1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ufs/inode.c 4 * 5 * Copyright (C) 1998 6 * Daniel Pirkl <daniel.pirkl@email.cz> 7 * Charles University, Faculty of Mathematics and Physics 8 * 9 * from 10 * 11 * linux/fs/ext2/inode.c 12 * 13 * Copyright (C) 1992, 1993, 1994, 1995 14 * Remy Card (card@masi.ibp.fr) 15 * Laboratoire MASI - Institut Blaise Pascal 16 * Universite Pierre et Marie Curie (Paris VI) 17 * 18 * from 19 * 20 * linux/fs/minix/inode.c 21 * 22 * Copyright (C) 1991, 1992 Linus Torvalds 23 * 24 * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993 25 * Big-endian to little-endian byte-swapping/bitmaps by 26 * David S. Miller (davem@caip.rutgers.edu), 1995 27 */ 28 29 #include <linux/uaccess.h> 30 31 #include <linux/errno.h> 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/stat.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/iversion.h> 40 41 #include "ufs_fs.h" 42 #include "ufs.h" 43 #include "swab.h" 44 #include "util.h" 45 46 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4]) 47 { 48 struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi; 49 int ptrs = uspi->s_apb; 50 int ptrs_bits = uspi->s_apbshift; 51 const long direct_blocks = UFS_NDADDR, 52 indirect_blocks = ptrs, 53 double_blocks = (1 << (ptrs_bits * 2)); 54 int n = 0; 55 56 57 UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks); 58 if (i_block < direct_blocks) { 59 offsets[n++] = i_block; 60 } else if ((i_block -= direct_blocks) < indirect_blocks) { 61 offsets[n++] = UFS_IND_BLOCK; 62 offsets[n++] = i_block; 63 } else if ((i_block -= indirect_blocks) < double_blocks) { 64 offsets[n++] = UFS_DIND_BLOCK; 65 offsets[n++] = i_block >> ptrs_bits; 66 offsets[n++] = i_block & (ptrs - 1); 67 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 68 offsets[n++] = UFS_TIND_BLOCK; 69 offsets[n++] = i_block >> (ptrs_bits * 2); 70 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 71 offsets[n++] = i_block & (ptrs - 1); 72 } else { 73 ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big"); 74 } 75 return n; 76 } 77 78 typedef struct { 79 void *p; 80 union { 81 __fs32 key32; 82 __fs64 key64; 83 }; 84 struct buffer_head *bh; 85 } Indirect; 86 87 static inline int grow_chain32(struct ufs_inode_info *ufsi, 88 struct buffer_head *bh, __fs32 *v, 89 Indirect *from, Indirect *to) 90 { 91 Indirect *p; 92 unsigned seq; 93 to->bh = bh; 94 do { 95 seq = read_seqbegin(&ufsi->meta_lock); 96 to->key32 = *(__fs32 *)(to->p = v); 97 for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++) 98 ; 99 } while (read_seqretry(&ufsi->meta_lock, seq)); 100 return (p > to); 101 } 102 103 static inline int grow_chain64(struct ufs_inode_info *ufsi, 104 struct buffer_head *bh, __fs64 *v, 105 Indirect *from, Indirect *to) 106 { 107 Indirect *p; 108 unsigned seq; 109 to->bh = bh; 110 do { 111 seq = read_seqbegin(&ufsi->meta_lock); 112 to->key64 = *(__fs64 *)(to->p = v); 113 for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++) 114 ; 115 } while (read_seqretry(&ufsi->meta_lock, seq)); 116 return (p > to); 117 } 118 119 /* 120 * Returns the location of the fragment from 121 * the beginning of the filesystem. 122 */ 123 124 static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth) 125 { 126 struct ufs_inode_info *ufsi = UFS_I(inode); 127 struct super_block *sb = inode->i_sb; 128 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 129 u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift; 130 int shift = uspi->s_apbshift-uspi->s_fpbshift; 131 Indirect chain[4], *q = chain; 132 unsigned *p; 133 unsigned flags = UFS_SB(sb)->s_flags; 134 u64 res = 0; 135 136 UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n", 137 uspi->s_fpbshift, uspi->s_apbmask, 138 (unsigned long long)mask); 139 140 if (depth == 0) 141 goto no_block; 142 143 again: 144 p = offsets; 145 146 if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 147 goto ufs2; 148 149 if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q)) 150 goto changed; 151 if (!q->key32) 152 goto no_block; 153 while (--depth) { 154 __fs32 *ptr; 155 struct buffer_head *bh; 156 unsigned n = *p++; 157 158 bh = sb_bread(sb, uspi->s_sbbase + 159 fs32_to_cpu(sb, q->key32) + (n>>shift)); 160 if (!bh) 161 goto no_block; 162 ptr = (__fs32 *)bh->b_data + (n & mask); 163 if (!grow_chain32(ufsi, bh, ptr, chain, ++q)) 164 goto changed; 165 if (!q->key32) 166 goto no_block; 167 } 168 res = fs32_to_cpu(sb, q->key32); 169 goto found; 170 171 ufs2: 172 