xref: /linux/fs/udf/super.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77 
78 #define VSD_FIRST_SECTOR_OFFSET		32768
79 #define VSD_MAX_SECTOR_OFFSET		0x800000
80 
81 /*
82  * Maximum number of Terminating Descriptor / Logical Volume Integrity
83  * Descriptor redirections. The chosen numbers are arbitrary - just that we
84  * hopefully don't limit any real use of rewritten inode on write-once media
85  * but avoid looping for too long on corrupted media.
86  */
87 #define UDF_MAX_TD_NESTING 64
88 #define UDF_MAX_LVID_NESTING 1000
89 
90 enum { UDF_MAX_LINKS = 0xffff };
91 
92 /* These are the "meat" - everything else is stuffing */
93 static int udf_fill_super(struct super_block *, void *, int);
94 static void udf_put_super(struct super_block *);
95 static int udf_sync_fs(struct super_block *, int);
96 static int udf_remount_fs(struct super_block *, int *, char *);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99 			    struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101 			     struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107 
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110 	struct logicalVolIntegrityDesc *lvid;
111 	unsigned int partnum;
112 	unsigned int offset;
113 
114 	if (!UDF_SB(sb)->s_lvid_bh)
115 		return NULL;
116 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117 	partnum = le32_to_cpu(lvid->numOfPartitions);
118 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
120 	     (2 * sizeof(uint32_t)) < partnum) {
121 		udf_err(sb, "Logical volume integrity descriptor corrupted "
122 			"(numOfPartitions = %u)!\n", partnum);
123 		return NULL;
124 	}
125 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
126 	offset = partnum * 2 * sizeof(uint32_t);
127 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128 }
129 
130 /* UDF filesystem type */
131 static struct dentry *udf_mount(struct file_system_type *fs_type,
132 		      int flags, const char *dev_name, void *data)
133 {
134 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135 }
136 
137 static struct file_system_type udf_fstype = {
138 	.owner		= THIS_MODULE,
139 	.name		= "udf",
140 	.mount		= udf_mount,
141 	.kill_sb	= kill_block_super,
142 	.fs_flags	= FS_REQUIRES_DEV,
143 };
144 MODULE_ALIAS_FS("udf");
145 
146 static struct kmem_cache *udf_inode_cachep;
147 
148 static struct inode *udf_alloc_inode(struct super_block *sb)
149 {
150 	struct udf_inode_info *ei;
151 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152 	if (!ei)
153 		return NULL;
154 
155 	ei->i_unique = 0;
156 	ei->i_lenExtents = 0;
157 	ei->i_next_alloc_block = 0;
158 	ei->i_next_alloc_goal = 0;
159 	ei->i_strat4096 = 0;
160 	init_rwsem(&ei->i_data_sem);
161 	ei->cached_extent.lstart = -1;
162 	spin_lock_init(&ei->i_extent_cache_lock);
163 
164 	return &ei->vfs_inode;
165 }
166 
167 static void udf_i_callback(struct rcu_head *head)
168 {
169 	struct inode *inode = container_of(head, struct inode, i_rcu);
170 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171 }
172 
173 static void udf_destroy_inode(struct inode *inode)
174 {
175 	call_rcu(&inode->i_rcu, udf_i_callback);
176 }
177 
178 static void init_once(void *foo)
179 {
180 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181 
182 	ei->i_ext.i_data = NULL;
183 	inode_init_once(&ei->vfs_inode);
184 }
185 
186 static int __init init_inodecache(void)
187 {
188 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 					     sizeof(struct udf_inode_info),
190 					     0, (SLAB_RECLAIM_ACCOUNT |
191 						 SLAB_MEM_SPREAD |
192 						 SLAB_ACCOUNT),
193 					     init_once);
194 	if (!udf_inode_cachep)
195 		return -ENOMEM;
196 	return 0;
197 }
198 
199 static void destroy_inodecache(void)
200 {
201 	/*
202 	 * Make sure all delayed rcu free inodes are flushed before we
203 	 * destroy cache.
204 	 */
205 	rcu_barrier();
206 	kmem_cache_destroy(udf_inode_cachep);
207 }
208 
209 /* Superblock operations */
210 static const struct super_operations udf_sb_ops = {
211 	.alloc_inode	= udf_alloc_inode,
212 	.destroy_inode	= udf_destroy_inode,
213 	.write_inode	= udf_write_inode,
214 	.evict_inode	= udf_evict_inode,
215 	.put_super	= udf_put_super,
216 	.sync_fs	= udf_sync_fs,
217 	.statfs		= udf_statfs,
218 	.remount_fs	= udf_remount_fs,
219 	.show_options	= udf_show_options,
220 };
221 
222 struct udf_options {
223 	unsigned char novrs;
224 	unsigned int blocksize;
225 	unsigned int session;
226 	unsigned int lastblock;
227 	unsigned int anchor;
228 	unsigned int volume;
229 	unsigned short partition;
230 	unsigned int fileset;
231 	unsigned int rootdir;
232 	unsigned int flags;
233 	umode_t umask;
234 	kgid_t gid;
235 	kuid_t uid;
236 	umode_t fmode;
237 	umode_t dmode;
238 	struct nls_table *nls_map;
239 };
240 
241 static int __init init_udf_fs(void)
242 {
243 	int err;
244 
245 	err = init_inodecache();
246 	if (err)
247 		goto out1;
248 	err = register_filesystem(&udf_fstype);
249 	if (err)
250 		goto out;
251 
252 	return 0;
253 
254 out:
255 	destroy_inodecache();
256 
257 out1:
258 	return err;
259 }
260 
261 static void __exit exit_udf_fs(void)
262 {
263 	unregister_filesystem(&udf_fstype);
264 	destroy_inodecache();
265 }
266 
267 module_init(init_udf_fs)
268 module_exit(exit_udf_fs)
269 
270 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271 {
272 	struct udf_sb_info *sbi = UDF_SB(sb);
273 
274 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275 				  GFP_KERNEL);
276 	if (!sbi->s_partmaps) {
277 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
278 			count);
279 		sbi->s_partitions = 0;
280 		return -ENOMEM;
281 	}
282 
283 	sbi->s_partitions = count;
284 	return 0;
285 }
286 
287 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288 {
289 	int i;
290 	int nr_groups = bitmap->s_nr_groups;
291 
292 	for (i = 0; i < nr_groups; i++)
293 		if (bitmap->s_block_bitmap[i])
294 			brelse(bitmap->s_block_bitmap[i]);
295 
296 	kvfree(bitmap);
297 }
298 
299 static void udf_free_partition(struct udf_part_map *map)
300 {
301 	int i;
302 	struct udf_meta_data *mdata;
303 
304 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305 		iput(map->s_uspace.s_table);
306 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307 		iput(map->s_fspace.s_table);
308 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
313 		for (i = 0; i < 4; i++)
314 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
316 		mdata = &map->s_type_specific.s_metadata;
317 		iput(mdata->s_metadata_fe);
318 		mdata->s_metadata_fe = NULL;
319 
320 		iput(mdata->s_mirror_fe);
321 		mdata->s_mirror_fe = NULL;
322 
323 		iput(mdata->s_bitmap_fe);
324 		mdata->s_bitmap_fe = NULL;
325 	}
326 }
327 
328 static void udf_sb_free_partitions(struct super_block *sb)
329 {
330 	struct udf_sb_info *sbi = UDF_SB(sb);
331 	int i;
332 	if (sbi->s_partmaps == NULL)
333 		return;
334 	for (i = 0; i < sbi->s_partitions; i++)
335 		udf_free_partition(&sbi->s_partmaps[i]);
336 	kfree(sbi->s_partmaps);
337 	sbi->s_partmaps = NULL;
338 }
339 
340 static int udf_show_options(struct seq_file *seq, struct dentry *root)
341 {
342 	struct super_block *sb = root->d_sb;
343 	struct udf_sb_info *sbi = UDF_SB(sb);
344 
345 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346 		seq_puts(seq, ",nostrict");
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350 		seq_puts(seq, ",unhide");
351 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352 		seq_puts(seq, ",undelete");
353 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354 		seq_puts(seq, ",noadinicb");
355 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356 		seq_puts(seq, ",shortad");
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358 		seq_puts(seq, ",uid=forget");
359 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360 		seq_puts(seq, ",uid=ignore");
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362 		seq_puts(seq, ",gid=forget");
363 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364 		seq_puts(seq, ",gid=ignore");
365 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369 	if (sbi->s_umask != 0)
370 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
371 	if (sbi->s_fmode != UDF_INVALID_MODE)
372 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373 	if (sbi->s_dmode != UDF_INVALID_MODE)
374 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376 		seq_printf(seq, ",session=%u", sbi->s_session);
377 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379 	if (sbi->s_anchor != 0)
380 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381 	/*
382 	 * volume, partition, fileset and rootdir seem to be ignored
383 	 * currently
384 	 */
385 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386 		seq_puts(seq, ",utf8");
387 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389 
390 	return 0;
391 }
392 
393 /*
394  * udf_parse_options
395  *
396  * PURPOSE
397  *	Parse mount options.
398  *
399  * DESCRIPTION
400  *	The following mount options are supported:
401  *
402  *	gid=		Set the default group.
403  *	umask=		Set the default umask.
404  *	mode=		Set the default file permissions.
405  *	dmode=		Set the default directory permissions.
406  *	uid=		Set the default user.
407  *	bs=		Set the block size.
