1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/smp_lock.h> 52 #include <linux/buffer_head.h> 53 #include <linux/vfs.h> 54 #include <linux/vmalloc.h> 55 #include <linux/errno.h> 56 #include <linux/mount.h> 57 #include <linux/seq_file.h> 58 #include <linux/bitmap.h> 59 #include <linux/crc-itu-t.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 static char error_buf[1024]; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct vfsmount *); 96 static void udf_error(struct super_block *sb, const char *function, 97 const char *fmt, ...); 98 99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 100 { 101 struct logicalVolIntegrityDesc *lvid = 102 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 103 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 104 __u32 offset = number_of_partitions * 2 * 105 sizeof(uint32_t)/sizeof(uint8_t); 106 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 107 } 108 109 /* UDF filesystem type */ 110 static int udf_get_sb(struct file_system_type *fs_type, 111 int flags, const char *dev_name, void *data, 112 struct vfsmount *mnt) 113 { 114 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt); 115 } 116 117 static struct file_system_type udf_fstype = { 118 .owner = THIS_MODULE, 119 .name = "udf", 120 .get_sb = udf_get_sb, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 125 static struct kmem_cache *udf_inode_cachep; 126 127 static struct inode *udf_alloc_inode(struct super_block *sb) 128 { 129 struct udf_inode_info *ei; 130 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 131 if (!ei) 132 return NULL; 133 134 ei->i_unique = 0; 135 ei->i_lenExtents = 0; 136 ei->i_next_alloc_block = 0; 137 ei->i_next_alloc_goal = 0; 138 ei->i_strat4096 = 0; 139 140 return &ei->vfs_inode; 141 } 142 143 static void udf_destroy_inode(struct inode *inode) 144 { 145 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 146 } 147 148 static void init_once(void *foo) 149 { 150 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 151 152 ei->i_ext.i_data = NULL; 153 inode_init_once(&ei->vfs_inode); 154 } 155 156 static int init_inodecache(void) 157 { 158 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 159 sizeof(struct udf_inode_info), 160 0, (SLAB_RECLAIM_ACCOUNT | 161 SLAB_MEM_SPREAD), 162 init_once); 163 if (!udf_inode_cachep) 164 return -ENOMEM; 165 return 0; 166 } 167 168 static void destroy_inodecache(void) 169 { 170 kmem_cache_destroy(udf_inode_cachep); 171 } 172 173 /* Superblock operations */ 174 static const struct super_operations udf_sb_ops = { 175 .alloc_inode = udf_alloc_inode, 176 .destroy_inode = udf_destroy_inode, 177 .write_inode = udf_write_inode, 178 .delete_inode = udf_delete_inode, 179 .clear_inode = udf_clear_inode, 180 .put_super = udf_put_super, 181 .sync_fs = udf_sync_fs, 182 .statfs = udf_statfs, 183 .remount_fs = udf_remount_fs, 184 .show_options = udf_show_options, 185 }; 186 187 struct udf_options { 188 unsigned char novrs; 189 unsigned int blocksize; 190 unsigned int session; 191 unsigned int lastblock; 192 unsigned int anchor; 193 unsigned int volume; 194 unsigned short partition; 195 unsigned int fileset; 196 unsigned int rootdir; 197 unsigned int flags; 198 mode_t umask; 199 gid_t gid; 200 uid_t uid; 201 mode_t fmode; 202 mode_t dmode; 203 struct nls_table *nls_map; 204 }; 205 206 static int __init init_udf_fs(void) 207 { 208 int err; 209 210 err = init_inodecache(); 211 if (err) 212 goto out1; 213 err = register_filesystem(&udf_fstype); 214 if (err) 215 goto out; 216 217 return 0; 218 219 out: 220 destroy_inodecache(); 221 222 out1: 223 return err; 224 } 225 226 static void __exit exit_udf_fs(void) 227 { 228 unregister_filesystem(&udf_fstype); 229 destroy_inodecache(); 230 } 231 232 module_init(init_udf_fs) 233 module_exit(exit_udf_fs) 234 235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 236 { 237 struct udf_sb_info *sbi = UDF_SB(sb); 238 239 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 240 GFP_KERNEL); 241 if (!sbi->s_partmaps) { 242 udf_error(sb, __func__, 243 "Unable to allocate space for %d partition maps", 244 count); 245 sbi->s_partitions = 0; 246 return -ENOMEM; 247 } 248 249 sbi->s_partitions = count; 250 return 0; 251 } 252 253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt) 254 { 255 struct super_block *sb = mnt->mnt_sb; 256 struct udf_sb_info *sbi = UDF_SB(sb); 257 258 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 259 seq_puts(seq, ",nostrict"); 260 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 261 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 263 seq_puts(seq, ",unhide"); 264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 265 seq_puts(seq, ",undelete"); 266 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 267 seq_puts(seq, ",noadinicb"); 268 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 269 seq_puts(seq, ",shortad"); 270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 271 seq_puts(seq, ",uid=forget"); 272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 273 seq_puts(seq, ",uid=ignore"); 274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 275 seq_puts(seq, ",gid=forget"); 276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 277 seq_puts(seq, ",gid=ignore"); 278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 279 seq_printf(seq, ",uid=%u", sbi->s_uid); 280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 281 seq_printf(seq, ",gid=%u", sbi->s_gid); 282 if (sbi->s_umask != 0) 283 seq_printf(seq, ",umask=%o", sbi->s_umask); 284 if (sbi->s_fmode != UDF_INVALID_MODE) 285 seq_printf(seq, ",mode=%o", sbi->s_fmode); 286 if (sbi->s_dmode != UDF_INVALID_MODE) 287 seq_printf(seq, ",dmode=%o", sbi->s_dmode); 288 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 289 seq_printf(seq, ",session=%u", sbi->s_session); 290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 291 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 292 if (sbi->s_anchor != 0) 293 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 294 /* 295 * volume, partition, fileset and rootdir seem to be ignored 296 * currently 297 */ 298 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 299 seq_puts(seq, ",utf8"); 300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 301 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 302 303 return 0; 304 } 305 306 /* 307 * udf_parse_options 308 * 309 * PURPOSE 310 * Parse mount options. 311 * 312 * DESCRIPTION 313 * The following mount options are supported: 314 * 315 * gid= Set the default group. 316 * umask= Set the default umask. 317 * mode= Set the default file permissions. 318 * dmode= Set the default directory permissions. 319 * uid= Set the default user. 320 * bs= Set the block size. 321 * unhide Show otherwise hidden files. 322 * undelete Show deleted files in lists. 323 * adinicb Embed data in the inode (default) 324 * noadinicb Don't embed data in the inode 325 * shortad Use short ad's 326 * longad Use long ad's (default) 327 * nostrict Unset strict conformance 328 * iocharset= Set the NLS character set 329 * 330 * The remaining are for debugging and disaster recovery: 331 * 332 * novrs Skip volume sequence recognition 333 * 334 * The following expect a offset from 0. 335 * 336 * session= Set the CDROM session (default= last session) 337 * anchor= Override standard anchor location. (default= 256) 338 * volume= Override the VolumeDesc location. (unused) 339 * partition= Override the PartitionDesc location. (unused) 340 * lastblock= Set the last block of the filesystem/ 341 * 342 * The following expect a offset from the partition root. 343 * 344 * fileset= Override the fileset block location. (unused) 345 * rootdir= Override the root directory location. (unused) 346 * WARNING: overriding the rootdir to a non-directory may 347 * yield highly unpredictable results. 348 * 349 * PRE-CONDITIONS 350 * options Pointer to mount options string. 351 * uopts Pointer to mount options variable. 352 * 353 * POST-CONDITIONS 354 * <return> 1 Mount options parsed okay. 355 * <return> 0 Error parsing mount options. 356 * 357 * HISTORY 358 * July 1, 1997 - Andrew E. Mileski 359 * Written, tested, and released. 