1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <asm/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define UDF_DEFAULT_BLOCKSIZE 2048 77 78 static char error_buf[1024]; 79 80 /* These are the "meat" - everything else is stuffing */ 81 static int udf_fill_super(struct super_block *, void *, int); 82 static void udf_put_super(struct super_block *); 83 static int udf_sync_fs(struct super_block *, int); 84 static int udf_remount_fs(struct super_block *, int *, char *); 85 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 86 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 87 struct kernel_lb_addr *); 88 static void udf_load_fileset(struct super_block *, struct buffer_head *, 89 struct kernel_lb_addr *); 90 static void udf_open_lvid(struct super_block *); 91 static void udf_close_lvid(struct super_block *); 92 static unsigned int udf_count_free(struct super_block *); 93 static int udf_statfs(struct dentry *, struct kstatfs *); 94 static int udf_show_options(struct seq_file *, struct vfsmount *); 95 static void udf_error(struct super_block *sb, const char *function, 96 const char *fmt, ...); 97 98 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 99 { 100 struct logicalVolIntegrityDesc *lvid = 101 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 102 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 103 __u32 offset = number_of_partitions * 2 * 104 sizeof(uint32_t)/sizeof(uint8_t); 105 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 106 } 107 108 /* UDF filesystem type */ 109 static struct dentry *udf_mount(struct file_system_type *fs_type, 110 int flags, const char *dev_name, void *data) 111 { 112 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 113 } 114 115 static struct file_system_type udf_fstype = { 116 .owner = THIS_MODULE, 117 .name = "udf", 118 .mount = udf_mount, 119 .kill_sb = kill_block_super, 120 .fs_flags = FS_REQUIRES_DEV, 121 }; 122 123 static struct kmem_cache *udf_inode_cachep; 124 125 static struct inode *udf_alloc_inode(struct super_block *sb) 126 { 127 struct udf_inode_info *ei; 128 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 129 if (!ei) 130 return NULL; 131 132 ei->i_unique = 0; 133 ei->i_lenExtents = 0; 134 ei->i_next_alloc_block = 0; 135 ei->i_next_alloc_goal = 0; 136 ei->i_strat4096 = 0; 137 init_rwsem(&ei->i_data_sem); 138 139 return &ei->vfs_inode; 140 } 141 142 static void udf_i_callback(struct rcu_head *head) 143 { 144 struct inode *inode = container_of(head, struct inode, i_rcu); 145 INIT_LIST_HEAD(&inode->i_dentry); 146 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 147 } 148 149 static void udf_destroy_inode(struct inode *inode) 150 { 151 call_rcu(&inode->i_rcu, udf_i_callback); 152 } 153 154 static void init_once(void *foo) 155 { 156 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 157 158 ei->i_ext.i_data = NULL; 159 inode_init_once(&ei->vfs_inode); 160 } 161 162 static int init_inodecache(void) 163 { 164 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 165 sizeof(struct udf_inode_info), 166 0, (SLAB_RECLAIM_ACCOUNT | 167 SLAB_MEM_SPREAD), 168 init_once); 169 if (!udf_inode_cachep) 170 return -ENOMEM; 171 return 0; 172 } 173 174 static void destroy_inodecache(void) 175 { 176 kmem_cache_destroy(udf_inode_cachep); 177 } 178 179 /* Superblock operations */ 180 static const struct super_operations udf_sb_ops = { 181 .alloc_inode = udf_alloc_inode, 182 .destroy_inode = udf_destroy_inode, 183 .write_inode = udf_write_inode, 184 .evict_inode = udf_evict_inode, 185 .put_super = udf_put_super, 186 .sync_fs = udf_sync_fs, 187 .statfs = udf_statfs, 188 .remount_fs = udf_remount_fs, 189 .show_options = udf_show_options, 190 }; 191 192 struct udf_options { 193 unsigned char novrs; 194 unsigned int blocksize; 195 unsigned int session; 196 unsigned int lastblock; 197 unsigned int anchor; 198 unsigned int volume; 199 unsigned short partition; 200 unsigned int fileset; 201 unsigned int rootdir; 202 unsigned int flags; 203 mode_t umask; 204 gid_t gid; 205 uid_t uid; 206 mode_t fmode; 207 mode_t dmode; 208 struct nls_table *nls_map; 209 }; 210 211 static int __init init_udf_fs(void) 212 { 213 int err; 214 215 err = init_inodecache(); 216 if (err) 217 goto out1; 218 err = register_filesystem(&udf_fstype); 219 if (err) 220 goto out; 221 222 return 0; 223 224 out: 225 destroy_inodecache(); 226 227 out1: 228 return err; 229 } 230 231 static void __exit exit_udf_fs(void) 232 { 233 unregister_filesystem(&udf_fstype); 234 destroy_inodecache(); 235 } 236 237 module_init(init_udf_fs) 238 module_exit(exit_udf_fs) 239 240 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 241 { 242 struct udf_sb_info *sbi = UDF_SB(sb); 243 244 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 245 GFP_KERNEL); 246 if (!sbi->s_partmaps) { 247 udf_error(sb, __func__, 248 "Unable to allocate space for %d partition maps", 249 count); 250 sbi->s_partitions = 0; 251 return -ENOMEM; 252 } 253 254 sbi->s_partitions = count; 255 return 0; 256 } 257 258 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt) 259 { 260 struct super_block *sb = mnt->mnt_sb; 261 struct udf_sb_info *sbi = UDF_SB(sb); 262 263 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 264 seq_puts(seq, ",nostrict"); 265 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 266 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 267 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 268 seq_puts(seq, ",unhide"); 269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 270 seq_puts(seq, ",undelete"); 271 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 272 seq_puts(seq, ",noadinicb"); 273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 274 seq_puts(seq, ",shortad"); 275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 276 seq_puts(seq, ",uid=forget"); 277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 278 seq_puts(seq, ",uid=ignore"); 279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 280 seq_puts(seq, ",gid=forget"); 281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 282 seq_puts(seq, ",gid=ignore"); 283 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 284 seq_printf(seq, ",uid=%u", sbi->s_uid); 285 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 286 seq_printf(seq, ",gid=%u", sbi->s_gid); 287 if (sbi->s_umask != 0) 288 seq_printf(seq, ",umask=%o", sbi->s_umask); 289 if (sbi->s_fmode != UDF_INVALID_MODE) 290 seq_printf(seq, ",mode=%o", sbi->s_fmode); 291 if (sbi->s_dmode != UDF_INVALID_MODE) 292 seq_printf(seq, ",dmode=%o", sbi->s_dmode); 293 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 294 seq_printf(seq, ",session=%u", sbi->s_session); 295 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 296 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 297 if (sbi->s_anchor != 0) 298 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 299 /* 300 * volume, partition, fileset and rootdir seem to be ignored 301 * currently 302 */ 303 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 304 seq_puts(seq, ",utf8"); 305 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 306 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 307 308 return 0; 309 } 310 311 /* 312 * udf_parse_options 313 * 314 * PURPOSE 315 * Parse mount options. 316 * 317 * DESCRIPTION 318 * The following mount options are supported: 319 * 320 * gid= Set the default group. 321 * umask= Set the default umask. 322 * mode= Set the default file permissions. 323 * dmode= Set the default directory permissions. 324 * uid= Set the default user. 325 * bs= Set the block size. 326 * unhide Show otherwise hidden files. 327 * undelete Show deleted files in lists. 328 * adinicb Embed data in the inode (default) 329 * noadinicb Don't embed data in the inode 330 * shortad Use short ad's 331 * longad Use long ad's (default) 332 * nostrict Unset strict conformance 333 * iocharset= Set the NLS character set 334 * 335 * The remaining are for debugging and disaster recovery: 336 * 337 * novrs Skip volume sequence recognition 338 * 339 * The following expect a offset from 0. 