1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <asm/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define UDF_DEFAULT_BLOCKSIZE 2048 77 78 /* These are the "meat" - everything else is stuffing */ 79 static int udf_fill_super(struct super_block *, void *, int); 80 static void udf_put_super(struct super_block *); 81 static int udf_sync_fs(struct super_block *, int); 82 static int udf_remount_fs(struct super_block *, int *, char *); 83 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 84 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 85 struct kernel_lb_addr *); 86 static void udf_load_fileset(struct super_block *, struct buffer_head *, 87 struct kernel_lb_addr *); 88 static void udf_open_lvid(struct super_block *); 89 static void udf_close_lvid(struct super_block *); 90 static unsigned int udf_count_free(struct super_block *); 91 static int udf_statfs(struct dentry *, struct kstatfs *); 92 static int udf_show_options(struct seq_file *, struct vfsmount *); 93 94 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 95 { 96 struct logicalVolIntegrityDesc *lvid = 97 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 98 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 99 __u32 offset = number_of_partitions * 2 * 100 sizeof(uint32_t)/sizeof(uint8_t); 101 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 102 } 103 104 /* UDF filesystem type */ 105 static struct dentry *udf_mount(struct file_system_type *fs_type, 106 int flags, const char *dev_name, void *data) 107 { 108 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 109 } 110 111 static struct file_system_type udf_fstype = { 112 .owner = THIS_MODULE, 113 .name = "udf", 114 .mount = udf_mount, 115 .kill_sb = kill_block_super, 116 .fs_flags = FS_REQUIRES_DEV, 117 }; 118 119 static struct kmem_cache *udf_inode_cachep; 120 121 static struct inode *udf_alloc_inode(struct super_block *sb) 122 { 123 struct udf_inode_info *ei; 124 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 125 if (!ei) 126 return NULL; 127 128 ei->i_unique = 0; 129 ei->i_lenExtents = 0; 130 ei->i_next_alloc_block = 0; 131 ei->i_next_alloc_goal = 0; 132 ei->i_strat4096 = 0; 133 init_rwsem(&ei->i_data_sem); 134 135 return &ei->vfs_inode; 136 } 137 138 static void udf_i_callback(struct rcu_head *head) 139 { 140 struct inode *inode = container_of(head, struct inode, i_rcu); 141 INIT_LIST_HEAD(&inode->i_dentry); 142 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 143 } 144 145 static void udf_destroy_inode(struct inode *inode) 146 { 147 call_rcu(&inode->i_rcu, udf_i_callback); 148 } 149 150 static void init_once(void *foo) 151 { 152 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 153 154 ei->i_ext.i_data = NULL; 155 inode_init_once(&ei->vfs_inode); 156 } 157 158 static int init_inodecache(void) 159 { 160 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 161 sizeof(struct udf_inode_info), 162 0, (SLAB_RECLAIM_ACCOUNT | 163 SLAB_MEM_SPREAD), 164 init_once); 165 if (!udf_inode_cachep) 166 return -ENOMEM; 167 return 0; 168 } 169 170 static void destroy_inodecache(void) 171 { 172 kmem_cache_destroy(udf_inode_cachep); 173 } 174 175 /* Superblock operations */ 176 static const struct super_operations udf_sb_ops = { 177 .alloc_inode = udf_alloc_inode, 178 .destroy_inode = udf_destroy_inode, 179 .write_inode = udf_write_inode, 180 .evict_inode = udf_evict_inode, 181 .put_super = udf_put_super, 182 .sync_fs = udf_sync_fs, 183 .statfs = udf_statfs, 184 .remount_fs = udf_remount_fs, 185 .show_options = udf_show_options, 186 }; 187 188 struct udf_options { 189 unsigned char novrs; 190 unsigned int blocksize; 191 unsigned int session; 192 unsigned int lastblock; 193 unsigned int anchor; 194 unsigned int volume; 195 unsigned short partition; 196 unsigned int fileset; 197 unsigned int rootdir; 198 unsigned int flags; 199 mode_t umask; 200 gid_t gid; 201 uid_t uid; 202 mode_t fmode; 203 mode_t dmode; 204 struct nls_table *nls_map; 205 }; 206 207 static int __init init_udf_fs(void) 208 { 209 int err; 210 211 err = init_inodecache(); 212 if (err) 213 goto out1; 214 err = register_filesystem(&udf_fstype); 215 if (err) 216 goto out; 217 218 return 0; 219 220 out: 221 destroy_inodecache(); 222 223 out1: 224 return err; 225 } 226 227 static void __exit exit_udf_fs(void) 228 { 229 unregister_filesystem(&udf_fstype); 230 destroy_inodecache(); 231 } 232 233 module_init(init_udf_fs) 234 module_exit(exit_udf_fs) 235 236 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 237 { 238 struct udf_sb_info *sbi = UDF_SB(sb); 239 240 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 241 GFP_KERNEL); 242 if (!sbi->s_partmaps) { 243 udf_err(sb, "Unable to allocate space for %d partition maps\n", 244 count); 245 sbi->s_partitions = 0; 246 return -ENOMEM; 247 } 248 249 sbi->s_partitions = count; 250 return 0; 251 } 252 253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt) 254 { 255 struct super_block *sb = mnt->mnt_sb; 256 struct udf_sb_info *sbi = UDF_SB(sb); 257 258 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 259 seq_puts(seq, ",nostrict"); 260 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 261 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 263 seq_puts(seq, ",unhide"); 264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 265 seq_puts(seq, ",undelete"); 266 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 267 seq_puts(seq, ",noadinicb"); 268 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 269 seq_puts(seq, ",shortad"); 270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 271 seq_puts(seq, ",uid=forget"); 272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 273 seq_puts(seq, ",uid=ignore"); 274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 275 seq_puts(seq, ",gid=forget"); 276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 277 seq_puts(seq, ",gid=ignore"); 278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 279 seq_printf(seq, ",uid=%u", sbi->s_uid); 280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 281 seq_printf(seq, ",gid=%u", sbi->s_gid); 282 if (sbi->s_umask != 0) 283 seq_printf(seq, ",umask=%o", sbi->s_umask); 284 if (sbi->s_fmode != UDF_INVALID_MODE) 285 seq_printf(seq, ",mode=%o", sbi->s_fmode); 286 if (sbi->s_dmode != UDF_INVALID_MODE) 287 seq_printf(seq, ",dmode=%o", sbi->s_dmode); 288 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 289 seq_printf(seq, ",session=%u", sbi->s_session); 290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 291 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 292 if (sbi->s_anchor != 0) 293 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 294 /* 295 * volume, partition, fileset and rootdir seem to be ignored 296 * currently 297 */ 298 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 299 seq_puts(seq, ",utf8"); 300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 301 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 302 303 return 0; 304 } 305 306 /* 307 * udf_parse_options 308 * 309 * PURPOSE 310 * Parse mount options. 311 * 312 * DESCRIPTION 313 * The following mount options are supported: 314 * 315 * gid= Set the default group. 316 * umask= Set the default umask. 317 * mode= Set the default file permissions. 318 * dmode= Set the default directory permissions. 319 * uid= Set the default user. 320 * bs= Set the block size. 321 * unhide Show otherwise hidden files. 322 * undelete Show deleted files in lists. 323 * adinicb Embed data in the inode (default) 324 * noadinicb Don't embed data in the inode 325 * shortad Use short ad's 326 * longad Use long ad's (default) 327 * nostrict Unset strict conformance 328 * iocharset= Set the NLS character set 329 * 330 * The remaining are for debugging and disaster recovery: 331 * 332 * novrs Skip volume sequence recognition 333 * 334 * The following expect a offset from 0. 