360 */ 361 362 enum { 363 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 364 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 365 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 366 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 367 Opt_rootdir, Opt_utf8, Opt_iocharset, 368 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 369 Opt_fmode, Opt_dmode 370 }; 371 372 static const match_table_t tokens = { 373 {Opt_novrs, "novrs"}, 374 {Opt_nostrict, "nostrict"}, 375 {Opt_bs, "bs=%u"}, 376 {Opt_unhide, "unhide"}, 377 {Opt_undelete, "undelete"}, 378 {Opt_noadinicb, "noadinicb"}, 379 {Opt_adinicb, "adinicb"}, 380 {Opt_shortad, "shortad"}, 381 {Opt_longad, "longad"}, 382 {Opt_uforget, "uid=forget"}, 383 {Opt_uignore, "uid=ignore"}, 384 {Opt_gforget, "gid=forget"}, 385 {Opt_gignore, "gid=ignore"}, 386 {Opt_gid, "gid=%u"}, 387 {Opt_uid, "uid=%u"}, 388 {Opt_umask, "umask=%o"}, 389 {Opt_session, "session=%u"}, 390 {Opt_lastblock, "lastblock=%u"}, 391 {Opt_anchor, "anchor=%u"}, 392 {Opt_volume, "volume=%u"}, 393 {Opt_partition, "partition=%u"}, 394 {Opt_fileset, "fileset=%u"}, 395 {Opt_rootdir, "rootdir=%u"}, 396 {Opt_utf8, "utf8"}, 397 {Opt_iocharset, "iocharset=%s"}, 398 {Opt_fmode, "mode=%o"}, 399 {Opt_dmode, "dmode=%o"}, 400 {Opt_err, NULL} 401 }; 402 403 static int udf_parse_options(char *options, struct udf_options *uopt, 404 bool remount) 405 { 406 char *p; 407 int option; 408 409 uopt->novrs = 0; 410 uopt->partition = 0xFFFF; 411 uopt->session = 0xFFFFFFFF; 412 uopt->lastblock = 0; 413 uopt->anchor = 0; 414 uopt->volume = 0xFFFFFFFF; 415 uopt->rootdir = 0xFFFFFFFF; 416 uopt->fileset = 0xFFFFFFFF; 417 uopt->nls_map = NULL; 418 419 if (!options) 420 return 1; 421 422 while ((p = strsep(&options, ",")) != NULL) { 423 substring_t args[MAX_OPT_ARGS]; 424 int token; 425 if (!*p) 426 continue; 427 428 token = match_token(p, tokens, args); 429 switch (token) { 430 case Opt_novrs: 431 uopt->novrs = 1; 432 break; 433 case Opt_bs: 434 if (match_int(&args[0], &option)) 435 return 0; 436 uopt->blocksize = option; 437 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 438 break; 439 case Opt_unhide: 440 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 441 break; 442 case Opt_undelete: 443 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 444 break; 445 case Opt_noadinicb: 446 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 447 break; 448 case Opt_adinicb: 449 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 450 break; 451 case Opt_shortad: 452 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 453 break; 454 case Opt_longad: 455 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 456 break; 457 case Opt_gid: 458 if (match_int(args, &option)) 459 return 0; 460 uopt->gid = option; 461 uopt->flags |= (1 << UDF_FLAG_GID_SET); 462 break; 463 case Opt_uid: 464 if (match_int(args, &option)) 465 return 0; 466 uopt->uid = option; 467 uopt->flags |= (1 << UDF_FLAG_UID_SET); 468 break; 469 case Opt_umask: 470 if (match_octal(args, &option)) 471 return 0; 472 uopt->umask = option; 473 break; 474 case Opt_nostrict: 475 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 476 break; 477 case Opt_session: 478 if (match_int(args, &option)) 479 return 0; 480 uopt->session = option; 481 if (!remount) 482 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 483 break; 484 case Opt_lastblock: 485 if (match_int(args, &option)) 486 return 0; 487 uopt->lastblock = option; 488 if (!remount) 489 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 490 break; 491 case Opt_anchor: 492 if (match_int(args, &option)) 493 return 0; 494 uopt->anchor = option; 495 break; 496 case Opt_volume: 497 if (match_int(args, &option)) 498 return 0; 499 uopt->volume = option; 500 break; 501 case Opt_partition: 502 if (match_int(args, &option)) 503 return 0; 504 uopt->partition = option; 505 break; 506 case Opt_fileset: 507 if (match_int(args, &option)) 508 return 0; 509 uopt->fileset = option; 510 break; 511 case Opt_rootdir: 512 if (match_int(args, &option)) 513 return 0; 514 uopt->rootdir = option; 515 break; 516 case Opt_utf8: 517 uopt->flags |= (1 << UDF_FLAG_UTF8); 518 break; 519 #ifdef CONFIG_UDF_NLS 520 case Opt_iocharset: 521 uopt->nls_map = load_nls(args[0].from); 522 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 523 break; 524 #endif 525 case Opt_uignore: 526 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 527 break; 528 case Opt_uforget: 529 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 530 break; 531 case Opt_gignore: 532 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 533 break; 534 case Opt_gforget: 535 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 536 break; 537 case Opt_fmode: 538 if (match_octal(args, &option)) 539 return 0; 540 uopt->fmode = option & 0777; 541 break; 542 case Opt_dmode: 543 if (match_octal(args, &option)) 544 return 0; 545 uopt->dmode = option & 0777; 546 break; 547 default: 548 printk(KERN_ERR "udf: bad mount option \"%s\" " 549 "or missing value\n", p); 550 return 0; 551 } 552 } 553 return 1; 554 } 555 556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 557 { 558 struct udf_options uopt; 559 struct udf_sb_info *sbi = UDF_SB(sb); 560 int error = 0; 561 562 uopt.flags = sbi->s_flags; 563 uopt.uid = sbi->s_uid; 564 uopt.gid = sbi->s_gid; 565 uopt.umask = sbi->s_umask; 566 uopt.fmode = sbi->s_fmode; 567 uopt.dmode = sbi->s_dmode; 568 569 if (!udf_parse_options(options, &uopt, true)) 570 return -EINVAL; 571 572 lock_kernel(); 573 sbi->s_flags = uopt.flags; 574 sbi->s_uid = uopt.uid; 575 sbi->s_gid = uopt.gid; 576 sbi->s_umask = uopt.umask; 577 sbi->s_fmode = uopt.fmode; 578 sbi->s_dmode = uopt.dmode; 579 580 if (sbi->s_lvid_bh) { 581 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 582 if (write_rev > UDF_MAX_WRITE_VERSION) 583 *flags |= MS_RDONLY; 584 } 585 586 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 587 goto out_unlock; 588 589 if (*flags & MS_RDONLY) 590 udf_close_lvid(sb); 591 else 592 udf_open_lvid(sb); 593 594 out_unlock: 595 unlock_kernel(); 596 return error; 597 } 598 599 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 600 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 601 static loff_t udf_check_vsd(struct super_block *sb) 602 { 603 struct volStructDesc *vsd = NULL; 604 loff_t sector = 32768; 605 int sectorsize; 606 struct buffer_head *bh = NULL; 607 int nsr02 = 0; 608 int nsr03 = 0; 609 struct udf_sb_info *sbi; 610 611 sbi = UDF_SB(sb); 612 if (sb->s_blocksize < sizeof(struct volStructDesc)) 613 sectorsize = sizeof(struct volStructDesc); 614 else 615 sectorsize = sb->s_blocksize; 616 617 sector += (sbi->s_session << sb->s_blocksize_bits); 618 619 udf_debug("Starting at sector %u (%ld byte sectors)\n", 620 (unsigned int)(sector >> sb->s_blocksize_bits), 621 sb->s_blocksize); 622 /* Process the sequence (if applicable) */ 623 for (; !nsr02 && !nsr03; sector += sectorsize) { 624 /* Read a block */ 625 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 626 if (!bh) 627 break; 628 629 /* Look for ISO descriptors */ 630 vsd = (struct volStructDesc *)(bh->b_data + 631 (sector & (sb->s_blocksize - 1))); 632 633 if (vsd->stdIdent[0] == 0) { 634 brelse(bh); 635 break; 636 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 637 VSD_STD_ID_LEN)) { 638 switch (vsd->structType) { 639 case 0: 640 udf_debug("ISO9660 Boot Record found\n"); 641 break; 642 case 1: 643 udf_debug("ISO9660 Primary Volume Descriptor " 644 "found\n"); 645 break; 646 case 2: 647 udf_debug("ISO9660 Supplementary Volume " 648 "Descriptor found\n"); 649 break; 650 case 3: 651 udf_debug("ISO9660 Volume Partition Descriptor " 652 "found\n"); 653 break; 654 case 255: 655 udf_debug("ISO9660 Volume Descriptor Set " 656 "Terminator found\n"); 657 break; 658 default: 659 udf_debug("ISO9660 VRS (%u) found\n", 660 vsd->structType); 661 break; 662 } 663 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 664 VSD_STD_ID_LEN)) 665 ; /* nothing */ 666 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 667 VSD_STD_ID_LEN)) { 668 