1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/smp_lock.h> 52 #include <linux/buffer_head.h> 53 #include <linux/vfs.h> 54 #include <linux/vmalloc.h> 55 #include <linux/errno.h> 56 #include <linux/mount.h> 57 #include <linux/seq_file.h> 58 #include <linux/bitmap.h> 59 #include <linux/crc-itu-t.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 static char error_buf[1024]; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct vfsmount *); 96 static void udf_error(struct super_block *sb, const char *function, 97 const char *fmt, ...); 98 99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 100 { 101 struct logicalVolIntegrityDesc *lvid = 102 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 103 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 104 __u32 offset = number_of_partitions * 2 * 105 sizeof(uint32_t)/sizeof(uint8_t); 106 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 107 } 108 109 /* UDF filesystem type */ 110 static int udf_get_sb(struct file_system_type *fs_type, 111 int flags, const char *dev_name, void *data, 112 struct vfsmount *mnt) 113 { 114 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt); 115 } 116 117 static struct file_system_type udf_fstype = { 118 .owner = THIS_MODULE, 119 .name = "udf", 120 .get_sb = udf_get_sb, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 125 static struct kmem_cache *udf_inode_cachep; 126 127 static struct inode *udf_alloc_inode(struct super_block *sb) 128 { 129 struct udf_inode_info *ei; 130 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 131 if (!ei) 132 return NULL; 133 134 ei->i_unique = 0; 135 ei->i_lenExtents = 0; 136 ei->i_next_alloc_block = 0; 137 ei->i_next_alloc_goal = 0; 138 ei->i_strat4096 = 0; 139 140 return &ei->vfs_inode; 141 } 142 143 static void udf_destroy_inode(struct inode *inode) 144 { 145 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 146 } 147 148 static void init_once(void *foo) 149 { 150 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 151 152 ei->i_ext.i_data = NULL; 153 inode_init_once(&ei->vfs_inode); 154 } 155 156 static int init_inodecache(void) 157 { 158 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 159 sizeof(struct udf_inode_info), 160 0, (SLAB_RECLAIM_ACCOUNT | 161 SLAB_MEM_SPREAD), 162 init_once); 163 if (!udf_inode_cachep) 164 return -ENOMEM; 165 return 0; 166 } 167 168 static void destroy_inodecache(void) 169 { 170 kmem_cache_destroy(udf_inode_cachep); 171 } 172 173 /* Superblock operations */ 174 static const struct super_operations udf_sb_ops = { 175 .alloc_inode = udf_alloc_inode, 176 .destroy_inode = udf_destroy_inode, 177 .write_inode = udf_write_inode, 178 .evict_inode = udf_evict_inode, 179 .put_super = udf_put_super, 180 .sync_fs = udf_sync_fs, 181 .statfs = udf_statfs, 182 .remount_fs = udf_remount_fs, 183 .show_options = udf_show_options, 184 }; 185 186 struct udf_options { 187 unsigned char novrs; 188 unsigned int blocksize; 189 unsigned int session; 190 unsigned int lastblock; 191 unsigned int anchor; 192 unsigned int volume; 193 unsigned short partition; 194 unsigned int fileset; 195 unsigned int rootdir; 196 unsigned int flags; 197 mode_t umask; 198 gid_t gid; 199 uid_t uid; 200 mode_t fmode; 201 mode_t dmode; 202 struct nls_table *nls_map; 203 }; 204 205 static int __init init_udf_fs(void) 206 { 207 int err; 208 209 err = init_inodecache(); 210 if (err) 211 goto out1; 212 err = register_filesystem(&udf_fstype); 213 if (err) 214 goto out; 215 216 return 0; 217 218 out: 219 destroy_inodecache(); 220 221 out1: 222 return err; 223 } 224 225 static void __exit exit_udf_fs(void) 226 { 227 unregister_filesystem(&udf_fstype); 228 destroy_inodecache(); 229 } 230 231 module_init(init_udf_fs) 232 module_exit(exit_udf_fs) 233 234 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 235 { 236 struct udf_sb_info *sbi = UDF_SB(sb); 237 238 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 239 GFP_KERNEL); 240 if (!sbi->s_partmaps) { 241 udf_error(sb, __func__, 242 "Unable to allocate space for %d partition maps", 243 count); 244 sbi->s_partitions = 0; 245 return -ENOMEM; 246 } 247 248 sbi->s_partitions = count; 249 return 0; 250 } 251 252 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt) 253 { 254 struct super_block *sb = mnt->mnt_sb; 255 struct udf_sb_info *sbi = UDF_SB(sb); 256 257 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 258 seq_puts(seq, ",nostrict"); 259 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 260 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 261 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 262 seq_puts(seq, ",unhide"); 263 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 264 seq_puts(seq, ",undelete"); 265 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 266 seq_puts(seq, ",noadinicb"); 267 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 268 seq_puts(seq, ",shortad"); 269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 270 seq_puts(seq, ",uid=forget"); 271 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 272 seq_puts(seq, ",uid=ignore"); 273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 274 seq_puts(seq, ",gid=forget"); 275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 276 seq_puts(seq, ",gid=ignore"); 277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 278 seq_printf(seq, ",uid=%u", sbi->s_uid); 279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 280 seq_printf(seq, ",gid=%u", sbi->s_gid); 281 if (sbi->s_umask != 0) 282 seq_printf(seq, ",umask=%o", sbi->s_umask); 283 if (sbi->s_fmode != UDF_INVALID_MODE) 284 seq_printf(seq, ",mode=%o", sbi->s_fmode); 285 if (sbi->s_dmode != UDF_INVALID_MODE) 286 seq_printf(seq, ",dmode=%o", sbi->s_dmode); 287 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 288 seq_printf(seq, ",session=%u", sbi->s_session); 289 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 290 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 291 if (sbi->s_anchor != 0) 292 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 293 /* 294 * volume, partition, fileset and rootdir seem to be ignored 295 * currently 296 */ 297 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 298 seq_puts(seq, ",utf8"); 299 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 300 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 301 302 return 0; 303 } 304 305 /* 306 * udf_parse_options 307 * 308 * PURPOSE 309 * Parse mount options. 310 * 311 * DESCRIPTION 312 * The following mount options are supported: 313 * 314 * gid= Set the default group. 315 * umask= Set the default umask. 316 * mode= Set the default file permissions. 317 * dmode= Set the default directory permissions. 318 * uid= Set the default user. 319 * bs= Set the block size. 320 * unhide Show otherwise hidden files. 321 * undelete Show deleted files in lists. 322 * adinicb Embed data in the inode (default) 323 * noadinicb Don't embed data in the inode 324 * shortad Use short ad's 325 * longad Use long ad's (default) 326 * nostrict Unset strict conformance 327 * iocharset= Set the NLS character set 328 * 329 * The remaining are for debugging and disaster recovery: 330 * 331 * novrs Skip volume sequence recognition 332 * 333 * The following expect a offset from 0. 334 * 335 * session= Set the CDROM session (default= last session) 336 * anchor= Override standard anchor location. (default= 256) 337 * volume= Override the VolumeDesc location. (unused) 338 * partition= Override the PartitionDesc location. (unused) 339 * lastblock= Set the last block of the filesystem/ 340 * 341 * The following expect a offset from the partition root. 342 * 343 * fileset= Override the fileset block location. (unused) 344 * rootdir= Override the root directory location. (unused) 345 * WARNING: overriding the rootdir to a non-directory may 346 * yield highly unpredictable results. 347 * 348 * PRE-CONDITIONS 349 * options Pointer to mount options string. 350 * uopts Pointer to mount options variable. 351 * 352 * POST-CONDITIONS 353 * <return> 1 Mount options parsed okay. 354 * <return> 0 Error parsing mount options. 