408  *	unhide		Show otherwise hidden files.
409  *	undelete	Show deleted files in lists.
410  *	adinicb		Embed data in the inode (default)
411  *	noadinicb	Don't embed data in the inode
412  *	shortad		Use short ad's
413  *	longad		Use long ad's (default)
414  *	nostrict	Unset strict conformance
415  *	iocharset=	Set the NLS character set
416  *
417  *	The remaining are for debugging and disaster recovery:
418  *
419  *	novrs		Skip volume sequence recognition
420  *
421  *	The following expect a offset from 0.
422  *
423  *	session=	Set the CDROM session (default= last session)
424  *	anchor=		Override standard anchor location. (default= 256)
425  *	volume=		Override the VolumeDesc location. (unused)
426  *	partition=	Override the PartitionDesc location. (unused)
427  *	lastblock=	Set the last block of the filesystem/
428  *
429  *	The following expect a offset from the partition root.
430  *
431  *	fileset=	Override the fileset block location. (unused)
432  *	rootdir=	Override the root directory location. (unused)
433  *		WARNING: overriding the rootdir to a non-directory may
434  *		yield highly unpredictable results.
435  *
436  * PRE-CONDITIONS
437  *	options		Pointer to mount options string.
438  *	uopts		Pointer to mount options variable.
439  *
440  * POST-CONDITIONS
441  *	<return>	1	Mount options parsed okay.
442  *	<return>	0	Error parsing mount options.
443  *
444  * HISTORY
445  *	July 1, 1997 - Andrew E. Mileski
446  *	Written, tested, and released.
447  */
448 
449 enum {
450 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454 	Opt_rootdir, Opt_utf8, Opt_iocharset,
455 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456 	Opt_fmode, Opt_dmode
457 };
458 
459 static const match_table_t tokens = {
460 	{Opt_novrs,	"novrs"},
461 	{Opt_nostrict,	"nostrict"},
462 	{Opt_bs,	"bs=%u"},
463 	{Opt_unhide,	"unhide"},
464 	{Opt_undelete,	"undelete"},
465 	{Opt_noadinicb,	"noadinicb"},
466 	{Opt_adinicb,	"adinicb"},
467 	{Opt_shortad,	"shortad"},
468 	{Opt_longad,	"longad"},
469 	{Opt_uforget,	"uid=forget"},
470 	{Opt_uignore,	"uid=ignore"},
471 	{Opt_gforget,	"gid=forget"},
472 	{Opt_gignore,	"gid=ignore"},
473 	{Opt_gid,	"gid=%u"},
474 	{Opt_uid,	"uid=%u"},
475 	{Opt_umask,	"umask=%o"},
476 	{Opt_session,	"session=%u"},
477 	{Opt_lastblock,	"lastblock=%u"},
478 	{Opt_anchor,	"anchor=%u"},
479 	{Opt_volume,	"volume=%u"},
480 	{Opt_partition,	"partition=%u"},
481 	{Opt_fileset,	"fileset=%u"},
482 	{Opt_rootdir,	"rootdir=%u"},
483 	{Opt_utf8,	"utf8"},
484 	{Opt_iocharset,	"iocharset=%s"},
485 	{Opt_fmode,     "mode=%o"},
486 	{Opt_dmode,     "dmode=%o"},
487 	{Opt_err,	NULL}
488 };
489 
490 static int udf_parse_options(char *options, struct udf_options *uopt,
491 			     bool remount)
492 {
493 	char *p;
494 	int option;
495 
496 	uopt->novrs = 0;
497 	uopt->partition = 0xFFFF;
498 	uopt->session = 0xFFFFFFFF;
499 	uopt->lastblock = 0;
500 	uopt->anchor = 0;
501 	uopt->volume = 0xFFFFFFFF;
502 	uopt->rootdir = 0xFFFFFFFF;
503 	uopt->fileset = 0xFFFFFFFF;
504 	uopt->nls_map = NULL;
505 
506 	if (!options)
507 		return 1;
508 
509 	while ((p = strsep(&options, ",")) != NULL) {
510 		substring_t args[MAX_OPT_ARGS];
511 		int token;
512 		unsigned n;
513 		if (!*p)
514 			continue;
515 
516 		token = match_token(p, tokens, args);
517 		switch (token) {
518 		case Opt_novrs:
519 			uopt->novrs = 1;
520 			break;
521 		case Opt_bs:
522 			if (match_int(&args[0], &option))
523 				return 0;
524 			n = option;
525 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526 				return 0;
527 			uopt->blocksize = n;
528 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529 			break;
530 		case Opt_unhide:
531 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532 			break;
533 		case Opt_undelete:
534 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535 			break;
536 		case Opt_noadinicb:
537 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538 			break;
539 		case Opt_adinicb:
540 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541 			break;
542 		case Opt_shortad:
543 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544 			break;
545 		case Opt_longad:
546 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547 			break;
548 		case Opt_gid:
549 			if (match_int(args, &option))
550 				return 0;
551 			uopt->gid = make_kgid(current_user_ns(), option);
552 			if (!gid_valid(uopt->gid))
553 				return 0;
554 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
555 			break;
556 		case Opt_uid:
557 			if (match_int(args, &option))
558 				return 0;
559 			uopt->uid = make_kuid(current_user_ns(), option);
560 			if (!uid_valid(uopt->uid))
561 				return 0;
562 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
563 			break;
564 		case Opt_umask:
565 			if (match_octal(args, &option))
566 				return 0;
567 			uopt->umask = option;
568 			break;
569 		case Opt_nostrict:
570 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571 			break;
572 		case Opt_session:
573 			if (match_int(args, &option))
574 				return 0;
575 			uopt->session = option;
576 			if (!remount)
577 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578 			break;
579 		case Opt_lastblock:
580 			if (match_int(args, &option))
581 				return 0;
582 			uopt->lastblock = option;
583 			if (!remount)
584 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585 			break;
586 		case Opt_anchor:
587 			if (match_int(args, &option))
588 				return 0;
589 			uopt->anchor = option;
590 			break;
591 		case Opt_volume:
592 			if (match_int(args, &option))
593 				return 0;
594 			uopt->volume = option;
595 			break;
596 		case Opt_partition:
597 			if (match_int(args, &option))
598 				return 0;
599 			uopt->partition = option;
600 			break;
601 		case Opt_fileset:
602 			if (match_int(args, &option))
603 				return 0;
604 			uopt->fileset = option;
605 			break;
606 		case Opt_rootdir:
607 			if (match_int(args, &option))
608 				return 0;
609 			uopt->rootdir = option;
610 			break;
611 		case Opt_utf8:
612 			uopt->flags |= (1 << UDF_FLAG_UTF8);
613 			break;
614 #ifdef CONFIG_UDF_NLS
615 		case Opt_iocharset:
616 			uopt->nls_map = load_nls(args[0].from);
617 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618 			break;
619 #endif
620 		case Opt_uignore:
621 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622 			break;
623 		case Opt_uforget:
624 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625 			break;
626 		case Opt_gignore:
627 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628 			break;
629 		case Opt_gforget:
630 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631 			break;
632 		case Opt_fmode:
633 			if (match_octal(args, &option))
634 				return 0;
635 			uopt->fmode = option & 0777;
636 			break;
637 		case Opt_dmode:
638 			if (match_octal(args, &option))
639 				return 0;
640 			uopt->dmode = option & 0777;
641 			break;
642 		default:
643 			pr_err("bad mount option \"%s\" or missing value\n", p);
644 			return 0;
645 		}
646 	}
647 	return 1;
648 }
649 
650 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651 {
652 	struct udf_options uopt;
653 	struct udf_sb_info *sbi = UDF_SB(sb);
654 	int error = 0;
655 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656 
657 	sync_filesystem(sb);
658 	if (lvidiu) {
659 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661 			return -EACCES;
662 	}
663 
664 	uopt.flags = sbi->s_flags;
665 	uopt.uid   = sbi->s_uid;
666 	uopt.gid   = sbi->s_gid;
667 	uopt.umask = sbi->s_umask;
668 	uopt.fmode = sbi->s_fmode;
669 	uopt.dmode = sbi->s_dmode;
670 
671 	if (!udf_parse_options(options, &uopt, true))
672 		return -EINVAL;
673 
674 	write_lock(&sbi->s_cred_lock);
675 	sbi->s_flags = uopt.flags;
676 	sbi->s_uid   = uopt.uid;
677 	sbi->s_gid   = uopt.gid;
678 	sbi->s_umask = uopt.umask;
679 	sbi->s_fmode = uopt.fmode;
680 	sbi->s_dmode = uopt.dmode;
681 	write_unlock(&sbi->s_cred_lock);
682 
683 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684 		goto out_unlock;
685 
686 	if (*flags & MS_RDONLY)
687 		udf_close_lvid(sb);
688 	else
689 		udf_open_lvid(sb);
690 
691 out_unlock:
692 	return error;
693 }
694 
695 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697 static loff_t udf_check_vsd(struct super_block *sb)
698 {
699 	struct volStructDesc *vsd = NULL;
700 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701 	int sectorsize;
702 	struct buffer_head *bh = NULL;
703 	int nsr02 = 0;
704 	int nsr03 = 0;
705 	struct udf_sb_info *sbi;
706 
707 	sbi = UDF_SB(sb);
708 	if (sb->s_blocksize < sizeof(struct volStructDesc))
709 		sectorsize = sizeof(struct volStructDesc);
710 	else
711 		sectorsize = sb->s_blocksize;
712 
713 	sector += (sbi->s_session << sb->s_blocksize_bits);
714 
715 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
716 		  (unsigned int)(sector >> sb->s_blocksize_bits),
717 		  sb->s_blocksize);
718 	/* Process the sequence (if applicable). The hard limit on the sector
719 	 * offset is arbitrary, hopefully large enough so that all valid UDF
720 	 * filesystems will be recognised. There is no mention of an upper
721 	 * bound to the size of the volume recognition area in the standard.