brelse(bh); 669 break; 670 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 671 VSD_STD_ID_LEN)) 672 nsr02 = sector; 673 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 674 VSD_STD_ID_LEN)) 675 nsr03 = sector; 676 brelse(bh); 677 } 678 679 if (nsr03) 680 return nsr03; 681 else if (nsr02) 682 return nsr02; 683 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 684 return -1; 685 else 686 return 0; 687 } 688 689 static int udf_find_fileset(struct super_block *sb, 690 struct kernel_lb_addr *fileset, 691 struct kernel_lb_addr *root) 692 { 693 struct buffer_head *bh = NULL; 694 long lastblock; 695 uint16_t ident; 696 struct udf_sb_info *sbi; 697 698 if (fileset->logicalBlockNum != 0xFFFFFFFF || 699 fileset->partitionReferenceNum != 0xFFFF) { 700 bh = udf_read_ptagged(sb, fileset, 0, &ident); 701 702 if (!bh) { 703 return 1; 704 } else if (ident != TAG_IDENT_FSD) { 705 brelse(bh); 706 return 1; 707 } 708 709 } 710 711 sbi = UDF_SB(sb); 712 if (!bh) { 713 /* Search backwards through the partitions */ 714 struct kernel_lb_addr newfileset; 715 716 /* --> cvg: FIXME - is it reasonable? */ 717 return 1; 718 719 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 720 (newfileset.partitionReferenceNum != 0xFFFF && 721 fileset->logicalBlockNum == 0xFFFFFFFF && 722 fileset->partitionReferenceNum == 0xFFFF); 723 newfileset.partitionReferenceNum--) { 724 lastblock = sbi->s_partmaps 725 [newfileset.partitionReferenceNum] 726 .s_partition_len; 727 newfileset.logicalBlockNum = 0; 728 729 do { 730 bh = udf_read_ptagged(sb, &newfileset, 0, 731 &ident); 732 if (!bh) { 733 newfileset.logicalBlockNum++; 734 continue; 735 } 736 737 switch (ident) { 738 case TAG_IDENT_SBD: 739 { 740 struct spaceBitmapDesc *sp; 741 sp = (struct spaceBitmapDesc *) 742 bh->b_data; 743 newfileset.logicalBlockNum += 1 + 744 ((le32_to_cpu(sp->numOfBytes) + 745 sizeof(struct spaceBitmapDesc) 746 - 1) >> sb->s_blocksize_bits); 747 brelse(bh); 748 break; 749 } 750 case TAG_IDENT_FSD: 751 *fileset = newfileset; 752 break; 753 default: 754 newfileset.logicalBlockNum++; 755 brelse(bh); 756 bh = NULL; 757 break; 758 } 759 } while (newfileset.logicalBlockNum < lastblock && 760 fileset->logicalBlockNum == 0xFFFFFFFF && 761 fileset->partitionReferenceNum == 0xFFFF); 762 } 763 } 764 765 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 766 fileset->partitionReferenceNum != 0xFFFF) && bh) { 767 udf_debug("Fileset at block=%d, partition=%d\n", 768 fileset->logicalBlockNum, 769 fileset->partitionReferenceNum); 770 771 sbi->s_partition = fileset->partitionReferenceNum; 772 udf_load_fileset(sb, bh, root); 773 brelse(bh); 774 return 0; 775 } 776 return 1; 777 } 778 779 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 780 { 781 struct primaryVolDesc *pvoldesc; 782 struct ustr *instr, *outstr; 783 struct buffer_head *bh; 784 uint16_t ident; 785 int ret = 1; 786 787 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 788 if (!instr) 789 return 1; 790 791 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 792 if (!outstr) 793 goto out1; 794 795 bh = udf_read_tagged(sb, block, block, &ident); 796 if (!bh) 797 goto out2; 798 799 BUG_ON(ident != TAG_IDENT_PVD); 800 801 pvoldesc = (struct primaryVolDesc *)bh->b_data; 802 803 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 804 pvoldesc->recordingDateAndTime)) { 805 #ifdef UDFFS_DEBUG 806 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 807 udf_debug("recording time %04u/%02u/%02u" 808 " %02u:%02u (%x)\n", 809 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 810 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 811 #endif 812 } 813 814 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 815 if (udf_CS0toUTF8(outstr, instr)) { 816 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 817 outstr->u_len > 31 ? 31 : outstr->u_len); 818 udf_debug("volIdent[] = '%s'\n", 819 UDF_SB(sb)->s_volume_ident); 820 } 821 822 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 823 if (udf_CS0toUTF8(outstr, instr)) 824 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 825 826 brelse(bh); 827 ret = 0; 828 out2: 829 kfree(outstr); 830 out1: 831 kfree(instr); 832 return ret; 833 } 834 835 static int udf_load_metadata_files(struct super_block *sb, int partition) 836 { 837 struct udf_sb_info *sbi = UDF_SB(sb); 838 struct udf_part_map *map; 839 struct udf_meta_data *mdata; 840 struct kernel_lb_addr addr; 841 int fe_error = 0; 842 843 map = &sbi->s_partmaps[partition]; 844 mdata = &map->s_type_specific.s_metadata; 845 846 /* metadata address */ 847 addr.logicalBlockNum = mdata->s_meta_file_loc; 848 addr.partitionReferenceNum = map->s_partition_num; 849 850 udf_debug("Metadata file location: block = %d part = %d\n", 851 addr.logicalBlockNum, addr.partitionReferenceNum); 852 853 mdata->s_metadata_fe = udf_iget(sb, &addr); 854 855 if (mdata->s_metadata_fe == NULL) { 856 udf_warning(sb, __func__, "metadata inode efe not found, " 857 "will try mirror inode."); 858 fe_error = 1; 859 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type != 860 ICBTAG_FLAG_AD_SHORT) { 861 udf_warning(sb, __func__, "metadata inode efe does not have " 862 "short allocation descriptors!"); 863 fe_error = 1; 864 iput(mdata->s_metadata_fe); 865 mdata->s_metadata_fe = NULL; 866 } 867 868 /* mirror file entry */ 869 addr.logicalBlockNum = mdata->s_mirror_file_loc; 870 addr.partitionReferenceNum = map->s_partition_num; 871 872 udf_debug("Mirror metadata file location: block = %d part = %d\n", 873 addr.logicalBlockNum, addr.partitionReferenceNum); 874 875 mdata->s_mirror_fe = udf_iget(sb, &addr); 876 877 if (mdata->s_mirror_fe == NULL) { 878 if (fe_error) { 879 udf_error(sb, __func__, "mirror inode efe not found " 880 "and metadata inode is missing too, exiting..."); 881 goto error_exit; 882 } else 883 udf_warning(sb, __func__, "mirror inode efe not found," 884 " but metadata inode is OK"); 885 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type != 886 ICBTAG_FLAG_AD_SHORT) { 887 udf_warning(sb, __func__, "mirror inode efe does not have " 888 "short allocation descriptors!"); 889 iput(mdata->s_mirror_fe); 890 mdata->s_mirror_fe = NULL; 891 if (fe_error) 892 goto error_exit; 893 } 894 895 /* 896 * bitmap file entry 897 * Note: 898 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 899 */ 900 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 901 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 902 addr.partitionReferenceNum = map->s_partition_num; 903 904 udf_debug("Bitmap file location: block = %d part = %d\n", 905 addr.logicalBlockNum, addr.partitionReferenceNum); 906 907 mdata->s_bitmap_fe = udf_iget(sb, &addr); 908 909 if (mdata->s_bitmap_fe == NULL) { 910 if (sb->s_flags & MS_RDONLY) 911 udf_warning(sb, __func__, "bitmap inode efe " 912 "not found but it's ok since the disc" 913 " is mounted read-only"); 914 else { 915 udf_error(sb, __func__, "bitmap inode efe not " 916 "found and attempted read-write mount"); 917 goto error_exit; 918 } 919 } 920 } 921 922 udf_debug("udf_load_metadata_files Ok\n"); 923 924 return 0; 925 926 error_exit: 927 return 1; 928 } 929 930 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 931 struct kernel_lb_addr *root) 932 { 933 struct fileSetDesc *fset; 934 935 fset = (struct fileSetDesc *)bh->b_data; 936 937 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 938 939 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 940 941 udf_debug("Rootdir at block=%d, partition=%d\n", 942 root->logicalBlockNum, root->partitionReferenceNum); 943 } 944 945 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 946 { 947 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 948 return DIV_ROUND_UP(map->s_partition_len + 949 (sizeof(struct spaceBitmapDesc) << 3), 950 sb->s_blocksize * 8); 951 } 952 953 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 954 { 955 struct udf_bitmap *bitmap; 956 int nr_groups; 957 int size; 958 959 nr_groups = udf_compute_nr_groups(sb, index); 960 size = sizeof(struct udf_bitmap) + 961 (sizeof(struct buffer_head *) * nr_groups); 962 963 if (size <= PAGE_SIZE) 964 bitmap = kmalloc(size, GFP_KERNEL); 965 else 966 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */ 967 968 if (bitmap == NULL) { 969 udf_error(sb, __func__, 970 "Unable to allocate space for bitmap " 971 "and %d buffer_head pointers", nr_groups); 972 return NULL; 973 } 974 975 memset(bitmap, 0x00, size); 976 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 977 bitmap->s_nr_groups = nr_groups; 978 return bitmap; 979 } 980 981 static int udf_fill_partdesc_info(struct super_block *sb, 982 struct partitionDesc *p, int p_index) 983 { 984 struct udf_part_map *map; 985 struct udf_sb_info *sbi = UDF_SB(sb); 986 struct partitionHeaderDesc *phd; 987 988 map = &sbi->s_partmaps[p_index]; 989 990 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 991 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 992 993 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 994 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 995 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 996 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 997 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 998 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 999 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1000 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1001 1002 udf_debug("Partition (%d type %x) starts at physical %d, " 1003 "block length %d\n", p_index, 1004 map->s_partition_type, map->s_partition_root, 1005 map->s_partition_len); 1006 1007 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1008 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1009 return 0; 1010 1011 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1012 if (phd->unallocSpaceTable.extLength) { 1013 struct kernel_lb_addr loc = { 1014 .logicalBlockNum = le32_to_cpu( 1015 phd->unallocSpaceTable.extPosition), 1016 .partitionReferenceNum = p_index, 1017 }; 1018 1019 map->s_uspace.s_table = udf_iget(sb, &loc); 1020 if (!map->s_uspace.s_table) { 1021 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1022 p_index); 1023 return 1; 1024 } 1025 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1026 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1027 p_index, map->s_uspace.s_table->i_ino); 1028 } 1029 1030 if (phd->unallocSpaceBitmap.extLength) { 1031 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1032 if (!bitmap) 1033 return 1; 1034 map->s_uspace.s_bitmap = bitmap; 1035 bitmap->s_extLength = le32_to_cpu( 1036 phd->unallocSpaceBitmap.extLength); 1037 bitmap->s_extPosition = le32_to_cpu( 1038 phd->unallocSpaceBitmap.extPosition); 1039 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1040 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index, 1041 bitmap->s_extPosition); 1042 } 1043 1044 if (phd->partitionIntegrityTable.extLength) 1045 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1046 1047 if (phd->freedSpaceTable.extLength) { 1048 struct kernel_lb_addr loc = { 1049 .logicalBlockNum = le32_to_cpu( 1050 phd->freedSpaceTable.extPosition), 1051 .partitionReferenceNum = p_index, 1052 }; 1053 1054 map->s_fspace.s_table = udf_iget(sb, &loc); 1055 if (!map->s_fspace.s_table) { 1056 udf_debug("cannot load freedSpaceTable (part %d)\n", 1057 p_index); 1058 return 1; 1059 } 1060 1061 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1062 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1063 p_index, map->s_fspace.s_table->i_ino); 1064 } 1065 1066 if (phd->freedSpaceBitmap.extLength) { 1067 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1068 if (!bitmap) 1069 return 1; 1070 map->s_fspace.s_bitmap = bitmap; 1071 bitmap->s_extLength = le32_to_cpu( 1072 phd->freedSpaceBitmap.extLength); 1073 bitmap->s_extPosition = le32_to_cpu( 1074 phd->freedSpaceBitmap.extPosition); 1075 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1076 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index, 1077 bitmap->s_extPosition); 1078 } 1079 return 0; 1080 } 1081 1082 static void udf_find_vat_block(struct super_block *sb, int p_index, 1083 int type1_index, sector_t start_block) 1084 { 1085 struct udf_sb_info *sbi = UDF_SB(sb); 1086 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1087 sector_t vat_block; 1088 struct kernel_lb_addr ino; 1089 1090 /* 1091 * VAT file entry is in the last recorded block. Some broken disks have 1092 * it a few blocks before so try a bit harder... 1093 */ 1094 ino.partitionReferenceNum = type1_index; 1095 for (vat_block = start_block; 1096 vat_block >= map->s_partition_root && 1097 vat_block >= start_block - 3 && 1098 !sbi->s_vat_inode; vat_block--) { 1099 ino.logicalBlockNum = vat_block - map->s_partition_root; 1100 sbi->s_vat_inode = udf_iget(sb, &ino); 1101 } 1102 } 1103 1104 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1105 { 1106 struct udf_sb_info *sbi = UDF_SB(sb); 1107 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1108 struct buffer_head *bh = NULL; 1109 struct udf_inode_info *vati; 1110 uint32_t pos; 1111 struct virtualAllocationTable20 *vat20; 1112 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1113 1114 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1115 if (!sbi->s_vat_inode && 1116 sbi->s_last_block != blocks - 1) { 1117 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the" 1118 " last recorded block (%lu), retrying with the last " 1119 "block of the device (%lu).\n", 1120 (unsigned long)sbi->s_last_block, 1121 (unsigned long)blocks - 1); 1122 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1123 } 1124 if (!sbi->s_vat_inode) 1125 return 1; 1126 1127 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1128 map->s_type_specific.s_virtual.s_start_offset = 0; 1129 map->s_type_specific.s_virtual.s_num_entries = 1130 (sbi->s_vat_inode->i_size - 36) >> 2; 1131 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1132 vati = UDF_I(sbi->s_vat_inode); 1133 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1134 pos = udf_block_map(sbi->s_vat_inode, 0); 1135 bh = sb_bread(sb, pos); 1136 if (!bh) 1137 return 1; 1138 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1139 } else { 1140 vat20 = (struct virtualAllocationTable20 *) 1141 vati->i_ext.i_data; 1142 } 1143 1144 map->s_type_specific.s_virtual.s_start_offset = 1145 le16_to_cpu(vat20->lengthHeader); 1146 map->s_type_specific.s_virtual.s_num_entries = 1147 (sbi->s_vat_inode->i_size - 1148 map->s_type_specific.s_virtual. 1149 s_start_offset) >> 2; 1150 brelse(bh); 1151 } 1152 return 0; 1153 } 1154 1155 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1156 { 1157 struct buffer_head *bh; 1158 struct partitionDesc *p; 1159 struct udf_part_map *map; 1160 struct udf_sb_info *sbi = UDF_SB(sb); 1161 int i, type1_idx; 1162 uint16_t partitionNumber; 1163 uint16_t ident; 1164 int ret = 0; 1165 1166 bh = udf_read_tagged(sb, block, block, &ident); 1167 if (!bh) 1168 return 1; 1169 if (ident != TAG_IDENT_PD) 1170 goto out_bh; 1171 1172 p = (struct partitionDesc *)bh->b_data; 1173 partitionNumber = le16_to_cpu(p->partitionNumber); 1174 1175 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1176 for (i = 0; i < sbi->s_partitions; i++) { 1177 map = &sbi->s_partmaps[i]; 1178 udf_debug("Searching map: (%d == %d)\n", 1179 map->s_partition_num, partitionNumber); 1180 if (map->s_partition_num == partitionNumber && 1181 (map->s_partition_type == UDF_TYPE1_MAP15 || 1182 map->s_partition_type == UDF_SPARABLE_MAP15)) 1183 break; 1184 } 1185 1186 if (i >= sbi->s_partitions) { 1187 udf_debug("Partition (%d) not found in partition map\n", 1188 partitionNumber); 1189 goto out_bh; 1190 } 1191 1192 ret = udf_fill_partdesc_info(sb, p, i); 1193 1194 /* 1195 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1196 * PHYSICAL partitions are already set up 1197 */ 1198 type1_idx = i; 1199 for (i = 0; i < sbi->s_partitions; i++) { 1200 map = &sbi->s_partmaps[i]; 1201 1202 if (map->s_partition_num == partitionNumber && 1203 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1204 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1205 map->s_partition_type == UDF_METADATA_MAP25)) 1206 break; 1207 } 1208 1209 if (i >= sbi->s_partitions) 1210 goto out_bh; 1211 1212 ret = udf_fill_partdesc_info(sb, p, i); 1213 if (ret) 1214 goto out_bh; 1215 1216 if (map->s_partition_type == UDF_METADATA_MAP25) { 1217 ret = udf_load_metadata_files(sb, i); 1218 if (ret) { 1219 printk(KERN_ERR "UDF-fs: error loading MetaData " 1220 "partition map %d\n", i); 1221 goto out_bh; 1222 } 1223 } else { 1224 ret = udf_load_vat(sb, i, type1_idx); 1225 if (ret) 1226 goto out_bh; 1227 /* 1228 * Mark filesystem read-only if we have a partition with 1229 * virtual map since we don't handle writing to it (we 1230 * overwrite blocks instead of relocating them). 