xref: /linux/fs/udf/super.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 	struct logicalVolIntegrityDesc *lvid =
100 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 	__u32 offset = number_of_partitions * 2 *
103 				sizeof(uint32_t)/sizeof(uint8_t);
104 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 		      int flags, const char *dev_name, void *data)
110 {
111 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115 	.owner		= THIS_MODULE,
116 	.name		= "udf",
117 	.mount		= udf_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 
122 static struct kmem_cache *udf_inode_cachep;
123 
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 	struct udf_inode_info *ei;
127 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 	if (!ei)
129 		return NULL;
130 
131 	ei->i_unique = 0;
132 	ei->i_lenExtents = 0;
133 	ei->i_next_alloc_block = 0;
134 	ei->i_next_alloc_goal = 0;
135 	ei->i_strat4096 = 0;
136 	init_rwsem(&ei->i_data_sem);
137 
138 	return &ei->vfs_inode;
139 }
140 
141 static void udf_i_callback(struct rcu_head *head)
142 {
143 	struct inode *inode = container_of(head, struct inode, i_rcu);
144 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146 
147 static void udf_destroy_inode(struct inode *inode)
148 {
149 	call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151 
152 static void init_once(void *foo)
153 {
154 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155 
156 	ei->i_ext.i_data = NULL;
157 	inode_init_once(&ei->vfs_inode);
158 }
159 
160 static int init_inodecache(void)
161 {
162 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 					     sizeof(struct udf_inode_info),
164 					     0, (SLAB_RECLAIM_ACCOUNT |
165 						 SLAB_MEM_SPREAD),
166 					     init_once);
167 	if (!udf_inode_cachep)
168 		return -ENOMEM;
169 	return 0;
170 }
171 
172 static void destroy_inodecache(void)
173 {
174 	kmem_cache_destroy(udf_inode_cachep);
175 }
176 
177 /* Superblock operations */
178 static const struct super_operations udf_sb_ops = {
179 	.alloc_inode	= udf_alloc_inode,
180 	.destroy_inode	= udf_destroy_inode,
181 	.write_inode	= udf_write_inode,
182 	.evict_inode	= udf_evict_inode,
183 	.put_super	= udf_put_super,
184 	.sync_fs	= udf_sync_fs,
185 	.statfs		= udf_statfs,
186 	.remount_fs	= udf_remount_fs,
187 	.show_options	= udf_show_options,
188 };
189 
190 struct udf_options {
191 	unsigned char novrs;
192 	unsigned int blocksize;
193 	unsigned int session;
194 	unsigned int lastblock;
195 	unsigned int anchor;
196 	unsigned int volume;
197 	unsigned short partition;
198 	unsigned int fileset;
199 	unsigned int rootdir;
200 	unsigned int flags;
201 	umode_t umask;
202 	gid_t gid;
203 	uid_t uid;
204 	umode_t fmode;
205 	umode_t dmode;
206 	struct nls_table *nls_map;
207 };
208 
209 static int __init init_udf_fs(void)
210 {
211 	int err;
212 
213 	err = init_inodecache();
214 	if (err)
215 		goto out1;
216 	err = register_filesystem(&udf_fstype);
217 	if (err)
218 		goto out;
219 
220 	return 0;
221 
222 out:
223 	destroy_inodecache();
224 
225 out1:
226 	return err;
227 }
228 
229 static void __exit exit_udf_fs(void)
230 {
231 	unregister_filesystem(&udf_fstype);
232 	destroy_inodecache();
233 }
234 
235 module_init(init_udf_fs)
236 module_exit(exit_udf_fs)
237 
238 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239 {
240 	struct udf_sb_info *sbi = UDF_SB(sb);
241 
242 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
243 				  GFP_KERNEL);
244 	if (!sbi->s_partmaps) {
245 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
246 			count);
247 		sbi->s_partitions = 0;
248 		return -ENOMEM;
249 	}
250 
251 	sbi->s_partitions = count;
252 	return 0;
253 }
254 
255 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
256 {
257 	int i;
258 	int nr_groups = bitmap->s_nr_groups;
259 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
260 						nr_groups);
261 
262 	for (i = 0; i < nr_groups; i++)
263 		if (bitmap->s_block_bitmap[i])
264 			brelse(bitmap->s_block_bitmap[i]);
265 
266 	if (size <= PAGE_SIZE)
267 		kfree(bitmap);
268 	else
269 		vfree(bitmap);
270 }
271 
272 static void udf_free_partition(struct udf_part_map *map)
273 {
274 	int i;
275 	struct udf_meta_data *mdata;
276 
277 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
278 		iput(map->s_uspace.s_table);
279 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
280 		iput(map->s_fspace.s_table);
281 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
282 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
283 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
284 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
285 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
286 		for (i = 0; i < 4; i++)
287 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
288 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
289 		mdata = &map->s_type_specific.s_metadata;
290 		iput(mdata->s_metadata_fe);
291 		mdata->s_metadata_fe = NULL;
292 
293 		iput(mdata->s_mirror_fe);
294 		mdata->s_mirror_fe = NULL;
295 
296 		iput(mdata->s_bitmap_fe);
297 		mdata->s_bitmap_fe = NULL;
298 	}
299 }
300 
301 static void udf_sb_free_partitions(struct super_block *sb)
302 {
303 	struct udf_sb_info *sbi = UDF_SB(sb);
304 	int i;
305 
306 	for (i = 0; i < sbi->s_partitions; i++)
307 		udf_free_partition(&sbi->s_partmaps[i]);
308 	kfree(sbi->s_partmaps);
309 	sbi->s_partmaps = NULL;
310 }
311 
312 static int udf_show_options(struct seq_file *seq, struct dentry *root)
313 {
314 	struct super_block *sb = root->d_sb;
315 	struct udf_sb_info *sbi = UDF_SB(sb);
316 
317 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
318 		seq_puts(seq, ",nostrict");
319 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
320 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
321 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
322 		seq_puts(seq, ",unhide");
323 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
324 		seq_puts(seq, ",undelete");
325 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
326 		seq_puts(seq, ",noadinicb");
327 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
328 		seq_puts(seq, ",shortad");
329 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
330 		seq_puts(seq, ",uid=forget");
331 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
332 		seq_puts(seq, ",uid=ignore");
333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
334 		seq_puts(seq, ",gid=forget");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
336 		seq_puts(seq, ",gid=ignore");
337 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
338 		seq_printf(seq, ",uid=%u", sbi->s_uid);
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
340 		seq_printf(seq, ",gid=%u", sbi->s_gid);
341 	if (sbi->s_umask != 0)
342 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
343 	if (sbi->s_fmode != UDF_INVALID_MODE)
344 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
345 	if (sbi->s_dmode != UDF_INVALID_MODE)
346 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
348 		seq_printf(seq, ",session=%u", sbi->s_session);
349 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
350 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
351 	if (sbi->s_anchor != 0)
352 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
353 	/*
354 	 * volume, partition, fileset and rootdir seem to be ignored
355 	 * currently
356 	 */
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
358 		seq_puts(seq, ",utf8");
359 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
360 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
361 
362 	return 0;
363 }
364 
365 /*
366  * udf_parse_options
367  *
368  * PURPOSE
369  *	Parse mount options.
370  *
371  * DESCRIPTION
372  *	The following mount options are supported:
373  *
374  *	gid=		Set the default group.
375  *	umask=		Set the default umask.
376  *	mode=		Set the default file permissions.
377  *	dmode=		Set the default directory permissions.
378  *	uid=		Set the default user.
379  *	bs=		Set the block size.
380  *	unhide		Show otherwise hidden files.
381  *	undelete	Show deleted files in lists.
382  *	adinicb		Embed data in the inode (default)
383  *	noadinicb	Don't embed data in the inode
384  *	shortad		Use short ad's
385  *	longad		Use long ad's (default)
386  *	nostrict	Unset strict conformance
387  *	iocharset=	Set the NLS character set
388  *
389  *	The remaining are for debugging and disaster recovery:
390  *
391  *	novrs		Skip volume sequence recognition
392  *
393  *	The following expect a offset from 0.
394  *
395  *	session=	Set the CDROM session (default= last session)
396  *	anchor=		Override standard anchor location. (default= 256)
397  *	volume=		Override the VolumeDesc location. (unused)
398  *	partition=	Override the PartitionDesc location. (unused)
399  *	lastblock=	Set the last block of the filesystem/
400  *
401  *	The following expect a offset from the partition root.
402  *
403  *	fileset=	Override the fileset block location. (unused)
404  *	rootdir=	Override the root directory location. (unused)
405  *		WARNING: overriding the rootdir to a non-directory may
406  *		yield highly unpredictable results.