722 	 *  The limit will prevent the code to read all the sectors of a
723 	 * specially crafted image (like a bluray disc full of CD001 sectors),
724 	 * potentially causing minutes or even hours of uninterruptible I/O
725 	 * activity. This actually happened with uninitialised SSD partitions
726 	 * (all 0xFF) before the check for the limit and all valid IDs were
727 	 * added */
728 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729 	     sector += sectorsize) {
730 		/* Read a block */
731 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732 		if (!bh)
733 			break;
734 
735 		/* Look for ISO  descriptors */
736 		vsd = (struct volStructDesc *)(bh->b_data +
737 					      (sector & (sb->s_blocksize - 1)));
738 
739 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740 				    VSD_STD_ID_LEN)) {
741 			switch (vsd->structType) {
742 			case 0:
743 				udf_debug("ISO9660 Boot Record found\n");
744 				break;
745 			case 1:
746 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
747 				break;
748 			case 2:
749 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750 				break;
751 			case 3:
752 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
753 				break;
754 			case 255:
755 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756 				break;
757 			default:
758 				udf_debug("ISO9660 VRS (%u) found\n",
759 					  vsd->structType);
760 				break;
761 			}
762 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763 				    VSD_STD_ID_LEN))
764 			; /* nothing */
765 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766 				    VSD_STD_ID_LEN)) {
767 			brelse(bh);
768 			break;
769 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770 				    VSD_STD_ID_LEN))
771 			nsr02 = sector;
772 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773 				    VSD_STD_ID_LEN))
774 			nsr03 = sector;
775 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776 				    VSD_STD_ID_LEN))
777 			; /* nothing */
778 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779 				    VSD_STD_ID_LEN))
780 			; /* nothing */
781 		else {
782 			/* invalid id : end of volume recognition area */
783 			brelse(bh);
784 			break;
785 		}
786 		brelse(bh);
787 	}
788 
789 	if (nsr03)
790 		return nsr03;
791 	else if (nsr02)
792 		return nsr02;
793 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794 			VSD_FIRST_SECTOR_OFFSET)
795 		return -1;
796 	else
797 		return 0;
798 }
799 
800 static int udf_find_fileset(struct super_block *sb,
801 			    struct kernel_lb_addr *fileset,
802 			    struct kernel_lb_addr *root)
803 {
804 	struct buffer_head *bh = NULL;
805 	long lastblock;
806 	uint16_t ident;
807 	struct udf_sb_info *sbi;
808 
809 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810 	    fileset->partitionReferenceNum != 0xFFFF) {
811 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
812 
813 		if (!bh) {
814 			return 1;
815 		} else if (ident != TAG_IDENT_FSD) {
816 			brelse(bh);
817 			return 1;
818 		}
819 
820 	}
821 
822 	sbi = UDF_SB(sb);
823 	if (!bh) {
824 		/* Search backwards through the partitions */
825 		struct kernel_lb_addr newfileset;
826 
827 /* --> cvg: FIXME - is it reasonable? */
828 		return 1;
829 
830 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831 		     (newfileset.partitionReferenceNum != 0xFFFF &&
832 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
833 		      fileset->partitionReferenceNum == 0xFFFF);
834 		     newfileset.partitionReferenceNum--) {
835 			lastblock = sbi->s_partmaps
836 					[newfileset.partitionReferenceNum]
837 						.s_partition_len;
838 			newfileset.logicalBlockNum = 0;
839 
840 			do {
841 				bh = udf_read_ptagged(sb, &newfileset, 0,
842 						      &ident);
843 				if (!bh) {
844 					newfileset.logicalBlockNum++;
845 					continue;
846 				}
847 
848 				switch (ident) {
849 				case TAG_IDENT_SBD:
850 				{
851 					struct spaceBitmapDesc *sp;
852 					sp = (struct spaceBitmapDesc *)
853 								bh->b_data;
854 					newfileset.logicalBlockNum += 1 +
855 						((le32_to_cpu(sp->numOfBytes) +
856 						  sizeof(struct spaceBitmapDesc)
857 						  - 1) >> sb->s_blocksize_bits);
858 					brelse(bh);
859 					break;
860 				}
861 				case TAG_IDENT_FSD:
862 					*fileset = newfileset;
863 					break;
864 				default:
865 					newfileset.logicalBlockNum++;
866 					brelse(bh);
867 					bh = NULL;
868 					break;
869 				}
870 			} while (newfileset.logicalBlockNum < lastblock &&
871 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
872 				 fileset->partitionReferenceNum == 0xFFFF);
873 		}
874 	}
875 
876 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
878 		udf_debug("Fileset at block=%d, partition=%d\n",
879 			  fileset->logicalBlockNum,
880 			  fileset->partitionReferenceNum);
881 
882 		sbi->s_partition = fileset->partitionReferenceNum;
883 		udf_load_fileset(sb, bh, root);
884 		brelse(bh);
885 		return 0;
886 	}
887 	return 1;
888 }
889 
890 /*
891  * Load primary Volume Descriptor Sequence
892  *
893  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894  * should be tried.
895  */
896 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897 {
898 	struct primaryVolDesc *pvoldesc;
899 	uint8_t *outstr;
900 	struct buffer_head *bh;
901 	uint16_t ident;
902 	int ret = -ENOMEM;
903 
904 	outstr = kmalloc(128, GFP_NOFS);
905 	if (!outstr)
906 		return -ENOMEM;
907 
908 	bh = udf_read_tagged(sb, block, block, &ident);
909 	if (!bh) {
910 		ret = -EAGAIN;
911 		goto out2;
912 	}
913 
914 	if (ident != TAG_IDENT_PVD) {
915 		ret = -EIO;
916 		goto out_bh;
917 	}
918 
919 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
920 
921 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 			      pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929 	}
930 
931 	ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932 	if (ret < 0)
933 		goto out_bh;
934 
935 	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937 
938 	ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939 	if (ret < 0)
940 		goto out_bh;
941 
942 	outstr[ret] = 0;
943 	udf_debug("volSetIdent[] = '%s'\n", outstr);
944 
945 	ret = 0;
946 out_bh:
947 	brelse(bh);
948 out2:
949 	kfree(outstr);
950 	return ret;
951 }
952 
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 					u32 meta_file_loc, u32 partition_ref)
955 {
956 	struct kernel_lb_addr addr;
957 	struct inode *metadata_fe;
958 
959 	addr.logicalBlockNum = meta_file_loc;
960 	addr.partitionReferenceNum = partition_ref;
961 
962 	metadata_fe = udf_iget_special(sb, &addr);
963 
964 	if (IS_ERR(metadata_fe)) {
965 		udf_warn(sb, "metadata inode efe not found\n");
966 		return metadata_fe;
967 	}
968 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 		iput(metadata_fe);
971 		return ERR_PTR(-EIO);
972 	}
973 
974 	return metadata_fe;
975 }
976 
977 static int udf_load_metadata_files(struct super_block *sb, int partition,
978 				   int type1_index)
979 {
980 	struct udf_sb_info *sbi = UDF_SB(sb);
981 	struct udf_part_map *map;
982 	struct udf_meta_data *mdata;
983 	struct kernel_lb_addr addr;
984 	struct inode *fe;
985 
986 	map = &sbi->s_partmaps[partition];
987 	mdata = &map->s_type_specific.s_metadata;
988 	mdata->s_phys_partition_ref = type1_index;
989 
990 	/* metadata address */
991 	udf_debug("Metadata file location: block = %d part = %d\n",
992 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
993 
994 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
995 					 mdata->s_phys_partition_ref);
996 	if (IS_ERR(fe)) {
997 		/* mirror file entry */
998 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
999 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
1000 
1001 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1002 						 mdata->s_phys_partition_ref);
1003 
1004 		if (IS_ERR(fe)) {
1005 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1006 			return PTR_ERR(fe);
1007 		}
1008 		mdata->s_mirror_fe = fe;
1009 	} else
1010 		mdata->s_metadata_fe = fe;
1011 
1012 
1013 	/*
1014 	 * bitmap file entry
1015 	 * Note:
1016 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1017 	*/
1018 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1019 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1020 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1021 
1022 		udf_debug("Bitmap file location: block = %d part = %d\n",
1023 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1024 
1025 		fe = udf_iget_special(sb, &addr);
1026 		if (IS_ERR(fe)) {
1027 			if (sb->s_flags & MS_RDONLY)
1028 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1029 			else {
1030 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1031 				return PTR_ERR(fe);
1032 			}
1033 		} else
1034 			mdata->s_bitmap_fe = fe;
1035 	}
1036 
1037 	udf_debug("udf_load_metadata_files Ok\n");
1038 	return 0;
1039 }
1040 
1041 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1042 			     struct kernel_lb_addr *root)
1043 {
1044 	struct fileSetDesc *fset;
1045 
1046 	fset = (struct fileSetDesc *)bh->b_data;
1047 
1048 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1049 
1050 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1051 
1052 	udf_debug("Rootdir at block=%d, partition=%d\n",
1053 		  root->logicalBlockNum, root->partitionReferenceNum);
1054 }
1055 
1056 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1057 {
1058 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1059 	return DIV_ROUND_UP(map->s_partition_len +