1231 */ 1232 sb->s_flags |= MS_RDONLY; 1233 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only " 1234 "because writing to pseudooverwrite partition is " 1235 "not implemented.\n"); 1236 } 1237 out_bh: 1238 /* In case loading failed, we handle cleanup in udf_fill_super */ 1239 brelse(bh); 1240 return ret; 1241 } 1242 1243 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1244 struct kernel_lb_addr *fileset) 1245 { 1246 struct logicalVolDesc *lvd; 1247 int i, j, offset; 1248 uint8_t type; 1249 struct udf_sb_info *sbi = UDF_SB(sb); 1250 struct genericPartitionMap *gpm; 1251 uint16_t ident; 1252 struct buffer_head *bh; 1253 int ret = 0; 1254 1255 bh = udf_read_tagged(sb, block, block, &ident); 1256 if (!bh) 1257 return 1; 1258 BUG_ON(ident != TAG_IDENT_LVD); 1259 lvd = (struct logicalVolDesc *)bh->b_data; 1260 1261 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1262 if (i != 0) { 1263 ret = i; 1264 goto out_bh; 1265 } 1266 1267 for (i = 0, offset = 0; 1268 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1269 i++, offset += gpm->partitionMapLength) { 1270 struct udf_part_map *map = &sbi->s_partmaps[i]; 1271 gpm = (struct genericPartitionMap *) 1272 &(lvd->partitionMaps[offset]); 1273 type = gpm->partitionMapType; 1274 if (type == 1) { 1275 struct genericPartitionMap1 *gpm1 = 1276 (struct genericPartitionMap1 *)gpm; 1277 map->s_partition_type = UDF_TYPE1_MAP15; 1278 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1279 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1280 map->s_partition_func = NULL; 1281 } else if (type == 2) { 1282 struct udfPartitionMap2 *upm2 = 1283 (struct udfPartitionMap2 *)gpm; 1284 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1285 strlen(UDF_ID_VIRTUAL))) { 1286 u16 suf = 1287 le16_to_cpu(((__le16 *)upm2->partIdent. 1288 identSuffix)[0]); 1289 if (suf < 0x0200) { 1290 map->s_partition_type = 1291 UDF_VIRTUAL_MAP15; 1292 map->s_partition_func = 1293 udf_get_pblock_virt15; 1294 } else { 1295 map->s_partition_type = 1296 UDF_VIRTUAL_MAP20; 1297 map->s_partition_func = 1298 udf_get_pblock_virt20; 1299 } 1300 } else if (!strncmp(upm2->partIdent.ident, 1301 UDF_ID_SPARABLE, 1302 strlen(UDF_ID_SPARABLE))) { 1303 uint32_t loc; 1304 struct sparingTable *st; 1305 struct sparablePartitionMap *spm = 1306 (struct sparablePartitionMap *)gpm; 1307 1308 map->s_partition_type = UDF_SPARABLE_MAP15; 1309 map->s_type_specific.s_sparing.s_packet_len = 1310 le16_to_cpu(spm->packetLength); 1311 for (j = 0; j < spm->numSparingTables; j++) { 1312 struct buffer_head *bh2; 1313 1314 loc = le32_to_cpu( 1315 spm->locSparingTable[j]); 1316 bh2 = udf_read_tagged(sb, loc, loc, 1317 &ident); 1318 map->s_type_specific.s_sparing. 1319 s_spar_map[j] = bh2; 1320 1321 if (bh2 == NULL) 1322 continue; 1323 1324 st = (struct sparingTable *)bh2->b_data; 1325 if (ident != 0 || strncmp( 1326 st->sparingIdent.ident, 1327 UDF_ID_SPARING, 1328 strlen(UDF_ID_SPARING))) { 1329 brelse(bh2); 1330 map->s_type_specific.s_sparing. 1331 s_spar_map[j] = NULL; 1332 } 1333 } 1334 map->s_partition_func = udf_get_pblock_spar15; 1335 } else if (!strncmp(upm2->partIdent.ident, 1336 UDF_ID_METADATA, 1337 strlen(UDF_ID_METADATA))) { 1338 struct udf_meta_data *mdata = 1339 &map->s_type_specific.s_metadata; 1340 struct metadataPartitionMap *mdm = 1341 (struct metadataPartitionMap *) 1342 &(lvd->partitionMaps[offset]); 1343 udf_debug("Parsing Logical vol part %d " 1344 "type %d id=%s\n", i, type, 1345 UDF_ID_METADATA); 1346 1347 map->s_partition_type = UDF_METADATA_MAP25; 1348 map->s_partition_func = udf_get_pblock_meta25; 1349 1350 mdata->s_meta_file_loc = 1351 le32_to_cpu(mdm->metadataFileLoc); 1352 mdata->s_mirror_file_loc = 1353 le32_to_cpu(mdm->metadataMirrorFileLoc); 1354 mdata->s_bitmap_file_loc = 1355 le32_to_cpu(mdm->metadataBitmapFileLoc); 1356 mdata->s_alloc_unit_size = 1357 le32_to_cpu(mdm->allocUnitSize); 1358 mdata->s_align_unit_size = 1359 le16_to_cpu(mdm->alignUnitSize); 1360 mdata->s_dup_md_flag = 1361 mdm->flags & 0x01; 1362 1363 udf_debug("Metadata Ident suffix=0x%x\n", 1364 (le16_to_cpu( 1365 ((__le16 *) 1366 mdm->partIdent.identSuffix)[0]))); 1367 udf_debug("Metadata part num=%d\n", 1368 le16_to_cpu(mdm->partitionNum)); 1369 udf_debug("Metadata part alloc unit size=%d\n", 1370 le32_to_cpu(mdm->allocUnitSize)); 1371 udf_debug("Metadata file loc=%d\n", 1372 le32_to_cpu(mdm->metadataFileLoc)); 1373 udf_debug("Mirror file loc=%d\n", 1374 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1375 udf_debug("Bitmap file loc=%d\n", 1376 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1377 udf_debug("Duplicate Flag: %d %d\n", 1378 mdata->s_dup_md_flag, mdm->flags); 1379 } else { 1380 udf_debug("Unknown ident: %s\n", 1381 upm2->partIdent.ident); 1382 continue; 1383 } 1384 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1385 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1386 } 1387 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1388 i, map->s_partition_num, type, 1389 map->s_volumeseqnum); 1390 } 1391 1392 if (fileset) { 1393 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1394 1395 *fileset = lelb_to_cpu(la->extLocation); 1396 udf_debug("FileSet found in LogicalVolDesc at block=%d, " 1397 "partition=%d\n", fileset->logicalBlockNum, 1398 fileset->partitionReferenceNum); 1399 } 1400 if (lvd->integritySeqExt.extLength) 1401 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1402 1403 out_bh: 1404 brelse(bh); 1405 return ret; 1406 } 1407 1408 /* 1409 * udf_load_logicalvolint 1410 * 1411 */ 1412 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1413 { 1414 struct buffer_head *bh = NULL; 1415 uint16_t ident; 1416 struct udf_sb_info *sbi = UDF_SB(sb); 1417 struct logicalVolIntegrityDesc *lvid; 1418 1419 while (loc.extLength > 0 && 1420 (bh = udf_read_tagged(sb, loc.extLocation, 1421 loc.extLocation, &ident)) && 1422 ident == TAG_IDENT_LVID) { 1423 sbi->s_lvid_bh = bh; 1424 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1425 1426 if (lvid->nextIntegrityExt.extLength) 1427 udf_load_logicalvolint(sb, 1428 leea_to_cpu(lvid->nextIntegrityExt)); 1429 1430 if (sbi->s_lvid_bh != bh) 1431 brelse(bh); 1432 loc.extLength -= sb->s_blocksize; 1433 loc.extLocation++; 1434 } 1435 if (sbi->s_lvid_bh != bh) 1436 brelse(bh); 1437 } 1438 1439 /* 1440 * udf_process_sequence 1441 * 1442 * PURPOSE 1443 * Process a main/reserve volume descriptor sequence. 1444 * 1445 * PRE-CONDITIONS 1446 * sb Pointer to _locked_ superblock. 1447 * block First block of first extent of the sequence. 1448 * lastblock Lastblock of first extent of the sequence. 1449 * 1450 * HISTORY 1451 * July 1, 1997 - Andrew E. Mileski 1452 * Written, tested, and released. 1453 */ 1454 static noinline int udf_process_sequence(struct super_block *sb, long block, 1455 long lastblock, struct kernel_lb_addr *fileset) 1456 { 1457 struct buffer_head *bh = NULL; 1458 struct udf_vds_record vds[VDS_POS_LENGTH]; 1459 struct udf_vds_record *curr; 1460 struct generic_desc *gd; 1461 struct volDescPtr *vdp; 1462 int done = 0; 1463 uint32_t vdsn; 1464 uint16_t ident; 1465 long next_s = 0, next_e = 0; 1466 1467 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1468 1469 /* 1470 * Read the main descriptor sequence and find which descriptors 1471 * are in it. 1472 */ 1473 for (; (!done && block <= lastblock); block++) { 1474 1475 bh = udf_read_tagged(sb, block, block, &ident); 1476 if (!bh) { 1477 printk(KERN_ERR "udf: Block %Lu of volume descriptor " 1478 "sequence is corrupted or we could not read " 1479 "it.