335 * 336 * session= Set the CDROM session (default= last session) 337 * anchor= Override standard anchor location. (default= 256) 338 * volume= Override the VolumeDesc location. (unused) 339 * partition= Override the PartitionDesc location. (unused) 340 * lastblock= Set the last block of the filesystem/ 341 * 342 * The following expect a offset from the partition root. 343 * 344 * fileset= Override the fileset block location. (unused) 345 * rootdir= Override the root directory location. (unused) 346 * WARNING: overriding the rootdir to a non-directory may 347 * yield highly unpredictable results. 348 * 349 * PRE-CONDITIONS 350 * options Pointer to mount options string. 351 * uopts Pointer to mount options variable. 352 * 353 * POST-CONDITIONS 354 * <return> 1 Mount options parsed okay. 355 * <return> 0 Error parsing mount options. 356 * 357 * HISTORY 358 * July 1, 1997 - Andrew E. Mileski 359 * Written, tested, and released. 360 */ 361 362 enum { 363 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 364 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 365 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 366 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 367 Opt_rootdir, Opt_utf8, Opt_iocharset, 368 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 369 Opt_fmode, Opt_dmode 370 }; 371 372 static const match_table_t tokens = { 373 {Opt_novrs, "novrs"}, 374 {Opt_nostrict, "nostrict"}, 375 {Opt_bs, "bs=%u"}, 376 {Opt_unhide, "unhide"}, 377 {Opt_undelete, "undelete"}, 378 {Opt_noadinicb, "noadinicb"}, 379 {Opt_adinicb, "adinicb"}, 380 {Opt_shortad, "shortad"}, 381 {Opt_longad, "longad"}, 382 {Opt_uforget, "uid=forget"}, 383 {Opt_uignore, "uid=ignore"}, 384 {Opt_gforget, "gid=forget"}, 385 {Opt_gignore, "gid=ignore"}, 386 {Opt_gid, "gid=%u"}, 387 {Opt_uid, "uid=%u"}, 388 {Opt_umask, "umask=%o"}, 389 {Opt_session, "session=%u"}, 390 {Opt_lastblock, "lastblock=%u"}, 391 {Opt_anchor, "anchor=%u"}, 392 {Opt_volume, "volume=%u"}, 393 {Opt_partition, "partition=%u"}, 394 {Opt_fileset, "fileset=%u"}, 395 {Opt_rootdir, "rootdir=%u"}, 396 {Opt_utf8, "utf8"}, 397 {Opt_iocharset, "iocharset=%s"}, 398 {Opt_fmode, "mode=%o"}, 399 {Opt_dmode, "dmode=%o"}, 400 {Opt_err, NULL} 401 }; 402 403 static int udf_parse_options(char *options, struct udf_options *uopt, 404 bool remount) 405 { 406 char *p; 407 int option; 408 409 uopt->novrs = 0; 410 uopt->partition = 0xFFFF; 411 uopt->session = 0xFFFFFFFF; 412 uopt->lastblock = 0; 413 uopt->anchor = 0; 414 uopt->volume = 0xFFFFFFFF; 415 uopt->rootdir = 0xFFFFFFFF; 416 uopt->fileset = 0xFFFFFFFF; 417 uopt->nls_map = NULL; 418 419 if (!options) 420 return 1; 421 422 while ((p = strsep(&options, ",")) != NULL) { 423 substring_t args[MAX_OPT_ARGS]; 424 int token; 425 if (!*p) 426 continue; 427 428 token = match_token(p, tokens, args); 429 switch (token) { 430 case Opt_novrs: 431 uopt->novrs = 1; 432 break; 433 case Opt_bs: 434 if (match_int(&args[0], &option)) 435 return 0; 436 uopt->blocksize = option; 437 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 438 break; 439 case Opt_unhide: 440 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 441 break; 442 case Opt_undelete: 443 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 444 break; 445 case Opt_noadinicb: 446 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 447 break; 448 case Opt_adinicb: 449 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 450 break; 451 case Opt_shortad: 452 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 453 break; 454 case Opt_longad: 455 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 456 break; 457 case Opt_gid: 458 if (match_int(args, &option)) 459 return 0; 460 uopt->gid = option; 461 uopt->flags |= (1 << UDF_FLAG_GID_SET); 462 break; 463 case Opt_uid: 464 if (match_int(args, &option)) 465 return 0; 466 uopt->uid = option; 467 uopt->flags |= (1 << UDF_FLAG_UID_SET); 468 break; 469 case Opt_umask: 470 if (match_octal(args, &option)) 471 return 0; 472 uopt->umask = option; 473 break; 474 case Opt_nostrict: 475 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 476 break; 477 case Opt_session: 478 if (match_int(args, &option)) 479 return 0; 480 uopt->session = option; 481 if (!remount) 482 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 483 break; 484 case Opt_lastblock: 485 if (match_int(args, &option)) 486 return 0; 487 uopt->lastblock = option; 488 if (!remount) 489 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 490 break; 491 case Opt_anchor: 492 if (match_int(args, &option)) 493 return 0; 494 uopt->anchor = option; 495 break; 496 case Opt_volume: 497 if (match_int(args, &option)) 498 return 0; 499 uopt->volume = option; 500 break; 501 case Opt_partition: 502 if (match_int(args, &option)) 503 return 0; 504 uopt->partition = option; 505 break; 506 case Opt_fileset: 507 if (match_int(args, &option)) 508 return 0; 509 uopt->fileset = option; 510 break; 511 case Opt_rootdir: 512 if (match_int(args, &option)) 513 return 0; 514 uopt->rootdir = option; 515 break; 516 case Opt_utf8: 517 uopt->flags |= (1 << UDF_FLAG_UTF8); 518 break; 519 #ifdef CONFIG_UDF_NLS 520 case Opt_iocharset: 521 uopt->nls_map = load_nls(args[0].from); 522 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 523 break; 524 #endif 525 case Opt_uignore: 526 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 527 break; 528 case Opt_uforget: 529 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 530 break; 531 case Opt_gignore: 532 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 533 break; 534 case Opt_gforget: 535 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 536 break; 537 case Opt_fmode: 538 if (match_octal(args, &option)) 539 return 0; 540 uopt->fmode = option & 0777; 541 break; 542 case Opt_dmode: 543 if (match_octal(args, &option)) 544 return 0; 545 uopt->dmode = option & 0777; 546 break; 547 default: 548 pr_err("bad mount option \"%s\" or missing value\n", p); 549 return 0; 550 } 551 } 552 return 1; 553 } 554 555 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 556 { 557 struct udf_options uopt; 558 struct udf_sb_info *sbi = UDF_SB(sb); 559 int error = 0; 560 561 uopt.flags = sbi->s_flags; 562 uopt.uid = sbi->s_uid; 563 uopt.gid = sbi->s_gid; 564 uopt.umask = sbi->s_umask; 565 uopt.fmode = sbi->s_fmode; 566 uopt.dmode = sbi->s_dmode; 567 568 if (!udf_parse_options(options, &uopt, true)) 569 return -EINVAL; 570 571 write_lock(&sbi->s_cred_lock); 572 sbi->s_flags = uopt.flags; 573 sbi->s_uid = uopt.uid; 574 sbi->s_gid = uopt.gid; 575 sbi->s_umask = uopt.umask; 576 sbi->s_fmode = uopt.fmode; 577 sbi->s_dmode = uopt.dmode; 578 write_unlock(&sbi->s_cred_lock); 579 580 if (sbi->s_lvid_bh) { 581 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 582 if (write_rev > UDF_MAX_WRITE_VERSION) 583 *flags |= MS_RDONLY; 584 } 585 586 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 587 goto out_unlock; 588 589 if (*flags & MS_RDONLY) 590 udf_close_lvid(sb); 591 else 592 udf_open_lvid(sb); 593 594 out_unlock: 595 return error; 596 } 597 598 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 599 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 600 static loff_t udf_check_vsd(struct super_block *sb) 601 { 602 struct volStructDesc *vsd = NULL; 603 loff_t sector = 32768; 604 int sectorsize; 605 struct buffer_head *bh = NULL; 606 int nsr02 = 0; 607 int nsr03 = 0; 608 struct udf_sb_info *sbi; 609 610 sbi = UDF_SB(sb); 611 if (sb->s_blocksize < sizeof(struct volStructDesc)) 612 sectorsize = sizeof(struct volStructDesc); 613 else 614 sectorsize = sb->s_blocksize; 615 616 sector += (sbi->s_session << sb->s_blocksize_bits); 617 618 udf_debug("Starting at sector %u (%ld byte sectors)\n", 619 (unsigned int)(sector >> sb->s_blocksize_bits), 620 sb->s_blocksize); 621 /* Process the sequence (if applicable) */ 622 for (; !nsr02 && !nsr03; sector += sectorsize) { 623 /* Read a block */ 624 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 625 if (!bh) 626 break; 627 628 /* Look for ISO descriptors */ 629 vsd = (struct volStructDesc *)(bh->b_data + 630 (sector & (sb->s_blocksize - 1))); 631 632 if (vsd->stdIdent[0] == 0) { 633 brelse(bh); 634 break; 635 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 636 VSD_STD_ID_LEN)) { 637 switch (vsd->structType) { 638 case 0: 639 udf_debug("ISO9660 Boot Record found\n"); 640 break; 641 case 1: 642 