1060 			    (sizeof(struct spaceBitmapDesc) << 3),
1061 			    sb->s_blocksize * 8);
1062 }
1063 
1064 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1065 {
1066 	struct udf_bitmap *bitmap;
1067 	int nr_groups;
1068 	int size;
1069 
1070 	nr_groups = udf_compute_nr_groups(sb, index);
1071 	size = sizeof(struct udf_bitmap) +
1072 		(sizeof(struct buffer_head *) * nr_groups);
1073 
1074 	if (size <= PAGE_SIZE)
1075 		bitmap = kzalloc(size, GFP_KERNEL);
1076 	else
1077 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1078 
1079 	if (bitmap == NULL)
1080 		return NULL;
1081 
1082 	bitmap->s_nr_groups = nr_groups;
1083 	return bitmap;
1084 }
1085 
1086 static int udf_fill_partdesc_info(struct super_block *sb,
1087 		struct partitionDesc *p, int p_index)
1088 {
1089 	struct udf_part_map *map;
1090 	struct udf_sb_info *sbi = UDF_SB(sb);
1091 	struct partitionHeaderDesc *phd;
1092 
1093 	map = &sbi->s_partmaps[p_index];
1094 
1095 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1096 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1097 
1098 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1099 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1100 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1101 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1102 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1103 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1104 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1105 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1106 
1107 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1108 		  p_index, map->s_partition_type,
1109 		  map->s_partition_root, map->s_partition_len);
1110 
1111 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1112 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1113 		return 0;
1114 
1115 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116 	if (phd->unallocSpaceTable.extLength) {
1117 		struct kernel_lb_addr loc = {
1118 			.logicalBlockNum = le32_to_cpu(
1119 				phd->unallocSpaceTable.extPosition),
1120 			.partitionReferenceNum = p_index,
1121 		};
1122 		struct inode *inode;
1123 
1124 		inode = udf_iget_special(sb, &loc);
1125 		if (IS_ERR(inode)) {
1126 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127 				  p_index);
1128 			return PTR_ERR(inode);
1129 		}
1130 		map->s_uspace.s_table = inode;
1131 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1133 			  p_index, map->s_uspace.s_table->i_ino);
1134 	}
1135 
1136 	if (phd->unallocSpaceBitmap.extLength) {
1137 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138 		if (!bitmap)
1139 			return -ENOMEM;
1140 		map->s_uspace.s_bitmap = bitmap;
1141 		bitmap->s_extPosition = le32_to_cpu(
1142 				phd->unallocSpaceBitmap.extPosition);
1143 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1145 			  p_index, bitmap->s_extPosition);
1146 	}
1147 
1148 	if (phd->partitionIntegrityTable.extLength)
1149 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1150 
1151 	if (phd->freedSpaceTable.extLength) {
1152 		struct kernel_lb_addr loc = {
1153 			.logicalBlockNum = le32_to_cpu(
1154 				phd->freedSpaceTable.extPosition),
1155 			.partitionReferenceNum = p_index,
1156 		};
1157 		struct inode *inode;
1158 
1159 		inode = udf_iget_special(sb, &loc);
1160 		if (IS_ERR(inode)) {
1161 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1162 				  p_index);
1163 			return PTR_ERR(inode);
1164 		}
1165 		map->s_fspace.s_table = inode;
1166 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1167 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1168 			  p_index, map->s_fspace.s_table->i_ino);
1169 	}
1170 
1171 	if (phd->freedSpaceBitmap.extLength) {
1172 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1173 		if (!bitmap)
1174 			return -ENOMEM;
1175 		map->s_fspace.s_bitmap = bitmap;
1176 		bitmap->s_extPosition = le32_to_cpu(
1177 				phd->freedSpaceBitmap.extPosition);
1178 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1179 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1180 			  p_index, bitmap->s_extPosition);
1181 	}
1182 	return 0;
1183 }
1184 
1185 static void udf_find_vat_block(struct super_block *sb, int p_index,
1186 			       int type1_index, sector_t start_block)
1187 {
1188 	struct udf_sb_info *sbi = UDF_SB(sb);
1189 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1190 	sector_t vat_block;
1191 	struct kernel_lb_addr ino;
1192 	struct inode *inode;
1193 
1194 	/*
1195 	 * VAT file entry is in the last recorded block. Some broken disks have
1196 	 * it a few blocks before so try a bit harder...
1197 	 */
1198 	ino.partitionReferenceNum = type1_index;
1199 	for (vat_block = start_block;
1200 	     vat_block >= map->s_partition_root &&
1201 	     vat_block >= start_block - 3; vat_block--) {
1202 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1203 		inode = udf_iget_special(sb, &ino);
1204 		if (!IS_ERR(inode)) {
1205 			sbi->s_vat_inode = inode;
1206 			break;
1207 		}
1208 	}
1209 }
1210 
1211 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1212 {
1213 	struct udf_sb_info *sbi = UDF_SB(sb);
1214 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1215 	struct buffer_head *bh = NULL;
1216 	struct udf_inode_info *vati;
1217 	uint32_t pos;
1218 	struct virtualAllocationTable20 *vat20;
1219 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1220 
1221 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1222 	if (!sbi->s_vat_inode &&
1223 	    sbi->s_last_block != blocks - 1) {
1224 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1225 			  (unsigned long)sbi->s_last_block,
1226 			  (unsigned long)blocks - 1);
1227 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1228 	}
1229 	if (!sbi->s_vat_inode)
1230 		return -EIO;
1231 
1232 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1233 		map->s_type_specific.s_virtual.s_start_offset = 0;
1234 		map->s_type_specific.s_virtual.s_num_entries =
1235 			(sbi->s_vat_inode->i_size - 36) >> 2;
1236 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1237 		vati = UDF_I(sbi->s_vat_inode);
1238 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1239 			pos = udf_block_map(sbi->s_vat_inode, 0);
1240 			bh = sb_bread(sb, pos);
1241 			if (!bh)
1242 				return -EIO;
1243 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1244 		} else {
1245 			vat20 = (struct virtualAllocationTable20 *)
1246 							vati->i_ext.i_data;
1247 		}
1248 
1249 		map->s_type_specific.s_virtual.s_start_offset =
1250 			le16_to_cpu(vat20->lengthHeader);
1251 		map->s_type_specific.s_virtual.s_num_entries =
1252 			(sbi->s_vat_inode->i_size -
1253 				map->s_type_specific.s_virtual.
1254 					s_start_offset) >> 2;
1255 		brelse(bh);
1256 	}
1257 	return 0;
1258 }
1259 
1260 /*
1261  * Load partition descriptor block
1262  *
1263  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1264  * sequence.
1265  */
1266 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1267 {
1268 	struct buffer_head *bh;
1269 	struct partitionDesc *p;
1270 	struct udf_part_map *map;
1271 	struct udf_sb_info *sbi = UDF_SB(sb);
1272 	int i, type1_idx;
1273 	uint16_t partitionNumber;
1274 	uint16_t ident;
1275 	int ret;
1276 
1277 	bh = udf_read_tagged(sb, block, block, &ident);
1278 	if (!bh)
1279 		return -EAGAIN;
1280 	if (ident != TAG_IDENT_PD) {
1281 		ret = 0;
1282 		goto out_bh;
1283 	}
1284 
1285 	p = (struct partitionDesc *)bh->b_data;
1286 	partitionNumber = le16_to_cpu(p->partitionNumber);
1287 
1288 	/* First scan for TYPE1 and SPARABLE partitions */
1289 	for (i = 0; i < sbi->s_partitions; i++) {
1290 		map = &sbi->s_partmaps[i];
1291 		udf_debug("Searching map: (%d == %d)\n",
1292 			  map->s_partition_num, partitionNumber);
1293 		if (map->s_partition_num == partitionNumber &&
1294 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1295 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1296 			break;
1297 	}
1298 
1299 	if (i >= sbi->s_partitions) {
1300 		udf_debug("Partition (%d) not found in partition map\n",
1301 			  partitionNumber);
1302 		ret = 0;
1303 		goto out_bh;
1304 	}
1305 
1306 	ret = udf_fill_partdesc_info(sb, p, i);
1307 	if (ret < 0)
1308 		goto out_bh;
1309 
1310 	/*
1311 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1312 	 * PHYSICAL partitions are already set up
1313 	 */
1314 	type1_idx = i;
1315 #ifdef UDFFS_DEBUG
1316 	map = NULL; /* supress 'maybe used uninitialized' warning */
1317 #endif
1318 	for (i = 0; i < sbi->s_partitions; i++) {
1319 		map = &sbi->s_partmaps[i];
1320 
1321 		if (map->s_partition_num == partitionNumber &&
1322 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1323 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1324 		     map->s_partition_type == UDF_METADATA_MAP25))
1325 			break;
1326 	}
1327 
1328 	if (i >= sbi->s_partitions) {
1329 		ret = 0;
1330 		goto out_bh;
1331 	}
1332 
1333 	ret = udf_fill_partdesc_info(sb, p, i);
1334 	if (ret < 0)
1335 		goto out_bh;
1336 
1337 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1338 		ret = udf_load_metadata_files(sb, i, type1_idx);
1339 		if (ret < 0) {
1340 			udf_err(sb, "error loading MetaData partition map %d\n",
1341 				i);
1342 			goto out_bh;
1343 		}
1344 	} else {
1345 		/*
1346 		 * If we have a partition with virtual map, we don't handle
1347 		 * writing to it (we overwrite blocks instead of relocating
1348 		 * them).