if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q)) 173 goto changed; 174 if (!q->key64) 175 goto no_block; 176 177 while (--depth) { 178 __fs64 *ptr; 179 struct buffer_head *bh; 180 unsigned n = *p++; 181 182 bh = sb_bread(sb, uspi->s_sbbase + 183 fs64_to_cpu(sb, q->key64) + (n>>shift)); 184 if (!bh) 185 goto no_block; 186 ptr = (__fs64 *)bh->b_data + (n & mask); 187 if (!grow_chain64(ufsi, bh, ptr, chain, ++q)) 188 goto changed; 189 if (!q->key64) 190 goto no_block; 191 } 192 res = fs64_to_cpu(sb, q->key64); 193 found: 194 res += uspi->s_sbbase; 195 no_block: 196 while (q > chain) { 197 brelse(q->bh); 198 q--; 199 } 200 return res; 201 202 changed: 203 while (q > chain) { 204 brelse(q->bh); 205 q--; 206 } 207 goto again; 208 } 209 210 /* 211 * Unpacking tails: we have a file with partial final block and 212 * we had been asked to extend it. If the fragment being written 213 * is within the same block, we need to extend the tail just to cover 214 * that fragment. Otherwise the tail is extended to full block. 215 * 216 * Note that we might need to create a _new_ tail, but that will 217 * be handled elsewhere; this is strictly for resizing old 218 * ones. 219 */ 220 static bool 221 ufs_extend_tail(struct inode *inode, u64 writes_to, 222 int *err, struct page *locked_page) 223 { 224 struct ufs_inode_info *ufsi = UFS_I(inode); 225 struct super_block *sb = inode->i_sb; 226 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 227 unsigned lastfrag = ufsi->i_lastfrag; /* it's a short file, so unsigned is enough */ 228 unsigned block = ufs_fragstoblks(lastfrag); 229 unsigned new_size; 230 void *p; 231 u64 tmp; 232 233 if (writes_to < (lastfrag | uspi->s_fpbmask)) 234 new_size = (writes_to & uspi->s_fpbmask) + 1; 235 else 236 new_size = uspi->s_fpb; 237 238 p = ufs_get_direct_data_ptr(uspi, ufsi, block); 239 tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p), 240 new_size - (lastfrag & uspi->s_fpbmask), err, 241 locked_page); 242 return tmp != 0; 243 } 244 245 /** 246 * ufs_inode_getfrag() - allocate new fragment(s) 247 * @inode: pointer to inode 248 * @index: number of block pointer within the inode's array. 249 * @new_fragment: number of new allocated fragment(s) 250 * @err: we set it if something wrong 251 * @new: we set it if we allocate new block 252 * @locked_page: for ufs_new_fragments() 253 */ 254 static u64 255 ufs_inode_getfrag(struct inode *inode, unsigned index, 256 sector_t new_fragment, int *err, 257 int *new, struct page *locked_page) 258 { 259 struct ufs_inode_info *ufsi = UFS_I(inode); 260 struct super_block *sb = inode->i_sb; 261 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 262 u64 tmp, goal, lastfrag; 263 unsigned nfrags = uspi->s_fpb; 264 void *p; 265 266 /* TODO : to be done for write support 267 if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 268 goto ufs2; 269 */ 270 271 p = ufs_get_direct_data_ptr(uspi, ufsi, index); 272 tmp = ufs_data_ptr_to_cpu(sb, p); 273 if (tmp) 274 goto out; 275 276 lastfrag = ufsi->i_lastfrag; 277 278 /* will that be a new tail? */ 279 if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag) 280 nfrags = (new_fragment & uspi->s_fpbmask) + 1; 281 282 goal = 0; 283 if (index) { 284 goal = ufs_data_ptr_to_cpu(sb, 285 ufs_get_direct_data_ptr(uspi, ufsi, index - 1)); 286 if (goal) 287 goal += uspi->s_fpb; 288 } 289 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), 290 goal, nfrags, err, locked_page); 291 292 if (!tmp) { 293 *err = -ENOSPC; 294 return 0; 295 } 296 297 if (new) 298 *new = 1; 299 inode->i_ctime = current_time(inode); 300 if (IS_SYNC(inode)) 301 ufs_sync_inode (inode); 302 mark_inode_dirty(inode); 303 out: 304 return tmp + uspi->s_sbbase; 305 306 /* This part : To be implemented .... 307 Required only for writing, not required for READ-ONLY. 308 ufs2: 309 310 u2_block = ufs_fragstoblks(fragment); 311 u2_blockoff = ufs_fragnum(fragment); 312 p = ufsi->i_u1.u2_i_data + block; 313 goal = 0; 314 315 repeat2: 316 tmp = fs32_to_cpu(sb, *p); 317 lastfrag = ufsi->i_lastfrag; 318 319 */ 320 } 321 322 /** 323 * ufs_inode_getblock() - allocate new block 324 * @inode: pointer to inode 325 * @ind_block: block number of the indirect block 326 * @index: number of pointer within the indirect block 327 * @new_fragment: number of new allocated fragment 328 * (block will hold this fragment and also uspi->s_fpb-1) 329 * @err: see ufs_inode_getfrag() 330 * @new: see ufs_inode_getfrag() 331 * @locked_page: see ufs_inode_getfrag() 332 */ 333 static