340 * 341 * session= Set the CDROM session (default= last session) 342 * anchor= Override standard anchor location. (default= 256) 343 * volume= Override the VolumeDesc location. (unused) 344 * partition= Override the PartitionDesc location. (unused) 345 * lastblock= Set the last block of the filesystem/ 346 * 347 * The following expect a offset from the partition root. 348 * 349 * fileset= Override the fileset block location. (unused) 350 * rootdir= Override the root directory location. (unused) 351 * WARNING: overriding the rootdir to a non-directory may 352 * yield highly unpredictable results. 353 * 354 * PRE-CONDITIONS 355 * options Pointer to mount options string. 356 * uopts Pointer to mount options variable. 357 * 358 * POST-CONDITIONS 359 * <return> 1 Mount options parsed okay. 360 * <return> 0 Error parsing mount options. 361 * 362 * HISTORY 363 * July 1, 1997 - Andrew E. Mileski 364 * Written, tested, and released. 365 */ 366 367 enum { 368 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 369 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 370 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 371 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 372 Opt_rootdir, Opt_utf8, Opt_iocharset, 373 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 374 Opt_fmode, Opt_dmode 375 }; 376 377 static const match_table_t tokens = { 378 {Opt_novrs, "novrs"}, 379 {Opt_nostrict, "nostrict"}, 380 {Opt_bs, "bs=%u"}, 381 {Opt_unhide, "unhide"}, 382 {Opt_undelete, "undelete"}, 383 {Opt_noadinicb, "noadinicb"}, 384 {Opt_adinicb, "adinicb"}, 385 {Opt_shortad, "shortad"}, 386 {Opt_longad, "longad"}, 387 {Opt_uforget, "uid=forget"}, 388 {Opt_uignore, "uid=ignore"}, 389 {Opt_gforget, "gid=forget"}, 390 {Opt_gignore, "gid=ignore"}, 391 {Opt_gid, "gid=%u"}, 392 {Opt_uid, "uid=%u"}, 393 {Opt_umask, "umask=%o"}, 394 {Opt_session, "session=%u"}, 395 {Opt_lastblock, "lastblock=%u"}, 396 {Opt_anchor, "anchor=%u"}, 397 {Opt_volume, "volume=%u"}, 398 {Opt_partition, "partition=%u"}, 399 {Opt_fileset, "fileset=%u"}, 400 {Opt_rootdir, "rootdir=%u"}, 401 {Opt_utf8, "utf8"}, 402 {Opt_iocharset, "iocharset=%s"}, 403 {Opt_fmode, "mode=%o"}, 404 {Opt_dmode, "dmode=%o"}, 405 {Opt_err, NULL} 406 }; 407 408 static int udf_parse_options(char *options, struct udf_options *uopt, 409 bool remount) 410 { 411 char *p; 412 int option; 413 414 uopt->novrs = 0; 415 uopt->partition = 0xFFFF; 416 uopt->session = 0xFFFFFFFF; 417 uopt->lastblock = 0; 418 uopt->anchor = 0; 419 uopt->volume = 0xFFFFFFFF; 420 uopt->rootdir = 0xFFFFFFFF; 421 uopt->fileset = 0xFFFFFFFF; 422 uopt->nls_map = NULL; 423 424 if (!options) 425 return 1; 426 427 while ((p = strsep(&options, ",")) != NULL) { 428 substring_t args[MAX_OPT_ARGS]; 429 int token; 430 if (!*p) 431 continue; 432 433 token = match_token(p, tokens, args); 434 switch (token) { 435 case Opt_novrs: 436 uopt->novrs = 1; 437 break; 438 case Opt_bs: 439 if (match_int(&args[0], &option)) 440 return 0; 441 uopt->blocksize = option; 442 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 443 break; 444 case Opt_unhide: 445 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 446 break; 447 case Opt_undelete: 448 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 449 break; 450 case Opt_noadinicb: 451 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 452 break; 453 case Opt_adinicb: 454 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 455 break; 456 case Opt_shortad: 457 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 458 break; 459 case Opt_longad: 460 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 461 break; 462 case Opt_gid: 463 if (match_int(args, &option)) 464 return 0; 465 uopt->gid = option; 466 uopt->flags |= (1 << UDF_FLAG_GID_SET); 467 break; 468 case Opt_uid: 469 if (match_int(args, &option)) 470 return 0; 471 uopt->uid = option; 472 uopt->flags |= (1 << UDF_FLAG_UID_SET); 473 break; 474 case Opt_umask: 475 if (match_octal(args, &option)) 476 return 0; 477 uopt->umask = option; 478 break; 479 case Opt_nostrict: 480 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 481 break; 482 case Opt_session: 483 if (match_int(args, &option)) 484 return 0; 485 uopt->session = option; 486 if (!remount) 487 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 488 break; 489 case Opt_lastblock: 490 if (match_int(args, &option)) 491 return 0; 492 uopt->lastblock = option; 493 if (!remount) 494 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 495 break; 496 case Opt_anchor: 497 if (match_int(args, &option)) 498 return 0; 499 uopt->anchor = option; 500 break; 501 case Opt_volume: 502 if (match_int(args, &option)) 503 return 0; 504 uopt->volume = option; 505 break; 506 case Opt_partition: 507 if (match_int(args, &option)) 508 return 0; 509 uopt->partition = option; 510 break; 511 case Opt_fileset: 512 if (match_int(args, &option)) 513 return 0; 514 uopt->fileset = option; 515 break; 516 case Opt_rootdir: 517 if (match_int(args, &option)) 518 return 0; 519 uopt->rootdir = option; 520 break; 521 case Opt_utf8: 522 uopt->flags |= (1 << UDF_FLAG_UTF8); 523 break; 524 #ifdef CONFIG_UDF_NLS 525 case Opt_iocharset: 526 uopt->nls_map = load_nls(args[0].from); 527 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 528 break; 529 #endif 530 case Opt_uignore: 531 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 532 break; 533 case Opt_uforget: 534 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 535 break; 536 case Opt_gignore: 537 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 538 break; 539 case Opt_gforget: 540 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 541 break; 542 case Opt_fmode: 543 if (match_octal(args, &option)) 544 return 0; 545 uopt->fmode = option & 0777; 546 break; 547 case Opt_dmode: 548 if (match_octal(args, &option)) 549 return 0; 550 uopt->dmode = option & 0777; 551 break; 552 default: 553 printk(KERN_ERR "udf: bad mount option \"%s\" " 554 "or missing value\n", p); 555 return 0; 556 } 557 } 558 return 1; 559 } 560 561 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 562 { 563 struct udf_options uopt; 564 struct udf_sb_info *sbi = UDF_SB(sb); 565 int error = 0; 566 567 uopt.flags = sbi->s_flags; 568 uopt.uid = sbi->s_uid; 569 uopt.gid = sbi->s_gid; 570 uopt.umask = sbi->s_umask; 571 uopt.fmode = sbi->s_fmode; 572 uopt.dmode = sbi->s_dmode; 573 574 if (!udf_parse_options(options, &uopt, true)) 575 return -EINVAL; 576 577 write_lock(&sbi->s_cred_lock); 578 sbi->s_flags = uopt.flags; 579 sbi->s_uid = uopt.uid; 580 sbi->s_gid = uopt.gid; 581 sbi->s_umask = uopt.umask; 582 sbi->s_fmode = uopt.fmode; 583 sbi->s_dmode = uopt.dmode; 584 write_unlock(&sbi->s_cred_lock); 585 586 if (sbi->s_lvid_bh) { 587 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 588 if (write_rev > UDF_MAX_WRITE_VERSION) 589 *flags |= MS_RDONLY; 590 } 591 592 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 593 goto out_unlock; 594 595 if (*flags & MS_RDONLY) 596 udf_close_lvid(sb); 597 else 598 udf_open_lvid(sb); 599 600 out_unlock: 601 return error; 602 } 603 604 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 605 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 606 static loff_t udf_check_vsd(struct super_block *sb) 607 { 608 struct volStructDesc *vsd = NULL; 609 loff_t sector = 32768; 610 int sectorsize; 611 struct buffer_head *bh = NULL; 612 int nsr02 = 0; 613 int nsr03 = 0; 614 struct udf_sb_info *sbi; 615 616 sbi = UDF_SB(sb); 617 if (sb->s_blocksize < sizeof(struct volStructDesc)) 618 sectorsize = sizeof(struct volStructDesc); 619 else 620 sectorsize = sb->s_blocksize; 621 622 sector += (sbi->s_session << sb->s_blocksize_bits); 623 624 udf_debug("Starting at sector %u (%ld byte sectors)\n", 625 (unsigned int)(sector >> sb->s_blocksize_bits), 626 sb->s_blocksize); 627 /* Process the sequence (if applicable) */ 628 for (; !nsr02 && !nsr03; sector += sectorsize) { 629 /* Read a block */ 630 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 631 if (!bh) 632 break; 633 634 /* Look for ISO descriptors */ 635 vsd = (struct volStructDesc *)(bh->b_data + 636 (sector & (sb->s_blocksize - 1))); 637 638 if (vsd->stdIdent[0] == 0) { 639 brelse(bh); 640 break; 641 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 642 VSD_STD_ID_LEN)) { 643 switch (vsd->structType) { 644 case 0: 645 udf_debug("ISO9660 Boot Record found\n"); 646 break; 647 case 1: 648 udf_debug("ISO9660 Primary Volume Descriptor " 649 "found\n"); 650 break; 651 case 2: 652 udf_debug("ISO9660 Supplementary Volume " 653 "Descriptor found\n"); 654 break; 