\n", (unsigned long long)block); 1480 return 1; 1481 } 1482 1483 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1484 gd = (struct generic_desc *)bh->b_data; 1485 vdsn = le32_to_cpu(gd->volDescSeqNum); 1486 switch (ident) { 1487 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1488 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1489 if (vdsn >= curr->volDescSeqNum) { 1490 curr->volDescSeqNum = vdsn; 1491 curr->block = block; 1492 } 1493 break; 1494 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1495 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1496 if (vdsn >= curr->volDescSeqNum) { 1497 curr->volDescSeqNum = vdsn; 1498 curr->block = block; 1499 1500 vdp = (struct volDescPtr *)bh->b_data; 1501 next_s = le32_to_cpu( 1502 vdp->nextVolDescSeqExt.extLocation); 1503 next_e = le32_to_cpu( 1504 vdp->nextVolDescSeqExt.extLength); 1505 next_e = next_e >> sb->s_blocksize_bits; 1506 next_e += next_s; 1507 } 1508 break; 1509 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1510 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1511 if (vdsn >= curr->volDescSeqNum) { 1512 curr->volDescSeqNum = vdsn; 1513 curr->block = block; 1514 } 1515 break; 1516 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1517 curr = &vds[VDS_POS_PARTITION_DESC]; 1518 if (!curr->block) 1519 curr->block = block; 1520 break; 1521 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1522 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1523 if (vdsn >= curr->volDescSeqNum) { 1524 curr->volDescSeqNum = vdsn; 1525 curr->block = block; 1526 } 1527 break; 1528 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1529 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1530 if (vdsn >= curr->volDescSeqNum) { 1531 curr->volDescSeqNum = vdsn; 1532 curr->block = block; 1533 } 1534 break; 1535 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1536 vds[VDS_POS_TERMINATING_DESC].block = block; 1537 if (next_e) { 1538 block = next_s; 1539 lastblock = next_e; 1540 next_s = next_e = 0; 1541 } else 1542 done = 1; 1543 break; 1544 } 1545 brelse(bh); 1546 } 1547 /* 1548 * Now read interesting descriptors again and process them 1549 * in a suitable order 1550 */ 1551 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1552 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n"); 1553 return 1; 1554 } 1555 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1556 return 1; 1557 1558 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1559 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1560 return 1; 1561 1562 if (vds[VDS_POS_PARTITION_DESC].block) { 1563 /* 1564 * We rescan the whole descriptor sequence to find 1565 * partition descriptor blocks and process them. 1566 */ 1567 for (block = vds[VDS_POS_PARTITION_DESC].block; 1568 block < vds[VDS_POS_TERMINATING_DESC].block; 1569 block++) 1570 if (udf_load_partdesc(sb, block)) 1571 return 1; 1572 } 1573 1574 return 0; 1575 } 1576 1577 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1578 struct kernel_lb_addr *fileset) 1579 { 1580 struct anchorVolDescPtr *anchor; 1581 long main_s, main_e, reserve_s, reserve_e; 1582 struct udf_sb_info *sbi; 1583 1584 sbi = UDF_SB(sb); 1585 anchor = (struct anchorVolDescPtr *)bh->b_data; 1586 1587 /* Locate the main sequence */ 1588 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1589 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1590 main_e = main_e >> sb->s_blocksize_bits; 1591 main_e += main_s; 1592 1593 /* Locate the reserve sequence */ 1594 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1595 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1596 reserve_e = reserve_e >> sb->s_blocksize_bits; 1597 reserve_e += reserve_s; 1598 1599 /* Process the main & reserve sequences */ 1600 /* responsible for finding the PartitionDesc(s) */ 1601 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1602 return 1; 1603 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1604 } 1605 1606 /* 1607 * Check whether there is an anchor block in the given block and 1608 * load Volume Descriptor Sequence if so. 1609 */ 1610 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1611 struct kernel_lb_addr *fileset) 1612 { 1613 struct buffer_head *bh; 1614 uint16_t ident; 1615 int ret; 1616 1617 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1618 udf_fixed_to_variable(block) >= 1619 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1620 return 0; 1621 1622 bh = udf_read_tagged(sb, block, block, &ident); 1623 if (!bh) 1624 return 0; 1625 if (ident != TAG_IDENT_AVDP) { 1626 brelse(bh); 1627 return 0; 1628 } 1629 ret = udf_load_sequence(sb, bh, fileset); 1630 brelse(bh); 1631 return ret; 1632 } 1633 1634 /* Search for an anchor volume descriptor pointer */ 1635 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1636 struct kernel_lb_addr *fileset) 1637 { 1638 sector_t last[6]; 1639 int i; 1640 struct udf_sb_info *sbi = UDF_SB(sb); 1641 int last_count = 0; 1642 1643 /* First try user provided anchor */ 1644 if (sbi->s_anchor) { 1645 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1646 return lastblock; 1647 } 1648 /* 1649 * according to spec, anchor is in either: 1650 * block 256 1651 * lastblock-256 1652 * lastblock 1653 * however, if the disc isn't closed, it could be 512. 1654 */ 1655 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1656 return lastblock; 1657 /* 1658 * The trouble is which block is the last one. Drives often misreport 1659 * this so we try various possibilities. 1660 */ 1661 last[last_count++] = lastblock; 1662 if (lastblock >= 1) 1663 last[last_count++] = lastblock - 1; 1664 last[last_count++] = lastblock + 1; 1665 if (lastblock >= 2) 1666 last[last_count++] = lastblock - 2; 1667 if (lastblock >= 150) 1668 last[last_count++] = lastblock - 150; 1669 if (lastblock >= 152) 1670 last[last_count++] = lastblock - 152; 1671 1672 for (i = 0; i < last_count; i++) { 1673 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1674 sb->s_blocksize_bits) 1675 continue; 1676 if (udf_check_anchor_block(sb, last[i], fileset)) 1677 return last[i]; 1678 if (last[i] < 256) 1679 continue; 1680 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1681 return last[i]; 1682 } 1683 1684 /* Finally try block 512 in case media is open */ 1685 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1686 return last[0]; 1687 return 0; 1688 } 1689 1690 /* 1691 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1692 * area specified by it. The function expects sbi->s_lastblock to be the last 1693 * block on the media. 1694 * 1695 * Return 1 if ok, 0 if not found. 1696 * 1697 */ 1698 static int udf_find_anchor(struct super_block *sb, 1699 struct kernel_lb_addr *fileset) 1700 { 1701 sector_t lastblock; 1702 struct udf_sb_info *sbi = UDF_SB(sb); 1703 1704 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1705 if (lastblock) 1706 goto out; 1707 1708 /* No anchor found? Try VARCONV conversion of block numbers */ 1709 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1710 /* Firstly, we try to not convert number of the last block */ 1711 lastblock = udf_scan_anchors(sb, 1712 udf_variable_to_fixed(sbi->s_last_block), 1713 fileset); 1714 if (lastblock) 1715 goto out; 1716 1717 /* Secondly, we try with converted number of the last block */ 1718 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1719 if (!lastblock) { 1720 /* VARCONV didn't help. Clear it. */ 1721 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1722 return 0; 1723 } 1724 out: 1725 sbi->s_last_block = lastblock; 1726 return 1; 1727 } 1728 1729 /* 1730 * Check Volume Structure Descriptor, find Anchor block and load Volume 1731 * Descriptor Sequence 1732 */ 1733 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1734 int silent, struct kernel_lb_addr *fileset) 1735 { 1736 struct udf_sb_info *sbi = UDF_SB(sb); 1737 loff_t nsr_off; 1738 1739 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1740 if (!silent) 1741 printk(KERN_WARNING "UDF-fs: Bad block size\n"); 1742 return 0; 1743 } 1744 sbi->s_last_block = uopt->lastblock; 1745 if (!uopt->novrs) { 1746 /* Check that it is NSR02 