355 * 356 * HISTORY 357 * July 1, 1997 - Andrew E. Mileski 358 * Written, tested, and released. 359 */ 360 361 enum { 362 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 363 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 364 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 365 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 366 Opt_rootdir, Opt_utf8, Opt_iocharset, 367 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 368 Opt_fmode, Opt_dmode 369 }; 370 371 static const match_table_t tokens = { 372 {Opt_novrs, "novrs"}, 373 {Opt_nostrict, "nostrict"}, 374 {Opt_bs, "bs=%u"}, 375 {Opt_unhide, "unhide"}, 376 {Opt_undelete, "undelete"}, 377 {Opt_noadinicb, "noadinicb"}, 378 {Opt_adinicb, "adinicb"}, 379 {Opt_shortad, "shortad"}, 380 {Opt_longad, "longad"}, 381 {Opt_uforget, "uid=forget"}, 382 {Opt_uignore, "uid=ignore"}, 383 {Opt_gforget, "gid=forget"}, 384 {Opt_gignore, "gid=ignore"}, 385 {Opt_gid, "gid=%u"}, 386 {Opt_uid, "uid=%u"}, 387 {Opt_umask, "umask=%o"}, 388 {Opt_session, "session=%u"}, 389 {Opt_lastblock, "lastblock=%u"}, 390 {Opt_anchor, "anchor=%u"}, 391 {Opt_volume, "volume=%u"}, 392 {Opt_partition, "partition=%u"}, 393 {Opt_fileset, "fileset=%u"}, 394 {Opt_rootdir, "rootdir=%u"}, 395 {Opt_utf8, "utf8"}, 396 {Opt_iocharset, "iocharset=%s"}, 397 {Opt_fmode, "mode=%o"}, 398 {Opt_dmode, "dmode=%o"}, 399 {Opt_err, NULL} 400 }; 401 402 static int udf_parse_options(char *options, struct udf_options *uopt, 403 bool remount) 404 { 405 char *p; 406 int option; 407 408 uopt->novrs = 0; 409 uopt->partition = 0xFFFF; 410 uopt->session = 0xFFFFFFFF; 411 uopt->lastblock = 0; 412 uopt->anchor = 0; 413 uopt->volume = 0xFFFFFFFF; 414 uopt->rootdir = 0xFFFFFFFF; 415 uopt->fileset = 0xFFFFFFFF; 416 uopt->nls_map = NULL; 417 418 if (!options) 419 return 1; 420 421 while ((p = strsep(&options, ",")) != NULL) { 422 substring_t args[MAX_OPT_ARGS]; 423 int token; 424 if (!*p) 425 continue; 426 427 token = match_token(p, tokens, args); 428 switch (token) { 429 case Opt_novrs: 430 uopt->novrs = 1; 431 break; 432 case Opt_bs: 433 if (match_int(&args[0], &option)) 434 return 0; 435 uopt->blocksize = option; 436 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 437 break; 438 case Opt_unhide: 439 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 440 break; 441 case Opt_undelete: 442 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 443 break; 444 case Opt_noadinicb: 445 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 446 break; 447 case Opt_adinicb: 448 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 449 break; 450 case Opt_shortad: 451 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 452 break; 453 case Opt_longad: 454 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 455 break; 456 case Opt_gid: 457 if (match_int(args, &option)) 458 return 0; 459 uopt->gid = option; 460 uopt->flags |= (1 << UDF_FLAG_GID_SET); 461 break; 462 case Opt_uid: 463 if (match_int(args, &option)) 464 return 0; 465 uopt->uid = option; 466 uopt->flags |= (1 << UDF_FLAG_UID_SET); 467 break; 468 case Opt_umask: 469 if (match_octal(args, &option)) 470 return 0; 471 uopt->umask = option; 472 break; 473 case Opt_nostrict: 474 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 475 break; 476 case Opt_session: 477 if (match_int(args, &option)) 478 return 0; 479 uopt->session = option; 480 if (!remount) 481 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 482 break; 483 case Opt_lastblock: 484 if (match_int(args, &option)) 485 return 0; 486 uopt->lastblock = option; 487 if (!remount) 488 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 489 break; 490 case Opt_anchor: 491 if (match_int(args, &option)) 492 return 0; 493 uopt->anchor = option; 494 break; 495 case Opt_volume: 496 if (match_int(args, &option)) 497 return 0; 498 uopt->volume = option; 499 break; 500 case Opt_partition: 501 if (match_int(args, &option)) 502 return 0; 503 uopt->partition = option; 504 break; 505 case Opt_fileset: 506 if (match_int(args, &option)) 507 return 0; 508 uopt->fileset = option; 509 break; 510 case Opt_rootdir: 511 if (match_int(args, &option)) 512 return 0; 513 uopt->rootdir = option; 514 break; 515 case Opt_utf8: 516 uopt->flags |= (1 << UDF_FLAG_UTF8); 517 break; 518 #ifdef CONFIG_UDF_NLS 519 case Opt_iocharset: 520 uopt->nls_map = load_nls(args[0].from); 521 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 522 break; 523 #endif 524 case Opt_uignore: 525 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 526 break; 527 case Opt_uforget: 528 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 529 break; 530 case Opt_gignore: 531 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 532 break; 533 case Opt_gforget: 534 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 535 break; 536 case Opt_fmode: 537 if (match_octal(args, &option)) 538 return 0; 539 uopt->fmode = option & 0777; 540 break; 541 case Opt_dmode: 542 if (match_octal(args, &option)) 543 return 0; 544 uopt->dmode = option & 0777; 545 break; 546 default: 547 printk(KERN_ERR "udf: bad mount option \"%s\" " 548 "or missing value\n", p); 549 return 0; 550 } 551 } 552 return 1; 553 } 554 555 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 556 { 557 struct udf_options uopt; 558 struct udf_sb_info *sbi = UDF_SB(sb); 559 int error = 0; 560 561 uopt.flags = sbi->s_flags; 562 uopt.uid = sbi->s_uid; 563 uopt.gid = sbi->s_gid; 564 uopt.umask = sbi->s_umask; 565 uopt.fmode = sbi->s_fmode; 566 uopt.dmode = sbi->s_dmode; 567 568 if (!udf_parse_options(options, &uopt, true)) 569 return -EINVAL; 570 571 lock_kernel(); 572 sbi->s_flags = uopt.flags; 573 sbi->s_uid = uopt.uid; 574 sbi->s_gid = uopt.gid; 575 sbi->s_umask = uopt.umask; 576 sbi->s_fmode = uopt.fmode; 577 sbi->s_dmode = uopt.dmode; 578 579 if (sbi->s_lvid_bh) { 580 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 581 if (write_rev > UDF_MAX_WRITE_VERSION) 582 *flags |= MS_RDONLY; 583 } 584 585 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 586 goto out_unlock; 587 588 if (*flags & MS_RDONLY) 589 udf_close_lvid(sb); 590 else 591 udf_open_lvid(sb); 592 593 out_unlock: 594 unlock_kernel(); 595 return error; 596 } 597 598 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 599 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 600 static loff_t udf_check_vsd(struct super_block *sb) 601 { 602 struct volStructDesc *vsd = NULL; 603 loff_t sector = 32768; 604 int sectorsize; 605 struct buffer_head *bh = NULL; 606 int nsr02 = 0; 607 int nsr03 = 0; 608 struct udf_sb_info *sbi; 609 610 sbi = UDF_SB(sb); 611 if (sb->s_blocksize < sizeof(struct volStructDesc)) 612 sectorsize = sizeof(struct volStructDesc); 613 else 614 sectorsize = sb->s_blocksize; 615 616 sector += (sbi->s_session << sb->s_blocksize_bits); 617 618 udf_debug("Starting at sector %u (%ld byte sectors)\n", 619 (unsigned int)(sector >> sb->s_blocksize_bits), 620 sb->s_blocksize); 621 /* Process the sequence (if applicable) */ 622 for (; !nsr02 && !nsr03; sector += sectorsize) { 623 /* Read a block */ 624 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 625 if (!bh) 626 break; 627 628 /* Look for ISO descriptors */ 629 vsd = (struct volStructDesc *)(bh->b_data + 630 (sector & (sb->s_blocksize - 1))); 631 632 if (vsd->stdIdent[0] == 0) { 633 brelse(bh); 634 break; 635 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 636 VSD_STD_ID_LEN)) { 637 switch (vsd->structType) { 638 case 0: 639 udf_debug("ISO9660 Boot Record found\n"); 640 break; 641 case 1: 642 udf_debug("ISO9660 Primary Volume Descriptor " 643 "found\n"); 644 break; 645 case 2: 646 udf_debug("ISO9660 Supplementary Volume " 647 "Descriptor found\n"); 648 break; 649 case 3: 650 udf_debug("ISO9660 Volume Partition Descriptor " 651 "found\n"); 652 break; 653 case 255: 654 udf_debug("ISO9660 Volume Descriptor Set " 655 "Terminator found\n"); 656 break; 657 default: 658 udf_debug("ISO9660 VRS (%u) found\n", 659 vsd->structType); 660 break; 661 } 662 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 663 VSD_STD_ID_LEN)) 664 ; /* nothing */ 665 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 