407  *
408  * PRE-CONDITIONS
409  *	options		Pointer to mount options string.
410  *	uopts		Pointer to mount options variable.
411  *
412  * POST-CONDITIONS
413  *	<return>	1	Mount options parsed okay.
414  *	<return>	0	Error parsing mount options.
415  *
416  * HISTORY
417  *	July 1, 1997 - Andrew E. Mileski
418  *	Written, tested, and released.
419  */
420 
421 enum {
422 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
423 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
424 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
425 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
426 	Opt_rootdir, Opt_utf8, Opt_iocharset,
427 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
428 	Opt_fmode, Opt_dmode
429 };
430 
431 static const match_table_t tokens = {
432 	{Opt_novrs,	"novrs"},
433 	{Opt_nostrict,	"nostrict"},
434 	{Opt_bs,	"bs=%u"},
435 	{Opt_unhide,	"unhide"},
436 	{Opt_undelete,	"undelete"},
437 	{Opt_noadinicb,	"noadinicb"},
438 	{Opt_adinicb,	"adinicb"},
439 	{Opt_shortad,	"shortad"},
440 	{Opt_longad,	"longad"},
441 	{Opt_uforget,	"uid=forget"},
442 	{Opt_uignore,	"uid=ignore"},
443 	{Opt_gforget,	"gid=forget"},
444 	{Opt_gignore,	"gid=ignore"},
445 	{Opt_gid,	"gid=%u"},
446 	{Opt_uid,	"uid=%u"},
447 	{Opt_umask,	"umask=%o"},
448 	{Opt_session,	"session=%u"},
449 	{Opt_lastblock,	"lastblock=%u"},
450 	{Opt_anchor,	"anchor=%u"},
451 	{Opt_volume,	"volume=%u"},
452 	{Opt_partition,	"partition=%u"},
453 	{Opt_fileset,	"fileset=%u"},
454 	{Opt_rootdir,	"rootdir=%u"},
455 	{Opt_utf8,	"utf8"},
456 	{Opt_iocharset,	"iocharset=%s"},
457 	{Opt_fmode,     "mode=%o"},
458 	{Opt_dmode,     "dmode=%o"},
459 	{Opt_err,	NULL}
460 };
461 
462 static int udf_parse_options(char *options, struct udf_options *uopt,
463 			     bool remount)
464 {
465 	char *p;
466 	int option;
467 
468 	uopt->novrs = 0;
469 	uopt->partition = 0xFFFF;
470 	uopt->session = 0xFFFFFFFF;
471 	uopt->lastblock = 0;
472 	uopt->anchor = 0;
473 	uopt->volume = 0xFFFFFFFF;
474 	uopt->rootdir = 0xFFFFFFFF;
475 	uopt->fileset = 0xFFFFFFFF;
476 	uopt->nls_map = NULL;
477 
478 	if (!options)
479 		return 1;
480 
481 	while ((p = strsep(&options, ",")) != NULL) {
482 		substring_t args[MAX_OPT_ARGS];
483 		int token;
484 		if (!*p)
485 			continue;
486 
487 		token = match_token(p, tokens, args);
488 		switch (token) {
489 		case Opt_novrs:
490 			uopt->novrs = 1;
491 			break;
492 		case Opt_bs:
493 			if (match_int(&args[0], &option))
494 				return 0;
495 			uopt->blocksize = option;
496 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
497 			break;
498 		case Opt_unhide:
499 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
500 			break;
501 		case Opt_undelete:
502 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
503 			break;
504 		case Opt_noadinicb:
505 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
506 			break;
507 		case Opt_adinicb:
508 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
509 			break;
510 		case Opt_shortad:
511 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
512 			break;
513 		case Opt_longad:
514 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
515 			break;
516 		case Opt_gid:
517 			if (match_int(args, &option))
518 				return 0;
519 			uopt->gid = option;
520 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
521 			break;
522 		case Opt_uid:
523 			if (match_int(args, &option))
524 				return 0;
525 			uopt->uid = option;
526 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
527 			break;
528 		case Opt_umask:
529 			if (match_octal(args, &option))
530 				return 0;
531 			uopt->umask = option;
532 			break;
533 		case Opt_nostrict:
534 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
535 			break;
536 		case Opt_session:
537 			if (match_int(args, &option))
538 				return 0;
539 			uopt->session = option;
540 			if (!remount)
541 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
542 			break;
543 		case Opt_lastblock:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->lastblock = option;
547 			if (!remount)
548 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
549 			break;
550 		case Opt_anchor:
551 			if (match_int(args, &option))
552 				return 0;
553 			uopt->anchor = option;
554 			break;
555 		case Opt_volume:
556 			if (match_int(args, &option))
557 				return 0;
558 			uopt->volume = option;
559 			break;
560 		case Opt_partition:
561 			if (match_int(args, &option))
562 				return 0;
563 			uopt->partition = option;
564 			break;
565 		case Opt_fileset:
566 			if (match_int(args, &option))
567 				return 0;
568 			uopt->fileset = option;
569 			break;
570 		case Opt_rootdir:
571 			if (match_int(args, &option))
572 				return 0;
573 			uopt->rootdir = option;
574 			break;
575 		case Opt_utf8:
576 			uopt->flags |= (1 << UDF_FLAG_UTF8);
577 			break;
578 #ifdef CONFIG_UDF_NLS
579 		case Opt_iocharset:
580 			uopt->nls_map = load_nls(args[0].from);
581 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
582 			break;
583 #endif
584 		case Opt_uignore:
585 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
586 			break;
587 		case Opt_uforget:
588 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
589 			break;
590 		case Opt_gignore:
591 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
592 			break;
593 		case Opt_gforget:
594 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
595 			break;
596 		case Opt_fmode:
597 			if (match_octal(args, &option))
598 				return 0;
599 			uopt->fmode = option & 0777;
600 			break;
601 		case Opt_dmode:
602 			if (match_octal(args, &option))
603 				return 0;
604 			uopt->dmode = option & 0777;
605 			break;
606 		default:
607 			pr_err("bad mount option \"%s\" or missing value\n", p);
608 			return 0;
609 		}
610 	}
611 	return 1;
612 }
613 
614 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
615 {
616 	struct udf_options uopt;
617 	struct udf_sb_info *sbi = UDF_SB(sb);
618 	int error = 0;
619 
620 	uopt.flags = sbi->s_flags;
621 	uopt.uid   = sbi->s_uid;
622 	uopt.gid   = sbi->s_gid;
623 	uopt.umask = sbi->s_umask;
624 	uopt.fmode = sbi->s_fmode;
625 	uopt.dmode = sbi->s_dmode;
626 
627 	if (!udf_parse_options(options, &uopt, true))
628 		return -EINVAL;
629 
630 	write_lock(&sbi->s_cred_lock);
631 	sbi->s_flags = uopt.flags;
632 	sbi->s_uid   = uopt.uid;
633 	sbi->s_gid   = uopt.gid;
634 	sbi->s_umask = uopt.umask;
635 	sbi->s_fmode = uopt.fmode;
636 	sbi->s_dmode = uopt.dmode;
637 	write_unlock(&sbi->s_cred_lock);
638 
639 	if (sbi->s_lvid_bh) {
640 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
641 		if (write_rev > UDF_MAX_WRITE_VERSION)
642 			*flags |= MS_RDONLY;
643 	}
644 
645 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
646 		goto out_unlock;
647 
648 	if (*flags & MS_RDONLY)
649 		udf_close_lvid(sb);
650 	else
651 		udf_open_lvid(sb);
652 
653 out_unlock:
654 	return error;
655 }
656 
657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659 static loff_t udf_check_vsd(struct super_block *sb)
660 {
661 	struct volStructDesc *vsd = NULL;
662 	loff_t sector = 32768;
663 	int sectorsize;
664 	struct buffer_head *bh = NULL;
665 	int nsr02 = 0;
666 	int nsr03 = 0;
667 	struct udf_sb_info *sbi;
668 
669 	sbi = UDF_SB(sb);
670 	if (sb->s_blocksize < sizeof(struct volStructDesc))
671 		sectorsize = sizeof(struct volStructDesc);
672 	else
673 		sectorsize = sb->s_blocksize;
674 
675 	sector += (sbi->s_session << sb->s_blocksize_bits);
676 
677 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
678 		  (unsigned int)(sector >> sb->s_blocksize_bits),
679 		  sb->s_blocksize);
680 	/* Process the sequence (if applicable) */
681 	for (; !nsr02 && !nsr03; sector += sectorsize) {
682 		/* Read a block */
683 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
684 		if (!bh)
685 			break;
686 
687 		/* Look for ISO  descriptors */
688 		vsd = (struct volStructDesc *)(bh->b_data +
689 					      (sector & (sb->s_blocksize - 1)));
690 
691 		if (vsd->stdIdent[0] == 0) {
692 			brelse(bh);
693 			break;
694 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695 				    VSD_STD_ID_LEN)) {
696 			switch (vsd->structType) {
697 			case 0:
698 				udf_debug("ISO9660 Boot Record found\n");
699 				break;
700 			case 1:
701 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
702 				break;
703 			case 2:
704 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705 				break;
706 			case 3:
707 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
708 				break;
709 			case 255:
710 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711 				break;
712 			default:
713 				udf_debug("ISO9660 VRS (%u) found\n",