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 643 break; 644 case 2: 645 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 646 break; 647 case 3: 648 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 649 break; 650 case 255: 651 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 652 break; 653 default: 654 udf_debug("ISO9660 VRS (%u) found\n", 655 vsd->structType); 656 break; 657 } 658 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 659 VSD_STD_ID_LEN)) 660 ; /* nothing */ 661 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 662 VSD_STD_ID_LEN)) { 663 brelse(bh); 664 break; 665 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 666 VSD_STD_ID_LEN)) 667 nsr02 = sector; 668 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 669 VSD_STD_ID_LEN)) 670 nsr03 = sector; 671 brelse(bh); 672 } 673 674 if (nsr03) 675 return nsr03; 676 else if (nsr02) 677 return nsr02; 678 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 679 return -1; 680 else 681 return 0; 682 } 683 684 static int udf_find_fileset(struct super_block *sb, 685 struct kernel_lb_addr *fileset, 686 struct kernel_lb_addr *root) 687 { 688 struct buffer_head *bh = NULL; 689 long lastblock; 690 uint16_t ident; 691 struct udf_sb_info *sbi; 692 693 if (fileset->logicalBlockNum != 0xFFFFFFFF || 694 fileset->partitionReferenceNum != 0xFFFF) { 695 bh = udf_read_ptagged(sb, fileset, 0, &ident); 696 697 if (!bh) { 698 return 1; 699 } else if (ident != TAG_IDENT_FSD) { 700 brelse(bh); 701 return 1; 702 } 703 704 } 705 706 sbi = UDF_SB(sb); 707 if (!bh) { 708 /* Search backwards through the partitions */ 709 struct kernel_lb_addr newfileset; 710 711 /* --> cvg: FIXME - is it reasonable? */ 712 return 1; 713 714 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 715 (newfileset.partitionReferenceNum != 0xFFFF && 716 fileset->logicalBlockNum == 0xFFFFFFFF && 717 fileset->partitionReferenceNum == 0xFFFF); 718 newfileset.partitionReferenceNum--) { 719 lastblock = sbi->s_partmaps 720 [newfileset.partitionReferenceNum] 721 .s_partition_len; 722 newfileset.logicalBlockNum = 0; 723 724 do { 725 bh = udf_read_ptagged(sb, &newfileset, 0, 726 &ident); 727 if (!bh) { 728 newfileset.logicalBlockNum++; 729 continue; 730 } 731 732 switch (ident) { 733 case TAG_IDENT_SBD: 734 { 735 struct spaceBitmapDesc *sp; 736 sp = (struct spaceBitmapDesc *) 737 bh->b_data; 738 newfileset.logicalBlockNum += 1 + 739 ((le32_to_cpu(sp->numOfBytes) + 740 sizeof(struct spaceBitmapDesc) 741 - 1) >> sb->s_blocksize_bits); 742 brelse(bh); 743 break; 744 } 745 case TAG_IDENT_FSD: 746 *fileset = newfileset; 747 break; 748 default: 749 newfileset.logicalBlockNum++; 750 brelse(bh); 751 bh = NULL; 752 break; 753 } 754 } while (newfileset.logicalBlockNum < lastblock && 755 fileset->logicalBlockNum == 0xFFFFFFFF && 756 fileset->partitionReferenceNum == 0xFFFF); 757 } 758 } 759 760 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 761 fileset->partitionReferenceNum != 0xFFFF) && bh) { 762 udf_debug("Fileset at block=%d, partition=%d\n", 763 fileset->logicalBlockNum, 764 fileset->partitionReferenceNum); 765 766 sbi->s_partition = fileset->partitionReferenceNum; 767 udf_load_fileset(sb, bh, root); 768 brelse(bh); 769 return 0; 770 } 771 return 1; 772 } 773 774 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 775 { 776 struct primaryVolDesc *pvoldesc; 777 struct ustr *instr, *outstr; 778 struct buffer_head *bh; 779 uint16_t ident; 780 int ret = 1; 781 782 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 783 if (!instr) 784 return 1; 785 786 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 787 if (!outstr) 788 goto out1; 789 790 bh = udf_read_tagged(sb, block, block, &ident); 791 if (!bh) 792 goto out2; 793 794 BUG_ON(ident != TAG_IDENT_PVD); 795 796 pvoldesc = (struct primaryVolDesc *)bh->b_data; 797 798 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 799 pvoldesc->recordingDateAndTime)) { 800 #ifdef UDFFS_DEBUG 801 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 802 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 803 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 804 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 805 #endif 806 } 807 808 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 809 if (udf_CS0toUTF8(outstr, instr)) { 810 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 811 outstr->u_len > 31 ? 31 : outstr->u_len); 812 udf_debug("volIdent[] = '%s'\n", 813 UDF_SB(sb)->s_volume_ident); 814 } 815 816 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 817 if (udf_CS0toUTF8(outstr, instr)) 818 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 819 820 brelse(bh); 821 ret = 0; 822 out2: 823 kfree(outstr); 824 out1: 825 kfree(instr); 826 return ret; 827 } 828 829 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 830 u32 meta_file_loc, u32 partition_num) 831 { 832 struct kernel_lb_addr addr; 833 struct inode *metadata_fe; 834 835 addr.logicalBlockNum = meta_file_loc; 836 addr.partitionReferenceNum = partition_num; 837 838 metadata_fe = udf_iget(sb, &addr); 839 840 if (metadata_fe == NULL) 841 udf_warn(sb, "metadata inode efe not found\n"); 842 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 843 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 844 iput(metadata_fe); 845 metadata_fe = NULL; 846 } 847 848 return metadata_fe; 849 } 850 851 static int udf_load_metadata_files(struct super_block *sb, int partition) 852 { 853 struct udf_sb_info *sbi = UDF_SB(sb); 854 struct udf_part_map *map; 855 struct udf_meta_data *mdata; 856 struct kernel_lb_addr addr; 857 858 map = &sbi->s_partmaps[partition]; 859 mdata = &map->s_type_specific.s_metadata; 860 861 /* metadata address */ 862 udf_debug("Metadata file location: block = %d part = %d\n", 863 mdata->s_meta_file_loc, map->s_partition_num); 864 865 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 866 mdata->s_meta_file_loc, map->s_partition_num); 867 868 if (mdata->s_metadata_fe == NULL) { 869 /* mirror file entry */ 870 udf_debug("Mirror metadata file location: block = %d part = %d\n", 871 mdata->s_mirror_file_loc, map->s_partition_num); 872 873 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 874 mdata->s_mirror_file_loc, map->s_partition_num); 875 876 if (mdata->s_mirror_fe == NULL) { 877 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 878 goto error_exit; 879 } 880 } 881 882 /* 883 * bitmap file entry 884 * Note: 885 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 886 */ 887 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 888 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 889 addr.partitionReferenceNum = map->s_partition_num; 890 891 udf_debug("Bitmap file location: block = %d part = %d\n", 892 addr.logicalBlockNum, addr.partitionReferenceNum); 893 894 mdata->s_bitmap_fe = udf_iget(sb, &addr); 895 896 if (mdata->s_bitmap_fe == NULL) { 897 if (sb->s_flags & MS_RDONLY) 898 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 899 else { 900 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 901 goto error_exit; 902 } 903 } 904 } 905 906 udf_debug("udf_load_metadata_files Ok\n"); 907 908 return 0; 909 910 error_exit: 911 return 1; 912 } 913 914 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 915 struct kernel_lb_addr *root) 916 { 917 struct fileSetDesc *fset; 918 919 fset = (struct fileSetDesc *)bh->b_data; 920 921 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 922 923 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 924 925 udf_debug("Rootdir at block=%d, partition=%d\n", 926 root->logicalBlockNum, root->partitionReferenceNum); 927 } 928 929 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 930 { 931 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 932 return DIV_ROUND_UP(map->s_partition_len + 933 (sizeof(struct spaceBitmapDesc) << 3), 934 sb->s_blocksize * 8); 935 } 936 937 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 938 { 939 struct udf_bitmap *bitmap; 940 int nr_groups; 941 int size; 942 943 nr_groups = udf_compute_nr_groups(sb, index); 944 size = sizeof(struct udf_bitmap) + 945 (sizeof(struct buffer_head *) * nr_groups); 946 947 if (size <= PAGE_SIZE) 948 bitmap = kzalloc(size, GFP_KERNEL); 949 else 950 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 951 952 if (bitmap == NULL) { 953 udf_err(sb, "Unable to allocate space for bitmap and %d buffer_head pointers\n", 954 nr_groups); 955 return NULL; 956 } 957 958 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 959 bitmap->s_nr_groups = nr_groups; 960 return bitmap; 961 } 962 963 static int udf_fill_partdesc_info(struct super_block *sb, 964 struct partitionDesc *p, int p_index) 965 { 966 struct udf_part_map *map; 967 struct udf_sb_info *sbi = UDF_SB(sb); 968 struct partitionHeaderDesc *phd; 969 970 map = &sbi->s_partmaps[p_index]; 971 972 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 973 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 974 975 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 976 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 977 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 978 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 979 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 980 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 981 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 982 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 983 984 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 985 p_index, map->s_partition_type, 986 map->s_partition_root, map->s_partition_len); 987 988 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 989 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 990 return 0; 991 992 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 993 if (phd->unallocSpaceTable.extLength) { 994 struct kernel_lb_addr loc = { 995 .logicalBlockNum = le32_to_cpu( 996 phd->unallocSpaceTable.extPosition), 997 .partitionReferenceNum = p_index, 998 }; 999 1000 map->s_uspace.s_table = udf_iget(sb, &loc); 1001 if (!map->s_uspace.s_table) { 1002 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1003 p_index); 1004 return 1; 1005 } 1006 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1007 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1008 p_index, map->s_uspace.s_table->i_ino); 1009 } 1010 1011 if (phd->unallocSpaceBitmap.extLength) { 1012 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1013 if (!bitmap) 1014 return 1; 1015 map->s_uspace.s_bitmap = bitmap; 1016 bitmap->s_extLength = le32_to_cpu( 1017 phd->unallocSpaceBitmap.extLength); 1018 bitmap->s_extPosition = le32_to_cpu( 1019 phd->unallocSpaceBitmap.extPosition); 1020 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1021 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1022 p_index, bitmap->s_extPosition); 1023 } 1024 1025 if (phd->partitionIntegrityTable.extLength) 1026 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1027 1028 if (phd->freedSpaceTable.extLength) { 1029 struct kernel_lb_addr loc = { 1030 .logicalBlockNum = le32_to_cpu( 1031 phd->freedSpaceTable.extPosition), 1032 .partitionReferenceNum = p_index, 1033 }; 1034 1035 map->s_fspace.s_table = udf_iget(sb, &loc); 1036 if (!map->s_fspace.s_table) { 1037 udf_debug("cannot load freedSpaceTable (part %d)\n", 1038 p_index); 1039 return 1; 1040 } 1041 1042 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1043 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1044 p_index, map->s_fspace.s_table->i_ino); 1045 } 1046 1047 if (phd->freedSpaceBitmap.extLength) { 1048 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1049 if (!bitmap) 1050 return 1; 1051 map->s_fspace.s_bitmap = bitmap; 1052 bitmap->s_extLength = le32_to_cpu( 1053 phd->freedSpaceBitmap.extLength); 1054 bitmap->s_extPosition = le32_to_cpu( 1055 phd->freedSpaceBitmap.extPosition); 1056 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1057 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1058 p_index, bitmap->s_extPosition); 1059 } 1060 return 0; 1061 } 1062 1063 static void udf_find_vat_block(struct super_block *sb, int p_index, 1064 int type1_index, sector_t start_block) 1065 { 1066 struct udf_sb_info *sbi = UDF_SB(sb); 1067 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1068 sector_t vat_block; 1069 struct kernel_lb_addr ino; 1070 1071 /* 1072 * VAT file entry is in the last recorded block. Some broken disks have 1073 * it a few blocks before so try a bit harder... 1074 */ 1075 ino.partitionReferenceNum = type1_index; 1076 for (vat_block = start_block; 1077 vat_block >= map->s_partition_root && 1078 vat_block >= start_block - 3 && 1079 !sbi->s_vat_inode; vat_block--) { 1080 ino.logicalBlockNum = vat_block - map->s_partition_root; 1081 sbi->s_vat_inode = udf_iget(sb, &ino); 1082 } 1083 } 1084 1085 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1086 { 1087 struct udf_sb_info *sbi = UDF_SB(sb); 1088 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1089 struct buffer_head *bh = NULL; 1090 struct udf_inode_info *vati; 1091 uint32_t pos; 1092 struct virtualAllocationTable20 *vat20; 1093 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1094 1095 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1096 if (!sbi->s_vat_inode && 1097 sbi->s_last_block != blocks - 1) { 1098 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1099 (unsigned long)sbi->s_last_block, 1100 (unsigned long)blocks - 1); 1101 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1102 } 1103 if (!sbi->s_vat_inode) 1104 return 1; 1105 1106 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1107 map->s_type_specific.s_virtual.s_start_offset = 0; 1108 map->s_type_specific.s_virtual.s_num_entries = 1109 (sbi->s_vat_inode->i_size - 36) >> 2; 1110 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1111 vati = UDF_I(sbi->s_vat_inode); 1112 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1113 pos = udf_block_map(sbi->s_vat_inode, 0); 1114 bh = sb_bread(sb, pos); 1115 if (!bh) 1116 return 1; 1117 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1118 } else { 1119 vat20 = (struct virtualAllocationTable20 *) 1120 vati->i_ext.i_data; 1121 } 1122 1123 map->s_type_specific.s_virtual.s_start_offset = 1124 le16_to_cpu(vat20->lengthHeader); 1125 map->s_type_specific.s_virtual.s_num_entries = 1126 (sbi->s_vat_inode->i_size - 1127 map->s_type_specific.s_virtual. 1128 s_start_offset) >> 2; 1129 brelse(bh); 1130 } 1131 return 0; 1132 } 1133 1134 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1135 { 1136 struct buffer_head *bh; 1137 struct partitionDesc *p; 1138 struct udf_part_map *map; 1139 struct udf_sb_info *sbi = UDF_SB(sb); 1140 int i, type1_idx; 1141 uint16_t partitionNumber; 1142 uint16_t ident; 1143 int ret = 0; 1144 1145 bh = udf_read_tagged(sb, block, block, &ident); 1146 if (!bh) 1147 return 1; 1148 if (ident != TAG_IDENT_PD) 1149 goto out_bh; 1150 1151 p = (struct partitionDesc *)bh->b_data; 1152 partitionNumber = le16_to_cpu(p->partitionNumber); 1153 1154 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1155 for (i = 0; i < sbi->s_partitions; i++) { 1156 map = &sbi->s_partmaps[i]; 1157 udf_debug("Searching map: (%d == %d)\n", 1158 map->s_partition_num, partitionNumber); 1159 if (map->s_partition_num == partitionNumber && 1160 (map->s_partition_type == UDF_TYPE1_MAP15 || 1161 map->s_partition_type == UDF_SPARABLE_MAP15)) 1162 break; 1163 } 1164 1165 if (i >= sbi->s_partitions) { 1166 udf_debug("Partition (%d) not found in partition map\n", 1167 partitionNumber); 1168 goto out_bh; 1169 } 1170 1171 ret = udf_fill_partdesc_info(sb, p, i); 1172 1173 /* 1174 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1175 * PHYSICAL partitions are already set up 1176 */ 1177 type1_idx = i; 1178 for (i = 0; i < sbi->s_partitions; i++) { 1179 map = &sbi->s_partmaps[i]; 1180 1181 if (map->s_partition_num == partitionNumber && 1182 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1183 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1184 map->s_partition_type == UDF_METADATA_MAP25)) 1185 break; 1186 } 1187 1188 if (i >= sbi->s_partitions) 1189 goto out_bh; 1190 1191 ret = udf_fill_partdesc_info(sb, p, i); 1192 if (ret) 1193 goto out_bh; 1194 1195 if (map->s_partition_type == UDF_METADATA_MAP25) { 1196 ret = udf_load_metadata_files(sb, i); 1197 if (ret) { 1198 udf_err(sb, "error loading MetaData partition map %d\n", 1199 i); 1200 goto out_bh; 1201 } 1202 } else { 1203 ret = udf_load_vat(sb, i, type1_idx); 1204 if (ret) 1205 goto out_bh; 1206 /* 1207 * Mark filesystem read-only if we have a partition with 1208 * virtual map since we don't handle writing to it (we 1209 * overwrite blocks instead of relocating them). 