 1536 found = false; 1537 ret = -EINVAL; 1538 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1539 cond_resched(); 1540 1541 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1542 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1543 1544 /* 1545 * Check not compatible vmas, not strictly required 1546 * here as not compatible vmas cannot have an 1547 * userfaultfd_ctx registered on them, but this 1548 * provides for more strict behavior to notice 1549 * unregistration errors. 1550 */ 1551 if (!vma_can_userfault(cur, cur->vm_flags)) 1552 goto out_unlock; 1553 1554 found = true; 1555 } 1556 BUG_ON(!found); 1557 1558 if (vma->vm_start < start) 1559 prev = vma; 1560 1561 ret = 0; 1562 do { 1563 cond_resched(); 1564 1565 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1566 1567 /* 1568 * Nothing to do: this vma is already registered into this 1569 * userfaultfd and with the right tracking mode too. 1570 */ 1571 if (!vma->vm_userfaultfd_ctx.ctx) 1572 goto skip; 1573 1574 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1575 1576 if (vma->vm_start > start) 1577 start = vma->vm_start; 1578 vma_end = min(end, vma->vm_end); 1579 1580 if (userfaultfd_missing(vma)) { 1581 /* 1582 * Wake any concurrent pending userfault while 1583 * we unregister, so they will not hang 1584 * permanently and it avoids userland to call 1585 * UFFDIO_WAKE explicitly. 1586 */ 1587 struct userfaultfd_wake_range range; 1588 range.start = start; 1589 range.len = vma_end - start; 1590 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1591 } 1592 1593 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1594 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1595 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1596 vma_policy(vma), 1597 NULL_VM_UFFD_CTX); 1598 if (prev) { 1599 vma = prev; 1600 goto next; 1601 } 1602 if (vma->vm_start < start) { 1603 ret = split_vma(mm, vma, start, 1); 1604 if (ret) 1605 break; 1606 } 1607 if (vma->vm_end > end) { 1608 ret = split_vma(mm, vma, end, 0); 1609 if (ret) 1610 break; 1611 } 1612 next: 1613 /* 1614 * In the vma_merge() successful mprotect-like case 8: 1615 * the next vma was merged into the current one and 1616 * the current one has not been updated yet. 1617 */ 1618 vma->vm_flags = new_flags; 1619 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1620 1621 skip: 1622 prev = vma; 1623 start = vma->vm_end; 1624 vma = vma->vm_next; 1625 } while (vma && vma->vm_start < end); 1626 out_unlock: 1627 mmap_write_unlock(mm); 1628 mmput(mm); 1629 out: 1630 return ret; 1631 } 1632 1633 /* 1634 * userfaultfd_wake may be used in combination with the 1635 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1636 */ 1637 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1638 unsigned long arg) 1639 { 1640 int ret; 1641 struct uffdio_range uffdio_wake; 1642 struct userfaultfd_wake_range range; 1643 const void __user *buf = (void __user *)arg; 1644 1645 ret = -EFAULT; 1646 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1647 goto out; 1648 1649 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); 1650 if (ret) 1651 goto out; 1652 1653 range.start = uffdio_wake.start; 1654 range.len = uffdio_wake.len; 1655 1656 /* 1657 * len == 0 means wake all and we don't want to wake all here, 1658 * so check it again to be sure. 1659 */ 1660 VM_BUG_ON(!range.len); 1661 1662 wake_userfault(ctx, &range); 1663 ret = 0; 1664 1665 out: 1666 return ret; 1667 } 1668 1669 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1670 unsigned long arg) 1671 { 1672 __s64 ret; 1673 struct uffdio_copy uffdio_copy; 1674 struct uffdio_copy __user *user_uffdio_copy; 1675 struct userfaultfd_wake_range range; 1676 1677 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1678 1679 ret = -EAGAIN; 1680 if (READ_ONCE(ctx->mmap_changing)) 1681 goto out; 1682 1683 ret = -EFAULT; 1684 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1685 /* don't copy "copy" last field */ 1686 sizeof(uffdio_copy)-sizeof(__s64))) 1687 goto out; 1688 1689 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); 1690 if (ret) 1691 goto out; 1692 /* 1693 * double check for wraparound just in case. copy_from_user() 1694 * will later check uffdio_copy.src + uffdio_copy.len to fit 1695 * in the userland range. 