u64 334 ufs_inode_getblock(struct inode *inode, u64 ind_block, 335 unsigned index, sector_t new_fragment, int *err, 336 int *new, struct page *locked_page) 337 { 338 struct super_block *sb = inode->i_sb; 339 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 340 int shift = uspi->s_apbshift - uspi->s_fpbshift; 341 u64 tmp = 0, goal; 342 struct buffer_head *bh; 343 void *p; 344 345 if (!ind_block) 346 return 0; 347 348 bh = sb_bread(sb, ind_block + (index >> shift)); 349 if (unlikely(!bh)) { 350 *err = -EIO; 351 return 0; 352 } 353 354 index &= uspi->s_apbmask >> uspi->s_fpbshift; 355 if (uspi->fs_magic == UFS2_MAGIC) 356 p = (__fs64 *)bh->b_data + index; 357 else 358 p = (__fs32 *)bh->b_data + index; 359 360 tmp = ufs_data_ptr_to_cpu(sb, p); 361 if (tmp) 362 goto out; 363 364 if (index && (uspi->fs_magic == UFS2_MAGIC ? 365 (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) : 366 (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1])))) 367 goal = tmp + uspi->s_fpb; 368 else 369 goal = bh->b_blocknr + uspi->s_fpb; 370 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, 371 uspi->s_fpb, err, locked_page); 372 if (!tmp) 373 goto out; 374 375 if (new) 376 *new = 1; 377 378 mark_buffer_dirty(bh); 379 if (IS_SYNC(inode)) 380 sync_dirty_buffer(bh); 381 inode->i_ctime = current_time(inode); 382 mark_inode_dirty(inode); 383 out: 384 brelse (bh); 385 UFSD("EXIT\n"); 386 if (tmp) 387 tmp += uspi->s_sbbase; 388 return tmp; 389 } 390 391 /** 392 * ufs_getfrag_block() - `get_block_t' function, interface between UFS and 393 * readpage, writepage and so on 394 */ 395 396 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create) 397 { 398 struct super_block *sb = inode->i_sb; 399 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 400 int err = 0, new = 0; 401 unsigned offsets[4]; 402 int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets); 403 u64 phys64 = 0; 404 unsigned frag = fragment & uspi->s_fpbmask; 405 406 phys64 = ufs_frag_map(inode, offsets, depth); 407 if (!create) 408 goto done; 409 410 if (phys64) { 411 if (fragment >= UFS_NDIR_FRAGMENT) 412 goto done; 413 read_seqlock_excl(&UFS_I(inode)->meta_lock); 414 if (fragment < UFS_I(inode)->i_lastfrag) { 415 read_sequnlock_excl(&UFS_I(inode)->meta_lock); 416 goto done; 417 } 418 read_sequnlock_excl(&UFS_I(inode)->meta_lock); 419 } 420 /* This code entered only while writing ....? */ 421 422 mutex_lock(&UFS_I(inode)->truncate_mutex); 423 424 UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment); 425 if (unlikely(!depth)) { 426 ufs_warning(sb, "ufs_get_block", "block > big"); 427 err = -EIO; 428 goto out; 429 } 430 431 if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) { 432 unsigned lastfrag = UFS_I(inode)->i_lastfrag; 433 unsigned tailfrags = lastfrag & uspi->s_fpbmask; 434 if (tailfrags && fragment >= lastfrag) { 435 if (!ufs_extend_tail(inode, fragment, 436 &err, bh_result->b_page)) 437 goto out; 438 } 439 } 440 441 if (depth == 1) { 442 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, 443 &err, &new, bh_result->b_page); 444 } else { 445 int i; 446 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, 447 &err, NULL, NULL); 448 for (i = 1; i < depth - 1; i++) 449 phys64 = ufs_inode_getblock(inode, phys64, offsets[i], 450 fragment, &err, NULL, NULL); 451 phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1], 452 fragment, &err, &new, bh_result->b_page); 453 } 454 out: 455 if (phys64) { 456 phys64 += frag; 457 map_bh(bh_result, sb, phys64); 458 if (new) 459 set_buffer_new(bh_result); 460 } 461 mutex_unlock(&UFS_I(inode)->truncate_mutex); 462 return err; 463 464 done: 465 if (phys64) 466 map_bh(bh_result, sb, phys64 + frag); 467 return 0; 468 } 469 470 static int ufs_writepage(struct page *page, struct writeback_control *wbc) 471 { 472 return block_write_full_page(page,ufs_getfrag_block,wbc); 473 } 474 475 static int ufs_readpage(struct file *file, struct page *page) 476 { 477 return block_read_full_page(page,ufs_getfrag_block); 478 } 479 480 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len) 481 { 482 return __block_write_begin(page, pos, len, ufs_getfrag_block); 483 } 484 485 static void ufs_truncate_blocks(struct inode *); 486 487 static void ufs_write_failed(struct address_space *mapping, loff_t to) 488 { 489 struct inode *inode = mapping->host; 490 491 if (to > inode->i_size) { 492 truncate_pagecache(inode, inode->i_size); 493 ufs_truncate_blocks(inode); 494 } 495 } 496 497 static int