1349 		 */
1350 		if (!(sb->s_flags & MS_RDONLY)) {
1351 			ret = -EACCES;
1352 			goto out_bh;
1353 		}
1354 		ret = udf_load_vat(sb, i, type1_idx);
1355 		if (ret < 0)
1356 			goto out_bh;
1357 	}
1358 	ret = 0;
1359 out_bh:
1360 	/* In case loading failed, we handle cleanup in udf_fill_super */
1361 	brelse(bh);
1362 	return ret;
1363 }
1364 
1365 static int udf_load_sparable_map(struct super_block *sb,
1366 				 struct udf_part_map *map,
1367 				 struct sparablePartitionMap *spm)
1368 {
1369 	uint32_t loc;
1370 	uint16_t ident;
1371 	struct sparingTable *st;
1372 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1373 	int i;
1374 	struct buffer_head *bh;
1375 
1376 	map->s_partition_type = UDF_SPARABLE_MAP15;
1377 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1378 	if (!is_power_of_2(sdata->s_packet_len)) {
1379 		udf_err(sb, "error loading logical volume descriptor: "
1380 			"Invalid packet length %u\n",
1381 			(unsigned)sdata->s_packet_len);
1382 		return -EIO;
1383 	}
1384 	if (spm->numSparingTables > 4) {
1385 		udf_err(sb, "error loading logical volume descriptor: "
1386 			"Too many sparing tables (%d)\n",
1387 			(int)spm->numSparingTables);
1388 		return -EIO;
1389 	}
1390 
1391 	for (i = 0; i < spm->numSparingTables; i++) {
1392 		loc = le32_to_cpu(spm->locSparingTable[i]);
1393 		bh = udf_read_tagged(sb, loc, loc, &ident);
1394 		if (!bh)
1395 			continue;
1396 
1397 		st = (struct sparingTable *)bh->b_data;
1398 		if (ident != 0 ||
1399 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1400 			    strlen(UDF_ID_SPARING)) ||
1401 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1402 							sb->s_blocksize) {
1403 			brelse(bh);
1404 			continue;
1405 		}
1406 
1407 		sdata->s_spar_map[i] = bh;
1408 	}
1409 	map->s_partition_func = udf_get_pblock_spar15;
1410 	return 0;
1411 }
1412 
1413 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1414 			       struct kernel_lb_addr *fileset)
1415 {
1416 	struct logicalVolDesc *lvd;
1417 	int i, offset;
1418 	uint8_t type;
1419 	struct udf_sb_info *sbi = UDF_SB(sb);
1420 	struct genericPartitionMap *gpm;
1421 	uint16_t ident;
1422 	struct buffer_head *bh;
1423 	unsigned int table_len;
1424 	int ret;
1425 
1426 	bh = udf_read_tagged(sb, block, block, &ident);
1427 	if (!bh)
1428 		return -EAGAIN;
1429 	BUG_ON(ident != TAG_IDENT_LVD);
1430 	lvd = (struct logicalVolDesc *)bh->b_data;
1431 	table_len = le32_to_cpu(lvd->mapTableLength);
1432 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1433 		udf_err(sb, "error loading logical volume descriptor: "
1434 			"Partition table too long (%u > %lu)\n", table_len,
1435 			sb->s_blocksize - sizeof(*lvd));
1436 		ret = -EIO;
1437 		goto out_bh;
1438 	}
1439 
1440 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1441 	if (ret)
1442 		goto out_bh;
1443 
1444 	for (i = 0, offset = 0;
1445 	     i < sbi->s_partitions && offset < table_len;
1446 	     i++, offset += gpm->partitionMapLength) {
1447 		struct udf_part_map *map = &sbi->s_partmaps[i];
1448 		gpm = (struct genericPartitionMap *)
1449 				&(lvd->partitionMaps[offset]);
1450 		type = gpm->partitionMapType;
1451 		if (type == 1) {
1452 			struct genericPartitionMap1 *gpm1 =
1453 				(struct genericPartitionMap1 *)gpm;
1454 			map->s_partition_type = UDF_TYPE1_MAP15;
1455 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1456 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1457 			map->s_partition_func = NULL;
1458 		} else if (type == 2) {
1459 			struct udfPartitionMap2 *upm2 =
1460 						(struct udfPartitionMap2 *)gpm;
1461 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1462 						strlen(UDF_ID_VIRTUAL))) {
1463 				u16 suf =
1464 					le16_to_cpu(((__le16 *)upm2->partIdent.
1465 							identSuffix)[0]);
1466 				if (suf < 0x0200) {
1467 					map->s_partition_type =
1468 							UDF_VIRTUAL_MAP15;
1469 					map->s_partition_func =
1470 							udf_get_pblock_virt15;
1471 				} else {
1472 					map->s_partition_type =
1473 							UDF_VIRTUAL_MAP20;
1474 					map->s_partition_func =
1475 							udf_get_pblock_virt20;
1476 				}
1477 			} else if (!strncmp(upm2->partIdent.ident,
1478 						UDF_ID_SPARABLE,
1479 						strlen(UDF_ID_SPARABLE))) {
1480 				ret = udf_load_sparable_map(sb, map,
1481 					(struct sparablePartitionMap *)gpm);
1482 				if (ret < 0)
1483 					goto out_bh;
1484 			} else if (!strncmp(upm2->partIdent.ident,
1485 						UDF_ID_METADATA,
1486 						strlen(UDF_ID_METADATA))) {
1487 				struct udf_meta_data *mdata =
1488 					&map->s_type_specific.s_metadata;
1489 				struct metadataPartitionMap *mdm =
1490 						(struct metadataPartitionMap *)
1491 						&(lvd->partitionMaps[offset]);
1492 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1493 					  i, type, UDF_ID_METADATA);
1494 
1495 				map->s_partition_type = UDF_METADATA_MAP25;
1496 				map->s_partition_func = udf_get_pblock_meta25;
1497 
1498 				mdata->s_meta_file_loc   =
1499 					le32_to_cpu(mdm->metadataFileLoc);
1500 				mdata->s_mirror_file_loc =
1501 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1502 				mdata->s_bitmap_file_loc =
1503 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1504 				mdata->s_alloc_unit_size =
1505 					le32_to_cpu(mdm->allocUnitSize);
1506 				mdata->s_align_unit_size =
1507 					le16_to_cpu(mdm->alignUnitSize);
1508 				if (mdm->flags & 0x01)
1509 					mdata->s_flags |= MF_DUPLICATE_MD;
1510 
1511 				udf_debug("Metadata Ident suffix=0x%x\n",
1512 					  le16_to_cpu(*(__le16 *)
1513 						      mdm->partIdent.identSuffix));
1514 				udf_debug("Metadata part num=%d\n",
1515 					  le16_to_cpu(mdm->partitionNum));
1516 				udf_debug("Metadata part alloc unit size=%d\n",
1517 					  le32_to_cpu(mdm->allocUnitSize));
1518 				udf_debug("Metadata file loc=%d\n",
1519 					  le32_to_cpu(mdm->metadataFileLoc));
1520 				udf_debug("Mirror file loc=%d\n",
1521 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1522 				udf_debug("Bitmap file loc=%d\n",
1523 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1524 				udf_debug("Flags: %d %d\n",
1525 					  mdata->s_flags, mdm->flags);
1526 			} else {
1527 				udf_debug("Unknown ident: %s\n",
1528 					  upm2->partIdent.ident);
1529 				continue;
1530 			}
1531 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1532 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1533 		}
1534 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1535 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1536 	}
1537 
1538 	if (fileset) {
1539 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1540 
1541 		*fileset = lelb_to_cpu(la->extLocation);
1542 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1543 			  fileset->logicalBlockNum,
1544 			  fileset->partitionReferenceNum);
1545 	}
1546 	if (lvd->integritySeqExt.extLength)
1547 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1548 	ret = 0;
1549 out_bh:
1550 	brelse(bh);
1551 	return ret;
1552 }
1553 
1554 /*
1555  * Find the prevailing Logical Volume Integrity Descriptor.
1556  */
1557 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558 {
1559 	struct buffer_head *bh, *final_bh;
1560 	uint16_t ident;
1561 	struct udf_sb_info *sbi = UDF_SB(sb);
1562 	struct logicalVolIntegrityDesc *lvid;
1563 	int indirections = 0;
1564 
1565 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1566 		final_bh = NULL;
1567 		while (loc.extLength > 0 &&
1568 			(bh = udf_read_tagged(sb, loc.extLocation,
1569 					loc.extLocation, &ident))) {
1570 			if (ident != TAG_IDENT_LVID) {
1571 				brelse(bh);
1572 				break;
1573 			}
1574 
1575 			brelse(final_bh);
1576 			final_bh = bh;
1577 
1578 			loc.extLength -= sb->s_blocksize;
1579 			loc.extLocation++;
1580 		}
1581 
1582 		if (!final_bh)
1583 			return;
1584 
1585 		brelse(sbi->s_lvid_bh);
1586 		sbi->s_lvid_bh = final_bh;
1587 
1588 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1589 		if (lvid->nextIntegrityExt.extLength == 0)
1590 			return;
1591 
1592 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1593 	}
1594 
1595 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1596 		UDF_MAX_LVID_NESTING);
1597 	brelse(sbi->s_lvid_bh);
1598 	sbi->s_lvid_bh = NULL;
1599 }
1600 
1601 
1602 /*
1603  * Process a main/reserve volume descriptor sequence.