1696 */ 1697 ret = -EINVAL; 1698 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1699 goto out; 1700 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1701 goto out; 1702 if (mmget_not_zero(ctx->mm)) { 1703 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1704 uffdio_copy.len, &ctx->mmap_changing, 1705 uffdio_copy.mode); 1706 mmput(ctx->mm); 1707 } else { 1708 return -ESRCH; 1709 } 1710 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1711 return -EFAULT; 1712 if (ret < 0) 1713 goto out; 1714 BUG_ON(!ret); 1715 /* len == 0 would wake all */ 1716 range.len = ret; 1717 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1718 range.start = uffdio_copy.dst; 1719 wake_userfault(ctx, &range); 1720 } 1721 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1722 out: 1723 return ret; 1724 } 1725 1726 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1727 unsigned long arg) 1728 { 1729 __s64 ret; 1730 struct uffdio_zeropage uffdio_zeropage; 1731 struct uffdio_zeropage __user *user_uffdio_zeropage; 1732 struct userfaultfd_wake_range range; 1733 1734 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1735 1736 ret = -EAGAIN; 1737 if (READ_ONCE(ctx->mmap_changing)) 1738 goto out; 1739 1740 ret = -EFAULT; 1741 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1742 /* don't copy "zeropage" last field */ 1743 sizeof(uffdio_zeropage)-sizeof(__s64))) 1744 goto out; 1745 1746 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, 1747 uffdio_zeropage.range.len); 1748 if (ret) 1749 goto out; 1750 ret = -EINVAL; 1751 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1752 goto out; 1753 1754 if (mmget_not_zero(ctx->mm)) { 1755 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1756 uffdio_zeropage.range.len, 1757 &ctx->mmap_changing); 1758 mmput(ctx->mm); 1759 } else { 1760 return -ESRCH; 1761 } 1762 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1763 return -EFAULT; 1764 if (ret < 0) 1765 goto out; 1766 /* len == 0 would wake all */ 1767 BUG_ON(!ret); 1768 range.len = ret; 1769 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1770 range.start = uffdio_zeropage.range.start; 1771 wake_userfault(ctx, &range); 1772 } 1773 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1774 out: 1775 return ret; 1776 } 1777 1778 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1779 unsigned long arg) 1780 { 1781 int ret; 1782 struct uffdio_writeprotect uffdio_wp; 1783 struct uffdio_writeprotect __user *user_uffdio_wp; 1784 struct userfaultfd_wake_range range; 1785 bool mode_wp, mode_dontwake; 1786 1787 if (READ_ONCE(ctx->mmap_changing)) 1788 return -EAGAIN; 1789 1790 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1791 1792 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1793 sizeof(struct uffdio_writeprotect))) 1794 return -EFAULT; 1795 1796 ret = validate_range(ctx->mm, &uffdio_wp.range.start, 1797 uffdio_wp.range.len); 1798 if (ret) 1799 return ret; 1800 1801 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1802 UFFDIO_WRITEPROTECT_MODE_WP)) 1803 return -EINVAL; 1804 1805 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1806 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1807 1808 if (mode_wp && mode_dontwake) 1809 return -EINVAL; 1810 1811 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1812 uffdio_wp.range.len, mode_wp, 1813 &ctx->mmap_changing); 1814 if (ret) 1815 return ret; 1816 1817 if (!mode_wp && !mode_dontwake) { 1818 range.start = uffdio_wp.range.start; 1819 range.len = uffdio_wp.range.len; 1820 wake_userfault(ctx, &range); 1821 } 1822 return ret; 1823 } 1824 1825 static inline unsigned int uffd_ctx_features(__u64 user_features) 1826 { 1827 /* 1828 * For the current set of features the bits just coincide 1829 */ 1830 return (unsigned int)user_features; 1831 } 1832 1833 /* 1834 * userland asks for a certain API version and we return which bits 1835 * and ioctl commands are implemented in this kernel for such API 1836 * version or -EINVAL if unknown. 1837 */ 1838 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1839 unsigned long arg) 1840 { 1841 struct uffdio_api uffdio_api; 1842 void __user *buf = (void __user *)arg; 1843 int ret; 1844 __u64 features; 1845 1846 ret = -EINVAL; 1847 if (ctx->state != UFFD_STATE_WAIT_API) 1848 goto out; 1849 ret = -EFAULT; 1850 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1851 goto out; 1852 features = uffdio_api.features; 1853 ret = -EINVAL; 1854 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1855 goto err_out; 1856 ret = -EPERM; 1857 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1858 goto err_out; 1859 /* report all available features and ioctls to userland */ 1860 uffdio_api.features = UFFD_API_FEATURES; 1861 uffdio_api.ioctls = UFFD_API_IOCTLS; 1862 ret = -EFAULT; 1863 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1864 goto out; 1865 ctx->state = UFFD_STATE_RUNNING; 1866 /* only enable the requested features for this uffd context */ 1867 ctx->features = uffd_ctx_features(features); 1868 ret = 0; 1869 out: 1870 return ret; 1871 err_out: 1872 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1873 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1874 ret = -EFAULT; 1875 goto out; 1876 } 1877 1878 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1879 unsigned long arg) 1880 { 1881 int ret = -EINVAL; 1882 struct userfaultfd_ctx *ctx = file->private_data; 1883 1884 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1885 return -EINVAL; 1886 1887 switch(cmd) { 1888 case UFFDIO_API: 1889 ret = userfaultfd_api(ctx, arg); 1890 break; 1891 case UFFDIO_REGISTER: 1892 ret = userfaultfd_register(ctx, arg); 1893 break; 1894 case UFFDIO_UNREGISTER: 1895 ret = userfaultfd_unregister(ctx, arg); 1896 break; 1897 case UFFDIO_WAKE: 1898 ret = userfaultfd_wake(ctx, arg); 1899 break; 1900 case UFFDIO_COPY: 1901 ret = userfaultfd_copy(ctx, arg); 1902 break; 1903 case UFFDIO_ZEROPAGE: 1904 ret = userfaultfd_zeropage(ctx, arg); 1905 break; 1906 case UFFDIO_WRITEPROTECT: 1907 ret = userfaultfd_writeprotect(ctx, arg); 1908 break; 1909 } 1910 return ret; 1911 } 1912 1913 #ifdef CONFIG_PROC_FS 1914 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1915 { 1916 struct userfaultfd_ctx *ctx = f->private_data; 1917 wait_queue_entry_t *wq; 1918 unsigned long pending = 0, total = 0; 1919 1920 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1921 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1922 pending++; 1923 total++; 1924 } 1925 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1926 total++; 1927 } 1928 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1929 1930 /* 1931 * If more protocols will be added, there will be all shown 1932 * separated by a space. Like this: 1933 * protocols: aa:... bb:... 1934 */ 1935 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1936 pending, total, UFFD_API, ctx->features, 1937 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1938 } 1939 #endif 1940 1941 static const struct file_operations userfaultfd_fops = { 1942 #ifdef CONFIG_PROC_FS 1943 .show_fdinfo = userfaultfd_show_fdinfo, 1944 #endif 1945 .release = userfaultfd_release, 1946 .poll = userfaultfd_poll, 1947 .read = userfaultfd_read, 1948 .unlocked_ioctl = userfaultfd_ioctl, 1949 .compat_ioctl = compat_ptr_ioctl, 1950 .llseek = noop_llseek, 1951 }; 1952 1953 static void init_once_userfaultfd_ctx(void *mem) 1954 { 1955 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1956 1957 init_waitqueue_head(&ctx->fault_pending_wqh); 1958 init_waitqueue_head(&ctx->fault_wqh); 1959 init_waitqueue_head(&ctx->event_wqh); 1960 init_waitqueue_head(&ctx->fd_wqh); 1961 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 1962 } 1963 1964 SYSCALL_DEFINE1(userfaultfd, int, flags) 1965 { 1966 struct userfaultfd_ctx *ctx; 1967 int fd; 1968 1969 if (!sysctl_unprivileged_userfaultfd && 1970 (flags & UFFD_USER_MODE_ONLY) == 0 && 1971 !capable(CAP_SYS_PTRACE)) { 1972 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 1973 "sysctl knob to 1 if kernel faults must be handled " 1974 "without obtaining CAP_SYS_PTRACE capability\n"); 1975 return -EPERM; 1976 } 1977 1978 BUG_ON(!current->mm); 1979 1980 /* Check the UFFD_* constants for consistency. */ 1981 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 1982 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1983 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1984 1985 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 1986 return -EINVAL; 1987 1988 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1989 if (!ctx) 1990 return -ENOMEM; 1991 1992 refcount_set(&ctx->refcount, 1); 1993 ctx->flags = flags; 1994 ctx->features = 0; 1995 ctx->state = UFFD_STATE_WAIT_API; 1996 ctx->released = false; 1997 ctx->mmap_changing = false; 1998 ctx->mm = current->mm; 1999 /* prevent the mm struct to be freed */ 2000 mmgrab(ctx->mm); 2001 2002 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 2003 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 2004 if (fd < 0) { 2005 mmdrop(ctx->mm); 2006 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2007 } 2008 return fd; 2009 } 2010 2011 static int __init userfaultfd_init(void) 2012 { 2013 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2014 sizeof(struct userfaultfd_ctx), 2015 0, 2016 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2017 init_once_userfaultfd_ctx); 2018 return 0; 2019 } 2020 __initcall(userfaultfd_init); 2021