compliant */ 1747 nsr_off = udf_check_vsd(sb); 1748 if (!nsr_off) { 1749 if (!silent) 1750 printk(KERN_WARNING "UDF-fs: No VRS found\n"); 1751 return 0; 1752 } 1753 if (nsr_off == -1) 1754 udf_debug("Failed to read byte 32768. Assuming open " 1755 "disc. Skipping validity check\n"); 1756 if (!sbi->s_last_block) 1757 sbi->s_last_block = udf_get_last_block(sb); 1758 } else { 1759 udf_debug("Validity check skipped because of novrs option\n"); 1760 } 1761 1762 /* Look for anchor block and load Volume Descriptor Sequence */ 1763 sbi->s_anchor = uopt->anchor; 1764 if (!udf_find_anchor(sb, fileset)) { 1765 if (!silent) 1766 printk(KERN_WARNING "UDF-fs: No anchor found\n"); 1767 return 0; 1768 } 1769 return 1; 1770 } 1771 1772 static void udf_open_lvid(struct super_block *sb) 1773 { 1774 struct udf_sb_info *sbi = UDF_SB(sb); 1775 struct buffer_head *bh = sbi->s_lvid_bh; 1776 struct logicalVolIntegrityDesc *lvid; 1777 struct logicalVolIntegrityDescImpUse *lvidiu; 1778 1779 if (!bh) 1780 return; 1781 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1782 lvidiu = udf_sb_lvidiu(sbi); 1783 1784 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1785 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1786 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1787 CURRENT_TIME); 1788 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1789 1790 lvid->descTag.descCRC = cpu_to_le16( 1791 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1792 le16_to_cpu(lvid->descTag.descCRCLength))); 1793 1794 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1795 mark_buffer_dirty(bh); 1796 sbi->s_lvid_dirty = 0; 1797 } 1798 1799 static void udf_close_lvid(struct super_block *sb) 1800 { 1801 struct udf_sb_info *sbi = UDF_SB(sb); 1802 struct buffer_head *bh = sbi->s_lvid_bh; 1803 struct logicalVolIntegrityDesc *lvid; 1804 struct logicalVolIntegrityDescImpUse *lvidiu; 1805 1806 if (!bh) 1807 return; 1808 1809 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1810 lvidiu = udf_sb_lvidiu(sbi); 1811 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1812 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1813 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1814 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1815 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1816 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1817 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1818 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1819 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1820 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1821 1822 lvid->descTag.descCRC = cpu_to_le16( 1823 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1824 le16_to_cpu(lvid->descTag.descCRCLength))); 1825 1826 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1827 mark_buffer_dirty(bh); 1828 sbi->s_lvid_dirty = 0; 1829 } 1830 1831 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1832 { 1833 int i; 1834 int nr_groups = bitmap->s_nr_groups; 1835 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1836 nr_groups); 1837 1838 for (i = 0; i < nr_groups; i++) 1839 if (bitmap->s_block_bitmap[i]) 1840 brelse(bitmap->s_block_bitmap[i]); 1841 1842 if (size <= PAGE_SIZE) 1843 kfree(bitmap); 1844 else 1845 vfree(bitmap); 1846 } 1847 1848 static void udf_free_partition(struct udf_part_map *map) 1849 { 1850 int i; 1851 struct udf_meta_data *mdata; 1852 1853 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1854 iput(map->s_uspace.s_table); 1855 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1856 iput(map->s_fspace.s_table); 1857 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1858 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1859 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1860 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1861 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1862 for (i = 0; i < 4; i++) 1863 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1864 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1865 mdata = &map->s_type_specific.s_metadata; 1866 iput(mdata->s_metadata_fe); 1867 mdata->s_metadata_fe = NULL; 1868 1869 iput(mdata->s_mirror_fe); 1870 mdata->s_mirror_fe = NULL; 1871 1872 iput(mdata->s_bitmap_fe); 1873 mdata->s_bitmap_fe = NULL; 1874 } 1875 } 1876 1877 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1878 { 1879 int i; 1880 int ret; 1881 struct inode *inode = NULL; 1882 struct udf_options uopt; 1883 struct kernel_lb_addr rootdir, fileset; 1884 struct udf_sb_info *sbi; 1885 1886 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1887 uopt.uid = -1; 1888 uopt.gid = -1; 1889 uopt.umask = 0; 1890 uopt.fmode = UDF_INVALID_MODE; 1891 uopt.dmode = UDF_INVALID_MODE; 1892 1893 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1894 if (!sbi) 1895 return -ENOMEM; 1896 1897 sb->s_fs_info = sbi; 1898 1899 mutex_init(&sbi->s_alloc_mutex); 1900 1901 if (!udf_parse_options((char *)options, &uopt, false)) 1902 goto error_out; 1903 1904 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1905 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1906 udf_error(sb, "udf_read_super", 1907 "utf8 cannot be combined with iocharset\n"); 1908 goto error_out; 1909 } 1910 #ifdef CONFIG_UDF_NLS 1911 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1912 uopt.nls_map = load_nls_default(); 1913 if (!uopt.nls_map) 1914 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1915 else 1916 udf_debug("Using default NLS map\n"); 1917 } 1918 #endif 1919 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1920 uopt.flags |= (1 << UDF_FLAG_UTF8); 1921 1922 fileset.logicalBlockNum = 0xFFFFFFFF; 1923 fileset.partitionReferenceNum = 0xFFFF; 1924 1925 sbi->s_flags = uopt.flags; 1926 sbi->s_uid = uopt.uid; 1927 sbi->s_gid = uopt.gid; 1928 sbi->s_umask = uopt.umask; 1929 sbi->s_fmode = uopt.fmode; 1930 sbi->s_dmode = uopt.dmode; 1931 sbi->s_nls_map = uopt.nls_map; 1932 1933 if (uopt.session == 0xFFFFFFFF) 1934 sbi->s_session = udf_get_last_session(sb); 1935 else 1936 sbi->s_session = uopt.session; 1937 1938 udf_debug("Multi-session=%d\n", sbi->s_session); 1939 1940 /* Fill in the rest of the superblock */ 1941 sb->s_op = &udf_sb_ops; 1942 sb->s_export_op = &udf_export_ops; 1943 1944 sb->s_dirt = 0; 1945 sb->s_magic = UDF_SUPER_MAGIC; 1946 sb->s_time_gran = 1000; 1947 1948 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1949 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1950 } else { 1951 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 1952 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1953 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 1954 if (!silent) 1955 printk(KERN_NOTICE 1956 "UDF-fs: Rescanning with blocksize " 1957 "%d\n", UDF_DEFAULT_BLOCKSIZE); 1958 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 1959 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1960 } 1961 } 1962 if (!ret) { 1963 printk(KERN_WARNING "UDF-fs: No partition found (1)\n"); 1964 goto error_out; 1965 } 1966 1967 udf_debug("Lastblock=%d\n", sbi->s_last_block); 1968 1969 if (sbi->s_lvid_bh) { 1970 struct logicalVolIntegrityDescImpUse *lvidiu = 1971 udf_sb_lvidiu(sbi); 1972 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 1973 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 1974 /* uint16_t maxUDFWriteRev = 1975 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 1976 1977 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 1978 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x " 1979 "(max is %x)\n", 1980 le16_to_cpu(lvidiu->minUDFReadRev), 1981 UDF_MAX_READ_VERSION); 1982 goto error_out; 1983 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 1984 sb->s_flags |= MS_RDONLY; 1985 1986 sbi->s_udfrev = minUDFWriteRev; 1987 1988 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 1989 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 1990 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 1991 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 1992 } 1993 1994 if (!sbi->s_partitions) { 1995 printk(KERN_WARNING "UDF-fs: No partition found (2)\n"); 1996 goto error_out; 1997 } 1998 1999 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2000 UDF_PART_FLAG_READ_ONLY) { 2001 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; " 2002 "forcing readonly mount\n"); 2003 sb->s_flags |= MS_RDONLY; 2004 } 2005 2006 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2007 printk(KERN_WARNING "UDF-fs: No fileset found\n"); 2008 goto error_out; 2009 } 2010 2011 if (!silent) { 2012 struct timestamp ts; 2013 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2014 udf_info("UDF: Mounting volume '%s', " 2015 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2016 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day, 2017 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2018 } 2019 if (!