666 VSD_STD_ID_LEN)) { 667 brelse(bh); 668 break; 669 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 670 VSD_STD_ID_LEN)) 671 nsr02 = sector; 672 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 673 VSD_STD_ID_LEN)) 674 nsr03 = sector; 675 brelse(bh); 676 } 677 678 if (nsr03) 679 return nsr03; 680 else if (nsr02) 681 return nsr02; 682 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 683 return -1; 684 else 685 return 0; 686 } 687 688 static int udf_find_fileset(struct super_block *sb, 689 struct kernel_lb_addr *fileset, 690 struct kernel_lb_addr *root) 691 { 692 struct buffer_head *bh = NULL; 693 long lastblock; 694 uint16_t ident; 695 struct udf_sb_info *sbi; 696 697 if (fileset->logicalBlockNum != 0xFFFFFFFF || 698 fileset->partitionReferenceNum != 0xFFFF) { 699 bh = udf_read_ptagged(sb, fileset, 0, &ident); 700 701 if (!bh) { 702 return 1; 703 } else if (ident != TAG_IDENT_FSD) { 704 brelse(bh); 705 return 1; 706 } 707 708 } 709 710 sbi = UDF_SB(sb); 711 if (!bh) { 712 /* Search backwards through the partitions */ 713 struct kernel_lb_addr newfileset; 714 715 /* --> cvg: FIXME - is it reasonable? */ 716 return 1; 717 718 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 719 (newfileset.partitionReferenceNum != 0xFFFF && 720 fileset->logicalBlockNum == 0xFFFFFFFF && 721 fileset->partitionReferenceNum == 0xFFFF); 722 newfileset.partitionReferenceNum--) { 723 lastblock = sbi->s_partmaps 724 [newfileset.partitionReferenceNum] 725 .s_partition_len; 726 newfileset.logicalBlockNum = 0; 727 728 do { 729 bh = udf_read_ptagged(sb, &newfileset, 0, 730 &ident); 731 if (!bh) { 732 newfileset.logicalBlockNum++; 733 continue; 734 } 735 736 switch (ident) { 737 case TAG_IDENT_SBD: 738 { 739 struct spaceBitmapDesc *sp; 740 sp = (struct spaceBitmapDesc *) 741 bh->b_data; 742 newfileset.logicalBlockNum += 1 + 743 ((le32_to_cpu(sp->numOfBytes) + 744 sizeof(struct spaceBitmapDesc) 745 - 1) >> sb->s_blocksize_bits); 746 brelse(bh); 747 break; 748 } 749 case TAG_IDENT_FSD: 750 *fileset = newfileset; 751 break; 752 default: 753 newfileset.logicalBlockNum++; 754 brelse(bh); 755 bh = NULL; 756 break; 757 } 758 } while (newfileset.logicalBlockNum < lastblock && 759 fileset->logicalBlockNum == 0xFFFFFFFF && 760 fileset->partitionReferenceNum == 0xFFFF); 761 } 762 } 763 764 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 765 fileset->partitionReferenceNum != 0xFFFF) && bh) { 766 udf_debug("Fileset at block=%d, partition=%d\n", 767 fileset->logicalBlockNum, 768 fileset->partitionReferenceNum); 769 770 sbi->s_partition = fileset->partitionReferenceNum; 771 udf_load_fileset(sb, bh, root); 772 brelse(bh); 773 return 0; 774 } 775 return 1; 776 } 777 778 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 779 { 780 struct primaryVolDesc *pvoldesc; 781 struct ustr *instr, *outstr; 782 struct buffer_head *bh; 783 uint16_t ident; 784 int ret = 1; 785 786 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 787 if (!instr) 788 return 1; 789 790 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 791 if (!outstr) 792 goto out1; 793 794 bh = udf_read_tagged(sb, block, block, &ident); 795 if (!bh) 796 goto out2; 797 798 BUG_ON(ident != TAG_IDENT_PVD); 799 800 pvoldesc = (struct primaryVolDesc *)bh->b_data; 801 802 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 803 pvoldesc->recordingDateAndTime)) { 804 #ifdef UDFFS_DEBUG 805 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 806 udf_debug("recording time %04u/%02u/%02u" 807 " %02u:%02u (%x)\n", 808 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 809 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 810 #endif 811 } 812 813 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 814 if (udf_CS0toUTF8(outstr, instr)) { 815 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 816 outstr->u_len > 31 ? 31 : outstr->u_len); 817 udf_debug("volIdent[] = '%s'\n", 818 UDF_SB(sb)->s_volume_ident); 819 } 820 821 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 822 if (udf_CS0toUTF8(outstr, instr)) 823 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 824 825 brelse(bh); 826 ret = 0; 827 out2: 828 kfree(outstr); 829 out1: 830 kfree(instr); 831 return ret; 832 } 833 834 static int udf_load_metadata_files(struct super_block *sb, int partition) 835 { 836 struct udf_sb_info *sbi = UDF_SB(sb); 837 struct udf_part_map *map; 838 struct udf_meta_data *mdata; 839 struct kernel_lb_addr addr; 840 int fe_error = 0; 841 842 map = &sbi->s_partmaps[partition]; 843 mdata = &map->s_type_specific.s_metadata; 844 845 /* metadata address */ 846 addr.logicalBlockNum = mdata->s_meta_file_loc; 847 addr.partitionReferenceNum = map->s_partition_num; 848 849 udf_debug("Metadata file location: block = %d part = %d\n", 850 addr.logicalBlockNum, addr.partitionReferenceNum); 851 852 mdata->s_metadata_fe = udf_iget(sb, &addr); 853 854 if (mdata->s_metadata_fe == NULL) { 855 udf_warning(sb, __func__, "metadata inode efe not found, " 856 "will try mirror inode."); 857 fe_error = 1; 858 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type != 859 ICBTAG_FLAG_AD_SHORT) { 860 udf_warning(sb, __func__, "metadata inode efe does not have " 861 "short allocation descriptors!"); 862 fe_error = 1; 863 iput(mdata->s_metadata_fe); 864 mdata->s_metadata_fe = NULL; 865 } 866 867 /* mirror file entry */ 868 addr.logicalBlockNum = mdata->s_mirror_file_loc; 869 addr.partitionReferenceNum = map->s_partition_num; 870 871 udf_debug("Mirror metadata file location: block = %d part = %d\n", 872 addr.logicalBlockNum, addr.partitionReferenceNum); 873 874 mdata->s_mirror_fe = udf_iget(sb, &addr); 875 876 if (mdata->s_mirror_fe == NULL) { 877 if (fe_error) { 878 udf_error(sb, __func__, "mirror inode efe not found " 879 "and metadata inode is missing too, exiting..."); 880 goto error_exit; 881 } else 882 udf_warning(sb, __func__, "mirror inode efe not found," 883 " but metadata inode is OK"); 884 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type != 885 ICBTAG_FLAG_AD_SHORT) { 886 udf_warning(sb, __func__, "mirror inode efe does not have " 887 "short allocation descriptors!"); 888 iput(mdata->s_mirror_fe); 889 mdata->s_mirror_fe = NULL; 890 if (fe_error) 891 goto error_exit; 892 } 893 894 /* 895 * bitmap file entry 896 * Note: 897 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 898 */ 899 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 900 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 901 addr.partitionReferenceNum = map->s_partition_num; 902 903 udf_debug("Bitmap file location: block = %d part = %d\n", 904 addr.logicalBlockNum, addr.partitionReferenceNum); 905 906 mdata->s_bitmap_fe = udf_iget(sb, &addr); 907 908 if (mdata->s_bitmap_fe == NULL) { 909 if (sb->s_flags & MS_RDONLY) 910 udf_warning(sb, __func__, "bitmap inode efe " 911 "not found but it's ok since the disc" 912 " is mounted read-only"); 913 else { 914 udf_error(sb, __func__, "bitmap inode efe not " 915 "found and attempted read-write mount"); 916 goto error_exit; 917 } 918 } 919 } 920 921 udf_debug("udf_load_metadata_files Ok\n"); 922 923 return 0; 924 925 error_exit: 926 return 1; 927 } 928 929 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 930 struct kernel_lb_addr *root) 931 { 932 struct fileSetDesc *fset; 933 934 fset = (struct fileSetDesc *)bh->b_data; 935 936 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 937 938 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 939 940 udf_debug("Rootdir at block=%d, partition=%d\n", 941 root->logicalBlockNum, root->partitionReferenceNum); 942 } 943 944 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 945 { 946 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 947 return DIV_ROUND_UP(map->s_partition_len + 948 (sizeof(struct spaceBitmapDesc) << 3), 949 sb->s_blocksize * 8); 950 } 951 952 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 953 { 954 struct udf_bitmap *bitmap; 955 int nr_groups; 956 int size; 957 958 nr_groups = udf_compute_nr_groups(sb, index); 959 size = sizeof(struct udf_bitmap) + 960 (sizeof(struct buffer_head *) * nr_groups); 961 962 if (size <= PAGE_SIZE) 963 bitmap = kmalloc(size, GFP_KERNEL); 964 else 965 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */ 966 967 if (bitmap == NULL) { 968 udf_error(sb, __func__, 969 "Unable to allocate space for bitmap " 970 "and %d buffer_head pointers", nr_groups); 971 return NULL; 972 } 973 974 memset(bitmap, 0x00, size); 975 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 976 bitmap->s_nr_groups = nr_groups; 977 return bitmap; 978 } 979 980 static int udf_fill_partdesc_info(struct super_block *sb, 981 struct partitionDesc *p, int p_index) 982 { 983 struct udf_part_map *map; 984 struct udf_sb_info *sbi = UDF_SB(sb); 985 struct partitionHeaderDesc *phd; 986 987 map = &sbi->s_partmaps[p_index]; 988 989 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 990 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 991 992 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 993 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 994 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 995 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 996 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 997 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 998 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 999 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1000 1001 udf_debug("Partition (%d type %x) starts at physical %d, " 1002 "block length %d\n", p_index, 1003 map->s_partition_type, map->s_partition_root, 1004 map->s_partition_len); 1005 1006 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1007 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1008 return 0; 1009 1010 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1011 if (phd->unallocSpaceTable.extLength) { 1012 struct kernel_lb_addr loc = { 1013 .logicalBlockNum = le32_to_cpu( 1014 phd->unallocSpaceTable.extPosition), 1015 .partitionReferenceNum = p_index, 1016 }; 1017 1018 map->s_uspace.s_table = udf_iget(sb, &loc); 1019 if (!map->s_uspace.s_table) { 1020 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1021 p_index); 1022 return 1; 1023 } 1024 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1025 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1026 p_index, map->s_uspace.s_table->i_ino); 1027 } 1028 1029 if (phd->unallocSpaceBitmap.extLength) { 1030 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1031 if (!bitmap) 1032 return 1; 1033 map->s_uspace.s_bitmap = bitmap; 1034 bitmap->s_extLength = le32_to_cpu( 1035 phd->unallocSpaceBitmap.extLength); 1036 bitmap->s_extPosition = le32_to_cpu( 1037 phd->unallocSpaceBitmap.extPosition); 1038 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1039 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index, 1040 bitmap->s_extPosition); 1041 } 1042 1043 if (phd->partitionIntegrityTable.extLength) 1044 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1045 1046 if (phd->freedSpaceTable.extLength) { 1047 struct kernel_lb_addr loc = { 1048 .logicalBlockNum = le32_to_cpu( 1049 phd->freedSpaceTable.extPosition), 1050 .partitionReferenceNum = p_index, 1051 }; 1052 1053 map->s_fspace.s_table = udf_iget(sb, &loc); 1054 if (!map->s_fspace.s_table) { 1055 udf_debug("cannot load freedSpaceTable (part %d)\n", 1056 p_index); 1057 return 1; 1058 } 1059 1060 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1061 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1062 p_index, map->s_fspace.s_table->i_ino); 1063 } 1064 1065 if (phd->freedSpaceBitmap.extLength) { 1066 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1067 if (!bitmap) 1068 return 1; 1069 map->s_fspace.s_bitmap = bitmap; 1070 bitmap->s_extLength = le32_to_cpu( 1071 phd->freedSpaceBitmap.extLength); 1072 bitmap->s_extPosition = le32_to_cpu( 1073 phd->freedSpaceBitmap.extPosition); 1074 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1075 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index, 1076 bitmap->s_extPosition); 1077 } 1078 return 0; 1079 } 1080 1081 static void udf_find_vat_block(struct super_block *sb, int p_index, 1082 int type1_index, sector_t start_block) 1083 { 1084 struct udf_sb_info *sbi = UDF_SB(sb); 1085 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1086 sector_t vat_block; 1087 struct kernel_lb_addr ino; 1088 1089 /* 1090 * VAT file entry is in the last recorded block. Some broken disks have 1091 * it a few blocks before so try a bit harder... 1092 */ 1093 ino.partitionReferenceNum = type1_index; 1094 for (vat_block = start_block; 1095 vat_block >= map->s_partition_root && 1096 vat_block >= start_block - 3 && 1097 !sbi->s_vat_inode; vat_block--) { 1098 ino.logicalBlockNum = vat_block - map->s_partition_root; 1099 sbi->s_vat_inode = udf_iget(sb, &ino); 1100 } 1101 } 1102 1103 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1104 { 1105 struct udf_sb_info *sbi = UDF_SB(sb); 1106 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1107 struct buffer_head *bh = NULL; 1108 struct udf_inode_info *vati; 1109 uint32_t pos; 1110 struct virtualAllocationTable20 *vat20; 1111 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1112 1113 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1114 if (!sbi->s_vat_inode && 1115 sbi->s_last_block != blocks - 1) { 1116 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the" 1117 " last recorded block (%lu), retrying with the last " 1118 "block of the device (%lu).\n", 1119 (unsigned long)sbi->s_last_block, 1120 (unsigned long)blocks - 1); 1121 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1122 } 1123 if (!sbi->s_vat_inode) 1124 return 1; 1125 1126 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1127 map->s_type_specific.s_virtual.s_start_offset = 0; 1128 map->s_type_specific.s_virtual.s_num_entries = 1129 (sbi->s_vat_inode->i_size - 36) >> 2; 1130 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1131 vati = UDF_I(sbi->s_vat_inode); 1132 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1133 pos = udf_block_map(sbi->s_vat_inode, 0); 1134 bh = sb_bread(sb, pos); 1135 if (!bh) 1136 return 1; 1137 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1138 } else { 1139 vat20 = (struct virtualAllocationTable20 *) 1140 vati->i_ext.i_data; 1141 } 1142 1143 map->s_type_specific.s_virtual.s_start_offset = 1144 le16_to_cpu(vat20->lengthHeader); 1145 map->s_type_specific.s_virtual.s_num_entries = 1146 (sbi->s_vat_inode->i_size - 1147 map->s_type_specific.s_virtual. 1148 s_start_offset) >> 2; 1149 brelse(bh); 1150 } 1151 return 0; 1152 } 1153 1154 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1155 { 1156 struct buffer_head *bh; 1157 struct partitionDesc *p; 1158 struct udf_part_map *map; 1159 struct udf_sb_info *sbi = UDF_SB(sb); 1160 int i, type1_idx; 1161 uint16_t partitionNumber; 1162 uint16_t ident; 1163 int ret = 0; 1164 1165 bh = udf_read_tagged(sb, block, block, &ident); 1166 if (!bh) 1167 return 1; 1168 if (ident != TAG_IDENT_PD) 1169 goto out_bh; 1170 1171 p = (struct partitionDesc *)bh->b_data; 1172 partitionNumber = le16_to_cpu(p->partitionNumber); 1173 1174 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1175 for (i = 0; i < sbi->s_partitions; i++) { 1176 map = &sbi->s_partmaps[i]; 1177 udf_debug("Searching map: (%d == %d)\n", 1178 map->s_partition_num, partitionNumber); 1179 if (map->s_partition_num == partitionNumber && 1180 (map->s_partition_type == UDF_TYPE1_MAP15 || 1181 map->s_partition_type == UDF_SPARABLE_MAP15)) 1182 break; 1183 } 1184 1185 if (i >= sbi->s_partitions) { 1186 udf_debug("Partition (%d) not found in partition map\n", 1187 partitionNumber); 1188 goto out_bh; 1189 } 1190 1191 ret = udf_fill_partdesc_info(sb, p, i); 1192 1193 /* 1194 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1195 * PHYSICAL partitions are already set up 1196 */ 1197 type1_idx = i; 1198 for (i = 0; i < sbi->s_partitions; i++) { 1199 map = &sbi->s_partmaps[i]; 1200 1201 if (map->s_partition_num == partitionNumber && 1202 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1203 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1204 map->s_partition_type == UDF_METADATA_MAP25)) 1205 break; 1206 } 1207 1208 if (i >= sbi->s_partitions) 1209 goto out_bh; 1210 1211 ret = udf_fill_partdesc_info(sb, p, i); 1212 if (ret) 1213 goto out_bh; 1214 1215 if (map->s_partition_type == UDF_METADATA_MAP25) { 1216 ret = udf_load_metadata_files(sb, i); 1217 if (ret) { 1218 printk(KERN_ERR "UDF-fs: error loading MetaData " 1219 "partition map %d\n", i); 1220 goto out_bh; 1221 } 1222 } else { 1223 ret = udf_load_vat(sb, i, type1_idx); 1224 if (ret) 1225 goto out_bh; 1226 /* 1227 * Mark filesystem read-only if we have a partition with 1228 * virtual map since we don't handle writing to it (we 1229 * overwrite blocks instead of relocating them). 