1604  *   @block		First block of first extent of the sequence.
1605  *   @lastblock		Lastblock of first extent of the sequence.
1606  *   @fileset		There we store extent containing root fileset
1607  *
1608  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1609  * sequence
1610  */
1611 static noinline int udf_process_sequence(
1612 		struct super_block *sb,
1613 		sector_t block, sector_t lastblock,
1614 		struct kernel_lb_addr *fileset)
1615 {
1616 	struct buffer_head *bh = NULL;
1617 	struct udf_vds_record vds[VDS_POS_LENGTH];
1618 	struct udf_vds_record *curr;
1619 	struct generic_desc *gd;
1620 	struct volDescPtr *vdp;
1621 	bool done = false;
1622 	uint32_t vdsn;
1623 	uint16_t ident;
1624 	long next_s = 0, next_e = 0;
1625 	int ret;
1626 	unsigned int indirections = 0;
1627 
1628 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1629 
1630 	/*
1631 	 * Read the main descriptor sequence and find which descriptors
1632 	 * are in it.
1633 	 */
1634 	for (; (!done && block <= lastblock); block++) {
1635 
1636 		bh = udf_read_tagged(sb, block, block, &ident);
1637 		if (!bh) {
1638 			udf_err(sb,
1639 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1640 				(unsigned long long)block);
1641 			return -EAGAIN;
1642 		}
1643 
1644 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1645 		gd = (struct generic_desc *)bh->b_data;
1646 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1647 		switch (ident) {
1648 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1649 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1650 			if (vdsn >= curr->volDescSeqNum) {
1651 				curr->volDescSeqNum = vdsn;
1652 				curr->block = block;
1653 			}
1654 			break;
1655 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1656 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1657 			if (vdsn >= curr->volDescSeqNum) {
1658 				curr->volDescSeqNum = vdsn;
1659 				curr->block = block;
1660 
1661 				vdp = (struct volDescPtr *)bh->b_data;
1662 				next_s = le32_to_cpu(
1663 					vdp->nextVolDescSeqExt.extLocation);
1664 				next_e = le32_to_cpu(
1665 					vdp->nextVolDescSeqExt.extLength);
1666 				next_e = next_e >> sb->s_blocksize_bits;
1667 				next_e += next_s;
1668 			}
1669 			break;
1670 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1671 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1672 			if (vdsn >= curr->volDescSeqNum) {
1673 				curr->volDescSeqNum = vdsn;
1674 				curr->block = block;
1675 			}
1676 			break;
1677 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1678 			curr = &vds[VDS_POS_PARTITION_DESC];
1679 			if (!curr->block)
1680 				curr->block = block;
1681 			break;
1682 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1683 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1684 			if (vdsn >= curr->volDescSeqNum) {
1685 				curr->volDescSeqNum = vdsn;
1686 				curr->block = block;
1687 			}
1688 			break;
1689 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1691 			if (vdsn >= curr->volDescSeqNum) {
1692 				curr->volDescSeqNum = vdsn;
1693 				curr->block = block;
1694 			}
1695 			break;
1696 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1697 			if (++indirections > UDF_MAX_TD_NESTING) {
1698 				udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1699 				brelse(bh);
1700 				return -EIO;
1701 			}
1702 
1703 			vds[VDS_POS_TERMINATING_DESC].block = block;
1704 			if (next_e) {
1705 				block = next_s;
1706 				lastblock = next_e;
1707 				next_s = next_e = 0;
1708 			} else
1709 				done = true;
1710 			break;
1711 		}
1712 		brelse(bh);
1713 	}
1714 	/*
1715 	 * Now read interesting descriptors again and process them
1716 	 * in a suitable order
1717 	 */
1718 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1719 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1720 		return -EAGAIN;
1721 	}
1722 	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1723 	if (ret < 0)
1724 		return ret;
1725 
1726 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1727 		ret = udf_load_logicalvol(sb,
1728 					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1729 					  fileset);
1730 		if (ret < 0)
1731 			return ret;
1732 	}
1733 
1734 	if (vds[VDS_POS_PARTITION_DESC].block) {
1735 		/*
1736 		 * We rescan the whole descriptor sequence to find
1737 		 * partition descriptor blocks and process them.
1738 		 */
1739 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1740 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1741 		     block++) {
1742 			ret = udf_load_partdesc(sb, block);
1743 			if (ret < 0)
1744 				return ret;
1745 		}
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 /*
1752  * Load Volume Descriptor Sequence described by anchor in bh
1753  *
1754  * Returns <0 on error, 0 on success
1755  */
1756 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1757 			     struct kernel_lb_addr *fileset)
1758 {
1759 	struct anchorVolDescPtr *anchor;
1760 	sector_t main_s, main_e, reserve_s, reserve_e;
1761 	int ret;
1762 
1763 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1764 
1765 	/* Locate the main sequence */
1766 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1767 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1768 	main_e = main_e >> sb->s_blocksize_bits;
1769 	main_e += main_s;
1770 
1771 	/* Locate the reserve sequence */
1772 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1773 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1774 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1775 	reserve_e += reserve_s;
1776 
1777 	/* Process the main & reserve sequences */
1778 	/* responsible for finding the PartitionDesc(s) */
1779 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1780 	if (ret != -EAGAIN)
1781 		return ret;
1782 	udf_sb_free_partitions(sb);
1783 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1784 	if (ret < 0) {
1785 		udf_sb_free_partitions(sb);
1786 		/* No sequence was OK, return -EIO */
1787 		if (ret == -EAGAIN)
1788 			ret = -EIO;
1789 	}
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Check whether there is an anchor block in the given block and
1795  * load Volume Descriptor Sequence if so.
1796  *
1797  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1798  * block
1799  */
1800 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1801 				  struct kernel_lb_addr *fileset)
1802 {
1803 	struct buffer_head *bh;
1804 	uint16_t ident;
1805 	int ret;
1806 
1807 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1808 	    udf_fixed_to_variable(block) >=
1809 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1810 		return -EAGAIN;
1811 
1812 	bh = udf_read_tagged(sb, block, block, &ident);
1813 	if (!bh)
1814 		return -EAGAIN;
1815 	if (ident != TAG_IDENT_AVDP) {
1816 		brelse(bh);
1817 		return -EAGAIN;
1818 	}
1819 	ret = udf_load_sequence(sb, bh, fileset);
1820 	brelse(bh);
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Search for an anchor volume descriptor pointer.
1826  *
1827  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1828  * of anchors.
1829  */
1830 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1831 			    struct kernel_lb_addr *fileset)
1832 {
1833 	sector_t last[6];
1834 	int i;
1835 	struct udf_sb_info *sbi = UDF_SB(sb);
1836 	int last_count = 0;
1837 	int ret;
1838 
1839 	/* First try user provided anchor */
1840 	if (sbi->s_anchor) {
1841 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1842 		if (ret != -EAGAIN)
1843 			return ret;
1844 	}
1845 	/*
1846 	 * according to spec, anchor is in either:
1847 	 *     block 256
1848 	 *     lastblock-256
1849 	 *     lastblock
1850 	 *  however, if the disc isn't closed, it could be 512.
1851 	 */
1852 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1853 	if (ret != -EAGAIN)
1854 		return ret;
1855 	/*
1856 	 * The trouble is which block is the last one. Drives often misreport
1857 	 * this so we try various possibilities.
1858 	 */
1859 	last[last_count++] = *lastblock;
1860 	if (*lastblock >= 1)
1861 		last[last_count++] = *lastblock - 1;
1862 	last[last_count++] = *lastblock + 1;
1863 	if (*lastblock >= 2)
1864 		last[last_count++] = *lastblock - 2;
1865 	if (*lastblock >= 150)
1866 		last[last_count++] = *lastblock - 150;
1867 	if (*lastblock >= 152)
1868 		last[last_count++] = *lastblock - 152;
1869 
1870 	for (i = 0; i < last_count; i++) {
1871 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1872 				sb->s_blocksize_bits)
1873 			continue;
1874 		ret = udf_check_anchor_block(sb, last[i], fileset);
1875 		if (ret != -EAGAIN) {
1876 			if (!ret)
1877 				*lastblock = last[i];
1878 			return ret;
1879 		}
1880 		if (last[i] < 256)
1881 			continue;
1882 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1883 		if (ret != -EAGAIN) {
1884 			if (!ret)
1885 				*lastblock = last[i];
1886 			return ret;
1887 		}
1888 	}
1889 
1890 	/* Finally try block 512 in case media is open */
1891 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1892 }
1893 
1894 /*
1895  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1896  * area specified by it. The function expects sbi->s_lastblock to be the last
1897  * block on the media.
1898  *
1899  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1900  * was not found.