714 					  vsd->structType);
715 				break;
716 			}
717 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718 				    VSD_STD_ID_LEN))
719 			; /* nothing */
720 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721 				    VSD_STD_ID_LEN)) {
722 			brelse(bh);
723 			break;
724 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725 				    VSD_STD_ID_LEN))
726 			nsr02 = sector;
727 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728 				    VSD_STD_ID_LEN))
729 			nsr03 = sector;
730 		brelse(bh);
731 	}
732 
733 	if (nsr03)
734 		return nsr03;
735 	else if (nsr02)
736 		return nsr02;
737 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
738 		return -1;
739 	else
740 		return 0;
741 }
742 
743 static int udf_find_fileset(struct super_block *sb,
744 			    struct kernel_lb_addr *fileset,
745 			    struct kernel_lb_addr *root)
746 {
747 	struct buffer_head *bh = NULL;
748 	long lastblock;
749 	uint16_t ident;
750 	struct udf_sb_info *sbi;
751 
752 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
753 	    fileset->partitionReferenceNum != 0xFFFF) {
754 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
755 
756 		if (!bh) {
757 			return 1;
758 		} else if (ident != TAG_IDENT_FSD) {
759 			brelse(bh);
760 			return 1;
761 		}
762 
763 	}
764 
765 	sbi = UDF_SB(sb);
766 	if (!bh) {
767 		/* Search backwards through the partitions */
768 		struct kernel_lb_addr newfileset;
769 
770 /* --> cvg: FIXME - is it reasonable? */
771 		return 1;
772 
773 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
774 		     (newfileset.partitionReferenceNum != 0xFFFF &&
775 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
776 		      fileset->partitionReferenceNum == 0xFFFF);
777 		     newfileset.partitionReferenceNum--) {
778 			lastblock = sbi->s_partmaps
779 					[newfileset.partitionReferenceNum]
780 						.s_partition_len;
781 			newfileset.logicalBlockNum = 0;
782 
783 			do {
784 				bh = udf_read_ptagged(sb, &newfileset, 0,
785 						      &ident);
786 				if (!bh) {
787 					newfileset.logicalBlockNum++;
788 					continue;
789 				}
790 
791 				switch (ident) {
792 				case TAG_IDENT_SBD:
793 				{
794 					struct spaceBitmapDesc *sp;
795 					sp = (struct spaceBitmapDesc *)
796 								bh->b_data;
797 					newfileset.logicalBlockNum += 1 +
798 						((le32_to_cpu(sp->numOfBytes) +
799 						  sizeof(struct spaceBitmapDesc)
800 						  - 1) >> sb->s_blocksize_bits);
801 					brelse(bh);
802 					break;
803 				}
804 				case TAG_IDENT_FSD:
805 					*fileset = newfileset;
806 					break;
807 				default:
808 					newfileset.logicalBlockNum++;
809 					brelse(bh);
810 					bh = NULL;
811 					break;
812 				}
813 			} while (newfileset.logicalBlockNum < lastblock &&
814 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
815 				 fileset->partitionReferenceNum == 0xFFFF);
816 		}
817 	}
818 
819 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
820 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
821 		udf_debug("Fileset at block=%d, partition=%d\n",
822 			  fileset->logicalBlockNum,
823 			  fileset->partitionReferenceNum);
824 
825 		sbi->s_partition = fileset->partitionReferenceNum;
826 		udf_load_fileset(sb, bh, root);
827 		brelse(bh);
828 		return 0;
829 	}
830 	return 1;
831 }
832 
833 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
834 {
835 	struct primaryVolDesc *pvoldesc;
836 	struct ustr *instr, *outstr;
837 	struct buffer_head *bh;
838 	uint16_t ident;
839 	int ret = 1;
840 
841 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
842 	if (!instr)
843 		return 1;
844 
845 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
846 	if (!outstr)
847 		goto out1;
848 
849 	bh = udf_read_tagged(sb, block, block, &ident);
850 	if (!bh)
851 		goto out2;
852 
853 	BUG_ON(ident != TAG_IDENT_PVD);
854 
855 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
856 
857 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
858 			      pvoldesc->recordingDateAndTime)) {
859 #ifdef UDFFS_DEBUG
860 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
861 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
862 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
863 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
864 #endif
865 	}
866 
867 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
868 		if (udf_CS0toUTF8(outstr, instr)) {
869 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
870 				outstr->u_len > 31 ? 31 : outstr->u_len);
871 			udf_debug("volIdent[] = '%s'\n",
872 				  UDF_SB(sb)->s_volume_ident);
873 		}
874 
875 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
876 		if (udf_CS0toUTF8(outstr, instr))
877 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
878 
879 	brelse(bh);
880 	ret = 0;
881 out2:
882 	kfree(outstr);
883 out1:
884 	kfree(instr);
885 	return ret;
886 }
887 
888 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
889 					u32 meta_file_loc, u32 partition_num)
890 {
891 	struct kernel_lb_addr addr;
892 	struct inode *metadata_fe;
893 
894 	addr.logicalBlockNum = meta_file_loc;
895 	addr.partitionReferenceNum = partition_num;
896 
897 	metadata_fe = udf_iget(sb, &addr);
898 
899 	if (metadata_fe == NULL)
900 		udf_warn(sb, "metadata inode efe not found\n");
901 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
902 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
903 		iput(metadata_fe);
904 		metadata_fe = NULL;
905 	}
906 
907 	return metadata_fe;
908 }
909 
910 static int udf_load_metadata_files(struct super_block *sb, int partition)
911 {
912 	struct udf_sb_info *sbi = UDF_SB(sb);
913 	struct udf_part_map *map;
914 	struct udf_meta_data *mdata;
915 	struct kernel_lb_addr addr;
916 
917 	map = &sbi->s_partmaps[partition];
918 	mdata = &map->s_type_specific.s_metadata;
919 
920 	/* metadata address */
921 	udf_debug("Metadata file location: block = %d part = %d\n",
922 		  mdata->s_meta_file_loc, map->s_partition_num);
923 
924 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
925 		mdata->s_meta_file_loc, map->s_partition_num);
926 
927 	if (mdata->s_metadata_fe == NULL) {
928 		/* mirror file entry */
929 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
930 			  mdata->s_mirror_file_loc, map->s_partition_num);
931 
932 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
933 			mdata->s_mirror_file_loc, map->s_partition_num);
934 
935 		if (mdata->s_mirror_fe == NULL) {
936 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
937 			goto error_exit;
938 		}
939 	}
940 
941 	/*
942 	 * bitmap file entry
943 	 * Note:
944 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
945 	*/
946 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
947 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
948 		addr.partitionReferenceNum = map->s_partition_num;
949 
950 		udf_debug("Bitmap file location: block = %d part = %d\n",
951 			  addr.logicalBlockNum, addr.partitionReferenceNum);
952 
953 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
954 
955 		if (mdata->s_bitmap_fe == NULL) {
956 			if (sb->s_flags & MS_RDONLY)
957 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
958 			else {
959 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
960 				goto error_exit;
961 			}
962 		}
963 	}
964 
965 	udf_debug("udf_load_metadata_files Ok\n");
966 
967 	return 0;
968 
969 error_exit:
970 	return 1;
971 }
972 
973 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
974 			     struct kernel_lb_addr *root)
975 {
976 	struct fileSetDesc *fset;
977 
978 	fset = (struct fileSetDesc *)bh->b_data;
979 
980 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
981 
982 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
983 
984 	udf_debug("Rootdir at block=%d, partition=%d\n",
985 		  root->logicalBlockNum, root->partitionReferenceNum);
986 }
987 
988 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
989 {
990 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
991 	return DIV_ROUND_UP(map->s_partition_len +
992 			    (sizeof(struct spaceBitmapDesc) << 3),
993 			    sb->s_blocksize * 8);
994 }
995 
996 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
997 {
998 	struct udf_bitmap *bitmap;
999 	int nr_groups;
1000 	int size;
1001 
1002 	nr_groups = udf_compute_nr_groups(sb, index);
1003 	size = sizeof(struct udf_bitmap) +
1004 		(sizeof(struct buffer_head *) * nr_groups);
1005 
1006 	if (size <= PAGE_SIZE)
1007 		bitmap = kzalloc(size, GFP_KERNEL);
1008 	else
1009 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1010 
1011 	if (bitmap == NULL)
1012 		return NULL;
1013 
1014 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1015 	bitmap->s_nr_groups = nr_groups;