655 case 3: 656 udf_debug("ISO9660 Volume Partition Descriptor " 657 "found\n"); 658 break; 659 case 255: 660 udf_debug("ISO9660 Volume Descriptor Set " 661 "Terminator found\n"); 662 break; 663 default: 664 udf_debug("ISO9660 VRS (%u) found\n", 665 vsd->structType); 666 break; 667 } 668 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 669 VSD_STD_ID_LEN)) 670 ; /* nothing */ 671 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 672 VSD_STD_ID_LEN)) { 673 brelse(bh); 674 break; 675 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 676 VSD_STD_ID_LEN)) 677 nsr02 = sector; 678 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 679 VSD_STD_ID_LEN)) 680 nsr03 = sector; 681 brelse(bh); 682 } 683 684 if (nsr03) 685 return nsr03; 686 else if (nsr02) 687 return nsr02; 688 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 689 return -1; 690 else 691 return 0; 692 } 693 694 static int udf_find_fileset(struct super_block *sb, 695 struct kernel_lb_addr *fileset, 696 struct kernel_lb_addr *root) 697 { 698 struct buffer_head *bh = NULL; 699 long lastblock; 700 uint16_t ident; 701 struct udf_sb_info *sbi; 702 703 if (fileset->logicalBlockNum != 0xFFFFFFFF || 704 fileset->partitionReferenceNum != 0xFFFF) { 705 bh = udf_read_ptagged(sb, fileset, 0, &ident); 706 707 if (!bh) { 708 return 1; 709 } else if (ident != TAG_IDENT_FSD) { 710 brelse(bh); 711 return 1; 712 } 713 714 } 715 716 sbi = UDF_SB(sb); 717 if (!bh) { 718 /* Search backwards through the partitions */ 719 struct kernel_lb_addr newfileset; 720 721 /* --> cvg: FIXME - is it reasonable? */ 722 return 1; 723 724 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 725 (newfileset.partitionReferenceNum != 0xFFFF && 726 fileset->logicalBlockNum == 0xFFFFFFFF && 727 fileset->partitionReferenceNum == 0xFFFF); 728 newfileset.partitionReferenceNum--) { 729 lastblock = sbi->s_partmaps 730 [newfileset.partitionReferenceNum] 731 .s_partition_len; 732 newfileset.logicalBlockNum = 0; 733 734 do { 735 bh = udf_read_ptagged(sb, &newfileset, 0, 736 &ident); 737 if (!bh) { 738 newfileset.logicalBlockNum++; 739 continue; 740 } 741 742 switch (ident) { 743 case TAG_IDENT_SBD: 744 { 745 struct spaceBitmapDesc *sp; 746 sp = (struct spaceBitmapDesc *) 747 bh->b_data; 748 newfileset.logicalBlockNum += 1 + 749 ((le32_to_cpu(sp->numOfBytes) + 750 sizeof(struct spaceBitmapDesc) 751 - 1) >> sb->s_blocksize_bits); 752 brelse(bh); 753 break; 754 } 755 case TAG_IDENT_FSD: 756 *fileset = newfileset; 757 break; 758 default: 759 newfileset.logicalBlockNum++; 760 brelse(bh); 761 bh = NULL; 762 break; 763 } 764 } while (newfileset.logicalBlockNum < lastblock && 765 fileset->logicalBlockNum == 0xFFFFFFFF && 766 fileset->partitionReferenceNum == 0xFFFF); 767 } 768 } 769 770 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 771 fileset->partitionReferenceNum != 0xFFFF) && bh) { 772 udf_debug("Fileset at block=%d, partition=%d\n", 773 fileset->logicalBlockNum, 774 fileset->partitionReferenceNum); 775 776 sbi->s_partition = fileset->partitionReferenceNum; 777 udf_load_fileset(sb, bh, root); 778 brelse(bh); 779 return 0; 780 } 781 return 1; 782 } 783 784 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 785 { 786 struct primaryVolDesc *pvoldesc; 787 struct ustr *instr, *outstr; 788 struct buffer_head *bh; 789 uint16_t ident; 790 int ret = 1; 791 792 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 793 if (!instr) 794 return 1; 795 796 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 797 if (!outstr) 798 goto out1; 799 800 bh = udf_read_tagged(sb, block, block, &ident); 801 if (!bh) 802 goto out2; 803 804 BUG_ON(ident != TAG_IDENT_PVD); 805 806 pvoldesc = (struct primaryVolDesc *)bh->b_data; 807 808 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 809 pvoldesc->recordingDateAndTime)) { 810 #ifdef UDFFS_DEBUG 811 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 812 udf_debug("recording time %04u/%02u/%02u" 813 " %02u:%02u (%x)\n", 814 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 815 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 816 #endif 817 } 818 819 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 820 if (udf_CS0toUTF8(outstr, instr)) { 821 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 822 outstr->u_len > 31 ? 31 : outstr->u_len); 823 udf_debug("volIdent[] = '%s'\n", 824 UDF_SB(sb)->s_volume_ident); 825 } 826 827 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 828 if (udf_CS0toUTF8(outstr, instr)) 829 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 830 831 brelse(bh); 832 ret = 0; 833 out2: 834 kfree(outstr); 835 out1: 836 kfree(instr); 837 return ret; 838 } 839 840 static int udf_load_metadata_files(struct super_block *sb, int partition) 841 { 842 struct udf_sb_info *sbi = UDF_SB(sb); 843 struct udf_part_map *map; 844 struct udf_meta_data *mdata; 845 struct kernel_lb_addr addr; 846 int fe_error = 0; 847 848 map = &sbi->s_partmaps[partition]; 849 mdata = &map->s_type_specific.s_metadata; 850 851 /* metadata address */ 852 addr.logicalBlockNum = mdata->s_meta_file_loc; 853 addr.partitionReferenceNum = map->s_partition_num; 854 855 udf_debug("Metadata file location: block = %d part = %d\n", 856 addr.logicalBlockNum, addr.partitionReferenceNum); 857 858 mdata->s_metadata_fe = udf_iget(sb, &addr); 859 860 if (mdata->s_metadata_fe == NULL) { 861 udf_warning(sb, __func__, "metadata inode efe not found, " 862 "will try mirror inode."); 863 fe_error = 1; 864 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type != 865 ICBTAG_FLAG_AD_SHORT) { 866 udf_warning(sb, __func__, "metadata inode efe does not have " 867 "short allocation descriptors!"); 868 fe_error = 1; 869 iput(mdata->s_metadata_fe); 870 mdata->s_metadata_fe = NULL; 871 } 872 873 /* mirror file entry */ 874 addr.logicalBlockNum = mdata->s_mirror_file_loc; 875 addr.partitionReferenceNum = map->s_partition_num; 876 877 udf_debug("Mirror metadata file location: block = %d part = %d\n", 878 addr.logicalBlockNum, addr.partitionReferenceNum); 879 880 mdata->s_mirror_fe = udf_iget(sb, &addr); 881 882 if (mdata->s_mirror_fe == NULL) { 883 if (fe_error) { 884 udf_error(sb, __func__, "mirror inode efe not found " 885 "and metadata inode is missing too, exiting..."); 886 goto error_exit; 887 } else 888 udf_warning(sb, __func__, "mirror inode efe not found," 889 " but metadata inode is OK"); 890 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type != 891 ICBTAG_FLAG_AD_SHORT) { 892 udf_warning(sb, __func__, "mirror inode efe does not have " 893 "short allocation descriptors!"); 894 iput(mdata->s_mirror_fe); 895 mdata->s_mirror_fe = NULL; 896 if (fe_error) 897 goto error_exit; 898 } 899 900 /* 901 * bitmap file entry 902 * Note: 903 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 904 */ 905 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 906 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 907 addr.partitionReferenceNum = map->s_partition_num; 908 909 udf_debug("Bitmap file location: block = %d part = %d\n", 910 addr.logicalBlockNum, addr.partitionReferenceNum); 911 912 mdata->s_bitmap_fe = udf_iget(sb, &addr); 913 914 if (mdata->s_bitmap_fe == NULL) { 915 if (sb->s_flags & MS_RDONLY) 916 udf_warning(sb, __func__, "bitmap inode efe " 917 "not found but it's ok since the disc" 918 " is mounted read-only"); 919 else { 920 udf_error(sb, __func__, "bitmap inode efe not " 921 "found and attempted read-write mount"); 922 goto error_exit; 923 } 924 } 925 } 926 927 udf_debug("udf_load_metadata_files Ok\n"); 928 929 return 0; 930 931 error_exit: 932 return 1; 933 } 934 935 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 936 struct kernel_lb_addr *root) 937 { 938 struct fileSetDesc *fset; 939 940 fset = (struct fileSetDesc *)bh->b_data; 941 942 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 943 944 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 945 946 udf_debug("Rootdir at block=%d, partition=%d\n", 947 root->logicalBlockNum, root->partitionReferenceNum); 948 } 949 950 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 951 { 952 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 953 return DIV_ROUND_UP(map->s_partition_len + 954 (sizeof(struct spaceBitmapDesc) << 3), 955 sb->s_blocksize * 8); 956 } 957 958 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 959 { 