1210 */ 1211 sb->s_flags |= MS_RDONLY; 1212 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); 1213 } 1214 out_bh: 1215 /* In case loading failed, we handle cleanup in udf_fill_super */ 1216 brelse(bh); 1217 return ret; 1218 } 1219 1220 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1221 struct kernel_lb_addr *fileset) 1222 { 1223 struct logicalVolDesc *lvd; 1224 int i, j, offset; 1225 uint8_t type; 1226 struct udf_sb_info *sbi = UDF_SB(sb); 1227 struct genericPartitionMap *gpm; 1228 uint16_t ident; 1229 struct buffer_head *bh; 1230 int ret = 0; 1231 1232 bh = udf_read_tagged(sb, block, block, &ident); 1233 if (!bh) 1234 return 1; 1235 BUG_ON(ident != TAG_IDENT_LVD); 1236 lvd = (struct logicalVolDesc *)bh->b_data; 1237 1238 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1239 if (i != 0) { 1240 ret = i; 1241 goto out_bh; 1242 } 1243 1244 for (i = 0, offset = 0; 1245 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1246 i++, offset += gpm->partitionMapLength) { 1247 struct udf_part_map *map = &sbi->s_partmaps[i]; 1248 gpm = (struct genericPartitionMap *) 1249 &(lvd->partitionMaps[offset]); 1250 type = gpm->partitionMapType; 1251 if (type == 1) { 1252 struct genericPartitionMap1 *gpm1 = 1253 (struct genericPartitionMap1 *)gpm; 1254 map->s_partition_type = UDF_TYPE1_MAP15; 1255 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1256 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1257 map->s_partition_func = NULL; 1258 } else if (type == 2) { 1259 struct udfPartitionMap2 *upm2 = 1260 (struct udfPartitionMap2 *)gpm; 1261 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1262 strlen(UDF_ID_VIRTUAL))) { 1263 u16 suf = 1264 le16_to_cpu(((__le16 *)upm2->partIdent. 1265 identSuffix)[0]); 1266 if (suf < 0x0200) { 1267 map->s_partition_type = 1268 UDF_VIRTUAL_MAP15; 1269 map->s_partition_func = 1270 udf_get_pblock_virt15; 1271 } else { 1272 map->s_partition_type = 1273 UDF_VIRTUAL_MAP20; 1274 map->s_partition_func = 1275 udf_get_pblock_virt20; 1276 } 1277 } else if (!strncmp(upm2->partIdent.ident, 1278 UDF_ID_SPARABLE, 1279 strlen(UDF_ID_SPARABLE))) { 1280 uint32_t loc; 1281 struct sparingTable *st; 1282 struct sparablePartitionMap *spm = 1283 (struct sparablePartitionMap *)gpm; 1284 1285 map->s_partition_type = UDF_SPARABLE_MAP15; 1286 map->s_type_specific.s_sparing.s_packet_len = 1287 le16_to_cpu(spm->packetLength); 1288 for (j = 0; j < spm->numSparingTables; j++) { 1289 struct buffer_head *bh2; 1290 1291 loc = le32_to_cpu( 1292 spm->locSparingTable[j]); 1293 bh2 = udf_read_tagged(sb, loc, loc, 1294 &ident); 1295 map->s_type_specific.s_sparing. 1296 s_spar_map[j] = bh2; 1297 1298 if (bh2 == NULL) 1299 continue; 1300 1301 st = (struct sparingTable *)bh2->b_data; 1302 if (ident != 0 || strncmp( 1303 st->sparingIdent.ident, 1304 UDF_ID_SPARING, 1305 strlen(UDF_ID_SPARING))) { 1306 brelse(bh2); 1307 map->s_type_specific.s_sparing. 1308 s_spar_map[j] = NULL; 1309 } 1310 } 1311 map->s_partition_func = udf_get_pblock_spar15; 1312 } else if (!strncmp(upm2->partIdent.ident, 1313 UDF_ID_METADATA, 1314 strlen(UDF_ID_METADATA))) { 1315 struct udf_meta_data *mdata = 1316 &map->s_type_specific.s_metadata; 1317 struct metadataPartitionMap *mdm = 1318 (struct metadataPartitionMap *) 1319 &(lvd->partitionMaps[offset]); 1320 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1321 i, type, UDF_ID_METADATA); 1322 1323 map->s_partition_type = UDF_METADATA_MAP25; 1324 map->s_partition_func = udf_get_pblock_meta25; 1325 1326 mdata->s_meta_file_loc = 1327 le32_to_cpu(mdm->metadataFileLoc); 1328 mdata->s_mirror_file_loc = 1329 le32_to_cpu(mdm->metadataMirrorFileLoc); 1330 mdata->s_bitmap_file_loc = 1331 le32_to_cpu(mdm->metadataBitmapFileLoc); 1332 mdata->s_alloc_unit_size = 1333 le32_to_cpu(mdm->allocUnitSize); 1334 mdata->s_align_unit_size = 1335 le16_to_cpu(mdm->alignUnitSize); 1336 if (mdm->flags & 0x01) 1337 mdata->s_flags |= MF_DUPLICATE_MD; 1338 1339 udf_debug("Metadata Ident suffix=0x%x\n", 1340 le16_to_cpu(*(__le16 *) 1341 mdm->partIdent.identSuffix)); 1342 udf_debug("Metadata part num=%d\n", 1343 le16_to_cpu(mdm->partitionNum)); 1344 udf_debug("Metadata part alloc unit size=%d\n", 1345 le32_to_cpu(mdm->allocUnitSize)); 1346 udf_debug("Metadata file loc=%d\n", 1347 le32_to_cpu(mdm->metadataFileLoc)); 1348 udf_debug("Mirror file loc=%d\n", 1349 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1350 udf_debug("Bitmap file loc=%d\n", 1351 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1352 udf_debug("Flags: %d %d\n", 1353 mdata->s_flags, mdm->flags); 1354 } else { 1355 udf_debug("Unknown ident: %s\n", 1356 upm2->partIdent.ident); 1357 continue; 1358 } 1359 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1360 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1361 } 1362 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1363 i, map->s_partition_num, type, map->s_volumeseqnum); 1364 } 1365 1366 if (fileset) { 1367 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1368 1369 *fileset = lelb_to_cpu(la->extLocation); 1370 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1371 fileset->logicalBlockNum, 1372 fileset->partitionReferenceNum); 1373 } 1374 if (lvd->integritySeqExt.extLength) 1375 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1376 1377 out_bh: 1378 brelse(bh); 1379 return ret; 1380 } 1381 1382 /* 1383 * udf_load_logicalvolint 1384 * 1385 */ 1386 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1387 { 1388 struct buffer_head *bh = NULL; 1389 uint16_t ident; 1390 struct udf_sb_info *sbi = UDF_SB(sb); 1391 struct logicalVolIntegrityDesc *lvid; 1392 1393 while (loc.extLength > 0 && 1394 (bh = udf_read_tagged(sb, loc.extLocation, 1395 loc.extLocation, &ident)) && 1396 ident == TAG_IDENT_LVID) { 1397 sbi->s_lvid_bh = bh; 1398 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1399 1400 if (lvid->nextIntegrityExt.extLength) 1401 udf_load_logicalvolint(sb, 1402 leea_to_cpu(lvid->nextIntegrityExt)); 1403 1404 if (sbi->s_lvid_bh != bh) 1405 brelse(bh); 1406 loc.extLength -= sb->s_blocksize; 1407 loc.extLocation++; 1408 } 1409 if (sbi->s_lvid_bh != bh) 1410 brelse(bh); 1411 } 1412 1413 /* 1414 * udf_process_sequence 1415 * 1416 * PURPOSE 1417 * Process a main/reserve volume descriptor sequence. 1418 * 1419 * PRE-CONDITIONS 1420 * sb Pointer to _locked_ superblock. 1421 * block First block of first extent of the sequence. 1422 * lastblock Lastblock of first extent of the sequence. 1423 * 1424 * HISTORY 1425 * July 1, 1997 - Andrew E. Mileski 1426 * Written, tested, and released. 