1230 */ 1231 sb->s_flags |= MS_RDONLY; 1232 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only " 1233 "because writing to pseudooverwrite partition is " 1234 "not implemented.\n"); 1235 } 1236 out_bh: 1237 /* In case loading failed, we handle cleanup in udf_fill_super */ 1238 brelse(bh); 1239 return ret; 1240 } 1241 1242 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1243 struct kernel_lb_addr *fileset) 1244 { 1245 struct logicalVolDesc *lvd; 1246 int i, j, offset; 1247 uint8_t type; 1248 struct udf_sb_info *sbi = UDF_SB(sb); 1249 struct genericPartitionMap *gpm; 1250 uint16_t ident; 1251 struct buffer_head *bh; 1252 int ret = 0; 1253 1254 bh = udf_read_tagged(sb, block, block, &ident); 1255 if (!bh) 1256 return 1; 1257 BUG_ON(ident != TAG_IDENT_LVD); 1258 lvd = (struct logicalVolDesc *)bh->b_data; 1259 1260 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1261 if (i != 0) { 1262 ret = i; 1263 goto out_bh; 1264 } 1265 1266 for (i = 0, offset = 0; 1267 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1268 i++, offset += gpm->partitionMapLength) { 1269 struct udf_part_map *map = &sbi->s_partmaps[i]; 1270 gpm = (struct genericPartitionMap *) 1271 &(lvd->partitionMaps[offset]); 1272 type = gpm->partitionMapType; 1273 if (type == 1) { 1274 struct genericPartitionMap1 *gpm1 = 1275 (struct genericPartitionMap1 *)gpm; 1276 map->s_partition_type = UDF_TYPE1_MAP15; 1277 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1278 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1279 map->s_partition_func = NULL; 1280 } else if (type == 2) { 1281 struct udfPartitionMap2 *upm2 = 1282 (struct udfPartitionMap2 *)gpm; 1283 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1284 strlen(UDF_ID_VIRTUAL))) { 1285 u16 suf = 1286 le16_to_cpu(((__le16 *)upm2->partIdent. 1287 identSuffix)[0]); 1288 if (suf < 0x0200) { 1289 map->s_partition_type = 1290 UDF_VIRTUAL_MAP15; 1291 map->s_partition_func = 1292 udf_get_pblock_virt15; 1293 } else { 1294 map->s_partition_type = 1295 UDF_VIRTUAL_MAP20; 1296 map->s_partition_func = 1297 udf_get_pblock_virt20; 1298 } 1299 } else if (!strncmp(upm2->partIdent.ident, 1300 UDF_ID_SPARABLE, 1301 strlen(UDF_ID_SPARABLE))) { 1302 uint32_t loc; 1303 struct sparingTable *st; 1304 struct sparablePartitionMap *spm = 1305 (struct sparablePartitionMap *)gpm; 1306 1307 map->s_partition_type = UDF_SPARABLE_MAP15; 1308 map->s_type_specific.s_sparing.s_packet_len = 1309 le16_to_cpu(spm->packetLength); 1310 for (j = 0; j < spm->numSparingTables; j++) { 1311 struct buffer_head *bh2; 1312 1313 loc = le32_to_cpu( 1314 spm->locSparingTable[j]); 1315 bh2 = udf_read_tagged(sb, loc, loc, 1316 &ident); 1317 map->s_type_specific.s_sparing. 1318 s_spar_map[j] = bh2; 1319 1320 if (bh2 == NULL) 1321 continue; 1322 1323 st = (struct sparingTable *)bh2->b_data; 1324 if (ident != 0 || strncmp( 1325 st->sparingIdent.ident, 1326 UDF_ID_SPARING, 1327 strlen(UDF_ID_SPARING))) { 1328 brelse(bh2); 1329 map->s_type_specific.s_sparing. 1330 s_spar_map[j] = NULL; 1331 } 1332 } 1333 map->s_partition_func = udf_get_pblock_spar15; 1334 } else if (!strncmp(upm2->partIdent.ident, 1335 UDF_ID_METADATA, 1336 strlen(UDF_ID_METADATA))) { 1337 struct udf_meta_data *mdata = 1338 &map->s_type_specific.s_metadata; 1339 struct metadataPartitionMap *mdm = 1340 (struct metadataPartitionMap *) 1341 &(lvd->partitionMaps[offset]); 1342 udf_debug("Parsing Logical vol part %d " 1343 "type %d id=%s\n", i, type, 1344 UDF_ID_METADATA); 1345 1346 map->s_partition_type = UDF_METADATA_MAP25; 1347 map->s_partition_func = udf_get_pblock_meta25; 1348 1349 mdata->s_meta_file_loc = 1350 le32_to_cpu(mdm->metadataFileLoc); 1351 mdata->s_mirror_file_loc = 1352 le32_to_cpu(mdm->metadataMirrorFileLoc); 1353 mdata->s_bitmap_file_loc = 1354 le32_to_cpu(mdm->metadataBitmapFileLoc); 1355 mdata->s_alloc_unit_size = 1356 le32_to_cpu(mdm->allocUnitSize); 1357 mdata->s_align_unit_size = 1358 le16_to_cpu(mdm->alignUnitSize); 1359 mdata->s_dup_md_flag = 1360 mdm->flags & 0x01; 1361 1362 udf_debug("Metadata Ident suffix=0x%x\n", 1363 (le16_to_cpu( 1364 ((__le16 *) 1365 mdm->partIdent.identSuffix)[0]))); 1366 udf_debug("Metadata part num=%d\n", 1367 le16_to_cpu(mdm->partitionNum)); 1368 udf_debug("Metadata part alloc unit size=%d\n", 1369 le32_to_cpu(mdm->allocUnitSize)); 1370 udf_debug("Metadata file loc=%d\n", 1371 le32_to_cpu(mdm->metadataFileLoc)); 1372 udf_debug("Mirror file loc=%d\n", 1373 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1374 udf_debug("Bitmap file loc=%d\n", 1375 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1376 udf_debug("Duplicate Flag: %d %d\n", 1377 mdata->s_dup_md_flag, mdm->flags); 1378 } else { 1379 udf_debug("Unknown ident: %s\n", 1380 upm2->partIdent.ident); 1381 continue; 1382 } 1383 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1384 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1385 } 1386 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1387 i, map->s_partition_num, type, 1388 map->s_volumeseqnum); 1389 } 1390 1391 if (fileset) { 1392 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1393 1394 *fileset = lelb_to_cpu(la->extLocation); 1395 udf_debug("FileSet found in LogicalVolDesc at block=%d, " 1396 "partition=%d\n", fileset->logicalBlockNum, 1397 fileset->partitionReferenceNum); 1398 } 1399 if (lvd->integritySeqExt.extLength) 1400 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1401 1402 out_bh: 1403 brelse(bh); 1404 return ret; 1405 } 1406 1407 /* 1408 * udf_load_logicalvolint 1409 * 1410 */ 1411 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1412 { 1413 struct buffer_head *bh = NULL; 1414 uint16_t ident; 1415 struct udf_sb_info *sbi = UDF_SB(sb); 1416 struct logicalVolIntegrityDesc *lvid; 1417 1418 while (loc.extLength > 0 && 1419 (bh = udf_read_tagged(sb, loc.extLocation, 1420 loc.extLocation, &ident)) && 1421 ident == TAG_IDENT_LVID) { 1422 sbi->s_lvid_bh = bh; 1423 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1424 1425 if (lvid->nextIntegrityExt.extLength) 1426 udf_load_logicalvolint(sb, 1427 leea_to_cpu(lvid->nextIntegrityExt)); 1428 1429 if (sbi->s_lvid_bh != bh) 1430 brelse(bh); 1431 loc.extLength -= sb->s_blocksize; 1432 loc.extLocation++; 1433 } 1434 if (sbi->s_lvid_bh != bh) 1435 brelse(bh); 1436 } 1437 1438 /* 1439 * udf_process_sequence 1440 * 1441 * PURPOSE 1442 * Process a main/reserve volume descriptor sequence. 1443 * 1444 * PRE-CONDITIONS 1445 * sb Pointer to _locked_ superblock. 1446 * block First block of first extent of the sequence. 1447 * lastblock Lastblock of first extent of the sequence. 1448 * 1449 * HISTORY 1450 * July 1, 1997 - Andrew E. Mileski 1451 * Written, tested, and released. 1452 */ 1453 static noinline int udf_process_sequence(struct super_block *sb, long block, 1454 long lastblock, struct kernel_lb_addr *fileset) 1455 { 1456 struct buffer_head *bh = NULL; 1457 struct udf_vds_record vds[VDS_POS_LENGTH]; 1458 struct udf_vds_record *curr; 1459 struct generic_desc *gd; 1460 struct volDescPtr *vdp; 1461 int done = 0; 1462 uint32_t vdsn; 1463 uint16_t ident; 1464 long next_s = 0, next_e = 0; 1465 1466 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1467 1468 /* 1469 * Read the main descriptor sequence and find which descriptors 1470 * are in it. 1471 */ 1472 for (; (!done && block <= lastblock); block++) { 1473 1474 bh = udf_read_tagged(sb, block, block, &ident); 1475 if (!bh) { 1476 printk(KERN_ERR "udf: Block %Lu of volume descriptor " 1477 "sequence is corrupted or we could not read " 1478 "it.