1016 	return bitmap;
1017 }
1018 
1019 static int udf_fill_partdesc_info(struct super_block *sb,
1020 		struct partitionDesc *p, int p_index)
1021 {
1022 	struct udf_part_map *map;
1023 	struct udf_sb_info *sbi = UDF_SB(sb);
1024 	struct partitionHeaderDesc *phd;
1025 
1026 	map = &sbi->s_partmaps[p_index];
1027 
1028 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1029 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1030 
1031 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1032 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1033 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1034 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1035 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1036 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1037 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1038 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1039 
1040 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1041 		  p_index, map->s_partition_type,
1042 		  map->s_partition_root, map->s_partition_len);
1043 
1044 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1045 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1046 		return 0;
1047 
1048 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1049 	if (phd->unallocSpaceTable.extLength) {
1050 		struct kernel_lb_addr loc = {
1051 			.logicalBlockNum = le32_to_cpu(
1052 				phd->unallocSpaceTable.extPosition),
1053 			.partitionReferenceNum = p_index,
1054 		};
1055 
1056 		map->s_uspace.s_table = udf_iget(sb, &loc);
1057 		if (!map->s_uspace.s_table) {
1058 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1059 				  p_index);
1060 			return 1;
1061 		}
1062 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1063 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1064 			  p_index, map->s_uspace.s_table->i_ino);
1065 	}
1066 
1067 	if (phd->unallocSpaceBitmap.extLength) {
1068 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1069 		if (!bitmap)
1070 			return 1;
1071 		map->s_uspace.s_bitmap = bitmap;
1072 		bitmap->s_extLength = le32_to_cpu(
1073 				phd->unallocSpaceBitmap.extLength);
1074 		bitmap->s_extPosition = le32_to_cpu(
1075 				phd->unallocSpaceBitmap.extPosition);
1076 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1077 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1078 			  p_index, bitmap->s_extPosition);
1079 	}
1080 
1081 	if (phd->partitionIntegrityTable.extLength)
1082 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1083 
1084 	if (phd->freedSpaceTable.extLength) {
1085 		struct kernel_lb_addr loc = {
1086 			.logicalBlockNum = le32_to_cpu(
1087 				phd->freedSpaceTable.extPosition),
1088 			.partitionReferenceNum = p_index,
1089 		};
1090 
1091 		map->s_fspace.s_table = udf_iget(sb, &loc);
1092 		if (!map->s_fspace.s_table) {
1093 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1094 				  p_index);
1095 			return 1;
1096 		}
1097 
1098 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1099 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1100 			  p_index, map->s_fspace.s_table->i_ino);
1101 	}
1102 
1103 	if (phd->freedSpaceBitmap.extLength) {
1104 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1105 		if (!bitmap)
1106 			return 1;
1107 		map->s_fspace.s_bitmap = bitmap;
1108 		bitmap->s_extLength = le32_to_cpu(
1109 				phd->freedSpaceBitmap.extLength);
1110 		bitmap->s_extPosition = le32_to_cpu(
1111 				phd->freedSpaceBitmap.extPosition);
1112 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1113 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1114 			  p_index, bitmap->s_extPosition);
1115 	}
1116 	return 0;
1117 }
1118 
1119 static void udf_find_vat_block(struct super_block *sb, int p_index,
1120 			       int type1_index, sector_t start_block)
1121 {
1122 	struct udf_sb_info *sbi = UDF_SB(sb);
1123 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1124 	sector_t vat_block;
1125 	struct kernel_lb_addr ino;
1126 
1127 	/*
1128 	 * VAT file entry is in the last recorded block. Some broken disks have
1129 	 * it a few blocks before so try a bit harder...
1130 	 */
1131 	ino.partitionReferenceNum = type1_index;
1132 	for (vat_block = start_block;
1133 	     vat_block >= map->s_partition_root &&
1134 	     vat_block >= start_block - 3 &&
1135 	     !sbi->s_vat_inode; vat_block--) {
1136 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1137 		sbi->s_vat_inode = udf_iget(sb, &ino);
1138 	}
1139 }
1140 
1141 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1142 {
1143 	struct udf_sb_info *sbi = UDF_SB(sb);
1144 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1145 	struct buffer_head *bh = NULL;
1146 	struct udf_inode_info *vati;
1147 	uint32_t pos;
1148 	struct virtualAllocationTable20 *vat20;
1149 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1150 
1151 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1152 	if (!sbi->s_vat_inode &&
1153 	    sbi->s_last_block != blocks - 1) {
1154 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1155 			  (unsigned long)sbi->s_last_block,
1156 			  (unsigned long)blocks - 1);
1157 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1158 	}
1159 	if (!sbi->s_vat_inode)
1160 		return 1;
1161 
1162 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1163 		map->s_type_specific.s_virtual.s_start_offset = 0;
1164 		map->s_type_specific.s_virtual.s_num_entries =
1165 			(sbi->s_vat_inode->i_size - 36) >> 2;
1166 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1167 		vati = UDF_I(sbi->s_vat_inode);
1168 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1169 			pos = udf_block_map(sbi->s_vat_inode, 0);
1170 			bh = sb_bread(sb, pos);
1171 			if (!bh)
1172 				return 1;
1173 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1174 		} else {
1175 			vat20 = (struct virtualAllocationTable20 *)
1176 							vati->i_ext.i_data;
1177 		}
1178 
1179 		map->s_type_specific.s_virtual.s_start_offset =
1180 			le16_to_cpu(vat20->lengthHeader);
1181 		map->s_type_specific.s_virtual.s_num_entries =
1182 			(sbi->s_vat_inode->i_size -
1183 				map->s_type_specific.s_virtual.
1184 					s_start_offset) >> 2;
1185 		brelse(bh);
1186 	}
1187 	return 0;
1188 }
1189 
1190 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1191 {
1192 	struct buffer_head *bh;
1193 	struct partitionDesc *p;
1194 	struct udf_part_map *map;
1195 	struct udf_sb_info *sbi = UDF_SB(sb);
1196 	int i, type1_idx;
1197 	uint16_t partitionNumber;
1198 	uint16_t ident;
1199 	int ret = 0;
1200 
1201 	bh = udf_read_tagged(sb, block, block, &ident);
1202 	if (!bh)
1203 		return 1;
1204 	if (ident != TAG_IDENT_PD)
1205 		goto out_bh;
1206 
1207 	p = (struct partitionDesc *)bh->b_data;
1208 	partitionNumber = le16_to_cpu(p->partitionNumber);
1209 
1210 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1211 	for (i = 0; i < sbi->s_partitions; i++) {
1212 		map = &sbi->s_partmaps[i];
1213 		udf_debug("Searching map: (%d == %d)\n",
1214 			  map->s_partition_num, partitionNumber);
1215 		if (map->s_partition_num == partitionNumber &&
1216 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1217 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1218 			break;
1219 	}
1220 
1221 	if (i >= sbi->s_partitions) {
1222 		udf_debug("Partition (%d) not found in partition map\n",
1223 			  partitionNumber);
1224 		goto out_bh;
1225 	}
1226 
1227 	ret = udf_fill_partdesc_info(sb, p, i);
1228 
1229 	/*
1230 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1231 	 * PHYSICAL partitions are already set up
1232 	 */
1233 	type1_idx = i;
1234 	for (i = 0; i < sbi->s_partitions; i++) {
1235 		map = &sbi->s_partmaps[i];
1236 
1237 		if (map->s_partition_num == partitionNumber &&
1238 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1239 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1240 		     map->s_partition_type == UDF_METADATA_MAP25))
1241 			break;
1242 	}
1243 
1244 	if (i >= sbi->s_partitions)
1245 		goto out_bh;
1246 
1247 	ret = udf_fill_partdesc_info(sb, p, i);
1248 	if (ret)
1249 		goto out_bh;
1250 
1251 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1252 		ret = udf_load_metadata_files(sb, i);
1253 		if (ret) {
1254 			udf_err(sb, "error loading MetaData partition map %d\n",
1255 				i);
1256 			goto out_bh;
1257 		}
1258 	} else {
1259 		ret = udf_load_vat(sb, i, type1_idx);
1260 		if (ret)
1261 			goto out_bh;
1262 		/*
1263 		 * Mark filesystem read-only if we have a partition with
1264 		 * virtual map since we don't handle writing to it (we
1265 		 * overwrite blocks instead of relocating them).