1427 */ 1428 static noinline int udf_process_sequence(struct super_block *sb, long block, 1429 long lastblock, struct kernel_lb_addr *fileset) 1430 { 1431 struct buffer_head *bh = NULL; 1432 struct udf_vds_record vds[VDS_POS_LENGTH]; 1433 struct udf_vds_record *curr; 1434 struct generic_desc *gd; 1435 struct volDescPtr *vdp; 1436 int done = 0; 1437 uint32_t vdsn; 1438 uint16_t ident; 1439 long next_s = 0, next_e = 0; 1440 1441 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1442 1443 /* 1444 * Read the main descriptor sequence and find which descriptors 1445 * are in it. 1446 */ 1447 for (; (!done && block <= lastblock); block++) { 1448 1449 bh = udf_read_tagged(sb, block, block, &ident); 1450 if (!bh) { 1451 udf_err(sb, 1452 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1453 (unsigned long long)block); 1454 return 1; 1455 } 1456 1457 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1458 gd = (struct generic_desc *)bh->b_data; 1459 vdsn = le32_to_cpu(gd->volDescSeqNum); 1460 switch (ident) { 1461 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1462 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1463 if (vdsn >= curr->volDescSeqNum) { 1464 curr->volDescSeqNum = vdsn; 1465 curr->block = block; 1466 } 1467 break; 1468 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1469 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1470 if (vdsn >= curr->volDescSeqNum) { 1471 curr->volDescSeqNum = vdsn; 1472 curr->block = block; 1473 1474 vdp = (struct volDescPtr *)bh->b_data; 1475 next_s = le32_to_cpu( 1476 vdp->nextVolDescSeqExt.extLocation); 1477 next_e = le32_to_cpu( 1478 vdp->nextVolDescSeqExt.extLength); 1479 next_e = next_e >> sb->s_blocksize_bits; 1480 next_e += next_s; 1481 } 1482 break; 1483 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1484 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1485 if (vdsn >= curr->volDescSeqNum) { 1486 curr->volDescSeqNum = vdsn; 1487 curr->block = block; 1488 } 1489 break; 1490 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1491 curr = &vds[VDS_POS_PARTITION_DESC]; 1492 if (!curr->block) 1493 curr->block = block; 1494 break; 1495 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1496 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1497 if (vdsn >= curr->volDescSeqNum) { 1498 curr->volDescSeqNum = vdsn; 1499 curr->block = block; 1500 } 1501 break; 1502 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1503 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1504 if (vdsn >= curr->volDescSeqNum) { 1505 curr->volDescSeqNum = vdsn; 1506 curr->block = block; 1507 } 1508 break; 1509 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1510 vds[VDS_POS_TERMINATING_DESC].block = block; 1511 if (next_e) { 1512 block = next_s; 1513 lastblock = next_e; 1514 next_s = next_e = 0; 1515 } else 1516 done = 1; 1517 break; 1518 } 1519 brelse(bh); 1520 } 1521 /* 1522 * Now read interesting descriptors again and process them 1523 * in a suitable order 1524 */ 1525 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1526 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1527 return 1; 1528 } 1529 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1530 return 1; 1531 1532 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1533 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1534 return 1; 1535 1536 if (vds[VDS_POS_PARTITION_DESC].block) { 1537 /* 1538 * We rescan the whole descriptor sequence to find 1539 * partition descriptor blocks and process them. 1540 */ 1541 for (block = vds[VDS_POS_PARTITION_DESC].block; 1542 block < vds[VDS_POS_TERMINATING_DESC].block; 1543 block++) 1544 if (udf_load_partdesc(sb, block)) 1545 return 1; 1546 } 1547 1548 return 0; 1549 } 1550 1551 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1552 struct kernel_lb_addr *fileset) 1553 { 1554 struct anchorVolDescPtr *anchor; 1555 long main_s, main_e, reserve_s, reserve_e; 1556 1557 anchor = (struct anchorVolDescPtr *)bh->b_data; 1558 1559 /* Locate the main sequence */ 1560 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1561 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1562 main_e = main_e >> sb->s_blocksize_bits; 1563 main_e += main_s; 1564 1565 /* Locate the reserve sequence */ 1566 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1567 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1568 reserve_e = reserve_e >> sb->s_blocksize_bits; 1569 reserve_e += reserve_s; 1570 1571 /* Process the main & reserve sequences */ 1572 /* responsible for finding the PartitionDesc(s) */ 1573 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1574 return 1; 1575 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1576 } 1577 1578 /* 1579 * Check whether there is an anchor block in the given block and 1580 * load Volume Descriptor Sequence if so. 1581 */ 1582 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1583 struct kernel_lb_addr *fileset) 1584 { 1585 struct buffer_head *bh; 1586 uint16_t ident; 1587 int ret; 1588 1589 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1590 udf_fixed_to_variable(block) >= 1591 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1592 return 0; 1593 1594 bh = udf_read_tagged(sb, block, block, &ident); 1595 if (!bh) 1596 return 0; 1597 if (ident != TAG_IDENT_AVDP) { 1598 brelse(bh); 1599 return 0; 1600 } 1601 ret = udf_load_sequence(sb, bh, fileset); 1602 brelse(bh); 1603 return ret; 1604 } 1605 1606 /* Search for an anchor volume descriptor pointer */ 1607 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1608 struct kernel_lb_addr *fileset) 1609 { 1610 sector_t last[6]; 1611 int i; 1612 struct udf_sb_info *sbi = UDF_SB(sb); 1613 int last_count = 0; 1614 1615 /* First try user provided anchor */ 1616 if (sbi->s_anchor) { 1617 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1618 return lastblock; 1619 } 1620 /* 1621 * according to spec, anchor is in either: 1622 * block 256 1623 * lastblock-256 1624 * lastblock 1625 * however, if the disc isn't closed, it could be 512. 1626 */ 1627 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1628 return lastblock; 1629 /* 1630 * The trouble is which block is the last one. Drives often misreport 1631 * this so we try various possibilities. 1632 */ 1633 last[last_count++] = lastblock; 1634 if (lastblock >= 1) 1635 last[last_count++] = lastblock - 1; 1636 last[last_count++] = lastblock + 1; 1637 if (lastblock >= 2) 1638 last[last_count++] = lastblock - 2; 1639 if (lastblock >= 150) 1640 last[last_count++] = lastblock - 150; 1641 if (lastblock >= 152) 1642 last[last_count++] = lastblock - 152; 1643 1644 for (i = 0; i < last_count; i++) { 1645 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1646 sb->s_blocksize_bits) 1647 continue; 1648 if (udf_check_anchor_block(sb, last[i], fileset)) 1649 return last[i]; 1650 if (last[i] < 256) 1651 continue; 1652 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1653 return last[i]; 1654 } 1655 1656 /* Finally try block 512 in case media is open */ 1657 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1658 return last[0]; 1659 return 0; 1660 } 1661 1662 /* 1663 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1664 * area specified by it. The function expects sbi->s_lastblock to be the last 1665 * block on the media. 1666 * 1667 * Return 1 if ok, 0 if not found. 1668 * 1669 */ 1670 static int udf_find_anchor(struct super_block *sb, 1671 struct kernel_lb_addr *fileset) 1672 { 1673 sector_t lastblock; 1674 struct udf_sb_info *sbi = UDF_SB(sb); 1675 1676 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1677 if (lastblock) 1678 goto out; 1679 1680 /* No anchor found? Try VARCONV conversion of block numbers */ 1681 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1682 /* Firstly, we try to not convert number of the last block */ 1683 lastblock = udf_scan_anchors(sb, 1684 udf_variable_to_fixed(sbi->s_last_block), 1685 fileset); 1686 if (lastblock) 1687 goto out; 1688 1689 /* Secondly, we try with converted number of the last block */ 1690 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1691 if (!lastblock) { 1692 /* VARCONV didn't help. Clear it. */ 1693 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1694 return 0; 1695 } 1696 out: 1697 sbi->s_last_block = lastblock; 1698 return 1; 1699 } 1700 1701 /* 1702 * Check Volume Structure Descriptor, find Anchor block and load Volume 1703 * Descriptor Sequence 1704 */ 1705 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1706 int silent, struct kernel_lb_addr *fileset) 1707 { 1708 struct udf_sb_info *sbi = UDF_SB(sb); 1709 loff_t nsr_off; 1710 1711 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1712 if (!silent) 1713 udf_warn(sb, "Bad block size\n"); 1714 return 0; 1715 } 1716 sbi->s_last_block = uopt->lastblock; 1717 if (!uopt->novrs) { 1718 /* Check that it is NSR02 compliant */ 1719 nsr_off = udf_check_vsd(sb); 1720 if (!nsr_off) { 1721 if (!silent) 1722 udf_warn(sb, "No VRS found\n"); 1723 return 0; 1724 } 1725 if (nsr_off == -1) 1726 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1727 if (!sbi->s_last_block) 1728 sbi->s_last_block = udf_get_last_block(sb); 1729 } else { 1730 udf_debug("Validity check skipped because of novrs option\n"); 1731 } 1732 1733 /* Look for anchor block and load Volume Descriptor Sequence */ 1734 sbi->s_anchor = uopt->anchor; 1735 if (!udf_find_anchor(sb, fileset)) { 1736 if (!silent) 1737 udf_warn(sb, "No anchor found\n"); 1738 return 0; 1739 } 1740 return 1; 1741 } 1742 1743 static void udf_open_lvid(struct super_block *sb) 1744 { 1745 struct udf_sb_info *sbi = UDF_SB(sb); 1746 struct buffer_head *bh = sbi->s_lvid_bh; 1747 struct logicalVolIntegrityDesc *lvid; 1748 struct logicalVolIntegrityDescImpUse *lvidiu; 1749 1750 if (!bh) 1751 return; 1752 1753 mutex_lock(&sbi->s_alloc_mutex); 1754 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1755 lvidiu = udf_sb_lvidiu(sbi); 1756 1757 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1758 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1759 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1760 CURRENT_TIME); 1761 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1762 1763 lvid->descTag.descCRC = cpu_to_le16( 1764 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1765 le16_to_cpu(lvid->descTag.descCRCLength))); 1766 1767 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1768 mark_buffer_dirty(bh); 1769 sbi->s_lvid_dirty = 0; 1770 mutex_unlock(&sbi->s_alloc_mutex); 1771 } 1772 1773 static void udf_close_lvid(struct super_block *sb) 1774 { 1775 struct udf_sb_info *sbi = UDF_SB(sb); 1776 struct buffer_head *bh = sbi->s_lvid_bh; 1777 struct logicalVolIntegrityDesc *lvid; 1778 struct logicalVolIntegrityDescImpUse *lvidiu; 1779 1780 if (!bh) 1781 return; 1782 1783 mutex_lock(&sbi->s_alloc_mutex); 1784 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1785 lvidiu = udf_sb_lvidiu(sbi); 1786 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1787 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1788 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1789 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1790 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1791 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1792 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1793 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1794 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1795 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1796 1797 lvid->descTag.descCRC = cpu_to_le16( 1798 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1799 le16_to_cpu(lvid->descTag.descCRCLength))); 1800 1801 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1802 mark_buffer_dirty(bh); 1803 sbi->s_lvid_dirty = 0; 1804 mutex_unlock(&sbi->s_alloc_mutex); 1805 } 1806 1807 u64 lvid_get_unique_id(struct super_block *sb) 1808 { 1809 struct buffer_head *bh; 1810 struct udf_sb_info *sbi = UDF_SB(sb); 1811 struct logicalVolIntegrityDesc *lvid; 1812 struct logicalVolHeaderDesc *lvhd; 1813 u64 uniqueID; 1814 u64 ret; 1815 1816 bh = sbi->s_lvid_bh; 1817 if (!bh) 1818 return 0; 1819 1820 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1821 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1822 1823 mutex_lock(&sbi->s_alloc_mutex); 1824 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1825 if (!(++uniqueID & 0xFFFFFFFF)) 1826 uniqueID += 16; 1827 lvhd->uniqueID = cpu_to_le64(uniqueID); 1828 mutex_unlock(&sbi->s_alloc_mutex); 1829 mark_buffer_dirty(bh); 1830 1831 return ret; 1832 } 1833 1834 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1835 { 1836 int i; 1837 int nr_groups = bitmap->s_nr_groups; 1838 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1839 nr_groups); 1840 1841 for (i = 0; i < nr_groups; i++) 1842 if (bitmap->s_block_bitmap[i]) 1843 brelse(bitmap->s_block_bitmap[i]); 1844 1845 if (size <= PAGE_SIZE) 1846 kfree(bitmap); 1847 else 1848 vfree(bitmap); 1849 } 1850 1851 static void udf_free_partition(struct udf_part_map *map) 1852 { 1853 int i; 1854 struct udf_meta_data *mdata; 1855 1856 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1857 iput(map->s_uspace.s_table); 1858 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1859 iput(map->s_fspace.s_table); 1860 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1861 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1862 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1863 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1864 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1865 for (i = 0; i < 4; i++) 1866 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1867 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1868 mdata = &map->s_type_specific.s_metadata; 1869 iput(mdata->s_metadata_fe); 1870 mdata->s_metadata_fe = NULL; 1871 1872 iput(mdata->s_mirror_fe); 1873 mdata->s_mirror_fe = NULL; 1874 1875 iput(mdata->s_bitmap_fe); 1876 mdata->s_bitmap_fe = NULL; 1877 } 1878 } 1879 1880 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1881 { 1882 int i; 1883 int ret; 1884 struct inode *inode = NULL; 1885 struct udf_options uopt; 1886 struct kernel_lb_addr rootdir, fileset; 1887 struct udf_sb_info *sbi; 1888 1889 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1890 uopt.uid = -1; 1891 uopt.gid = -1; 1892 uopt.umask = 0; 1893 uopt.fmode = UDF_INVALID_MODE; 1894 uopt.dmode = UDF_INVALID_MODE; 1895 1896 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1897 if (!sbi) 1898 return -ENOMEM; 1899 1900 sb->s_fs_info = sbi; 1901 1902 mutex_init(&sbi->s_alloc_mutex); 1903 1904 if (!udf_parse_options((char *)options, &uopt, false)) 1905 goto error_out; 1906 1907 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1908 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1909 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 1910 goto error_out; 1911 } 1912 #ifdef CONFIG_UDF_NLS 1913 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1914 uopt.nls_map = load_nls_default(); 1915 if (!uopt.nls_map) 1916 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1917 else 1918 udf_debug("Using default NLS map\n"); 1919 } 1920 #endif 1921 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1922 uopt.flags |= (1 << UDF_FLAG_UTF8); 1923 1924 fileset.logicalBlockNum = 0xFFFFFFFF; 1925 fileset.partitionReferenceNum = 0xFFFF; 1926 1927 sbi->s_flags = uopt.flags; 1928 sbi->s_uid = uopt.uid; 1929 sbi->s_gid = uopt.gid; 1930 sbi->s_umask = uopt.umask; 1931 sbi->s_fmode = uopt.fmode; 1932 sbi->s_dmode = uopt.dmode; 1933 sbi->s_nls_map = uopt.nls_map; 1934 rwlock_init(&sbi->s_cred_lock); 1935 1936 if (uopt.session == 0xFFFFFFFF) 1937 sbi->s_session = udf_get_last_session(sb); 1938 else 1939 sbi->s_session = uopt.session; 1940 1941 udf_debug("Multi-session=%d\n", sbi->s_session); 1942 1943 /* Fill in the rest of the superblock */ 1944 sb->s_op = &udf_sb_ops; 1945 sb->s_export_op = &udf_export_ops; 1946 1947 sb->s_dirt = 0; 1948 sb->s_magic = UDF_SUPER_MAGIC; 1949 sb->s_time_gran = 1000; 1950 1951 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1952 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1953 } else { 1954 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 1955 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1956 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 1957 if (!silent) 1958 pr_notice("Rescanning with blocksize %d\n", 1959 UDF_DEFAULT_BLOCKSIZE); 1960 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 1961 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1962 } 1963 } 1964 if (!ret) { 1965 udf_warn(sb, "No partition found (1)\n"); 1966 goto error_out; 1967 } 1968 1969 udf_debug("Lastblock=%d\n", sbi->s_last_block); 1970 1971 if (sbi->s_lvid_bh) { 1972 struct logicalVolIntegrityDescImpUse *lvidiu = 1973 udf_sb_lvidiu(sbi); 1974 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 1975 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 1976 /* uint16_t maxUDFWriteRev = 1977 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 1978 1979 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 1980 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 1981 le16_to_cpu(lvidiu->minUDFReadRev), 1982 UDF_MAX_READ_VERSION); 1983 goto error_out; 1984 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 1985 sb->s_flags |= MS_RDONLY; 1986 1987 sbi->s_udfrev = minUDFWriteRev; 1988 1989 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 1990 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 1991 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 1992 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 1993 } 1994 1995 if (!sbi->s_partitions) { 1996 udf_warn(sb, "No partition found (2)\n"); 1997 goto error_out; 1998 } 1999 2000 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2001 UDF_PART_FLAG_READ_ONLY) { 2002 pr_notice("Partition marked readonly; forcing readonly mount\n"); 2003 sb->s_flags |= MS_RDONLY; 2004 } 2005 2006 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2007 udf_warn(sb, "No fileset found\n"); 2008 goto error_out; 2009 } 2010 2011 if (!silent) { 2012 struct timestamp ts; 2013 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2014 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2015 sbi->s_volume_ident, 2016 le16_to_cpu(ts.year), ts.month, ts.day, 2017 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2018 } 2019 if (!