\n", (unsigned long long)block); 1479 return 1; 1480 } 1481 1482 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1483 gd = (struct generic_desc *)bh->b_data; 1484 vdsn = le32_to_cpu(gd->volDescSeqNum); 1485 switch (ident) { 1486 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1487 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1488 if (vdsn >= curr->volDescSeqNum) { 1489 curr->volDescSeqNum = vdsn; 1490 curr->block = block; 1491 } 1492 break; 1493 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1494 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1495 if (vdsn >= curr->volDescSeqNum) { 1496 curr->volDescSeqNum = vdsn; 1497 curr->block = block; 1498 1499 vdp = (struct volDescPtr *)bh->b_data; 1500 next_s = le32_to_cpu( 1501 vdp->nextVolDescSeqExt.extLocation); 1502 next_e = le32_to_cpu( 1503 vdp->nextVolDescSeqExt.extLength); 1504 next_e = next_e >> sb->s_blocksize_bits; 1505 next_e += next_s; 1506 } 1507 break; 1508 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1509 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1510 if (vdsn >= curr->volDescSeqNum) { 1511 curr->volDescSeqNum = vdsn; 1512 curr->block = block; 1513 } 1514 break; 1515 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1516 curr = &vds[VDS_POS_PARTITION_DESC]; 1517 if (!curr->block) 1518 curr->block = block; 1519 break; 1520 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1521 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1522 if (vdsn >= curr->volDescSeqNum) { 1523 curr->volDescSeqNum = vdsn; 1524 curr->block = block; 1525 } 1526 break; 1527 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1528 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1529 if (vdsn >= curr->volDescSeqNum) { 1530 curr->volDescSeqNum = vdsn; 1531 curr->block = block; 1532 } 1533 break; 1534 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1535 vds[VDS_POS_TERMINATING_DESC].block = block; 1536 if (next_e) { 1537 block = next_s; 1538 lastblock = next_e; 1539 next_s = next_e = 0; 1540 } else 1541 done = 1; 1542 break; 1543 } 1544 brelse(bh); 1545 } 1546 /* 1547 * Now read interesting descriptors again and process them 1548 * in a suitable order 1549 */ 1550 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1551 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n"); 1552 return 1; 1553 } 1554 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1555 return 1; 1556 1557 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1558 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1559 return 1; 1560 1561 if (vds[VDS_POS_PARTITION_DESC].block) { 1562 /* 1563 * We rescan the whole descriptor sequence to find 1564 * partition descriptor blocks and process them. 1565 */ 1566 for (block = vds[VDS_POS_PARTITION_DESC].block; 1567 block < vds[VDS_POS_TERMINATING_DESC].block; 1568 block++) 1569 if (udf_load_partdesc(sb, block)) 1570 return 1; 1571 } 1572 1573 return 0; 1574 } 1575 1576 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1577 struct kernel_lb_addr *fileset) 1578 { 1579 struct anchorVolDescPtr *anchor; 1580 long main_s, main_e, reserve_s, reserve_e; 1581 1582 anchor = (struct anchorVolDescPtr *)bh->b_data; 1583 1584 /* Locate the main sequence */ 1585 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1586 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1587 main_e = main_e >> sb->s_blocksize_bits; 1588 main_e += main_s; 1589 1590 /* Locate the reserve sequence */ 1591 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1592 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1593 reserve_e = reserve_e >> sb->s_blocksize_bits; 1594 reserve_e += reserve_s; 1595 1596 /* Process the main & reserve sequences */ 1597 /* responsible for finding the PartitionDesc(s) */ 1598 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1599 return 1; 1600 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1601 } 1602 1603 /* 1604 * Check whether there is an anchor block in the given block and 1605 * load Volume Descriptor Sequence if so. 1606 */ 1607 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1608 struct kernel_lb_addr *fileset) 1609 { 1610 struct buffer_head *bh; 1611 uint16_t ident; 1612 int ret; 1613 1614 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1615 udf_fixed_to_variable(block) >= 1616 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1617 return 0; 1618 1619 bh = udf_read_tagged(sb, block, block, &ident); 1620 if (!bh) 1621 return 0; 1622 if (ident != TAG_IDENT_AVDP) { 1623 brelse(bh); 1624 return 0; 1625 } 1626 ret = udf_load_sequence(sb, bh, fileset); 1627 brelse(bh); 1628 return ret; 1629 } 1630 1631 /* Search for an anchor volume descriptor pointer */ 1632 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1633 struct kernel_lb_addr *fileset) 1634 { 1635 sector_t last[6]; 1636 int i; 1637 struct udf_sb_info *sbi = UDF_SB(sb); 1638 int last_count = 0; 1639 1640 /* First try user provided anchor */ 1641 if (sbi->s_anchor) { 1642 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1643 return lastblock; 1644 } 1645 /* 1646 * according to spec, anchor is in either: 1647 * block 256 1648 * lastblock-256 1649 * lastblock 1650 * however, if the disc isn't closed, it could be 512. 1651 */ 1652 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1653 return lastblock; 1654 /* 1655 * The trouble is which block is the last one. Drives often misreport 1656 * this so we try various possibilities. 1657 */ 1658 last[last_count++] = lastblock; 1659 if (lastblock >= 1) 1660 last[last_count++] = lastblock - 1; 1661 last[last_count++] = lastblock + 1; 1662 if (lastblock >= 2) 1663 last[last_count++] = lastblock - 2; 1664 if (lastblock >= 150) 1665 last[last_count++] = lastblock - 150; 1666 if (lastblock >= 152) 1667 last[last_count++] = lastblock - 152; 1668 1669 for (i = 0; i < last_count; i++) { 1670 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1671 sb->s_blocksize_bits) 1672 continue; 1673 if (udf_check_anchor_block(sb, last[i], fileset)) 1674 return last[i]; 1675 if (last[i] < 256) 1676 continue; 1677 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1678 return last[i]; 1679 } 1680 1681 /* Finally try block 512 in case media is open */ 1682 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1683 return last[0]; 1684 return 0; 1685 } 1686 1687 /* 1688 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1689 * area specified by it. The function expects sbi->s_lastblock to be the last 1690 * block on the media. 1691 * 1692 * Return 1 if ok, 0 if not found. 1693 * 1694 */ 1695 static int udf_find_anchor(struct super_block *sb, 1696 struct kernel_lb_addr *fileset) 1697 { 1698 sector_t lastblock; 1699 struct udf_sb_info *sbi = UDF_SB(sb); 1700 1701 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1702 if (lastblock) 1703 goto out; 1704 1705 /* No anchor found? Try VARCONV conversion of block numbers */ 1706 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1707 /* Firstly, we try to not convert number of the last block */ 1708 lastblock = udf_scan_anchors(sb, 1709 udf_variable_to_fixed(sbi->s_last_block), 1710 fileset); 1711 if (lastblock) 1712 goto out; 1713 1714 /* Secondly, we try with converted number of the last block */ 1715 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1716 if (!lastblock) { 1717 /* VARCONV didn't help. Clear it. */ 1718 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1719 return 0; 1720 } 1721 out: 1722 sbi->s_last_block = lastblock; 1723 return 1; 1724 } 1725 1726 /* 1727 * Check Volume Structure Descriptor, find Anchor block and load Volume 1728 * Descriptor Sequence 1729 */ 1730 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1731 int silent, struct kernel_lb_addr *fileset) 1732 { 1733 struct udf_sb_info *sbi = UDF_SB(sb); 1734 loff_t nsr_off; 1735 1736 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1737 if (!silent) 1738 printk(KERN_WARNING "UDF-fs: Bad block size\n"); 1739 return 0; 1740 } 1741 sbi->s_last_block = uopt->lastblock; 1742 if (!uopt->novrs) { 1743 /* Check that it is NSR02 compliant */ 1744 nsr_off = udf_check_vsd(sb); 1745 if (!nsr_off) { 1746 if (!silent) 1747 printk(KERN_WARNING "UDF-fs: No VRS found\n"); 1748 return 0; 1749 } 1750 if (nsr_off == -1) 1751 udf_debug("Failed to read byte 32768. Assuming open " 1752 "disc. Skipping validity check\n"); 1753 if (!sbi->s_last_block) 1754 sbi->s_last_block = udf_get_last_block(sb); 1755 } else { 1756 udf_debug("Validity check skipped because of novrs option\n"); 1757 } 1758 1759 /* Look for anchor block and load Volume Descriptor Sequence */ 1760 sbi->s_anchor = uopt->anchor; 1761 if (!udf_find_anchor(sb, fileset)) { 1762 if (!silent) 1763 printk(KERN_WARNING "UDF-fs: No anchor found\n"); 1764 return 0; 1765 } 1766 return 1; 1767 } 1768 1769 static void udf_open_lvid(struct super_block *sb) 1770 { 1771 struct udf_sb_info *sbi = UDF_SB(sb); 1772 struct buffer_head *bh = sbi->s_lvid_bh; 1773 struct logicalVolIntegrityDesc *lvid; 1774 struct logicalVolIntegrityDescImpUse *lvidiu; 1775 1776 if (!bh) 1777 return; 1778 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1779 lvidiu = udf_sb_lvidiu(sbi); 1780 1781 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1782 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1783 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1784 CURRENT_TIME); 1785 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1786 1787 lvid->descTag.descCRC = cpu_to_le16( 1788 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1789 le16_to_cpu(lvid->descTag.descCRCLength))); 1790 1791 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1792 mark_buffer_dirty(bh); 1793 sbi->s_lvid_dirty = 0; 1794 } 1795 1796 static void udf_close_lvid(struct super_block *sb) 1797 { 1798 struct udf_sb_info *sbi = UDF_SB(sb); 1799 struct buffer_head *bh = sbi->s_lvid_bh; 1800 struct logicalVolIntegrityDesc *lvid; 1801 struct logicalVolIntegrityDescImpUse *lvidiu; 1802 1803 if (!bh) 1804 return; 1805 1806 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1807 lvidiu = udf_sb_lvidiu(sbi); 1808 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1809 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1810 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1811 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1812 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1813 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1814 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1815 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1816 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1817 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1818 1819 lvid->descTag.descCRC = cpu_to_le16( 1820 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1821 le16_to_cpu(lvid->descTag.descCRCLength))); 1822 1823 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1824 mark_buffer_dirty(bh); 1825 sbi->s_lvid_dirty = 0; 1826 } 1827 1828 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1829 { 1830 int i; 1831 int nr_groups = bitmap->s_nr_groups; 1832 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1833 nr_groups); 1834 1835 for (i = 0; i < nr_groups; i++) 1836 if (bitmap->s_block_bitmap[i]) 1837 brelse(bitmap->s_block_bitmap[i]); 1838 1839 if (size <= PAGE_SIZE) 1840 kfree(bitmap); 1841 else 1842 vfree(bitmap); 1843 } 1844 1845 static void udf_free_partition(struct udf_part_map *map) 1846 { 1847 int i; 1848 struct udf_meta_data *mdata; 1849 1850 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1851 iput(map->s_uspace.s_table); 1852 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1853 iput(map->s_fspace.s_table); 1854 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1855 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1856 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1857 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1858 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1859 for (i = 0; i < 4; i++) 1860 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1861 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1862 mdata = &map->s_type_specific.s_metadata; 1863 iput(mdata->s_metadata_fe); 1864 mdata->s_metadata_fe = NULL; 1865 1866 iput(mdata->s_mirror_fe); 1867 mdata->s_mirror_fe = NULL; 1868 1869 iput(mdata->s_bitmap_fe); 1870 mdata->s_bitmap_fe = NULL; 1871 } 1872 } 1873 1874 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1875 { 1876 int i; 1877 int ret; 1878 struct inode *inode = NULL; 1879 struct udf_options uopt; 1880 struct kernel_lb_addr rootdir, fileset; 1881 struct udf_sb_info *sbi; 1882 1883 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1884 uopt.uid = -1; 1885 uopt.gid = -1; 1886 uopt.umask = 0; 1887 uopt.fmode = UDF_INVALID_MODE; 1888 uopt.dmode = UDF_INVALID_MODE; 1889 1890 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1891 if (!sbi) 1892 return -ENOMEM; 1893 1894 sb->s_fs_info = sbi; 1895 1896 mutex_init(&sbi->s_alloc_mutex); 1897 1898 if (!udf_parse_options((char *)options, &uopt, false)) 1899 goto error_out; 1900 1901 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1902 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1903 udf_error(sb, "udf_read_super", 1904 "utf8 cannot be combined with iocharset\n"); 1905 goto error_out; 1906 } 1907 #ifdef CONFIG_UDF_NLS 1908 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1909 uopt.nls_map = load_nls_default(); 1910 if (!uopt.nls_map) 1911 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1912 else 1913 udf_debug("Using default NLS map\n"); 1914 } 1915 #endif 1916 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1917 uopt.flags |= (1 << UDF_FLAG_UTF8); 1918 1919 fileset.logicalBlockNum = 0xFFFFFFFF; 1920 fileset.partitionReferenceNum = 0xFFFF; 1921 1922 sbi->s_flags = uopt.flags; 1923 sbi->s_uid = uopt.uid; 1924 sbi->s_gid = uopt.gid; 1925 sbi->s_umask = uopt.umask; 1926 sbi->s_fmode = uopt.fmode; 1927 sbi->s_dmode = uopt.dmode; 1928 sbi->s_nls_map = uopt.nls_map; 1929 1930 if (uopt.session == 0xFFFFFFFF) 1931 sbi->s_session = udf_get_last_session(sb); 1932 else 1933 sbi->s_session = uopt.session; 1934 1935 udf_debug("Multi-session=%d\n", sbi->s_session); 1936 1937 /* Fill in the rest of the superblock */ 1938 sb->s_op = &udf_sb_ops; 1939 sb->s_export_op = &udf_export_ops; 1940 1941 sb->s_dirt = 0; 1942 sb->s_magic = UDF_SUPER_MAGIC; 1943 sb->s_time_gran = 1000; 1944 1945 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1946 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1947 } else { 1948 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 1949 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1950 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 1951 if (!silent) 1952 printk(KERN_NOTICE 1953 "UDF-fs: Rescanning with blocksize " 1954 "%d\n", UDF_DEFAULT_BLOCKSIZE); 1955 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 1956 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1957 } 1958 } 1959 if (!ret) { 1960 printk(KERN_WARNING "UDF-fs: No partition found (1)\n"); 1961 goto error_out; 1962 } 1963 1964 udf_debug("Lastblock=%d\n", sbi->s_last_block); 1965 1966 if (sbi->s_lvid_bh) { 1967 struct logicalVolIntegrityDescImpUse *lvidiu = 1968 udf_sb_lvidiu(sbi); 1969 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 1970 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 1971 /* uint16_t maxUDFWriteRev = 1972 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 1973 1974 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 1975 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x " 1976 "(max is %x)\n", 1977 le16_to_cpu(lvidiu->minUDFReadRev), 1978 UDF_MAX_READ_VERSION); 1979 goto error_out; 1980 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 1981 sb->s_flags |= MS_RDONLY; 1982 1983 sbi->s_udfrev = minUDFWriteRev; 1984 1985 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 1986 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 1987 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 1988 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 1989 } 1990 1991 if (!sbi->s_partitions) { 1992 printk(KERN_WARNING "UDF-fs: No partition found (2)\n"); 1993 goto error_out; 1994 } 1995 1996 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 1997 UDF_PART_FLAG_READ_ONLY) { 1998 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; " 1999 "forcing readonly mount\n"); 2000 sb->s_flags |= MS_RDONLY; 2001 } 2002 2003 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2004 printk(KERN_WARNING "UDF-fs: No fileset found\n"); 2005 goto error_out; 2006 } 2007 2008 if (!silent) { 2009 struct timestamp ts; 2010 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2011 udf_info("UDF: Mounting volume '%s', " 2012 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2013 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day, 2014 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2015 } 2016 if (!