960 struct udf_bitmap *bitmap; 961 int nr_groups; 962 int size; 963 964 nr_groups = udf_compute_nr_groups(sb, index); 965 size = sizeof(struct udf_bitmap) + 966 (sizeof(struct buffer_head *) * nr_groups); 967 968 if (size <= PAGE_SIZE) 969 bitmap = kzalloc(size, GFP_KERNEL); 970 else 971 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 972 973 if (bitmap == NULL) { 974 udf_error(sb, __func__, 975 "Unable to allocate space for bitmap " 976 "and %d buffer_head pointers", nr_groups); 977 return NULL; 978 } 979 980 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 981 bitmap->s_nr_groups = nr_groups; 982 return bitmap; 983 } 984 985 static int udf_fill_partdesc_info(struct super_block *sb, 986 struct partitionDesc *p, int p_index) 987 { 988 struct udf_part_map *map; 989 struct udf_sb_info *sbi = UDF_SB(sb); 990 struct partitionHeaderDesc *phd; 991 992 map = &sbi->s_partmaps[p_index]; 993 994 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 995 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 996 997 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 998 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 999 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1000 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1001 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1002 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1003 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1004 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1005 1006 udf_debug("Partition (%d type %x) starts at physical %d, " 1007 "block length %d\n", p_index, 1008 map->s_partition_type, map->s_partition_root, 1009 map->s_partition_len); 1010 1011 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1012 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1013 return 0; 1014 1015 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1016 if (phd->unallocSpaceTable.extLength) { 1017 struct kernel_lb_addr loc = { 1018 .logicalBlockNum = le32_to_cpu( 1019 phd->unallocSpaceTable.extPosition), 1020 .partitionReferenceNum = p_index, 1021 }; 1022 1023 map->s_uspace.s_table = udf_iget(sb, &loc); 1024 if (!map->s_uspace.s_table) { 1025 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1026 p_index); 1027 return 1; 1028 } 1029 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1030 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1031 p_index, map->s_uspace.s_table->i_ino); 1032 } 1033 1034 if (phd->unallocSpaceBitmap.extLength) { 1035 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1036 if (!bitmap) 1037 return 1; 1038 map->s_uspace.s_bitmap = bitmap; 1039 bitmap->s_extLength = le32_to_cpu( 1040 phd->unallocSpaceBitmap.extLength); 1041 bitmap->s_extPosition = le32_to_cpu( 1042 phd->unallocSpaceBitmap.extPosition); 1043 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1044 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index, 1045 bitmap->s_extPosition); 1046 } 1047 1048 if (phd->partitionIntegrityTable.extLength) 1049 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1050 1051 if (phd->freedSpaceTable.extLength) { 1052 struct kernel_lb_addr loc = { 1053 .logicalBlockNum = le32_to_cpu( 1054 phd->freedSpaceTable.extPosition), 1055 .partitionReferenceNum = p_index, 1056 }; 1057 1058 map->s_fspace.s_table = udf_iget(sb, &loc); 1059 if (!map->s_fspace.s_table) { 1060 udf_debug("cannot load freedSpaceTable (part %d)\n", 1061 p_index); 1062 return 1; 1063 } 1064 1065 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1066 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1067 p_index, map->s_fspace.s_table->i_ino); 1068 } 1069 1070 if (phd->freedSpaceBitmap.extLength) { 1071 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1072 if (!bitmap) 1073 return 1; 1074 map->s_fspace.s_bitmap = bitmap; 1075 bitmap->s_extLength = le32_to_cpu( 1076 phd->freedSpaceBitmap.extLength); 1077 bitmap->s_extPosition = le32_to_cpu( 1078 phd->freedSpaceBitmap.extPosition); 1079 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1080 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index, 1081 bitmap->s_extPosition); 1082 } 1083 return 0; 1084 } 1085 1086 static void udf_find_vat_block(struct super_block *sb, int p_index, 1087 int type1_index, sector_t start_block) 1088 { 1089 struct udf_sb_info *sbi = UDF_SB(sb); 1090 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1091 sector_t vat_block; 1092 struct kernel_lb_addr ino; 1093 1094 /* 1095 * VAT file entry is in the last recorded block. Some broken disks have 1096 * it a few blocks before so try a bit harder... 1097 */ 1098 ino.partitionReferenceNum = type1_index; 1099 for (vat_block = start_block; 1100 vat_block >= map->s_partition_root && 1101 vat_block >= start_block - 3 && 1102 !sbi->s_vat_inode; vat_block--) { 1103 ino.logicalBlockNum = vat_block - map->s_partition_root; 1104 sbi->s_vat_inode = udf_iget(sb, &ino); 1105 } 1106 } 1107 1108 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1109 { 1110 struct udf_sb_info *sbi = UDF_SB(sb); 1111 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1112 struct buffer_head *bh = NULL; 1113 struct udf_inode_info *vati; 1114 uint32_t pos; 1115 struct virtualAllocationTable20 *vat20; 1116 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1117 1118 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1119 if (!sbi->s_vat_inode && 1120 sbi->s_last_block != blocks - 1) { 1121 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the" 1122 " last recorded block (%lu), retrying with the last " 1123 "block of the device (%lu).\n", 1124 (unsigned long)sbi->s_last_block, 1125 (unsigned long)blocks - 1); 1126 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1127 } 1128 if (!sbi->s_vat_inode) 1129 return 1; 1130 1131 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1132 map->s_type_specific.s_virtual.s_start_offset = 0; 1133 map->s_type_specific.s_virtual.s_num_entries = 1134 (sbi->s_vat_inode->i_size - 36) >> 2; 1135 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1136 vati = UDF_I(sbi->s_vat_inode); 1137 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1138 pos = udf_block_map(sbi->s_vat_inode, 0); 1139 bh = sb_bread(sb, pos); 1140 if (!bh) 1141 return 1; 1142 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1143 } else { 1144 vat20 = (struct virtualAllocationTable20 *) 1145 vati->i_ext.i_data; 1146 } 1147 1148 map->s_type_specific.s_virtual.s_start_offset = 1149 le16_to_cpu(vat20->lengthHeader); 1150 map->s_type_specific.s_virtual.s_num_entries = 1151 (sbi->s_vat_inode->i_size - 1152 map->s_type_specific.s_virtual. 1153 s_start_offset) >> 2; 1154 brelse(bh); 1155 } 1156 return 0; 1157 } 1158 1159 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1160 { 1161 struct buffer_head *bh; 1162 struct partitionDesc *p; 1163 struct udf_part_map *map; 1164 struct udf_sb_info *sbi = UDF_SB(sb); 1165 int i, type1_idx; 1166 uint16_t partitionNumber; 1167 uint16_t ident; 1168 int ret = 0; 1169 1170 bh = udf_read_tagged(sb, block, block, &ident); 1171 if (!bh) 1172 return 1; 1173 if (ident != TAG_IDENT_PD) 1174 goto out_bh; 1175 1176 p = (struct partitionDesc *)bh->b_data; 1177 partitionNumber = le16_to_cpu(p->partitionNumber); 1178 1179 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1180 for (i = 0; i < sbi->s_partitions; i++) { 1181 map = &sbi->s_partmaps[i]; 1182 udf_debug("Searching map: (%d == %d)\n", 1183 map->s_partition_num, partitionNumber); 1184 if (map->s_partition_num == partitionNumber && 1185 (map->s_partition_type == UDF_TYPE1_MAP15 || 1186 map->s_partition_type == UDF_SPARABLE_MAP15)) 1187 break; 1188 } 1189 1190 if (i >= sbi->s_partitions) { 1191 udf_debug("Partition (%d) not found in partition map\n", 1192 partitionNumber); 1193 goto out_bh; 1194 } 1195 1196 ret = udf_fill_partdesc_info(sb, p, i); 1197 1198 /* 1199 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1200 * PHYSICAL partitions are already set up 1201 */ 1202 type1_idx = i; 1203 for (i = 0; i < sbi->s_partitions; i++) { 1204 map = &sbi->s_partmaps[i]; 1205 1206 if (map->s_partition_num == partitionNumber && 1207 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1208 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1209 map->s_partition_type == UDF_METADATA_MAP25)) 1210 break; 1211 } 1212 1213 if (i >= sbi->s_partitions) 1214 goto out_bh; 1215 1216 ret = udf_fill_partdesc_info(sb, p, i); 1217 if (ret) 1218 goto out_bh; 1219 1220 if (map->s_partition_type == UDF_METADATA_MAP25) { 1221 ret = udf_load_metadata_files(sb, i); 1222 if (ret) { 1223 printk(KERN_ERR "UDF-fs: error loading MetaData " 1224 "partition map %d\n", i); 1225 goto out_bh; 1226 } 1227 } else { 1228 ret = udf_load_vat(sb, i, type1_idx); 1229 if (ret) 1230 goto out_bh; 1231 /* 1232 * Mark filesystem read-only if we have a partition with 1233 * virtual map since we don't handle writing to it (we 1234 * overwrite blocks instead of relocating them). 