1266 		 */
1267 		sb->s_flags |= MS_RDONLY;
1268 		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1269 	}
1270 out_bh:
1271 	/* In case loading failed, we handle cleanup in udf_fill_super */
1272 	brelse(bh);
1273 	return ret;
1274 }
1275 
1276 static int udf_load_sparable_map(struct super_block *sb,
1277 				 struct udf_part_map *map,
1278 				 struct sparablePartitionMap *spm)
1279 {
1280 	uint32_t loc;
1281 	uint16_t ident;
1282 	struct sparingTable *st;
1283 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1284 	int i;
1285 	struct buffer_head *bh;
1286 
1287 	map->s_partition_type = UDF_SPARABLE_MAP15;
1288 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1289 	if (!is_power_of_2(sdata->s_packet_len)) {
1290 		udf_err(sb, "error loading logical volume descriptor: "
1291 			"Invalid packet length %u\n",
1292 			(unsigned)sdata->s_packet_len);
1293 		return -EIO;
1294 	}
1295 	if (spm->numSparingTables > 4) {
1296 		udf_err(sb, "error loading logical volume descriptor: "
1297 			"Too many sparing tables (%d)\n",
1298 			(int)spm->numSparingTables);
1299 		return -EIO;
1300 	}
1301 
1302 	for (i = 0; i < spm->numSparingTables; i++) {
1303 		loc = le32_to_cpu(spm->locSparingTable[i]);
1304 		bh = udf_read_tagged(sb, loc, loc, &ident);
1305 		if (!bh)
1306 			continue;
1307 
1308 		st = (struct sparingTable *)bh->b_data;
1309 		if (ident != 0 ||
1310 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1311 			    strlen(UDF_ID_SPARING)) ||
1312 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1313 							sb->s_blocksize) {
1314 			brelse(bh);
1315 			continue;
1316 		}
1317 
1318 		sdata->s_spar_map[i] = bh;
1319 	}
1320 	map->s_partition_func = udf_get_pblock_spar15;
1321 	return 0;
1322 }
1323 
1324 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1325 			       struct kernel_lb_addr *fileset)
1326 {
1327 	struct logicalVolDesc *lvd;
1328 	int i, offset;
1329 	uint8_t type;
1330 	struct udf_sb_info *sbi = UDF_SB(sb);
1331 	struct genericPartitionMap *gpm;
1332 	uint16_t ident;
1333 	struct buffer_head *bh;
1334 	unsigned int table_len;
1335 	int ret = 0;
1336 
1337 	bh = udf_read_tagged(sb, block, block, &ident);
1338 	if (!bh)
1339 		return 1;
1340 	BUG_ON(ident != TAG_IDENT_LVD);
1341 	lvd = (struct logicalVolDesc *)bh->b_data;
1342 	table_len = le32_to_cpu(lvd->mapTableLength);
1343 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1344 		udf_err(sb, "error loading logical volume descriptor: "
1345 			"Partition table too long (%u > %lu)\n", table_len,
1346 			sb->s_blocksize - sizeof(*lvd));
1347 		goto out_bh;
1348 	}
1349 
1350 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1351 	if (ret)
1352 		goto out_bh;
1353 
1354 	for (i = 0, offset = 0;
1355 	     i < sbi->s_partitions && offset < table_len;
1356 	     i++, offset += gpm->partitionMapLength) {
1357 		struct udf_part_map *map = &sbi->s_partmaps[i];
1358 		gpm = (struct genericPartitionMap *)
1359 				&(lvd->partitionMaps[offset]);
1360 		type = gpm->partitionMapType;
1361 		if (type == 1) {
1362 			struct genericPartitionMap1 *gpm1 =
1363 				(struct genericPartitionMap1 *)gpm;
1364 			map->s_partition_type = UDF_TYPE1_MAP15;
1365 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1366 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1367 			map->s_partition_func = NULL;
1368 		} else if (type == 2) {
1369 			struct udfPartitionMap2 *upm2 =
1370 						(struct udfPartitionMap2 *)gpm;
1371 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1372 						strlen(UDF_ID_VIRTUAL))) {
1373 				u16 suf =
1374 					le16_to_cpu(((__le16 *)upm2->partIdent.
1375 							identSuffix)[0]);
1376 				if (suf < 0x0200) {
1377 					map->s_partition_type =
1378 							UDF_VIRTUAL_MAP15;
1379 					map->s_partition_func =
1380 							udf_get_pblock_virt15;
1381 				} else {
1382 					map->s_partition_type =
1383 							UDF_VIRTUAL_MAP20;
1384 					map->s_partition_func =
1385 							udf_get_pblock_virt20;
1386 				}
1387 			} else if (!strncmp(upm2->partIdent.ident,
1388 						UDF_ID_SPARABLE,
1389 						strlen(UDF_ID_SPARABLE))) {
1390 				if (udf_load_sparable_map(sb, map,
1391 				    (struct sparablePartitionMap *)gpm) < 0)
1392 					goto out_bh;
1393 			} else if (!strncmp(upm2->partIdent.ident,
1394 						UDF_ID_METADATA,
1395 						strlen(UDF_ID_METADATA))) {
1396 				struct udf_meta_data *mdata =
1397 					&map->s_type_specific.s_metadata;
1398 				struct metadataPartitionMap *mdm =
1399 						(struct metadataPartitionMap *)
1400 						&(lvd->partitionMaps[offset]);
1401 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1402 					  i, type, UDF_ID_METADATA);
1403 
1404 				map->s_partition_type = UDF_METADATA_MAP25;
1405 				map->s_partition_func = udf_get_pblock_meta25;
1406 
1407 				mdata->s_meta_file_loc   =
1408 					le32_to_cpu(mdm->metadataFileLoc);
1409 				mdata->s_mirror_file_loc =
1410 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1411 				mdata->s_bitmap_file_loc =
1412 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1413 				mdata->s_alloc_unit_size =
1414 					le32_to_cpu(mdm->allocUnitSize);
1415 				mdata->s_align_unit_size =
1416 					le16_to_cpu(mdm->alignUnitSize);
1417 				if (mdm->flags & 0x01)
1418 					mdata->s_flags |= MF_DUPLICATE_MD;
1419 
1420 				udf_debug("Metadata Ident suffix=0x%x\n",
1421 					  le16_to_cpu(*(__le16 *)
1422 						      mdm->partIdent.identSuffix));
1423 				udf_debug("Metadata part num=%d\n",
1424 					  le16_to_cpu(mdm->partitionNum));
1425 				udf_debug("Metadata part alloc unit size=%d\n",
1426 					  le32_to_cpu(mdm->allocUnitSize));
1427 				udf_debug("Metadata file loc=%d\n",
1428 					  le32_to_cpu(mdm->metadataFileLoc));
1429 				udf_debug("Mirror file loc=%d\n",
1430 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1431 				udf_debug("Bitmap file loc=%d\n",
1432 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1433 				udf_debug("Flags: %d %d\n",
1434 					  mdata->s_flags, mdm->flags);
1435 			} else {
1436 				udf_debug("Unknown ident: %s\n",
1437 					  upm2->partIdent.ident);
1438 				continue;
1439 			}
1440 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1441 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1442 		}
1443 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1444 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1445 	}
1446 
1447 	if (fileset) {
1448 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1449 
1450 		*fileset = lelb_to_cpu(la->extLocation);
1451 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1452 			  fileset->logicalBlockNum,
1453 			  fileset->partitionReferenceNum);
1454 	}
1455 	if (lvd->integritySeqExt.extLength)
1456 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1457 
1458 out_bh:
1459 	brelse(bh);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * udf_load_logicalvolint
1465  *
1466  */
1467 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1468 {
1469 	struct buffer_head *bh = NULL;
1470 	uint16_t ident;
1471 	struct udf_sb_info *sbi = UDF_SB(sb);
1472 	struct logicalVolIntegrityDesc *lvid;
1473 
1474 	while (loc.extLength > 0 &&
1475 	       (bh = udf_read_tagged(sb, loc.extLocation,
1476 				     loc.extLocation, &ident)) &&
1477 	       ident == TAG_IDENT_LVID) {
1478 		sbi->s_lvid_bh = bh;
1479 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1480 
1481 		if (lvid->nextIntegrityExt.extLength)
1482 			udf_load_logicalvolint(sb,
1483 				leea_to_cpu(lvid->nextIntegrityExt));
1484 
1485 		if (sbi->s_lvid_bh != bh)
1486 			brelse(bh);
1487 		loc.extLength -= sb->s_blocksize;
1488 		loc.extLocation++;
1489 	}
1490 	if (sbi->s_lvid_bh != bh)
1491 		brelse(bh);
1492 }
1493 
1494 /*
1495  * udf_process_sequence
1496  *
1497  * PURPOSE
1498  *	Process a main/reserve volume descriptor sequence.