(sb->s_flags & MS_RDONLY)) 2020 udf_open_lvid(sb); 2021 2022 /* Assign the root inode */ 2023 /* assign inodes by physical block number */ 2024 /* perhaps it's not extensible enough, but for now ... */ 2025 inode = udf_iget(sb, &rootdir); 2026 if (!inode) { 2027 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2028 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2029 goto error_out; 2030 } 2031 2032 /* Allocate a dentry for the root inode */ 2033 sb->s_root = d_alloc_root(inode); 2034 if (!sb->s_root) { 2035 udf_err(sb, "Couldn't allocate root dentry\n"); 2036 iput(inode); 2037 goto error_out; 2038 } 2039 sb->s_maxbytes = MAX_LFS_FILESIZE; 2040 return 0; 2041 2042 error_out: 2043 if (sbi->s_vat_inode) 2044 iput(sbi->s_vat_inode); 2045 if (sbi->s_partitions) 2046 for (i = 0; i < sbi->s_partitions; i++) 2047 udf_free_partition(&sbi->s_partmaps[i]); 2048 #ifdef CONFIG_UDF_NLS 2049 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2050 unload_nls(sbi->s_nls_map); 2051 #endif 2052 if (!(sb->s_flags & MS_RDONLY)) 2053 udf_close_lvid(sb); 2054 brelse(sbi->s_lvid_bh); 2055 2056 kfree(sbi->s_partmaps); 2057 kfree(sbi); 2058 sb->s_fs_info = NULL; 2059 2060 return -EINVAL; 2061 } 2062 2063 void _udf_err(struct super_block *sb, const char *function, 2064 const char *fmt, ...) 2065 { 2066 struct va_format vaf; 2067 va_list args; 2068 2069 /* mark sb error */ 2070 if (!(sb->s_flags & MS_RDONLY)) 2071 sb->s_dirt = 1; 2072 2073 va_start(args, fmt); 2074 2075 vaf.fmt = fmt; 2076 vaf.va = &args; 2077 2078 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2079 2080 va_end(args); 2081 } 2082 2083 void _udf_warn(struct super_block *sb, const char *function, 2084 const char *fmt, ...) 2085 { 2086 struct va_format vaf; 2087 va_list args; 2088 2089 va_start(args, fmt); 2090 2091 vaf.fmt = fmt; 2092 vaf.va = &args; 2093 2094 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2095 2096 va_end(args); 2097 } 2098 2099 static void udf_put_super(struct super_block *sb) 2100 { 2101 int i; 2102 struct udf_sb_info *sbi; 2103 2104 sbi = UDF_SB(sb); 2105 2106 if (sbi->s_vat_inode) 2107 iput(sbi->s_vat_inode); 2108 if (sbi->s_partitions) 2109 for (i = 0; i < sbi->s_partitions; i++) 2110 udf_free_partition(&sbi->s_partmaps[i]); 2111 #ifdef CONFIG_UDF_NLS 2112 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2113 unload_nls(sbi->s_nls_map); 2114 #endif 2115 if (!(sb->s_flags & MS_RDONLY)) 2116 udf_close_lvid(sb); 2117 brelse(sbi->s_lvid_bh); 2118 kfree(sbi->s_partmaps); 2119 kfree(sb->s_fs_info); 2120 sb->s_fs_info = NULL; 2121 } 2122 2123 static int udf_sync_fs(struct super_block *sb, int wait) 2124 { 2125 struct udf_sb_info *sbi = UDF_SB(sb); 2126 2127 mutex_lock(&sbi->s_alloc_mutex); 2128 if (sbi->s_lvid_dirty) { 2129 /* 2130 * Blockdevice will be synced later so we don't have to submit 2131 * the buffer for IO 2132 */ 2133 mark_buffer_dirty(sbi->s_lvid_bh); 2134 sb->s_dirt = 0; 2135 sbi->s_lvid_dirty = 0; 2136 } 2137 mutex_unlock(&sbi->s_alloc_mutex); 2138 2139 return 0; 2140 } 2141 2142 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2143 { 2144 struct super_block *sb = dentry->d_sb; 2145 struct udf_sb_info *sbi = UDF_SB(sb); 2146 struct logicalVolIntegrityDescImpUse *lvidiu; 2147 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2148 2149 if (sbi->s_lvid_bh != NULL) 2150 lvidiu = udf_sb_lvidiu(sbi); 2151 else 2152 lvidiu = NULL; 2153 2154 buf->f_type = UDF_SUPER_MAGIC; 2155 buf->f_bsize = sb->s_blocksize; 2156 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2157 buf->f_bfree = udf_count_free(sb); 2158 buf->f_bavail = buf->f_bfree; 2159 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2160 le32_to_cpu(lvidiu->numDirs)) : 0) 2161 + buf->f_bfree; 2162 buf->f_ffree = buf->f_bfree; 2163 buf->f_namelen = UDF_NAME_LEN - 2; 2164 buf->f_fsid.val[0] = (u32)id; 2165 buf->f_fsid.val[1] = (u32)(id >> 32); 2166 2167 return 0; 2168 } 2169 2170 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2171 struct udf_bitmap *bitmap) 2172 { 2173 struct buffer_head *bh = NULL; 2174 unsigned int accum = 0; 2175 int index; 2176 int block = 0, newblock; 2177 struct kernel_lb_addr loc; 2178 uint32_t bytes; 2179 uint8_t *ptr; 2180 uint16_t ident; 2181 struct spaceBitmapDesc *bm; 2182 2183 loc.logicalBlockNum = bitmap->s_extPosition; 2184 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2185 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2186 2187 if (!bh) { 2188 udf_err(sb, "udf_count_free failed\n"); 2189 goto out; 2190 } else if (ident != TAG_IDENT_SBD) { 2191 brelse(bh); 2192 udf_err(sb, "udf_count_free failed\n"); 2193 goto out; 2194 } 2195 2196 bm = (struct spaceBitmapDesc *)bh->b_data; 2197 bytes = le32_to_cpu(bm->numOfBytes); 2198 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2199 ptr = (uint8_t *)bh->b_data; 2200 2201 while (bytes > 0) { 2202 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2203 accum += bitmap_weight((const unsigned long *)(ptr + index), 2204 cur_bytes * 8); 2205 bytes -= cur_bytes; 2206 if (bytes) { 2207 brelse(bh); 2208 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2209 bh = udf_tread(sb, newblock); 2210 if (!bh) { 2211 udf_debug("read failed\n"); 2212 goto out; 2213 } 2214 index = 0; 2215 ptr = (uint8_t *)bh->b_data; 2216 } 2217 } 2218 brelse(bh); 2219 out: 2220 return accum; 2221 } 2222 2223 static unsigned int udf_count_free_table(struct super_block *sb, 2224 struct inode *table) 2225 { 2226 unsigned int accum = 0; 2227 uint32_t elen; 2228 struct kernel_lb_addr eloc; 2229 int8_t etype; 2230 struct extent_position epos; 2231 2232 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2233 epos.block = UDF_I(table)->i_location; 2234 epos.offset = sizeof(struct unallocSpaceEntry); 2235 epos.bh = NULL; 2236 2237 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2238 accum += (elen >> table->i_sb->s_blocksize_bits); 2239 2240 brelse(epos.bh); 2241 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2242 2243 return accum; 2244 } 2245 2246 static unsigned int udf_count_free(struct super_block *sb) 2247 { 2248 unsigned int accum = 0; 2249 struct udf_sb_info *sbi; 2250 struct udf_part_map *map; 2251 2252 sbi = UDF_SB(sb); 2253 if (sbi->s_lvid_bh) { 2254 struct logicalVolIntegrityDesc *lvid = 2255 (struct logicalVolIntegrityDesc *) 2256 sbi->s_lvid_bh->b_data; 2257 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2258 accum = le32_to_cpu( 2259 lvid->freeSpaceTable[sbi->s_partition]); 2260 if (accum == 0xFFFFFFFF) 2261 accum = 0; 2262 } 2263 } 2264 2265 if (accum) 2266 return accum; 2267 2268 map = &sbi->s_partmaps[sbi->s_partition]; 2269 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2270 accum += udf_count_free_bitmap(sb, 2271 map->s_uspace.s_bitmap); 2272 } 2273 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2274 accum += udf_count_free_bitmap(sb, 2275 map->s_fspace.s_bitmap); 2276 } 2277 if (accum) 2278 return accum; 2279 2280 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2281 accum += udf_count_free_table(sb, 2282 map->s_uspace.s_table); 2283 } 2284 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2285 accum += udf_count_free_table(sb, 2286 map->s_fspace.s_table); 2287 } 2288 2289 return accum; 2290 } 2291