(sb->s_flags & MS_RDONLY)) 2017 udf_open_lvid(sb); 2018 2019 /* Assign the root inode */ 2020 /* assign inodes by physical block number */ 2021 /* perhaps it's not extensible enough, but for now ... */ 2022 inode = udf_iget(sb, &rootdir); 2023 if (!inode) { 2024 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, " 2025 "partition=%d\n", 2026 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2027 goto error_out; 2028 } 2029 2030 /* Allocate a dentry for the root inode */ 2031 sb->s_root = d_alloc_root(inode); 2032 if (!sb->s_root) { 2033 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n"); 2034 iput(inode); 2035 goto error_out; 2036 } 2037 sb->s_maxbytes = MAX_LFS_FILESIZE; 2038 return 0; 2039 2040 error_out: 2041 if (sbi->s_vat_inode) 2042 iput(sbi->s_vat_inode); 2043 if (sbi->s_partitions) 2044 for (i = 0; i < sbi->s_partitions; i++) 2045 udf_free_partition(&sbi->s_partmaps[i]); 2046 #ifdef CONFIG_UDF_NLS 2047 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2048 unload_nls(sbi->s_nls_map); 2049 #endif 2050 if (!(sb->s_flags & MS_RDONLY)) 2051 udf_close_lvid(sb); 2052 brelse(sbi->s_lvid_bh); 2053 2054 kfree(sbi->s_partmaps); 2055 kfree(sbi); 2056 sb->s_fs_info = NULL; 2057 2058 return -EINVAL; 2059 } 2060 2061 static void udf_error(struct super_block *sb, const char *function, 2062 const char *fmt, ...) 2063 { 2064 va_list args; 2065 2066 if (!(sb->s_flags & MS_RDONLY)) { 2067 /* mark sb error */ 2068 sb->s_dirt = 1; 2069 } 2070 va_start(args, fmt); 2071 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2072 va_end(args); 2073 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n", 2074 sb->s_id, function, error_buf); 2075 } 2076 2077 void udf_warning(struct super_block *sb, const char *function, 2078 const char *fmt, ...) 2079 { 2080 va_list args; 2081 2082 va_start(args, fmt); 2083 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2084 va_end(args); 2085 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n", 2086 sb->s_id, function, error_buf); 2087 } 2088 2089 static void udf_put_super(struct super_block *sb) 2090 { 2091 int i; 2092 struct udf_sb_info *sbi; 2093 2094 sbi = UDF_SB(sb); 2095 2096 lock_kernel(); 2097 2098 if (sbi->s_vat_inode) 2099 iput(sbi->s_vat_inode); 2100 if (sbi->s_partitions) 2101 for (i = 0; i < sbi->s_partitions; i++) 2102 udf_free_partition(&sbi->s_partmaps[i]); 2103 #ifdef CONFIG_UDF_NLS 2104 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2105 unload_nls(sbi->s_nls_map); 2106 #endif 2107 if (!(sb->s_flags & MS_RDONLY)) 2108 udf_close_lvid(sb); 2109 brelse(sbi->s_lvid_bh); 2110 kfree(sbi->s_partmaps); 2111 kfree(sb->s_fs_info); 2112 sb->s_fs_info = NULL; 2113 2114 unlock_kernel(); 2115 } 2116 2117 static int udf_sync_fs(struct super_block *sb, int wait) 2118 { 2119 struct udf_sb_info *sbi = UDF_SB(sb); 2120 2121 mutex_lock(&sbi->s_alloc_mutex); 2122 if (sbi->s_lvid_dirty) { 2123 /* 2124 * Blockdevice will be synced later so we don't have to submit 2125 * the buffer for IO 2126 */ 2127 mark_buffer_dirty(sbi->s_lvid_bh); 2128 sb->s_dirt = 0; 2129 sbi->s_lvid_dirty = 0; 2130 } 2131 mutex_unlock(&sbi->s_alloc_mutex); 2132 2133 return 0; 2134 } 2135 2136 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2137 { 2138 struct super_block *sb = dentry->d_sb; 2139 struct udf_sb_info *sbi = UDF_SB(sb); 2140 struct logicalVolIntegrityDescImpUse *lvidiu; 2141 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2142 2143 if (sbi->s_lvid_bh != NULL) 2144 lvidiu = udf_sb_lvidiu(sbi); 2145 else 2146 lvidiu = NULL; 2147 2148 buf->f_type = UDF_SUPER_MAGIC; 2149 buf->f_bsize = sb->s_blocksize; 2150 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2151 buf->f_bfree = udf_count_free(sb); 2152 buf->f_bavail = buf->f_bfree; 2153 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2154 le32_to_cpu(lvidiu->numDirs)) : 0) 2155 + buf->f_bfree; 2156 buf->f_ffree = buf->f_bfree; 2157 buf->f_namelen = UDF_NAME_LEN - 2; 2158 buf->f_fsid.val[0] = (u32)id; 2159 buf->f_fsid.val[1] = (u32)(id >> 32); 2160 2161 return 0; 2162 } 2163 2164 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2165 struct udf_bitmap *bitmap) 2166 { 2167 struct buffer_head *bh = NULL; 2168 unsigned int accum = 0; 2169 int index; 2170 int block = 0, newblock; 2171 struct kernel_lb_addr loc; 2172 uint32_t bytes; 2173 uint8_t *ptr; 2174 uint16_t ident; 2175 struct spaceBitmapDesc *bm; 2176 2177 lock_kernel(); 2178 2179 loc.logicalBlockNum = bitmap->s_extPosition; 2180 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2181 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2182 2183 if (!bh) { 2184 printk(KERN_ERR "udf: udf_count_free failed\n"); 2185 goto out; 2186 } else if (ident != TAG_IDENT_SBD) { 2187 brelse(bh); 2188 printk(KERN_ERR "udf: udf_count_free failed\n"); 2189 goto out; 2190 } 2191 2192 bm = (struct spaceBitmapDesc *)bh->b_data; 2193 bytes = le32_to_cpu(bm->numOfBytes); 2194 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2195 ptr = (uint8_t *)bh->b_data; 2196 2197 while (bytes > 0) { 2198 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2199 accum += bitmap_weight((const unsigned long *)(ptr + index), 2200 cur_bytes * 8); 2201 bytes -= cur_bytes; 2202 if (bytes) { 2203 brelse(bh); 2204 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2205 bh = udf_tread(sb, newblock); 2206 if (!bh) { 2207 udf_debug("read failed\n"); 2208 goto out; 2209 } 2210 index = 0; 2211 ptr = (uint8_t *)bh->b_data; 2212 } 2213 } 2214 brelse(bh); 2215 2216 out: 2217 unlock_kernel(); 2218 2219 return accum; 2220 } 2221 2222 static unsigned int udf_count_free_table(struct super_block *sb, 2223 struct inode *table) 2224 { 2225 unsigned int accum = 0; 2226 uint32_t elen; 2227 struct kernel_lb_addr eloc; 2228 int8_t etype; 2229 struct extent_position epos; 2230 2231 lock_kernel(); 2232 2233 epos.block = UDF_I(table)->i_location; 2234 epos.offset = sizeof(struct unallocSpaceEntry); 2235 epos.bh = NULL; 2236 2237 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2238 accum += (elen >> table->i_sb->s_blocksize_bits); 2239 2240 brelse(epos.bh); 2241 2242 unlock_kernel(); 2243 2244 return accum; 2245 } 2246 2247 static unsigned int udf_count_free(struct super_block *sb) 2248 { 2249 unsigned int accum = 0; 2250 struct udf_sb_info *sbi; 2251 struct udf_part_map *map; 2252 2253 sbi = UDF_SB(sb); 2254 if (sbi->s_lvid_bh) { 2255 struct logicalVolIntegrityDesc *lvid = 2256 (struct logicalVolIntegrityDesc *) 2257 sbi->s_lvid_bh->b_data; 2258 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2259 accum = le32_to_cpu( 2260 lvid->freeSpaceTable[sbi->s_partition]); 2261 if (accum == 0xFFFFFFFF) 2262 accum = 0; 2263 } 2264 } 2265 2266 if (accum) 2267 return accum; 2268 2269 map = &sbi->s_partmaps[sbi->s_partition]; 2270 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2271 accum += udf_count_free_bitmap(sb, 2272 map->s_uspace.s_bitmap); 2273 } 2274 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2275 accum += udf_count_free_bitmap(sb, 2276 map->s_fspace.s_bitmap); 2277 } 2278 if (accum) 2279 return accum; 2280 2281 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2282 accum += udf_count_free_table(sb, 2283 map->s_uspace.s_table); 2284 } 2285 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2286 accum += udf_count_free_table(sb, 2287 map->s_fspace.s_table); 2288 } 2289 2290 return accum; 2291 } 2292