1235 */ 1236 sb->s_flags |= MS_RDONLY; 1237 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only " 1238 "because writing to pseudooverwrite partition is " 1239 "not implemented.\n"); 1240 } 1241 out_bh: 1242 /* In case loading failed, we handle cleanup in udf_fill_super */ 1243 brelse(bh); 1244 return ret; 1245 } 1246 1247 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1248 struct kernel_lb_addr *fileset) 1249 { 1250 struct logicalVolDesc *lvd; 1251 int i, j, offset; 1252 uint8_t type; 1253 struct udf_sb_info *sbi = UDF_SB(sb); 1254 struct genericPartitionMap *gpm; 1255 uint16_t ident; 1256 struct buffer_head *bh; 1257 int ret = 0; 1258 1259 bh = udf_read_tagged(sb, block, block, &ident); 1260 if (!bh) 1261 return 1; 1262 BUG_ON(ident != TAG_IDENT_LVD); 1263 lvd = (struct logicalVolDesc *)bh->b_data; 1264 1265 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1266 if (i != 0) { 1267 ret = i; 1268 goto out_bh; 1269 } 1270 1271 for (i = 0, offset = 0; 1272 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1273 i++, offset += gpm->partitionMapLength) { 1274 struct udf_part_map *map = &sbi->s_partmaps[i]; 1275 gpm = (struct genericPartitionMap *) 1276 &(lvd->partitionMaps[offset]); 1277 type = gpm->partitionMapType; 1278 if (type == 1) { 1279 struct genericPartitionMap1 *gpm1 = 1280 (struct genericPartitionMap1 *)gpm; 1281 map->s_partition_type = UDF_TYPE1_MAP15; 1282 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1283 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1284 map->s_partition_func = NULL; 1285 } else if (type == 2) { 1286 struct udfPartitionMap2 *upm2 = 1287 (struct udfPartitionMap2 *)gpm; 1288 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1289 strlen(UDF_ID_VIRTUAL))) { 1290 u16 suf = 1291 le16_to_cpu(((__le16 *)upm2->partIdent. 1292 identSuffix)[0]); 1293 if (suf < 0x0200) { 1294 map->s_partition_type = 1295 UDF_VIRTUAL_MAP15; 1296 map->s_partition_func = 1297 udf_get_pblock_virt15; 1298 } else { 1299 map->s_partition_type = 1300 UDF_VIRTUAL_MAP20; 1301 map->s_partition_func = 1302 udf_get_pblock_virt20; 1303 } 1304 } else if (!strncmp(upm2->partIdent.ident, 1305 UDF_ID_SPARABLE, 1306 strlen(UDF_ID_SPARABLE))) { 1307 uint32_t loc; 1308 struct sparingTable *st; 1309 struct sparablePartitionMap *spm = 1310 (struct sparablePartitionMap *)gpm; 1311 1312 map->s_partition_type = UDF_SPARABLE_MAP15; 1313 map->s_type_specific.s_sparing.s_packet_len = 1314 le16_to_cpu(spm->packetLength); 1315 for (j = 0; j < spm->numSparingTables; j++) { 1316 struct buffer_head *bh2; 1317 1318 loc = le32_to_cpu( 1319 spm->locSparingTable[j]); 1320 bh2 = udf_read_tagged(sb, loc, loc, 1321 &ident); 1322 map->s_type_specific.s_sparing. 1323 s_spar_map[j] = bh2; 1324 1325 if (bh2 == NULL) 1326 continue; 1327 1328 st = (struct sparingTable *)bh2->b_data; 1329 if (ident != 0 || strncmp( 1330 st->sparingIdent.ident, 1331 UDF_ID_SPARING, 1332 strlen(UDF_ID_SPARING))) { 1333 brelse(bh2); 1334 map->s_type_specific.s_sparing. 1335 s_spar_map[j] = NULL; 1336 } 1337 } 1338 map->s_partition_func = udf_get_pblock_spar15; 1339 } else if (!strncmp(upm2->partIdent.ident, 1340 UDF_ID_METADATA, 1341 strlen(UDF_ID_METADATA))) { 1342 struct udf_meta_data *mdata = 1343 &map->s_type_specific.s_metadata; 1344 struct metadataPartitionMap *mdm = 1345 (struct metadataPartitionMap *) 1346 &(lvd->partitionMaps[offset]); 1347 udf_debug("Parsing Logical vol part %d " 1348 "type %d id=%s\n", i, type, 1349 UDF_ID_METADATA); 1350 1351 map->s_partition_type = UDF_METADATA_MAP25; 1352 map->s_partition_func = udf_get_pblock_meta25; 1353 1354 mdata->s_meta_file_loc = 1355 le32_to_cpu(mdm->metadataFileLoc); 1356 mdata->s_mirror_file_loc = 1357 le32_to_cpu(mdm->metadataMirrorFileLoc); 1358 mdata->s_bitmap_file_loc = 1359 le32_to_cpu(mdm->metadataBitmapFileLoc); 1360 mdata->s_alloc_unit_size = 1361 le32_to_cpu(mdm->allocUnitSize); 1362 mdata->s_align_unit_size = 1363 le16_to_cpu(mdm->alignUnitSize); 1364 mdata->s_dup_md_flag = 1365 mdm->flags & 0x01; 1366 1367 udf_debug("Metadata Ident suffix=0x%x\n", 1368 (le16_to_cpu( 1369 ((__le16 *) 1370 mdm->partIdent.identSuffix)[0]))); 1371 udf_debug("Metadata part num=%d\n", 1372 le16_to_cpu(mdm->partitionNum)); 1373 udf_debug("Metadata part alloc unit size=%d\n", 1374 le32_to_cpu(mdm->allocUnitSize)); 1375 udf_debug("Metadata file loc=%d\n", 1376 le32_to_cpu(mdm->metadataFileLoc)); 1377 udf_debug("Mirror file loc=%d\n", 1378 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1379 udf_debug("Bitmap file loc=%d\n", 1380 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1381 udf_debug("Duplicate Flag: %d %d\n", 1382 mdata->s_dup_md_flag, mdm->flags); 1383 } else { 1384 udf_debug("Unknown ident: %s\n", 1385 upm2->partIdent.ident); 1386 continue; 1387 } 1388 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1389 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1390 } 1391 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1392 i, map->s_partition_num, type, 1393 map->s_volumeseqnum); 1394 } 1395 1396 if (fileset) { 1397 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1398 1399 *fileset = lelb_to_cpu(la->extLocation); 1400 udf_debug("FileSet found in LogicalVolDesc at block=%d, " 1401 "partition=%d\n", fileset->logicalBlockNum, 1402 fileset->partitionReferenceNum); 1403 } 1404 if (lvd->integritySeqExt.extLength) 1405 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1406 1407 out_bh: 1408 brelse(bh); 1409 return ret; 1410 } 1411 1412 /* 1413 * udf_load_logicalvolint 1414 * 1415 */ 1416 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1417 { 1418 struct buffer_head *bh = NULL; 1419 uint16_t ident; 1420 struct udf_sb_info *sbi = UDF_SB(sb); 1421 struct logicalVolIntegrityDesc *lvid; 1422 1423 while (loc.extLength > 0 && 1424 (bh = udf_read_tagged(sb, loc.extLocation, 1425 loc.extLocation, &ident)) && 1426 ident == TAG_IDENT_LVID) { 1427 sbi->s_lvid_bh = bh; 1428 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1429 1430 if (lvid->nextIntegrityExt.extLength) 1431 udf_load_logicalvolint(sb, 1432 leea_to_cpu(lvid->nextIntegrityExt)); 1433 1434 if (sbi->s_lvid_bh != bh) 1435 brelse(bh); 1436 loc.extLength -= sb->s_blocksize; 1437 loc.extLocation++; 1438 } 1439 if (sbi->s_lvid_bh != bh) 1440 brelse(bh); 1441 } 1442 1443 /* 1444 * udf_process_sequence 1445 * 1446 * PURPOSE 1447 * Process a main/reserve volume descriptor sequence. 1448 * 1449 * PRE-CONDITIONS 1450 * sb Pointer to _locked_ superblock. 1451 * block First block of first extent of the sequence. 1452 * lastblock Lastblock of first extent of the sequence. 1453 * 1454 * HISTORY 1455 * July 1, 1997 - Andrew E. Mileski 1456 * Written, tested, and released. 1457 */ 1458 static noinline int udf_process_sequence(struct super_block *sb, long block, 1459 long lastblock, struct kernel_lb_addr *fileset) 1460 { 1461 struct buffer_head *bh = NULL; 1462 struct udf_vds_record vds[VDS_POS_LENGTH]; 1463 struct udf_vds_record *curr; 1464 struct generic_desc *gd; 1465 struct volDescPtr *vdp; 1466 int done = 0; 1467 uint32_t vdsn; 1468 uint16_t ident; 1469 long next_s = 0, next_e = 0; 1470 1471 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1472 1473 /* 1474 * Read the main descriptor sequence and find which descriptors 1475 * are in it. 1476 */ 1477 for (; (!done && block <= lastblock); block++) { 1478 1479 bh = udf_read_tagged(sb, block, block, &ident); 1480 if (!bh) { 1481 printk(KERN_ERR "udf: Block %Lu of volume descriptor " 1482 "sequence is corrupted or we could not read " 1483 "it.