1901  */
1902 static int udf_find_anchor(struct super_block *sb,
1903 			   struct kernel_lb_addr *fileset)
1904 {
1905 	struct udf_sb_info *sbi = UDF_SB(sb);
1906 	sector_t lastblock = sbi->s_last_block;
1907 	int ret;
1908 
1909 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1910 	if (ret != -EAGAIN)
1911 		goto out;
1912 
1913 	/* No anchor found? Try VARCONV conversion of block numbers */
1914 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1915 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1916 	/* Firstly, we try to not convert number of the last block */
1917 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 	if (ret != -EAGAIN)
1919 		goto out;
1920 
1921 	lastblock = sbi->s_last_block;
1922 	/* Secondly, we try with converted number of the last block */
1923 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1924 	if (ret < 0) {
1925 		/* VARCONV didn't help. Clear it. */
1926 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1927 	}
1928 out:
1929 	if (ret == 0)
1930 		sbi->s_last_block = lastblock;
1931 	return ret;
1932 }
1933 
1934 /*
1935  * Check Volume Structure Descriptor, find Anchor block and load Volume
1936  * Descriptor Sequence.
1937  *
1938  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1939  * block was not found.
1940  */
1941 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1942 			int silent, struct kernel_lb_addr *fileset)
1943 {
1944 	struct udf_sb_info *sbi = UDF_SB(sb);
1945 	loff_t nsr_off;
1946 	int ret;
1947 
1948 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1949 		if (!silent)
1950 			udf_warn(sb, "Bad block size\n");
1951 		return -EINVAL;
1952 	}
1953 	sbi->s_last_block = uopt->lastblock;
1954 	if (!uopt->novrs) {
1955 		/* Check that it is NSR02 compliant */
1956 		nsr_off = udf_check_vsd(sb);
1957 		if (!nsr_off) {
1958 			if (!silent)
1959 				udf_warn(sb, "No VRS found\n");
1960 			return 0;
1961 		}
1962 		if (nsr_off == -1)
1963 			udf_debug("Failed to read sector at offset %d. "
1964 				  "Assuming open disc. Skipping validity "
1965 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1966 		if (!sbi->s_last_block)
1967 			sbi->s_last_block = udf_get_last_block(sb);
1968 	} else {
1969 		udf_debug("Validity check skipped because of novrs option\n");
1970 	}
1971 
1972 	/* Look for anchor block and load Volume Descriptor Sequence */
1973 	sbi->s_anchor = uopt->anchor;
1974 	ret = udf_find_anchor(sb, fileset);
1975 	if (ret < 0) {
1976 		if (!silent && ret == -EAGAIN)
1977 			udf_warn(sb, "No anchor found\n");
1978 		return ret;
1979 	}
1980 	return 0;
1981 }
1982 
1983 static void udf_open_lvid(struct super_block *sb)
1984 {
1985 	struct udf_sb_info *sbi = UDF_SB(sb);
1986 	struct buffer_head *bh = sbi->s_lvid_bh;
1987 	struct logicalVolIntegrityDesc *lvid;
1988 	struct logicalVolIntegrityDescImpUse *lvidiu;
1989 
1990 	if (!bh)
1991 		return;
1992 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1993 	lvidiu = udf_sb_lvidiu(sb);
1994 	if (!lvidiu)
1995 		return;
1996 
1997 	mutex_lock(&sbi->s_alloc_mutex);
1998 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1999 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2000 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
2001 				CURRENT_TIME);
2002 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2003 
2004 	lvid->descTag.descCRC = cpu_to_le16(
2005 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2006 			le16_to_cpu(lvid->descTag.descCRCLength)));
2007 
2008 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009 	mark_buffer_dirty(bh);
2010 	sbi->s_lvid_dirty = 0;
2011 	mutex_unlock(&sbi->s_alloc_mutex);
2012 	/* Make opening of filesystem visible on the media immediately */
2013 	sync_dirty_buffer(bh);
2014 }
2015 
2016 static void udf_close_lvid(struct super_block *sb)
2017 {
2018 	struct udf_sb_info *sbi = UDF_SB(sb);
2019 	struct buffer_head *bh = sbi->s_lvid_bh;
2020 	struct logicalVolIntegrityDesc *lvid;
2021 	struct logicalVolIntegrityDescImpUse *lvidiu;
2022 
2023 	if (!bh)
2024 		return;
2025 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 	lvidiu = udf_sb_lvidiu(sb);
2027 	if (!lvidiu)
2028 		return;
2029 
2030 	mutex_lock(&sbi->s_alloc_mutex);
2031 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2034 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2041 
2042 	lvid->descTag.descCRC = cpu_to_le16(
2043 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2044 				le16_to_cpu(lvid->descTag.descCRCLength)));
2045 
2046 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2047 	/*
2048 	 * We set buffer uptodate unconditionally here to avoid spurious
2049 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2050 	 * the buffer as !uptodate
2051 	 */
2052 	set_buffer_uptodate(bh);
2053 	mark_buffer_dirty(bh);
2054 	sbi->s_lvid_dirty = 0;
2055 	mutex_unlock(&sbi->s_alloc_mutex);
2056 	/* Make closing of filesystem visible on the media immediately */
2057 	sync_dirty_buffer(bh);
2058 }
2059 
2060 u64 lvid_get_unique_id(struct super_block *sb)
2061 {
2062 	struct buffer_head *bh;
2063 	struct udf_sb_info *sbi = UDF_SB(sb);
2064 	struct logicalVolIntegrityDesc *lvid;
2065 	struct logicalVolHeaderDesc *lvhd;
2066 	u64 uniqueID;
2067 	u64 ret;
2068 
2069 	bh = sbi->s_lvid_bh;
2070 	if (!bh)
2071 		return 0;
2072 
2073 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075 
2076 	mutex_lock(&sbi->s_alloc_mutex);
2077 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078 	if (!(++uniqueID & 0xFFFFFFFF))
2079 		uniqueID += 16;
2080 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2081 	mutex_unlock(&sbi->s_alloc_mutex);
2082 	mark_buffer_dirty(bh);
2083 
2084 	return ret;
2085 }
2086 
2087 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088 {
2089 	int ret = -EINVAL;
2090 	struct inode *inode = NULL;
2091 	struct udf_options uopt;
2092 	struct kernel_lb_addr rootdir, fileset;
2093 	struct udf_sb_info *sbi;
2094 	bool lvid_open = false;
2095 
2096 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097 	uopt.uid = INVALID_UID;
2098 	uopt.gid = INVALID_GID;
2099 	uopt.umask = 0;
2100 	uopt.fmode = UDF_INVALID_MODE;
2101 	uopt.dmode = UDF_INVALID_MODE;
2102 
2103 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2104 	if (!sbi)
2105 		return -ENOMEM;
2106 
2107 	sb->s_fs_info = sbi;
2108 
2109 	mutex_init(&sbi->s_alloc_mutex);
2110 
2111 	if (!udf_parse_options((char *)options, &uopt, false))
2112 		goto parse_options_failure;
2113 
2114 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117 		goto parse_options_failure;
2118 	}
2119 #ifdef CONFIG_UDF_NLS
2120 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121 		uopt.nls_map = load_nls_default();
2122 		if (!uopt.nls_map)
2123 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124 		else
2125 			udf_debug("Using default NLS map\n");
2126 	}
2127 #endif
2128 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2130 
2131 	fileset.logicalBlockNum = 0xFFFFFFFF;
2132 	fileset.partitionReferenceNum = 0xFFFF;
2133 
2134 	sbi->s_flags = uopt.flags;
2135 	sbi->s_uid = uopt.uid;
2136 	sbi->s_gid = uopt.gid;
2137 	sbi->s_umask = uopt.umask;
2138 	sbi->s_fmode = uopt.fmode;
2139 	sbi->s_dmode = uopt.dmode;
2140 	sbi->s_nls_map = uopt.nls_map;
2141 	rwlock_init(&sbi->s_cred_lock);
2142 
2143 	if (uopt.session == 0xFFFFFFFF)
2144 		sbi->s_session = udf_get_last_session(sb);
2145 	else
2146 		sbi->s_session = uopt.session;
2147 
2148 	udf_debug("Multi-session=%d\n", sbi->s_session);
2149 
2150 	/* Fill in the rest of the superblock */
2151 	sb->s_op = &udf_sb_ops;
2152 	sb->s_export_op = &udf_export_ops;
2153 
2154 	sb->s_magic = UDF_SUPER_MAGIC;
2155 	sb->s_time_gran = 1000;
2156 
2157 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159 	} else {
2160 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162 		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2163 			if (!silent)
2164 				pr_notice("Rescanning with blocksize %d\n",
2165 					  UDF_DEFAULT_BLOCKSIZE);
2166 			brelse(sbi->s_lvid_bh);
2167 			sbi->s_lvid_bh = NULL;
2168 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2169 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2170 		}
2171 	}
2172 	if (ret < 0) {
2173 		if (ret == -EAGAIN) {
2174 			udf_warn(sb, "No partition found (1)\n");
2175 			ret = -EINVAL;
2176 		}
2177 		goto error_out;
2178 	}
2179 
2180 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2181 
2182 	if (sbi->s_lvid_bh) {
2183 		struct logicalVolIntegrityDescImpUse *lvidiu =
2184 							udf_sb_lvidiu(sb);
2185 		uint16_t minUDFReadRev;
2186 		uint16_t minUDFWriteRev;
2187 
2188 		if (!lvidiu) {
2189 			ret = -EINVAL;
2190 			goto error_out;
2191 		}
2192 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2193 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2194 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2195 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2196 				minUDFReadRev,
2197 				UDF_MAX_READ_VERSION);
2198 			ret = -EINVAL;
2199 			goto error_out;
2200 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2201 			   !(sb->s_flags & MS_RDONLY)) {
2202 			ret = -EACCES;
2203 			goto error_out;
2204 		}
2205 
2206 		sbi->s_udfrev = minUDFWriteRev;
2207 
2208 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2209 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2210 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2211 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2212 	}
2213 
2214 	if (!sbi->s_partitions) {
2215 		udf_warn(sb, "No partition found (2)\n");
2216 		ret = -EINVAL;
2217 		goto error_out;
2218 	}
2219 
2220 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2221 			UDF_PART_FLAG_READ_ONLY &&
2222 	    !(sb->s_flags & MS_RDONLY)) {
2223 		ret = -EACCES;
2224 		goto error_out;
2225 	}
2226 
2227 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2228 		udf_warn(sb, "No fileset found\n");
2229 		ret = -EINVAL;
2230 		goto error_out;
2231 	}
2232 
2233 	if (!silent) {
2234 		struct timestamp ts;
2235 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2236 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2237 			 sbi->s_volume_ident,
2238 			 le16_to_cpu(ts.year), ts.month, ts.day,
2239 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2240 	}
2241 	if (!(sb->s_flags & MS_RDONLY)) {
2242 		udf_open_lvid(sb);
2243 		lvid_open = true;
2244 	}
2245 
2246 	/* Assign the root inode */
2247 	/* assign inodes by physical block number */
2248 	/* perhaps it's not extensible enough, but for now ... */
2249 	inode = udf_iget(sb, &rootdir);
2250 	if (IS_ERR(inode)) {
2251 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2252 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2253 		ret = PTR_ERR(inode);
2254 		goto error_out;
2255 	}
2256 
2257 	/* Allocate a dentry for the root inode */
2258 	sb->s_root = d_make_root(inode);
2259 	if (!sb->s_root) {
2260 		udf_err(sb, "Couldn't allocate root dentry\n");
2261 		ret = -ENOMEM;
2262 		goto error_out;
2263 	}
2264 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2265 	sb->s_max_links = UDF_MAX_LINKS;
2266 	return 0;
2267 
2268 error_out:
2269 	iput(sbi->s_vat_inode);
2270 parse_options_failure:
2271 #ifdef CONFIG_UDF_NLS
2272 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2273 		unload_nls(sbi->s_nls_map);
2274 #endif
2275 	if (lvid_open)
2276 		udf_close_lvid(sb);
2277 	brelse(sbi->s_lvid_bh);
2278 	udf_sb_free_partitions(sb);
2279 	kfree(sbi);
2280 	sb->s_fs_info = NULL;
2281 
2282 	return ret;
2283 }
2284 
2285 void _udf_err(struct super_block *sb, const char *function,
2286 	      const char *fmt, ...)