(sb->s_flags & MS_RDONLY)) 2020 udf_open_lvid(sb); 2021 2022 /* Assign the root inode */ 2023 /* assign inodes by physical block number */ 2024 /* perhaps it's not extensible enough, but for now ... */ 2025 inode = udf_iget(sb, &rootdir); 2026 if (!inode) { 2027 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, " 2028 "partition=%d\n", 2029 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2030 goto error_out; 2031 } 2032 2033 /* Allocate a dentry for the root inode */ 2034 sb->s_root = d_alloc_root(inode); 2035 if (!sb->s_root) { 2036 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n"); 2037 iput(inode); 2038 goto error_out; 2039 } 2040 sb->s_maxbytes = MAX_LFS_FILESIZE; 2041 return 0; 2042 2043 error_out: 2044 if (sbi->s_vat_inode) 2045 iput(sbi->s_vat_inode); 2046 if (sbi->s_partitions) 2047 for (i = 0; i < sbi->s_partitions; i++) 2048 udf_free_partition(&sbi->s_partmaps[i]); 2049 #ifdef CONFIG_UDF_NLS 2050 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2051 unload_nls(sbi->s_nls_map); 2052 #endif 2053 if (!(sb->s_flags & MS_RDONLY)) 2054 udf_close_lvid(sb); 2055 brelse(sbi->s_lvid_bh); 2056 2057 kfree(sbi->s_partmaps); 2058 kfree(sbi); 2059 sb->s_fs_info = NULL; 2060 2061 return -EINVAL; 2062 } 2063 2064 static void udf_error(struct super_block *sb, const char *function, 2065 const char *fmt, ...) 2066 { 2067 va_list args; 2068 2069 if (!(sb->s_flags & MS_RDONLY)) { 2070 /* mark sb error */ 2071 sb->s_dirt = 1; 2072 } 2073 va_start(args, fmt); 2074 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2075 va_end(args); 2076 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n", 2077 sb->s_id, function, error_buf); 2078 } 2079 2080 void udf_warning(struct super_block *sb, const char *function, 2081 const char *fmt, ...) 2082 { 2083 va_list args; 2084 2085 va_start(args, fmt); 2086 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2087 va_end(args); 2088 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n", 2089 sb->s_id, function, error_buf); 2090 } 2091 2092 static void udf_put_super(struct super_block *sb) 2093 { 2094 int i; 2095 struct udf_sb_info *sbi; 2096 2097 sbi = UDF_SB(sb); 2098 2099 lock_kernel(); 2100 2101 if (sbi->s_vat_inode) 2102 iput(sbi->s_vat_inode); 2103 if (sbi->s_partitions) 2104 for (i = 0; i < sbi->s_partitions; i++) 2105 udf_free_partition(&sbi->s_partmaps[i]); 2106 #ifdef CONFIG_UDF_NLS 2107 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2108 unload_nls(sbi->s_nls_map); 2109 #endif 2110 if (!(sb->s_flags & MS_RDONLY)) 2111 udf_close_lvid(sb); 2112 brelse(sbi->s_lvid_bh); 2113 kfree(sbi->s_partmaps); 2114 kfree(sb->s_fs_info); 2115 sb->s_fs_info = NULL; 2116 2117 unlock_kernel(); 2118 } 2119 2120 static int udf_sync_fs(struct super_block *sb, int wait) 2121 { 2122 struct udf_sb_info *sbi = UDF_SB(sb); 2123 2124 mutex_lock(&sbi->s_alloc_mutex); 2125 if (sbi->s_lvid_dirty) { 2126 /* 2127 * Blockdevice will be synced later so we don't have to submit 2128 * the buffer for IO 2129 */ 2130 mark_buffer_dirty(sbi->s_lvid_bh); 2131 sb->s_dirt = 0; 2132 sbi->s_lvid_dirty = 0; 2133 } 2134 mutex_unlock(&sbi->s_alloc_mutex); 2135 2136 return 0; 2137 } 2138 2139 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2140 { 2141 struct super_block *sb = dentry->d_sb; 2142 struct udf_sb_info *sbi = UDF_SB(sb); 2143 struct logicalVolIntegrityDescImpUse *lvidiu; 2144 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2145 2146 if (sbi->s_lvid_bh != NULL) 2147 lvidiu = udf_sb_lvidiu(sbi); 2148 else 2149 lvidiu = NULL; 2150 2151 buf->f_type = UDF_SUPER_MAGIC; 2152 buf->f_bsize = sb->s_blocksize; 2153 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2154 buf->f_bfree = udf_count_free(sb); 2155 buf->f_bavail = buf->f_bfree; 2156 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2157 le32_to_cpu(lvidiu->numDirs)) : 0) 2158 + buf->f_bfree; 2159 buf->f_ffree = buf->f_bfree; 2160 buf->f_namelen = UDF_NAME_LEN - 2; 2161 buf->f_fsid.val[0] = (u32)id; 2162 buf->f_fsid.val[1] = (u32)(id >> 32); 2163 2164 return 0; 2165 } 2166 2167 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2168 struct udf_bitmap *bitmap) 2169 { 2170 struct buffer_head *bh = NULL; 2171 unsigned int accum = 0; 2172 int index; 2173 int block = 0, newblock; 2174 struct kernel_lb_addr loc; 2175 uint32_t bytes; 2176 uint8_t *ptr; 2177 uint16_t ident; 2178 struct spaceBitmapDesc *bm; 2179 2180 lock_kernel(); 2181 2182 loc.logicalBlockNum = bitmap->s_extPosition; 2183 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2184 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2185 2186 if (!bh) { 2187 printk(KERN_ERR "udf: udf_count_free failed\n"); 2188 goto out; 2189 } else if (ident != TAG_IDENT_SBD) { 2190 brelse(bh); 2191 printk(KERN_ERR "udf: udf_count_free failed\n"); 2192 goto out; 2193 } 2194 2195 bm = (struct spaceBitmapDesc *)bh->b_data; 2196 bytes = le32_to_cpu(bm->numOfBytes); 2197 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2198 ptr = (uint8_t *)bh->b_data; 2199 2200 while (bytes > 0) { 2201 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2202 accum += bitmap_weight((const unsigned long *)(ptr + index), 2203 cur_bytes * 8); 2204 bytes -= cur_bytes; 2205 if (bytes) { 2206 brelse(bh); 2207 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2208 bh = udf_tread(sb, newblock); 2209 if (!bh) { 2210 udf_debug("read failed\n"); 2211 goto out; 2212 } 2213 index = 0; 2214 ptr = (uint8_t *)bh->b_data; 2215 } 2216 } 2217 brelse(bh); 2218 2219 out: 2220 unlock_kernel(); 2221 2222 return accum; 2223 } 2224 2225 static unsigned int udf_count_free_table(struct super_block *sb, 2226 struct inode *table) 2227 { 2228 unsigned int accum = 0; 2229 uint32_t elen; 2230 struct kernel_lb_addr eloc; 2231 int8_t etype; 2232 struct extent_position epos; 2233 2234 lock_kernel(); 2235 2236 epos.block = UDF_I(table)->i_location; 2237 epos.offset = sizeof(struct unallocSpaceEntry); 2238 epos.bh = NULL; 2239 2240 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2241 accum += (elen >> table->i_sb->s_blocksize_bits); 2242 2243 brelse(epos.bh); 2244 2245 unlock_kernel(); 2246 2247 return accum; 2248 } 2249 2250 static unsigned int udf_count_free(struct super_block *sb) 2251 { 2252 unsigned int accum = 0; 2253 struct udf_sb_info *sbi; 2254 struct udf_part_map *map; 2255 2256 sbi = UDF_SB(sb); 2257 if (sbi->s_lvid_bh) { 2258 struct logicalVolIntegrityDesc *lvid = 2259 (struct logicalVolIntegrityDesc *) 2260 sbi->s_lvid_bh->b_data; 2261 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2262 accum = le32_to_cpu( 2263 lvid->freeSpaceTable[sbi->s_partition]); 2264 if (accum == 0xFFFFFFFF) 2265 accum = 0; 2266 } 2267 } 2268 2269 if (accum) 2270 return accum; 2271 2272 map = &sbi->s_partmaps[sbi->s_partition]; 2273 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2274 accum += udf_count_free_bitmap(sb, 2275 map->s_uspace.s_bitmap); 2276 } 2277 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2278 accum += udf_count_free_bitmap(sb, 2279 map->s_fspace.s_bitmap); 2280 } 2281 if (accum) 2282 return accum; 2283 2284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2285 accum += udf_count_free_table(sb, 2286 map->s_uspace.s_table); 2287 } 2288 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2289 accum += udf_count_free_table(sb, 2290 map->s_fspace.s_table); 2291 } 2292 2293 return accum; 2294 } 2295