\n", (unsigned long long)block); 1484 return 1; 1485 } 1486 1487 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1488 gd = (struct generic_desc *)bh->b_data; 1489 vdsn = le32_to_cpu(gd->volDescSeqNum); 1490 switch (ident) { 1491 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1492 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1493 if (vdsn >= curr->volDescSeqNum) { 1494 curr->volDescSeqNum = vdsn; 1495 curr->block = block; 1496 } 1497 break; 1498 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1499 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1500 if (vdsn >= curr->volDescSeqNum) { 1501 curr->volDescSeqNum = vdsn; 1502 curr->block = block; 1503 1504 vdp = (struct volDescPtr *)bh->b_data; 1505 next_s = le32_to_cpu( 1506 vdp->nextVolDescSeqExt.extLocation); 1507 next_e = le32_to_cpu( 1508 vdp->nextVolDescSeqExt.extLength); 1509 next_e = next_e >> sb->s_blocksize_bits; 1510 next_e += next_s; 1511 } 1512 break; 1513 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1514 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1515 if (vdsn >= curr->volDescSeqNum) { 1516 curr->volDescSeqNum = vdsn; 1517 curr->block = block; 1518 } 1519 break; 1520 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1521 curr = &vds[VDS_POS_PARTITION_DESC]; 1522 if (!curr->block) 1523 curr->block = block; 1524 break; 1525 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1526 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1527 if (vdsn >= curr->volDescSeqNum) { 1528 curr->volDescSeqNum = vdsn; 1529 curr->block = block; 1530 } 1531 break; 1532 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1533 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1534 if (vdsn >= curr->volDescSeqNum) { 1535 curr->volDescSeqNum = vdsn; 1536 curr->block = block; 1537 } 1538 break; 1539 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1540 vds[VDS_POS_TERMINATING_DESC].block = block; 1541 if (next_e) { 1542 block = next_s; 1543 lastblock = next_e; 1544 next_s = next_e = 0; 1545 } else 1546 done = 1; 1547 break; 1548 } 1549 brelse(bh); 1550 } 1551 /* 1552 * Now read interesting descriptors again and process them 1553 * in a suitable order 1554 */ 1555 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1556 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n"); 1557 return 1; 1558 } 1559 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1560 return 1; 1561 1562 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1563 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1564 return 1; 1565 1566 if (vds[VDS_POS_PARTITION_DESC].block) { 1567 /* 1568 * We rescan the whole descriptor sequence to find 1569 * partition descriptor blocks and process them. 1570 */ 1571 for (block = vds[VDS_POS_PARTITION_DESC].block; 1572 block < vds[VDS_POS_TERMINATING_DESC].block; 1573 block++) 1574 if (udf_load_partdesc(sb, block)) 1575 return 1; 1576 } 1577 1578 return 0; 1579 } 1580 1581 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1582 struct kernel_lb_addr *fileset) 1583 { 1584 struct anchorVolDescPtr *anchor; 1585 long main_s, main_e, reserve_s, reserve_e; 1586 1587 anchor = (struct anchorVolDescPtr *)bh->b_data; 1588 1589 /* Locate the main sequence */ 1590 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1591 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1592 main_e = main_e >> sb->s_blocksize_bits; 1593 main_e += main_s; 1594 1595 /* Locate the reserve sequence */ 1596 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1597 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1598 reserve_e = reserve_e >> sb->s_blocksize_bits; 1599 reserve_e += reserve_s; 1600 1601 /* Process the main & reserve sequences */ 1602 /* responsible for finding the PartitionDesc(s) */ 1603 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1604 return 1; 1605 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1606 } 1607 1608 /* 1609 * Check whether there is an anchor block in the given block and 1610 * load Volume Descriptor Sequence if so. 1611 */ 1612 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1613 struct kernel_lb_addr *fileset) 1614 { 1615 struct buffer_head *bh; 1616 uint16_t ident; 1617 int ret; 1618 1619 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1620 udf_fixed_to_variable(block) >= 1621 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1622 return 0; 1623 1624 bh = udf_read_tagged(sb, block, block, &ident); 1625 if (!bh) 1626 return 0; 1627 if (ident != TAG_IDENT_AVDP) { 1628 brelse(bh); 1629 return 0; 1630 } 1631 ret = udf_load_sequence(sb, bh, fileset); 1632 brelse(bh); 1633 return ret; 1634 } 1635 1636 /* Search for an anchor volume descriptor pointer */ 1637 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1638 struct kernel_lb_addr *fileset) 1639 { 1640 sector_t last[6]; 1641 int i; 1642 struct udf_sb_info *sbi = UDF_SB(sb); 1643 int last_count = 0; 1644 1645 /* First try user provided anchor */ 1646 if (sbi->s_anchor) { 1647 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1648 return lastblock; 1649 } 1650 /* 1651 * according to spec, anchor is in either: 1652 * block 256 1653 * lastblock-256 1654 * lastblock 1655 * however, if the disc isn't closed, it could be 512. 1656 */ 1657 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1658 return lastblock; 1659 /* 1660 * The trouble is which block is the last one. Drives often misreport 1661 * this so we try various possibilities. 1662 */ 1663 last[last_count++] = lastblock; 1664 if (lastblock >= 1) 1665 last[last_count++] = lastblock - 1; 1666 last[last_count++] = lastblock + 1; 1667 if (lastblock >= 2) 1668 last[last_count++] = lastblock - 2; 1669 if (lastblock >= 150) 1670 last[last_count++] = lastblock - 150; 1671 if (lastblock >= 152) 1672 last[last_count++] = lastblock - 152; 1673 1674 for (i = 0; i < last_count; i++) { 1675 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1676 sb->s_blocksize_bits) 1677 continue; 1678 if (udf_check_anchor_block(sb, last[i], fileset)) 1679 return last[i]; 1680 if (last[i] < 256) 1681 continue; 1682 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1683 return last[i]; 1684 } 1685 1686 /* Finally try block 512 in case media is open */ 1687 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1688 return last[0]; 1689 return 0; 1690 } 1691 1692 /* 1693 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1694 * area specified by it. The function expects sbi->s_lastblock to be the last 1695 * block on the media. 1696 * 1697 * Return 1 if ok, 0 if not found. 1698 * 1699 */ 1700 static int udf_find_anchor(struct super_block *sb, 1701 struct kernel_lb_addr *fileset) 1702 { 1703 sector_t lastblock; 1704 struct udf_sb_info *sbi = UDF_SB(sb); 1705 1706 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1707 if (lastblock) 1708 goto out; 1709 1710 /* No anchor found? Try VARCONV conversion of block numbers */ 1711 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1712 /* Firstly, we try to not convert number of the last block */ 1713 lastblock = udf_scan_anchors(sb, 1714 udf_variable_to_fixed(sbi->s_last_block), 1715 fileset); 1716 if (lastblock) 1717 goto out; 1718 1719 /* Secondly, we try with converted number of the last block */ 1720 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1721 if (!lastblock) { 1722 /* VARCONV didn't help. Clear it. */ 1723 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1724 return 0; 1725 } 1726 out: 1727 sbi->s_last_block = lastblock; 1728 return 1; 1729 } 1730 1731 /* 1732 * Check Volume Structure Descriptor, find Anchor block and load Volume 1733 * Descriptor Sequence 1734 */ 1735 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1736 int silent, struct kernel_lb_addr *fileset) 1737 { 1738 struct udf_sb_info *sbi = UDF_SB(sb); 1739 loff_t nsr_off; 1740 1741 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1742 if (!silent) 1743 printk(KERN_WARNING "UDF-fs: Bad block size\n"); 1744 return 0; 1745 } 1746 sbi->s_last_block = uopt->lastblock; 1747 if (!uopt->novrs) { 1748 /* Check that it is NSR02 compliant */ 1749 nsr_off = udf_check_vsd(sb); 1750 if (!nsr_off) { 1751 if (!silent) 1752 printk(KERN_WARNING "UDF-fs: No VRS found\n"); 1753 return 0; 1754 } 1755 if (nsr_off == -1) 1756 udf_debug("Failed to read byte 32768. Assuming open " 1757 "disc. Skipping validity check\n"); 1758 if (!sbi->s_last_block) 1759 sbi->s_last_block = udf_get_last_block(sb); 1760 } else { 1761 udf_debug("Validity check skipped because of novrs option\n"); 1762 } 1763 1764 /* Look for anchor block and load Volume Descriptor Sequence */ 1765 sbi->s_anchor = uopt->anchor; 1766 if (!udf_find_anchor(sb, fileset)) { 1767 if (!silent) 1768 printk(KERN_WARNING "UDF-fs: No anchor found\n"); 1769 return 0; 1770 } 1771 return 1; 1772 } 1773 1774 static void udf_open_lvid(struct super_block *sb) 1775 { 1776 struct udf_sb_info *sbi = UDF_SB(sb); 1777 struct buffer_head *bh = sbi->s_lvid_bh; 1778 struct logicalVolIntegrityDesc *lvid; 1779 struct logicalVolIntegrityDescImpUse *lvidiu; 1780 1781 if (!bh) 1782 return; 1783 1784 mutex_lock(&sbi->s_alloc_mutex); 1785 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1786 lvidiu = udf_sb_lvidiu(sbi); 1787 1788 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1789 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1790 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1791 CURRENT_TIME); 1792 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1793 1794 lvid->descTag.descCRC = cpu_to_le16( 1795 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1796 le16_to_cpu(lvid->descTag.descCRCLength))); 1797 1798 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1799 mark_buffer_dirty(bh); 1800 sbi->s_lvid_dirty = 0; 1801 mutex_unlock(&sbi->s_alloc_mutex); 1802 } 1803 1804 static void udf_close_lvid(struct super_block *sb) 1805 { 1806 struct udf_sb_info *sbi = UDF_SB(sb); 1807 struct buffer_head *bh = sbi->s_lvid_bh; 1808 struct logicalVolIntegrityDesc *lvid; 1809 struct logicalVolIntegrityDescImpUse *lvidiu; 1810 1811 if (!bh) 1812 return; 1813 1814 mutex_lock(&sbi->s_alloc_mutex); 1815 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1816 lvidiu = udf_sb_lvidiu(sbi); 1817 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1818 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1819 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1820 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1821 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1822 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1823 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1824 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1825 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1826 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1827 1828 lvid->descTag.descCRC = cpu_to_le16( 1829 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1830 le16_to_cpu(lvid->descTag.descCRCLength))); 1831 1832 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1833 mark_buffer_dirty(bh); 1834 sbi->s_lvid_dirty = 0; 1835 mutex_unlock(&sbi->s_alloc_mutex); 1836 } 1837 1838 u64 lvid_get_unique_id(struct super_block *sb) 1839 { 1840 struct buffer_head *bh; 1841 struct udf_sb_info *sbi = UDF_SB(sb); 1842 struct logicalVolIntegrityDesc *lvid; 1843 struct logicalVolHeaderDesc *lvhd; 1844 u64 uniqueID; 1845 u64 ret; 1846 1847 bh = sbi->s_lvid_bh; 1848 if (!bh) 1849 return 0; 1850 1851 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1852 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1853 1854 mutex_lock(&sbi->s_alloc_mutex); 1855 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1856 if (!(++uniqueID & 0xFFFFFFFF)) 1857 uniqueID += 16; 1858 lvhd->uniqueID = cpu_to_le64(uniqueID); 1859 mutex_unlock(&sbi->s_alloc_mutex); 1860 mark_buffer_dirty(bh); 1861 1862 return ret; 1863 } 1864 1865 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1866 { 1867 int i; 1868 int nr_groups = bitmap->s_nr_groups; 1869 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1870 nr_groups); 1871 1872 for (i = 0; i < nr_groups; i++) 1873 if (bitmap->s_block_bitmap[i]) 1874 brelse(bitmap->s_block_bitmap[i]); 1875 1876 if (size <= PAGE_SIZE) 1877 kfree(bitmap); 1878 else 1879 vfree(bitmap); 1880 } 1881 1882 static void udf_free_partition(struct udf_part_map *map) 1883 { 1884 int i; 1885 struct udf_meta_data *mdata; 1886 1887 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1888 iput(map->s_uspace.s_table); 1889 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1890 iput(map->s_fspace.s_table); 1891 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1892 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1893 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1894 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1895 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1896 for (i = 0; i < 4; i++) 1897 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1898 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1899 mdata = &map->s_type_specific.s_metadata; 1900 iput(mdata->s_metadata_fe); 1901 mdata->s_metadata_fe = NULL; 1902 1903 iput(mdata->s_mirror_fe); 1904 mdata->s_mirror_fe = NULL; 1905 1906 iput(mdata->s_bitmap_fe); 1907 mdata->s_bitmap_fe = NULL; 1908 } 1909 } 1910 1911 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1912 { 1913 int i; 1914 int ret; 1915 struct inode *inode = NULL; 1916 struct udf_options uopt; 1917 struct kernel_lb_addr rootdir, fileset; 1918 struct udf_sb_info *sbi; 1919 1920 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1921 uopt.uid = -1; 1922 uopt.gid = -1; 1923 uopt.umask = 0; 1924 uopt.fmode = UDF_INVALID_MODE; 1925 uopt.dmode = UDF_INVALID_MODE; 1926 1927 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1928 if (!sbi) 1929 return -ENOMEM; 1930 1931 sb->s_fs_info = sbi; 1932 1933 mutex_init(&sbi->s_alloc_mutex); 1934 1935 if (!udf_parse_options((char *)options, &uopt, false)) 1936 goto error_out; 1937 1938 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1939 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1940 udf_error(sb, "udf_read_super", 1941 "utf8 cannot be combined with iocharset\n"); 1942 goto error_out; 1943 } 1944 #ifdef CONFIG_UDF_NLS 1945 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1946 uopt.nls_map = load_nls_default(); 1947 if (!uopt.nls_map) 1948 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1949 else 1950 udf_debug("Using default NLS map\n"); 1951 } 1952 #endif 1953 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1954 uopt.flags |= (1 << UDF_FLAG_UTF8); 1955 1956 fileset.logicalBlockNum = 0xFFFFFFFF; 1957 fileset.partitionReferenceNum = 0xFFFF; 1958 1959 sbi->s_flags = uopt.flags; 1960 sbi->s_uid = uopt.uid; 1961 sbi->s_gid = uopt.gid; 1962 sbi->s_umask = uopt.umask; 1963 sbi->s_fmode = uopt.fmode; 1964 sbi->s_dmode = uopt.dmode; 1965 sbi->s_nls_map = uopt.nls_map; 1966 rwlock_init(&sbi->s_cred_lock); 1967 1968 if (uopt.session == 0xFFFFFFFF) 1969 sbi->s_session = udf_get_last_session(sb); 1970 else 1971 sbi->s_session = uopt.session; 1972 1973 udf_debug("Multi-session=%d\n", sbi->s_session); 1974 1975 /* Fill in the rest of the superblock */ 1976 sb->s_op = &udf_sb_ops; 1977 sb->s_export_op = &udf_export_ops; 1978 1979 sb->s_dirt = 0; 1980 sb->s_magic = UDF_SUPER_MAGIC; 1981 sb->s_time_gran = 1000; 1982 1983 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1984 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1985 } else { 1986 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 1987 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1988 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 1989 if (!silent) 1990 printk(KERN_NOTICE 1991 "UDF-fs: Rescanning with blocksize " 1992 "%d\n", UDF_DEFAULT_BLOCKSIZE); 1993 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 1994 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1995 } 1996 } 1997 if (!ret) { 1998 printk(KERN_WARNING "UDF-fs: No partition found (1)\n"); 1999 goto error_out; 2000 } 2001 2002 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2003 2004 if (sbi->s_lvid_bh) { 2005 struct logicalVolIntegrityDescImpUse *lvidiu = 2006 udf_sb_lvidiu(sbi); 2007 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2008 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2009 /* uint16_t maxUDFWriteRev = 2010 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 2011 2012 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2013 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x " 2014 "(max is %x)\n", 2015 le16_to_cpu(lvidiu->minUDFReadRev), 2016 UDF_MAX_READ_VERSION); 2017 goto error_out; 2018 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 2019 sb->s_flags |= MS_RDONLY; 2020 2021 sbi->s_udfrev = minUDFWriteRev; 2022 2023 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2024 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2025 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2026 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2027 } 2028 2029 if (!sbi->s_partitions) { 2030 printk(KERN_WARNING "UDF-fs: No partition found (2)\n"); 2031 goto error_out; 2032 } 2033 2034 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2035 UDF_PART_FLAG_READ_ONLY) { 2036 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; " 2037 "forcing readonly mount\n"); 2038 sb->s_flags |= MS_RDONLY; 2039 } 2040 2041 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2042 printk(KERN_WARNING "UDF-fs: No fileset found\n"); 2043 goto error_out; 2044 } 2045 2046 if (!silent) { 2047 struct timestamp ts; 2048 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2049 udf_info("UDF: Mounting volume '%s', " 2050 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2051 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day, 2052 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2053 } 2054 if (!