ufs_write_begin(struct file *file, struct address_space *mapping, 498 loff_t pos, unsigned len, unsigned flags, 499 struct page **pagep, void **fsdata) 500 { 501 int ret; 502 503 ret = block_write_begin(mapping, pos, len, flags, pagep, 504 ufs_getfrag_block); 505 if (unlikely(ret)) 506 ufs_write_failed(mapping, pos + len); 507 508 return ret; 509 } 510 511 static int ufs_write_end(struct file *file, struct address_space *mapping, 512 loff_t pos, unsigned len, unsigned copied, 513 struct page *page, void *fsdata) 514 { 515 int ret; 516 517 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 518 if (ret < len) 519 ufs_write_failed(mapping, pos + len); 520 return ret; 521 } 522 523 static sector_t ufs_bmap(struct address_space *mapping, sector_t block) 524 { 525 return generic_block_bmap(mapping,block,ufs_getfrag_block); 526 } 527 528 const struct address_space_operations ufs_aops = { 529 .readpage = ufs_readpage, 530 .writepage = ufs_writepage, 531 .write_begin = ufs_write_begin, 532 .write_end = ufs_write_end, 533 .bmap = ufs_bmap 534 }; 535 536 static void ufs_set_inode_ops(struct inode *inode) 537 { 538 if (S_ISREG(inode->i_mode)) { 539 inode->i_op = &ufs_file_inode_operations; 540 inode->i_fop = &ufs_file_operations; 541 inode->i_mapping->a_ops = &ufs_aops; 542 } else if (S_ISDIR(inode->i_mode)) { 543 inode->i_op = &ufs_dir_inode_operations; 544 inode->i_fop = &ufs_dir_operations; 545 inode->i_mapping->a_ops = &ufs_aops; 546 } else if (S_ISLNK(inode->i_mode)) { 547 if (!inode->i_blocks) { 548 inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink; 549 inode->i_op = &simple_symlink_inode_operations; 550 } else { 551 inode->i_mapping->a_ops = &ufs_aops; 552 inode->i_op = &page_symlink_inode_operations; 553 inode_nohighmem(inode); 554 } 555 } else 556 init_special_inode(inode, inode->i_mode, 557 ufs_get_inode_dev(inode->i_sb, UFS_I(inode))); 558 } 559 560 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode) 561 { 562 struct ufs_inode_info *ufsi = UFS_I(inode); 563 struct super_block *sb = inode->i_sb; 564 umode_t mode; 565 566 /* 567 * Copy data to the in-core inode. 568 */ 569 inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode); 570 set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink)); 571 if (inode->i_nlink == 0) 572 return -ESTALE; 573 574 /* 575 * Linux now has 32-bit uid and gid, so we can support EFT. 576 */ 577 i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode)); 578 i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode)); 579 580 inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size); 581 inode->i_atime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec); 582 inode->i_ctime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec); 583 inode->i_mtime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec); 584 inode->i_mtime.tv_nsec = 0; 585 inode->i_atime.tv_nsec = 0; 586 inode->i_ctime.tv_nsec = 0; 587 inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks); 588 inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen); 589 ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags); 590 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 591 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 592 593 594 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 595 memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr, 596 sizeof(ufs_inode->ui_u2.ui_addr)); 597 } else { 598 memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink, 599 sizeof(ufs_inode->ui_u2.ui_symlink) - 1); 600 ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0; 601 } 602 return 0; 603 } 604 605 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode) 606 { 607 struct ufs_inode_info *ufsi = UFS_I(inode); 608 struct super_block *sb = inode->i_sb; 609 umode_t mode; 610 611 UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino); 612 /* 613 * Copy data to the in-core inode. 