1499  *
1500  * PRE-CONDITIONS
1501  *	sb			Pointer to _locked_ superblock.
1502  *	block			First block of first extent of the sequence.
1503  *	lastblock		Lastblock of first extent of the sequence.
1504  *
1505  * HISTORY
1506  *	July 1, 1997 - Andrew E. Mileski
1507  *	Written, tested, and released.
1508  */
1509 static noinline int udf_process_sequence(struct super_block *sb, long block,
1510 				long lastblock, struct kernel_lb_addr *fileset)
1511 {
1512 	struct buffer_head *bh = NULL;
1513 	struct udf_vds_record vds[VDS_POS_LENGTH];
1514 	struct udf_vds_record *curr;
1515 	struct generic_desc *gd;
1516 	struct volDescPtr *vdp;
1517 	int done = 0;
1518 	uint32_t vdsn;
1519 	uint16_t ident;
1520 	long next_s = 0, next_e = 0;
1521 
1522 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1523 
1524 	/*
1525 	 * Read the main descriptor sequence and find which descriptors
1526 	 * are in it.
1527 	 */
1528 	for (; (!done && block <= lastblock); block++) {
1529 
1530 		bh = udf_read_tagged(sb, block, block, &ident);
1531 		if (!bh) {
1532 			udf_err(sb,
1533 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1534 				(unsigned long long)block);
1535 			return 1;
1536 		}
1537 
1538 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1539 		gd = (struct generic_desc *)bh->b_data;
1540 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1541 		switch (ident) {
1542 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1543 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1544 			if (vdsn >= curr->volDescSeqNum) {
1545 				curr->volDescSeqNum = vdsn;
1546 				curr->block = block;
1547 			}
1548 			break;
1549 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1550 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1551 			if (vdsn >= curr->volDescSeqNum) {
1552 				curr->volDescSeqNum = vdsn;
1553 				curr->block = block;
1554 
1555 				vdp = (struct volDescPtr *)bh->b_data;
1556 				next_s = le32_to_cpu(
1557 					vdp->nextVolDescSeqExt.extLocation);
1558 				next_e = le32_to_cpu(
1559 					vdp->nextVolDescSeqExt.extLength);
1560 				next_e = next_e >> sb->s_blocksize_bits;
1561 				next_e += next_s;
1562 			}
1563 			break;
1564 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1565 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1566 			if (vdsn >= curr->volDescSeqNum) {
1567 				curr->volDescSeqNum = vdsn;
1568 				curr->block = block;
1569 			}
1570 			break;
1571 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1572 			curr = &vds[VDS_POS_PARTITION_DESC];
1573 			if (!curr->block)
1574 				curr->block = block;
1575 			break;
1576 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1577 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1578 			if (vdsn >= curr->volDescSeqNum) {
1579 				curr->volDescSeqNum = vdsn;
1580 				curr->block = block;
1581 			}
1582 			break;
1583 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1584 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1585 			if (vdsn >= curr->volDescSeqNum) {
1586 				curr->volDescSeqNum = vdsn;
1587 				curr->block = block;
1588 			}
1589 			break;
1590 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1591 			vds[VDS_POS_TERMINATING_DESC].block = block;
1592 			if (next_e) {
1593 				block = next_s;
1594 				lastblock = next_e;
1595 				next_s = next_e = 0;
1596 			} else
1597 				done = 1;
1598 			break;
1599 		}
1600 		brelse(bh);
1601 	}
1602 	/*
1603 	 * Now read interesting descriptors again and process them
1604 	 * in a suitable order
1605 	 */
1606 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1607 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1608 		return 1;
1609 	}
1610 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1611 		return 1;
1612 
1613 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1614 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1615 		return 1;
1616 
1617 	if (vds[VDS_POS_PARTITION_DESC].block) {
1618 		/*
1619 		 * We rescan the whole descriptor sequence to find
1620 		 * partition descriptor blocks and process them.
1621 		 */
1622 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1623 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1624 		     block++)
1625 			if (udf_load_partdesc(sb, block))
1626 				return 1;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1633 			     struct kernel_lb_addr *fileset)
1634 {
1635 	struct anchorVolDescPtr *anchor;
1636 	long main_s, main_e, reserve_s, reserve_e;
1637 
1638 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1639 
1640 	/* Locate the main sequence */
1641 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1642 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1643 	main_e = main_e >> sb->s_blocksize_bits;
1644 	main_e += main_s;
1645 
1646 	/* Locate the reserve sequence */
1647 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1648 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1649 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1650 	reserve_e += reserve_s;
1651 
1652 	/* Process the main & reserve sequences */
1653 	/* responsible for finding the PartitionDesc(s) */
1654 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1655 		return 1;
1656 	udf_sb_free_partitions(sb);
1657 	if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1658 		return 1;
1659 	udf_sb_free_partitions(sb);
1660 	return 0;
1661 }
1662 
1663 /*
1664  * Check whether there is an anchor block in the given block and
1665  * load Volume Descriptor Sequence if so.
1666  */
1667 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1668 				  struct kernel_lb_addr *fileset)
1669 {
1670 	struct buffer_head *bh;
1671 	uint16_t ident;
1672 	int ret;
1673 
1674 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1675 	    udf_fixed_to_variable(block) >=
1676 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1677 		return 0;
1678 
1679 	bh = udf_read_tagged(sb, block, block, &ident);
1680 	if (!bh)
1681 		return 0;
1682 	if (ident != TAG_IDENT_AVDP) {
1683 		brelse(bh);
1684 		return 0;
1685 	}
1686 	ret = udf_load_sequence(sb, bh, fileset);
1687 	brelse(bh);
1688 	return ret;
1689 }
1690 
1691 /* Search for an anchor volume descriptor pointer */
1692 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1693 				 struct kernel_lb_addr *fileset)
1694 {
1695 	sector_t last[6];
1696 	int i;
1697 	struct udf_sb_info *sbi = UDF_SB(sb);
1698 	int last_count = 0;
1699 
1700 	/* First try user provided anchor */
1701 	if (sbi->s_anchor) {
1702 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1703 			return lastblock;
1704 	}
1705 	/*
1706 	 * according to spec, anchor is in either:
1707 	 *     block 256
1708 	 *     lastblock-256
1709 	 *     lastblock
1710 	 *  however, if the disc isn't closed, it could be 512.
1711 	 */
1712 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1713 		return lastblock;
1714 	/*
1715 	 * The trouble is which block is the last one. Drives often misreport
1716 	 * this so we try various possibilities.
1717 	 */
1718 	last[last_count++] = lastblock;
1719 	if (lastblock >= 1)
1720 		last[last_count++] = lastblock - 1;
1721 	last[last_count++] = lastblock + 1;
1722 	if (lastblock >= 2)
1723 		last[last_count++] = lastblock - 2;
1724 	if (lastblock >= 150)
1725 		last[last_count++] = lastblock - 150;
1726 	if (lastblock >= 152)
1727 		last[last_count++] = lastblock - 152;
1728 
1729 	for (i = 0; i < last_count; i++) {
1730 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1731 				sb->s_blocksize_bits)
1732 			continue;
1733 		if (udf_check_anchor_block(sb, last[i], fileset))
1734 			return last[i];
1735 		if (last[i] < 256)
1736 			continue;
1737 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1738 			return last[i];
1739 	}
1740 
1741 	/* Finally try block 512 in case media is open */
1742 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1743 		return last[0];
1744 	return 0;
1745 }
1746 
1747 /*
1748  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1749  * area specified by it. The function expects sbi->s_lastblock to be the last
1750  * block on the media.
1751  *
1752  * Return 1 if ok, 0 if not found.