2287 {
2288 	struct va_format vaf;
2289 	va_list args;
2290 
2291 	va_start(args, fmt);
2292 
2293 	vaf.fmt = fmt;
2294 	vaf.va = &args;
2295 
2296 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297 
2298 	va_end(args);
2299 }
2300 
2301 void _udf_warn(struct super_block *sb, const char *function,
2302 	       const char *fmt, ...)
2303 {
2304 	struct va_format vaf;
2305 	va_list args;
2306 
2307 	va_start(args, fmt);
2308 
2309 	vaf.fmt = fmt;
2310 	vaf.va = &args;
2311 
2312 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313 
2314 	va_end(args);
2315 }
2316 
2317 static void udf_put_super(struct super_block *sb)
2318 {
2319 	struct udf_sb_info *sbi;
2320 
2321 	sbi = UDF_SB(sb);
2322 
2323 	iput(sbi->s_vat_inode);
2324 #ifdef CONFIG_UDF_NLS
2325 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2326 		unload_nls(sbi->s_nls_map);
2327 #endif
2328 	if (!(sb->s_flags & MS_RDONLY))
2329 		udf_close_lvid(sb);
2330 	brelse(sbi->s_lvid_bh);
2331 	udf_sb_free_partitions(sb);
2332 	mutex_destroy(&sbi->s_alloc_mutex);
2333 	kfree(sb->s_fs_info);
2334 	sb->s_fs_info = NULL;
2335 }
2336 
2337 static int udf_sync_fs(struct super_block *sb, int wait)
2338 {
2339 	struct udf_sb_info *sbi = UDF_SB(sb);
2340 
2341 	mutex_lock(&sbi->s_alloc_mutex);
2342 	if (sbi->s_lvid_dirty) {
2343 		/*
2344 		 * Blockdevice will be synced later so we don't have to submit
2345 		 * the buffer for IO
2346 		 */
2347 		mark_buffer_dirty(sbi->s_lvid_bh);
2348 		sbi->s_lvid_dirty = 0;
2349 	}
2350 	mutex_unlock(&sbi->s_alloc_mutex);
2351 
2352 	return 0;
2353 }
2354 
2355 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2356 {
2357 	struct super_block *sb = dentry->d_sb;
2358 	struct udf_sb_info *sbi = UDF_SB(sb);
2359 	struct logicalVolIntegrityDescImpUse *lvidiu;
2360 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2361 
2362 	lvidiu = udf_sb_lvidiu(sb);
2363 	buf->f_type = UDF_SUPER_MAGIC;
2364 	buf->f_bsize = sb->s_blocksize;
2365 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2366 	buf->f_bfree = udf_count_free(sb);
2367 	buf->f_bavail = buf->f_bfree;
2368 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2369 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2370 			+ buf->f_bfree;
2371 	buf->f_ffree = buf->f_bfree;
2372 	buf->f_namelen = UDF_NAME_LEN;
2373 	buf->f_fsid.val[0] = (u32)id;
2374 	buf->f_fsid.val[1] = (u32)(id >> 32);
2375 
2376 	return 0;
2377 }
2378 
2379 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2380 					  struct udf_bitmap *bitmap)
2381 {
2382 	struct buffer_head *bh = NULL;
2383 	unsigned int accum = 0;
2384 	int index;
2385 	int block = 0, newblock;
2386 	struct kernel_lb_addr loc;
2387 	uint32_t bytes;
2388 	uint8_t *ptr;
2389 	uint16_t ident;
2390 	struct spaceBitmapDesc *bm;
2391 
2392 	loc.logicalBlockNum = bitmap->s_extPosition;
2393 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2394 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2395 
2396 	if (!bh) {
2397 		udf_err(sb, "udf_count_free failed\n");
2398 		goto out;
2399 	} else if (ident != TAG_IDENT_SBD) {
2400 		brelse(bh);
2401 		udf_err(sb, "udf_count_free failed\n");
2402 		goto out;
2403 	}
2404 
2405 	bm = (struct spaceBitmapDesc *)bh->b_data;
2406 	bytes = le32_to_cpu(bm->numOfBytes);
2407 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2408 	ptr = (uint8_t *)bh->b_data;
2409 
2410 	while (bytes > 0) {
2411 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2412 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2413 					cur_bytes * 8);
2414 		bytes -= cur_bytes;
2415 		if (bytes) {
2416 			brelse(bh);
2417 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2418 			bh = udf_tread(sb, newblock);
2419 			if (!bh) {
2420 				udf_debug("read failed\n");
2421 				goto out;
2422 			}
2423 			index = 0;
2424 			ptr = (uint8_t *)bh->b_data;
2425 		}
2426 	}
2427 	brelse(bh);
2428 out:
2429 	return accum;
2430 }
2431 
2432 static unsigned int udf_count_free_table(struct super_block *sb,
2433 					 struct inode *table)
2434 {
2435 	unsigned int accum = 0;
2436 	uint32_t elen;
2437 	struct kernel_lb_addr eloc;
2438 	int8_t etype;
2439 	struct extent_position epos;
2440 
2441 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2442 	epos.block = UDF_I(table)->i_location;
2443 	epos.offset = sizeof(struct unallocSpaceEntry);
2444 	epos.bh = NULL;
2445 
2446 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2447 		accum += (elen >> table->i_sb->s_blocksize_bits);
2448 
2449 	brelse(epos.bh);
2450 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2451 
2452 	return accum;
2453 }
2454 
2455 static unsigned int udf_count_free(struct super_block *sb)
2456 {
2457 	unsigned int accum = 0;
2458 	struct udf_sb_info *sbi;
2459 	struct udf_part_map *map;
2460 
2461 	sbi = UDF_SB(sb);
2462 	if (sbi->s_lvid_bh) {
2463 		struct logicalVolIntegrityDesc *lvid =
2464 			(struct logicalVolIntegrityDesc *)
2465 			sbi->s_lvid_bh->b_data;
2466 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2467 			accum = le32_to_cpu(
2468 					lvid->freeSpaceTable[sbi->s_partition]);
2469 			if (accum == 0xFFFFFFFF)
2470 				accum = 0;
2471 		}
2472 	}
2473 
2474 	if (accum)
2475 		return accum;
2476 
2477 	map = &sbi->s_partmaps[sbi->s_partition];
2478 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2479 		accum += udf_count_free_bitmap(sb,
2480 					       map->s_uspace.s_bitmap);
2481 	}
2482 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2483 		accum += udf_count_free_bitmap(sb,
2484 					       map->s_fspace.s_bitmap);
2485 	}
2486 	if (accum)
2487 		return accum;
2488 
2489 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2490 		accum += udf_count_free_table(sb,
2491 					      map->s_uspace.s_table);
2492 	}
2493 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2494 		accum += udf_count_free_table(sb,
2495 					      map->s_fspace.s_table);
2496 	}
2497 
2498 	return accum;
2499 }
2500