614 */ 615 inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode); 616 set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink)); 617 if (inode->i_nlink == 0) 618 return -ESTALE; 619 620 /* 621 * Linux now has 32-bit uid and gid, so we can support EFT. 622 */ 623 i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid)); 624 i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid)); 625 626 inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size); 627 inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime); 628 inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime); 629 inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime); 630 inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec); 631 inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec); 632 inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec); 633 inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks); 634 inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen); 635 ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags); 636 /* 637 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 638 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 639 */ 640 641 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 642 memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr, 643 sizeof(ufs2_inode->ui_u2.ui_addr)); 644 } else { 645 memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink, 646 sizeof(ufs2_inode->ui_u2.ui_symlink) - 1); 647 ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0; 648 } 649 return 0; 650 } 651 652 struct inode *ufs_iget(struct super_block *sb, unsigned long ino) 653 { 654 struct ufs_inode_info *ufsi; 655 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 656 struct buffer_head * bh; 657 struct inode *inode; 658 int err = -EIO; 659 660 UFSD("ENTER, ino %lu\n", ino); 661 662 if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) { 663 ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n", 664 ino); 665 return ERR_PTR(-EIO); 666 } 667 668 inode = iget_locked(sb, ino); 669 if (!inode) 670 return ERR_PTR(-ENOMEM); 671 if (!(inode->i_state & I_NEW)) 672 return inode; 673 674 ufsi = UFS_I(inode); 675 676 bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); 677 if (!bh) { 678 ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", 679 inode->i_ino); 680 goto bad_inode; 681 } 682 if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { 683 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 684 685 err = ufs2_read_inode(inode, 686 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 687 } else { 688 struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data; 689 690 err = ufs1_read_inode(inode, 691 ufs_inode + ufs_inotofsbo(inode->i_ino)); 692 } 693 brelse(bh); 694 if (err) 695 goto bad_inode; 696 697 inode_inc_iversion(inode); 698 ufsi->i_lastfrag = 699 (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift; 700 ufsi->i_dir_start_lookup = 0; 701 ufsi->i_osync = 0; 702 703 ufs_set_inode_ops(inode); 704 705 UFSD("EXIT\n"); 706 unlock_new_inode(inode); 707 return inode; 708 709 bad_inode: 710 iget_failed(inode); 711 return ERR_PTR(err); 712 } 713 714 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode) 715 { 716 struct super_block *sb = inode->i_sb; 717 struct ufs_inode_info *ufsi = UFS_I(inode); 718 719 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 720 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 721 722 ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode)); 723 ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode)); 724 725 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 726 ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec); 727 ufs_inode->ui_atime.tv_usec = 0; 728 ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec); 729 ufs_inode->ui_ctime.tv_usec = 0; 730 ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec); 731 ufs_inode->ui_mtime.tv_usec = 0; 732 ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks); 733 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 734 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 735 736 if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) { 737 ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow); 738 ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag); 739 } 740 741 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 742 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 743 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0]; 744 } else if (inode->i_blocks) { 745 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data, 746 sizeof(ufs_inode->ui_u2.ui_addr)); 747 } 748 else { 749 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 750 sizeof(ufs_inode->ui_u2.ui_symlink)); 751 } 752 753 if (!inode->i_nlink) 754 memset (ufs_inode, 0, sizeof(struct ufs_inode)); 755 } 756 757 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode) 758 { 759 struct super_block *sb = inode->i_sb; 760 struct ufs_inode_info *ufsi = UFS_I(inode); 761 762 UFSD("ENTER\n"); 763 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 