1753  *
1754  */
1755 static int udf_find_anchor(struct super_block *sb,
1756 			   struct kernel_lb_addr *fileset)
1757 {
1758 	sector_t lastblock;
1759 	struct udf_sb_info *sbi = UDF_SB(sb);
1760 
1761 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1762 	if (lastblock)
1763 		goto out;
1764 
1765 	/* No anchor found? Try VARCONV conversion of block numbers */
1766 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1767 	/* Firstly, we try to not convert number of the last block */
1768 	lastblock = udf_scan_anchors(sb,
1769 				udf_variable_to_fixed(sbi->s_last_block),
1770 				fileset);
1771 	if (lastblock)
1772 		goto out;
1773 
1774 	/* Secondly, we try with converted number of the last block */
1775 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1776 	if (!lastblock) {
1777 		/* VARCONV didn't help. Clear it. */
1778 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1779 		return 0;
1780 	}
1781 out:
1782 	sbi->s_last_block = lastblock;
1783 	return 1;
1784 }
1785 
1786 /*
1787  * Check Volume Structure Descriptor, find Anchor block and load Volume
1788  * Descriptor Sequence
1789  */
1790 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1791 			int silent, struct kernel_lb_addr *fileset)
1792 {
1793 	struct udf_sb_info *sbi = UDF_SB(sb);
1794 	loff_t nsr_off;
1795 
1796 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1797 		if (!silent)
1798 			udf_warn(sb, "Bad block size\n");
1799 		return 0;
1800 	}
1801 	sbi->s_last_block = uopt->lastblock;
1802 	if (!uopt->novrs) {
1803 		/* Check that it is NSR02 compliant */
1804 		nsr_off = udf_check_vsd(sb);
1805 		if (!nsr_off) {
1806 			if (!silent)
1807 				udf_warn(sb, "No VRS found\n");
1808 			return 0;
1809 		}
1810 		if (nsr_off == -1)
1811 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1812 		if (!sbi->s_last_block)
1813 			sbi->s_last_block = udf_get_last_block(sb);
1814 	} else {
1815 		udf_debug("Validity check skipped because of novrs option\n");
1816 	}
1817 
1818 	/* Look for anchor block and load Volume Descriptor Sequence */
1819 	sbi->s_anchor = uopt->anchor;
1820 	if (!udf_find_anchor(sb, fileset)) {
1821 		if (!silent)
1822 			udf_warn(sb, "No anchor found\n");
1823 		return 0;
1824 	}
1825 	return 1;
1826 }
1827 
1828 static void udf_open_lvid(struct super_block *sb)
1829 {
1830 	struct udf_sb_info *sbi = UDF_SB(sb);
1831 	struct buffer_head *bh = sbi->s_lvid_bh;
1832 	struct logicalVolIntegrityDesc *lvid;
1833 	struct logicalVolIntegrityDescImpUse *lvidiu;
1834 
1835 	if (!bh)
1836 		return;
1837 
1838 	mutex_lock(&sbi->s_alloc_mutex);
1839 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1840 	lvidiu = udf_sb_lvidiu(sbi);
1841 
1842 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1843 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1844 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1845 				CURRENT_TIME);
1846 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1847 
1848 	lvid->descTag.descCRC = cpu_to_le16(
1849 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1850 			le16_to_cpu(lvid->descTag.descCRCLength)));
1851 
1852 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1853 	mark_buffer_dirty(bh);
1854 	sbi->s_lvid_dirty = 0;
1855 	mutex_unlock(&sbi->s_alloc_mutex);
1856 }
1857 
1858 static void udf_close_lvid(struct super_block *sb)
1859 {
1860 	struct udf_sb_info *sbi = UDF_SB(sb);
1861 	struct buffer_head *bh = sbi->s_lvid_bh;
1862 	struct logicalVolIntegrityDesc *lvid;
1863 	struct logicalVolIntegrityDescImpUse *lvidiu;
1864 
1865 	if (!bh)
1866 		return;
1867 
1868 	mutex_lock(&sbi->s_alloc_mutex);
1869 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1870 	lvidiu = udf_sb_lvidiu(sbi);
1871 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1872 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1873 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1874 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1875 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1876 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1877 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1878 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1879 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1880 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1881 
1882 	lvid->descTag.descCRC = cpu_to_le16(
1883 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1884 				le16_to_cpu(lvid->descTag.descCRCLength)));
1885 
1886 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1887 	/*
1888 	 * We set buffer uptodate unconditionally here to avoid spurious
1889 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1890 	 * the buffer as !uptodate
1891 	 */
1892 	set_buffer_uptodate(bh);
1893 	mark_buffer_dirty(bh);
1894 	sbi->s_lvid_dirty = 0;
1895 	mutex_unlock(&sbi->s_alloc_mutex);
1896 }
1897 
1898 u64 lvid_get_unique_id(struct super_block *sb)
1899 {
1900 	struct buffer_head *bh;
1901 	struct udf_sb_info *sbi = UDF_SB(sb);
1902 	struct logicalVolIntegrityDesc *lvid;
1903 	struct logicalVolHeaderDesc *lvhd;
1904 	u64 uniqueID;
1905 	u64 ret;
1906 
1907 	bh = sbi->s_lvid_bh;
1908 	if (!bh)
1909 		return 0;
1910 
1911 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1912 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1913 
1914 	mutex_lock(&sbi->s_alloc_mutex);
1915 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1916 	if (!(++uniqueID & 0xFFFFFFFF))
1917 		uniqueID += 16;
1918 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1919 	mutex_unlock(&sbi->s_alloc_mutex);
1920 	mark_buffer_dirty(bh);
1921 
1922 	return ret;
1923 }
1924 
1925 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1926 {
1927 	int ret;
1928 	struct inode *inode = NULL;
1929 	struct udf_options uopt;
1930 	struct kernel_lb_addr rootdir, fileset;
1931 	struct udf_sb_info *sbi;
1932 
1933 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1934 	uopt.uid = -1;
1935 	uopt.gid = -1;
1936 	uopt.umask = 0;
1937 	uopt.fmode = UDF_INVALID_MODE;
1938 	uopt.dmode = UDF_INVALID_MODE;
1939 
1940 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1941 	if (!sbi)
1942 		return -ENOMEM;
1943 
1944 	sb->s_fs_info = sbi;
1945 
1946 	mutex_init(&sbi->s_alloc_mutex);
1947 
1948 	if (!udf_parse_options((char *)options, &uopt, false))
1949 		goto error_out;
1950 
1951 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1952 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1953 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1954 		goto error_out;
1955 	}
1956 #ifdef CONFIG_UDF_NLS
1957 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1958 		uopt.nls_map = load_nls_default();
1959 		if (!uopt.nls_map)
1960 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1961 		else
1962 			udf_debug("Using default NLS map\n");
1963 	}
1964 #endif
1965 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1966 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1967 
1968 	fileset.logicalBlockNum = 0xFFFFFFFF;
1969 	fileset.partitionReferenceNum = 0xFFFF;
1970 
1971 	sbi->s_flags = uopt.flags;
1972 	sbi->s_uid = uopt.uid;
1973 	sbi->s_gid = uopt.gid;
1974 	sbi->s_umask = uopt.umask;
1975 	sbi->s_fmode = uopt.fmode;
1976 	sbi->s_dmode = uopt.dmode;
1977 	sbi->s_nls_map = uopt.nls_map;
1978 	rwlock_init(&sbi->s_cred_lock);
1979 
1980 	if (uopt.session == 0xFFFFFFFF)
1981 		sbi->s_session = udf_get_last_session(sb);
1982 	else
1983 		sbi->s_session = uopt.session;
1984 
1985 	udf_debug("Multi-session=%d\n", sbi->s_session);
1986 
1987 	/* Fill in the rest of the superblock */
1988 	sb->s_op = &udf_sb_ops;
1989 	sb->s_export_op = &udf_export_ops;
1990 
1991 	sb->s_magic = UDF_SUPER_MAGIC;
1992 	sb->s_time_gran = 1000;
1993 
1994 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1995 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1996 	} else {
1997 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1998 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1999 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2000 			if (!silent)
2001 				pr_notice("Rescanning with blocksize %d\n",
2002 					  UDF_DEFAULT_BLOCKSIZE);
2003 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2004 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2005 		}
2006 	}
2007 	if (!ret) {
2008 		udf_warn(sb, "No partition found (1)\n");
2009 		goto error_out;
2010 	}
2011 
2012 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2013 
2014 	if (sbi->s_lvid_bh) {
2015 		struct logicalVolIntegrityDescImpUse *lvidiu =
2016 							udf_sb_lvidiu(sbi);
2017 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2018 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2019 		/* uint16_t maxUDFWriteRev =
2020 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2021 
2022 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2023 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2024 				le16_to_cpu(lvidiu->minUDFReadRev),
2025 				UDF_MAX_READ_VERSION);
2026 			goto error_out;
2027 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2028 			sb->s_flags |= MS_RDONLY;
2029 
2030 		sbi->s_udfrev = minUDFWriteRev;
2031 
2032 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2033 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2034 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2035 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2036 	}
2037 
2038 	if (!sbi->s_partitions) {
2039 		udf_warn(sb, "No partition found (2)\n");
2040 		goto error_out;
2041 	}
2042 
2043 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2044 			UDF_PART_FLAG_READ_ONLY) {
2045 		pr_notice("Partition marked readonly; forcing readonly mount\n");
2046 		sb->s_flags |= MS_RDONLY;
2047 	}
2048 
2049 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2050 		udf_warn(sb, "No fileset found\n");
2051 		goto error_out;
2052 	}
2053 
2054 	if (!silent) {
2055 		struct timestamp ts;
2056 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2057 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2058 			 sbi->s_volume_ident,
2059 			 le16_to_cpu(ts.year), ts.month, ts.day,
2060 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2061 	}
2062 	if (!(sb->s_flags & MS_RDONLY))
2063 		udf_open_lvid(sb);
2064 
2065 	/* Assign the root inode */
2066 	/* assign inodes by physical block number */
2067 	/* perhaps it's not extensible enough, but for now ... */
2068 	inode = udf_iget(sb, &rootdir);
2069 	if (!inode) {
2070 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2071 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2072 		goto error_out;
2073 	}
2074 
2075 	/* Allocate a dentry for the root inode */
2076 	sb->s_root = d_make_root(inode);
2077 	if (!sb->s_root) {
2078 		udf_err(sb, "Couldn't allocate root dentry\n");
2079 		goto error_out;
2080 	}
2081 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2082 	sb->s_max_links = UDF_MAX_LINKS;
2083 	return 0;
2084 
2085 error_out:
2086 	if (sbi->s_vat_inode)
2087 		iput(sbi->s_vat_inode);
2088 #ifdef CONFIG_UDF_NLS
2089 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2090 		unload_nls(sbi->s_nls_map);
2091 #endif
2092 	if (!(sb->s_flags & MS_RDONLY))
2093 		udf_close_lvid(sb);
2094 	brelse(sbi->s_lvid_bh);
2095 	udf_sb_free_partitions(sb);
2096 	kfree(sbi);
2097 	sb->s_fs_info = NULL;
2098 
2099 	return -EINVAL;
2100 }
2101 
2102 void _udf_err(struct super_block *sb, const char *function,
2103 	      const char *fmt, ...)