(sb->s_flags & MS_RDONLY)) 2055 udf_open_lvid(sb); 2056 2057 /* Assign the root inode */ 2058 /* assign inodes by physical block number */ 2059 /* perhaps it's not extensible enough, but for now ... */ 2060 inode = udf_iget(sb, &rootdir); 2061 if (!inode) { 2062 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, " 2063 "partition=%d\n", 2064 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2065 goto error_out; 2066 } 2067 2068 /* Allocate a dentry for the root inode */ 2069 sb->s_root = d_alloc_root(inode); 2070 if (!sb->s_root) { 2071 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n"); 2072 iput(inode); 2073 goto error_out; 2074 } 2075 sb->s_maxbytes = MAX_LFS_FILESIZE; 2076 return 0; 2077 2078 error_out: 2079 if (sbi->s_vat_inode) 2080 iput(sbi->s_vat_inode); 2081 if (sbi->s_partitions) 2082 for (i = 0; i < sbi->s_partitions; i++) 2083 udf_free_partition(&sbi->s_partmaps[i]); 2084 #ifdef CONFIG_UDF_NLS 2085 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2086 unload_nls(sbi->s_nls_map); 2087 #endif 2088 if (!(sb->s_flags & MS_RDONLY)) 2089 udf_close_lvid(sb); 2090 brelse(sbi->s_lvid_bh); 2091 2092 kfree(sbi->s_partmaps); 2093 kfree(sbi); 2094 sb->s_fs_info = NULL; 2095 2096 return -EINVAL; 2097 } 2098 2099 static void udf_error(struct super_block *sb, const char *function, 2100 const char *fmt, ...) 2101 { 2102 va_list args; 2103 2104 if (!(sb->s_flags & MS_RDONLY)) { 2105 /* mark sb error */ 2106 sb->s_dirt = 1; 2107 } 2108 va_start(args, fmt); 2109 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2110 va_end(args); 2111 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n", 2112 sb->s_id, function, error_buf); 2113 } 2114 2115 void udf_warning(struct super_block *sb, const char *function, 2116 const char *fmt, ...) 2117 { 2118 va_list args; 2119 2120 va_start(args, fmt); 2121 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2122 va_end(args); 2123 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n", 2124 sb->s_id, function, error_buf); 2125 } 2126 2127 static void udf_put_super(struct super_block *sb) 2128 { 2129 int i; 2130 struct udf_sb_info *sbi; 2131 2132 sbi = UDF_SB(sb); 2133 2134 if (sbi->s_vat_inode) 2135 iput(sbi->s_vat_inode); 2136 if (sbi->s_partitions) 2137 for (i = 0; i < sbi->s_partitions; i++) 2138 udf_free_partition(&sbi->s_partmaps[i]); 2139 #ifdef CONFIG_UDF_NLS 2140 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2141 unload_nls(sbi->s_nls_map); 2142 #endif 2143 if (!(sb->s_flags & MS_RDONLY)) 2144 udf_close_lvid(sb); 2145 brelse(sbi->s_lvid_bh); 2146 kfree(sbi->s_partmaps); 2147 kfree(sb->s_fs_info); 2148 sb->s_fs_info = NULL; 2149 } 2150 2151 static int udf_sync_fs(struct super_block *sb, int wait) 2152 { 2153 struct udf_sb_info *sbi = UDF_SB(sb); 2154 2155 mutex_lock(&sbi->s_alloc_mutex); 2156 if (sbi->s_lvid_dirty) { 2157 /* 2158 * Blockdevice will be synced later so we don't have to submit 2159 * the buffer for IO 2160 */ 2161 mark_buffer_dirty(sbi->s_lvid_bh); 2162 sb->s_dirt = 0; 2163 sbi->s_lvid_dirty = 0; 2164 } 2165 mutex_unlock(&sbi->s_alloc_mutex); 2166 2167 return 0; 2168 } 2169 2170 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2171 { 2172 struct super_block *sb = dentry->d_sb; 2173 struct udf_sb_info *sbi = UDF_SB(sb); 2174 struct logicalVolIntegrityDescImpUse *lvidiu; 2175 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2176 2177 if (sbi->s_lvid_bh != NULL) 2178 lvidiu = udf_sb_lvidiu(sbi); 2179 else 2180 lvidiu = NULL; 2181 2182 buf->f_type = UDF_SUPER_MAGIC; 2183 buf->f_bsize = sb->s_blocksize; 2184 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2185 buf->f_bfree = udf_count_free(sb); 2186 buf->f_bavail = buf->f_bfree; 2187 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2188 le32_to_cpu(lvidiu->numDirs)) : 0) 2189 + buf->f_bfree; 2190 buf->f_ffree = buf->f_bfree; 2191 buf->f_namelen = UDF_NAME_LEN - 2; 2192 buf->f_fsid.val[0] = (u32)id; 2193 buf->f_fsid.val[1] = (u32)(id >> 32); 2194 2195 return 0; 2196 } 2197 2198 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2199 struct udf_bitmap *bitmap) 2200 { 2201 struct buffer_head *bh = NULL; 2202 unsigned int accum = 0; 2203 int index; 2204 int block = 0, newblock; 2205 struct kernel_lb_addr loc; 2206 uint32_t bytes; 2207 uint8_t *ptr; 2208 uint16_t ident; 2209 struct spaceBitmapDesc *bm; 2210 2211 loc.logicalBlockNum = bitmap->s_extPosition; 2212 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2213 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2214 2215 if (!bh) { 2216 printk(KERN_ERR "udf: udf_count_free failed\n"); 2217 goto out; 2218 } else if (ident != TAG_IDENT_SBD) { 2219 brelse(bh); 2220 printk(KERN_ERR "udf: udf_count_free failed\n"); 2221 goto out; 2222 } 2223 2224 bm = (struct spaceBitmapDesc *)bh->b_data; 2225 bytes = le32_to_cpu(bm->numOfBytes); 2226 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2227 ptr = (uint8_t *)bh->b_data; 2228 2229 while (bytes > 0) { 2230 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2231 accum += bitmap_weight((const unsigned long *)(ptr + index), 2232 cur_bytes * 8); 2233 bytes -= cur_bytes; 2234 if (bytes) { 2235 brelse(bh); 2236 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2237 bh = udf_tread(sb, newblock); 2238 if (!bh) { 2239 udf_debug("read failed\n"); 2240 goto out; 2241 } 2242 index = 0; 2243 ptr = (uint8_t *)bh->b_data; 2244 } 2245 } 2246 brelse(bh); 2247 out: 2248 return accum; 2249 } 2250 2251 static unsigned int udf_count_free_table(struct super_block *sb, 2252 struct inode *table) 2253 { 2254 unsigned int accum = 0; 2255 uint32_t elen; 2256 struct kernel_lb_addr eloc; 2257 int8_t etype; 2258 struct extent_position epos; 2259 2260 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2261 epos.block = UDF_I(table)->i_location; 2262 epos.offset = sizeof(struct unallocSpaceEntry); 2263 epos.bh = NULL; 2264 2265 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2266 accum += (elen >> table->i_sb->s_blocksize_bits); 2267 2268 brelse(epos.bh); 2269 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2270 2271 return accum; 2272 } 2273 2274 static unsigned int udf_count_free(struct super_block *sb) 2275 { 2276 unsigned int accum = 0; 2277 struct udf_sb_info *sbi; 2278 struct udf_part_map *map; 2279 2280 sbi = UDF_SB(sb); 2281 if (sbi->s_lvid_bh) { 2282 struct logicalVolIntegrityDesc *lvid = 2283 (struct logicalVolIntegrityDesc *) 2284 sbi->s_lvid_bh->b_data; 2285 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2286 accum = le32_to_cpu( 2287 lvid->freeSpaceTable[sbi->s_partition]); 2288 if (accum == 0xFFFFFFFF) 2289 accum = 0; 2290 } 2291 } 2292 2293 if (accum) 2294 return accum; 2295 2296 map = &sbi->s_partmaps[sbi->s_partition]; 2297 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2298 accum += udf_count_free_bitmap(sb, 2299 map->s_uspace.s_bitmap); 2300 } 2301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2302 accum += udf_count_free_bitmap(sb, 2303 map->s_fspace.s_bitmap); 2304 } 2305 if (accum) 2306 return accum; 2307 2308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2309 accum += udf_count_free_table(sb, 2310 map->s_uspace.s_table); 2311 } 2312 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2313 accum += udf_count_free_table(sb, 2314 map->s_fspace.s_table); 2315 } 2316 2317 return accum; 2318 } 2319