764 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 765 766 ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode)); 767 ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode)); 768 769 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 770 ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec); 771 ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec); 772 ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec); 773 ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec); 774 ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec); 775 ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec); 776 777 ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks); 778 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 779 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 780 781 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 782 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 783 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0]; 784 } else if (inode->i_blocks) { 785 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data, 786 sizeof(ufs_inode->ui_u2.ui_addr)); 787 } else { 788 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 789 sizeof(ufs_inode->ui_u2.ui_symlink)); 790 } 791 792 if (!inode->i_nlink) 793 memset (ufs_inode, 0, sizeof(struct ufs2_inode)); 794 UFSD("EXIT\n"); 795 } 796 797 static int ufs_update_inode(struct inode * inode, int do_sync) 798 { 799 struct super_block *sb = inode->i_sb; 800 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 801 struct buffer_head * bh; 802 803 UFSD("ENTER, ino %lu\n", inode->i_ino); 804 805 if (inode->i_ino < UFS_ROOTINO || 806 inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) { 807 ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino); 808 return -1; 809 } 810 811 bh = sb_bread(sb, ufs_inotofsba(inode->i_ino)); 812 if (!bh) { 813 ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); 814 return -1; 815 } 816 if (uspi->fs_magic == UFS2_MAGIC) { 817 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 818 819 ufs2_update_inode(inode, 820 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 821 } else { 822 struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data; 823 824 ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); 825 } 826 827 mark_buffer_dirty(bh); 828 if (do_sync) 829 sync_dirty_buffer(bh); 830 brelse (bh); 831 832 UFSD("EXIT\n"); 833 return 0; 834 } 835 836 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc) 837 { 838 return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 839 } 840 841 int ufs_sync_inode (struct inode *inode) 842 { 843 return ufs_update_inode (inode, 1); 844 } 845 846 void ufs_evict_inode(struct inode * inode) 847 { 848 int want_delete = 0; 849 850 if (!inode->i_nlink && !is_bad_inode(inode)) 851 want_delete = 1; 852 853 truncate_inode_pages_final(&inode->i_data); 854 if (want_delete) { 855 inode->i_size = 0; 856 if (inode->i_blocks && 857 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 858 S_ISLNK(inode->i_mode))) 859 ufs_truncate_blocks(inode); 860 ufs_update_inode(inode, inode_needs_sync(inode)); 861 } 862 863 invalidate_inode_buffers(inode); 864 clear_inode(inode); 865 866 if (want_delete) 867 ufs_free_inode(inode); 868 } 869 870 struct to_free { 871 struct inode *inode; 872 u64 to; 873 unsigned count; 874 }; 875 876 static inline void free_data(struct to_free *ctx, u64 from, unsigned count) 877 { 878 if (ctx->count && ctx->to != from) { 879 ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count); 880 ctx->count = 0; 881 } 882 ctx->count += count; 883 ctx->to = from + count; 884 } 885 886 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift) 887 888 static void ufs_trunc_direct(struct inode *inode) 889 { 890 struct ufs_inode_info *ufsi = UFS_I(inode); 891 struct super_block * sb; 892 struct ufs_sb_private_info * uspi; 893 void *p; 894 u64 frag1, frag2, frag3, frag4, block1, block2; 895 struct to_free ctx = {.inode = inode}; 896 unsigned i, tmp; 897 898 UFSD("ENTER: ino %lu\n", inode->i_ino); 899 900 sb = inode->i_sb; 901 uspi = UFS_SB(sb)->s_uspi; 902 903 frag1 = DIRECT_FRAGMENT; 904 frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag); 905 frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1); 906 frag3 = frag4 & ~uspi->s_fpbmask; 907 block1 = block2 = 0; 908 if (frag2 > frag3) { 909 frag2 = frag4; 910 frag3 = frag4 = 0; 911 } else if (frag2 < frag3) { 912 block1 = ufs_fragstoblks (frag2); 913 block2 = ufs_fragstoblks (frag3); 914 } 915 916 UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu," 917 " frag3 %llu, frag4 %llu\n", inode->i_ino, 918 (unsigned long long)frag1, (unsigned long long)frag2, 919 (unsigned long long)block1, (unsigned long long)block2, 920 (unsigned long long)frag3, (unsigned long long)frag4); 921 922 if (frag1 >= frag2) 923 goto next1; 924 925 /* 926 * Free first free fragments 927 */ 928 p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1)); 929 tmp = ufs_data_ptr_to_cpu(sb, p); 930 if (!tmp ) 931 ufs_panic (sb, "ufs_trunc_direct", "internal error"); 932 frag2 -= frag1; 933 frag1 = ufs_fragnum (frag1); 934 935 ufs_free_fragments(inode, tmp + frag1, frag2); 936 937 next1: 938 /* 939 * Free whole blocks 940 */ 941 for (i = block1 ; i < block2; i++) { 942 p = ufs_get_direct_data_ptr(uspi, ufsi, i); 943 tmp = ufs_data_ptr_to_cpu(sb, p); 944 if (!tmp) 945 continue; 946 write_seqlock(&ufsi->meta_lock); 947 ufs_data_ptr_clear(uspi, p); 948 write_sequnlock(&ufsi->meta_lock); 949 950 free_data(&ctx, tmp, uspi->s_fpb); 951 } 952 953 free_data(&ctx, 0, 0); 954 955 if (frag3 >= frag4) 956 goto next3; 957 958 /* 959 * Free last free fragments 960 */ 961 p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3)); 962 tmp = ufs_data_ptr_to_cpu(sb, p); 963 if (!tmp ) 964 ufs_panic(sb, "ufs_truncate_direct", "internal error"); 965 frag4 = ufs_fragnum (frag4); 966 write_seqlock(&ufsi->meta_lock); 967 ufs_data_ptr_clear(uspi, p); 968 write_sequnlock(&ufsi->meta_lock); 969 970 ufs_free_fragments (inode, tmp, frag4); 971 next3: 972 973 UFSD("EXIT: ino %lu\n", inode->i_ino); 974 } 975 976 static void free_full_branch(struct inode *inode, u64 ind_block, int depth) 977 { 978 struct super_block *sb = inode->i_sb; 979 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 980 struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize); 981 unsigned i; 982 983 if (!ubh) 984 return; 985 986 if (--depth) { 987 for (i = 0; i < uspi->s_apb; i++) { 988 void *p = ubh_get_data_ptr(uspi, ubh, i); 989 u64 block = ufs_data_ptr_to_cpu(sb, p); 990 if (block) 991 free_full_branch(inode, block, depth); 992 } 993 } else { 994 struct to_free ctx = {.inode = inode}; 995 996 for (i = 0; i < uspi->s_apb; i++) { 997 void *p = ubh_get_data_ptr(uspi, ubh, i); 998 u64 block = ufs_data_ptr_to_cpu(sb, p); 999 if (block) 1000 free_data(&ctx, block, uspi->s_fpb); 1001 } 1002 free_data(&ctx, 0, 0); 1003 } 1004 1005 ubh_bforget(ubh); 1006 ufs_free_blocks(inode, ind_block, uspi->s_fpb); 1007 } 1008 1009 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth) 1010 { 1011 struct super_block *sb = inode->i_sb; 1012 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1013 unsigned i; 1014 1015 if (--depth) { 1016 for (i = from; i < uspi->s_apb ; i++) { 1017 void *p = ubh_get_data_ptr(uspi, ubh, i); 1018 u64 block = ufs_data_ptr_to_cpu(sb, p); 1019 if (block) { 1020 write_seqlock(&UFS_I(inode)->meta_lock); 1021 ufs_data_ptr_clear(uspi, p); 1022 write_sequnlock(&UFS_I(inode)->meta_lock); 1023 ubh_mark_buffer_dirty(ubh); 1024 free_full_branch(inode, block, depth); 1025 } 1026 } 1027 } else { 1028 struct to_free ctx = {.inode = inode}; 1029 1030 for (i = from; i < uspi->s_apb; i++) { 1031 void *p = ubh_get_data_ptr(uspi, ubh, i); 1032 u64 block = ufs_data_ptr_to_cpu(sb, p); 1033 if (block) { 1034 write_seqlock(&UFS_I(inode)->meta_lock); 1035 ufs_data_ptr_clear(uspi, p); 1036 write_sequnlock(&UFS_I(inode)->meta_lock); 1037 ubh_mark_buffer_dirty(ubh); 1038 free_data(&ctx, block, uspi->s_fpb); 1039 } 1040 } 1041 free_data(&ctx, 0, 0); 1042 } 1043 if (IS_SYNC(inode) && ubh_buffer_dirty(ubh)) 1044 ubh_sync_block(ubh); 1045 ubh_brelse(ubh); 1046 } 1047 1048 static int ufs_alloc_lastblock(struct inode *inode, loff_t size) 1049 { 1050 int err = 0; 1051 struct super_block *sb = inode->i_sb; 1052 struct address_space *mapping = inode->i_mapping; 1053 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1054 unsigned i, end; 1055 sector_t lastfrag; 1056 struct page *lastpage; 1057 struct buffer_head *bh; 1058 u64 phys64; 1059 1060 lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift; 1061 1062 if (!lastfrag) 1063 goto out; 1064 1065 lastfrag--; 1066 1067 lastpage = ufs_get_locked_page(mapping, lastfrag >> 1068 (PAGE_SHIFT - inode->i_blkbits)); 1069 if (IS_ERR(lastpage)) { 1070 err = -EIO; 1071 goto out; 1072 } 1073 1074 end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1); 1075 bh = page_buffers(lastpage); 1076 for (i = 