2104 {
2105 	struct va_format vaf;
2106 	va_list args;
2107 
2108 	va_start(args, fmt);
2109 
2110 	vaf.fmt = fmt;
2111 	vaf.va = &args;
2112 
2113 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2114 
2115 	va_end(args);
2116 }
2117 
2118 void _udf_warn(struct super_block *sb, const char *function,
2119 	       const char *fmt, ...)
2120 {
2121 	struct va_format vaf;
2122 	va_list args;
2123 
2124 	va_start(args, fmt);
2125 
2126 	vaf.fmt = fmt;
2127 	vaf.va = &args;
2128 
2129 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2130 
2131 	va_end(args);
2132 }
2133 
2134 static void udf_put_super(struct super_block *sb)
2135 {
2136 	struct udf_sb_info *sbi;
2137 
2138 	sbi = UDF_SB(sb);
2139 
2140 	if (sbi->s_vat_inode)
2141 		iput(sbi->s_vat_inode);
2142 #ifdef CONFIG_UDF_NLS
2143 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2144 		unload_nls(sbi->s_nls_map);
2145 #endif
2146 	if (!(sb->s_flags & MS_RDONLY))
2147 		udf_close_lvid(sb);
2148 	brelse(sbi->s_lvid_bh);
2149 	udf_sb_free_partitions(sb);
2150 	kfree(sb->s_fs_info);
2151 	sb->s_fs_info = NULL;
2152 }
2153 
2154 static int udf_sync_fs(struct super_block *sb, int wait)
2155 {
2156 	struct udf_sb_info *sbi = UDF_SB(sb);
2157 
2158 	mutex_lock(&sbi->s_alloc_mutex);
2159 	if (sbi->s_lvid_dirty) {
2160 		/*
2161 		 * Blockdevice will be synced later so we don't have to submit
2162 		 * the buffer for IO
2163 		 */
2164 		mark_buffer_dirty(sbi->s_lvid_bh);
2165 		sbi->s_lvid_dirty = 0;
2166 	}
2167 	mutex_unlock(&sbi->s_alloc_mutex);
2168 
2169 	return 0;
2170 }
2171 
2172 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2173 {
2174 	struct super_block *sb = dentry->d_sb;
2175 	struct udf_sb_info *sbi = UDF_SB(sb);
2176 	struct logicalVolIntegrityDescImpUse *lvidiu;
2177 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2178 
2179 	if (sbi->s_lvid_bh != NULL)
2180 		lvidiu = udf_sb_lvidiu(sbi);
2181 	else
2182 		lvidiu = NULL;
2183 
2184 	buf->f_type = UDF_SUPER_MAGIC;
2185 	buf->f_bsize = sb->s_blocksize;
2186 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2187 	buf->f_bfree = udf_count_free(sb);
2188 	buf->f_bavail = buf->f_bfree;
2189 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2190 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2191 			+ buf->f_bfree;
2192 	buf->f_ffree = buf->f_bfree;
2193 	buf->f_namelen = UDF_NAME_LEN - 2;
2194 	buf->f_fsid.val[0] = (u32)id;
2195 	buf->f_fsid.val[1] = (u32)(id >> 32);
2196 
2197 	return 0;
2198 }
2199 
2200 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2201 					  struct udf_bitmap *bitmap)
2202 {
2203 	struct buffer_head *bh = NULL;
2204 	unsigned int accum = 0;
2205 	int index;
2206 	int block = 0, newblock;
2207 	struct kernel_lb_addr loc;
2208 	uint32_t bytes;
2209 	uint8_t *ptr;
2210 	uint16_t ident;
2211 	struct spaceBitmapDesc *bm;
2212 
2213 	loc.logicalBlockNum = bitmap->s_extPosition;
2214 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2215 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2216 
2217 	if (!bh) {
2218 		udf_err(sb, "udf_count_free failed\n");
2219 		goto out;
2220 	} else if (ident != TAG_IDENT_SBD) {
2221 		brelse(bh);
2222 		udf_err(sb, "udf_count_free failed\n");
2223 		goto out;
2224 	}
2225 
2226 	bm = (struct spaceBitmapDesc *)bh->b_data;
2227 	bytes = le32_to_cpu(bm->numOfBytes);
2228 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2229 	ptr = (uint8_t *)bh->b_data;
2230 
2231 	while (bytes > 0) {
2232 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2233 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2234 					cur_bytes * 8);
2235 		bytes -= cur_bytes;
2236 		if (bytes) {
2237 			brelse(bh);
2238 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2239 			bh = udf_tread(sb, newblock);
2240 			if (!bh) {
2241 				udf_debug("read failed\n");
2242 				goto out;
2243 			}
2244 			index = 0;
2245 			ptr = (uint8_t *)bh->b_data;
2246 		}
2247 	}
2248 	brelse(bh);
2249 out:
2250 	return accum;
2251 }
2252 
2253 static unsigned int udf_count_free_table(struct super_block *sb,
2254 					 struct inode *table)
2255 {
2256 	unsigned int accum = 0;
2257 	uint32_t elen;
2258 	struct kernel_lb_addr eloc;
2259 	int8_t etype;
2260 	struct extent_position epos;
2261 
2262 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2263 	epos.block = UDF_I(table)->i_location;
2264 	epos.offset = sizeof(struct unallocSpaceEntry);
2265 	epos.bh = NULL;
2266 
2267 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2268 		accum += (elen >> table->i_sb->s_blocksize_bits);
2269 
2270 	brelse(epos.bh);
2271 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2272 
2273 	return accum;
2274 }
2275 
2276 static unsigned int udf_count_free(struct super_block *sb)
2277 {
2278 	unsigned int accum = 0;
2279 	struct udf_sb_info *sbi;
2280 	struct udf_part_map *map;
2281 
2282 	sbi = UDF_SB(sb);
2283 	if (sbi->s_lvid_bh) {
2284 		struct logicalVolIntegrityDesc *lvid =
2285 			(struct logicalVolIntegrityDesc *)
2286 			sbi->s_lvid_bh->b_data;
2287 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2288 			accum = le32_to_cpu(
2289 					lvid->freeSpaceTable[sbi->s_partition]);
2290 			if (accum == 0xFFFFFFFF)
2291 				accum = 0;
2292 		}
2293 	}
2294 
2295 	if (accum)
2296 		return accum;
2297 
2298 	map = &sbi->s_partmaps[sbi->s_partition];
2299 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2300 		accum += udf_count_free_bitmap(sb,
2301 					       map->s_uspace.s_bitmap);
2302 	}
2303 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2304 		accum += udf_count_free_bitmap(sb,
2305 					       map->s_fspace.s_bitmap);
2306 	}
2307 	if (accum)
2308 		return accum;
2309 
2310 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2311 		accum += udf_count_free_table(sb,
2312 					      map->s_uspace.s_table);
2313 	}
2314 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2315 		accum += udf_count_free_table(sb,
2316 					      map->s_fspace.s_table);
2317 	}
2318 
2319 	return accum;
2320 }
2321