0; i < end; ++i) 1077 bh = bh->b_this_page; 1078 1079 1080 err = ufs_getfrag_block(inode, lastfrag, bh, 1); 1081 1082 if (unlikely(err)) 1083 goto out_unlock; 1084 1085 if (buffer_new(bh)) { 1086 clear_buffer_new(bh); 1087 clean_bdev_bh_alias(bh); 1088 /* 1089 * we do not zeroize fragment, because of 1090 * if it maped to hole, it already contains zeroes 1091 */ 1092 set_buffer_uptodate(bh); 1093 mark_buffer_dirty(bh); 1094 set_page_dirty(lastpage); 1095 } 1096 1097 if (lastfrag >= UFS_IND_FRAGMENT) { 1098 end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1; 1099 phys64 = bh->b_blocknr + 1; 1100 for (i = 0; i < end; ++i) { 1101 bh = sb_getblk(sb, i + phys64); 1102 lock_buffer(bh); 1103 memset(bh->b_data, 0, sb->s_blocksize); 1104 set_buffer_uptodate(bh); 1105 mark_buffer_dirty(bh); 1106 unlock_buffer(bh); 1107 sync_dirty_buffer(bh); 1108 brelse(bh); 1109 } 1110 } 1111 out_unlock: 1112 ufs_put_locked_page(lastpage); 1113 out: 1114 return err; 1115 } 1116 1117 static void ufs_truncate_blocks(struct inode *inode) 1118 { 1119 struct ufs_inode_info *ufsi = UFS_I(inode); 1120 struct super_block *sb = inode->i_sb; 1121 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1122 unsigned offsets[4]; 1123 int depth; 1124 int depth2; 1125 unsigned i; 1126 struct ufs_buffer_head *ubh[3]; 1127 void *p; 1128 u64 block; 1129 1130 if (inode->i_size) { 1131 sector_t last = (inode->i_size - 1) >> uspi->s_bshift; 1132 depth = ufs_block_to_path(inode, last, offsets); 1133 if (!depth) 1134 return; 1135 } else { 1136 depth = 1; 1137 } 1138 1139 for (depth2 = depth - 1; depth2; depth2--) 1140 if (offsets[depth2] != uspi->s_apb - 1) 1141 break; 1142 1143 mutex_lock(&ufsi->truncate_mutex); 1144 if (depth == 1) { 1145 ufs_trunc_direct(inode); 1146 offsets[0] = UFS_IND_BLOCK; 1147 } else { 1148 /* get the blocks that should be partially emptied */ 1149 p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++); 1150 for (i = 0; i < depth2; i++) { 1151 block = ufs_data_ptr_to_cpu(sb, p); 1152 if (!block) 1153 break; 1154 ubh[i] = ubh_bread(sb, block, uspi->s_bsize); 1155 if (!ubh[i]) { 1156 write_seqlock(&ufsi->meta_lock); 1157 ufs_data_ptr_clear(uspi, p); 1158 write_sequnlock(&ufsi->meta_lock); 1159 break; 1160 } 1161 p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++); 1162 } 1163 while (i--) 1164 free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1); 1165 } 1166 for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) { 1167 p = ufs_get_direct_data_ptr(uspi, ufsi, i); 1168 block = ufs_data_ptr_to_cpu(sb, p); 1169 if (block) { 1170 write_seqlock(&ufsi->meta_lock); 1171 ufs_data_ptr_clear(uspi, p); 1172 write_sequnlock(&ufsi->meta_lock); 1173 free_full_branch(inode, block, i - UFS_IND_BLOCK + 1); 1174 } 1175 } 1176 read_seqlock_excl(&ufsi->meta_lock); 1177 ufsi->i_lastfrag = DIRECT_FRAGMENT; 1178 read_sequnlock_excl(&ufsi->meta_lock); 1179 mark_inode_dirty(inode); 1180 mutex_unlock(&ufsi->truncate_mutex); 1181 } 1182 1183 static int ufs_truncate(struct inode *inode, loff_t size) 1184 { 1185 int err = 0; 1186 1187 UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n", 1188 inode->i_ino, (unsigned long long)size, 1189 (unsigned long long)i_size_read(inode)); 1190 1191 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1192 S_ISLNK(inode->i_mode))) 1193 return -EINVAL; 1194 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1195 return -EPERM; 1196 1197 err = ufs_alloc_lastblock(inode, size); 1198 1199 if (err) 1200 goto out; 1201 1202 block_truncate_page(inode->i_mapping, size, ufs_getfrag_block); 1203 1204 truncate_setsize(inode, size); 1205 1206 ufs_truncate_blocks(inode); 1207 inode->i_mtime = inode->i_ctime = current_time(inode); 1208 mark_inode_dirty(inode); 1209 out: 1210 UFSD("EXIT: err %d\n", err); 1211 return err; 1212 } 1213 1214 int ufs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 1215 struct iattr *attr) 1216 { 1217 struct inode *inode = d_inode(dentry); 1218 unsigned int ia_valid = attr->ia_valid; 1219 int error; 1220 1221 error = setattr_prepare(&init_user_ns, dentry, attr); 1222 if (error) 1223 return error; 1224 1225 if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 1226 error = ufs_truncate(inode, attr->ia_size); 1227 if (error) 1228 return error; 1229 } 1230 1231 setattr_copy(&init_user_ns, inode, attr); 1232 mark_inode_dirty(inode); 1233 return 0; 1234 } 1235 1236 const struct inode_operations ufs_file_inode_operations = { 1237 .setattr = ufs_setattr, 1238 }; 1239