1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define UDF_DEFAULT_BLOCKSIZE 2048 77 78 #define VSD_FIRST_SECTOR_OFFSET 32768 79 #define VSD_MAX_SECTOR_OFFSET 0x800000 80 81 enum { UDF_MAX_LINKS = 0xffff }; 82 83 /* These are the "meat" - everything else is stuffing */ 84 static int udf_fill_super(struct super_block *, void *, int); 85 static void udf_put_super(struct super_block *); 86 static int udf_sync_fs(struct super_block *, int); 87 static int udf_remount_fs(struct super_block *, int *, char *); 88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 90 struct kernel_lb_addr *); 91 static void udf_load_fileset(struct super_block *, struct buffer_head *, 92 struct kernel_lb_addr *); 93 static void udf_open_lvid(struct super_block *); 94 static void udf_close_lvid(struct super_block *); 95 static unsigned int udf_count_free(struct super_block *); 96 static int udf_statfs(struct dentry *, struct kstatfs *); 97 static int udf_show_options(struct seq_file *, struct dentry *); 98 99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 100 { 101 struct logicalVolIntegrityDesc *lvid; 102 unsigned int partnum; 103 unsigned int offset; 104 105 if (!UDF_SB(sb)->s_lvid_bh) 106 return NULL; 107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 108 partnum = le32_to_cpu(lvid->numOfPartitions); 109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 110 offsetof(struct logicalVolIntegrityDesc, impUse)) / 111 (2 * sizeof(uint32_t)) < partnum) { 112 udf_err(sb, "Logical volume integrity descriptor corrupted " 113 "(numOfPartitions = %u)!\n", partnum); 114 return NULL; 115 } 116 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 117 offset = partnum * 2 * sizeof(uint32_t); 118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 119 } 120 121 /* UDF filesystem type */ 122 static struct dentry *udf_mount(struct file_system_type *fs_type, 123 int flags, const char *dev_name, void *data) 124 { 125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 126 } 127 128 static struct file_system_type udf_fstype = { 129 .owner = THIS_MODULE, 130 .name = "udf", 131 .mount = udf_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("udf"); 136 137 static struct kmem_cache *udf_inode_cachep; 138 139 static struct inode *udf_alloc_inode(struct super_block *sb) 140 { 141 struct udf_inode_info *ei; 142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 143 if (!ei) 144 return NULL; 145 146 ei->i_unique = 0; 147 ei->i_lenExtents = 0; 148 ei->i_next_alloc_block = 0; 149 ei->i_next_alloc_goal = 0; 150 ei->i_strat4096 = 0; 151 init_rwsem(&ei->i_data_sem); 152 ei->cached_extent.lstart = -1; 153 spin_lock_init(&ei->i_extent_cache_lock); 154 155 return &ei->vfs_inode; 156 } 157 158 static void udf_i_callback(struct rcu_head *head) 159 { 160 struct inode *inode = container_of(head, struct inode, i_rcu); 161 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 162 } 163 164 static void udf_destroy_inode(struct inode *inode) 165 { 166 call_rcu(&inode->i_rcu, udf_i_callback); 167 } 168 169 static void init_once(void *foo) 170 { 171 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 172 173 ei->i_ext.i_data = NULL; 174 inode_init_once(&ei->vfs_inode); 175 } 176 177 static int __init init_inodecache(void) 178 { 179 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 180 sizeof(struct udf_inode_info), 181 0, (SLAB_RECLAIM_ACCOUNT | 182 SLAB_MEM_SPREAD), 183 init_once); 184 if (!udf_inode_cachep) 185 return -ENOMEM; 186 return 0; 187 } 188 189 static void destroy_inodecache(void) 190 { 191 /* 192 * Make sure all delayed rcu free inodes are flushed before we 193 * destroy cache. 194 */ 195 rcu_barrier(); 196 kmem_cache_destroy(udf_inode_cachep); 197 } 198 199 /* Superblock operations */ 200 static const struct super_operations udf_sb_ops = { 201 .alloc_inode = udf_alloc_inode, 202 .destroy_inode = udf_destroy_inode, 203 .write_inode = udf_write_inode, 204 .evict_inode = udf_evict_inode, 205 .put_super = udf_put_super, 206 .sync_fs = udf_sync_fs, 207 .statfs = udf_statfs, 208 .remount_fs = udf_remount_fs, 209 .show_options = udf_show_options, 210 }; 211 212 struct udf_options { 213 unsigned char novrs; 214 unsigned int blocksize; 215 unsigned int session; 216 unsigned int lastblock; 217 unsigned int anchor; 218 unsigned int volume; 219 unsigned short partition; 220 unsigned int fileset; 221 unsigned int rootdir; 222 unsigned int flags; 223 umode_t umask; 224 kgid_t gid; 225 kuid_t uid; 226 umode_t fmode; 227 umode_t dmode; 228 struct nls_table *nls_map; 229 }; 230 231 static int __init init_udf_fs(void) 232 { 233 int err; 234 235 err = init_inodecache(); 236 if (err) 237 goto out1; 238 err = register_filesystem(&udf_fstype); 239 if (err) 240 goto out; 241 242 return 0; 243 244 out: 245 destroy_inodecache(); 246 247 out1: 248 return err; 249 } 250 251 static void __exit exit_udf_fs(void) 252 { 253 unregister_filesystem(&udf_fstype); 254 destroy_inodecache(); 255 } 256 257 module_init(init_udf_fs) 258 module_exit(exit_udf_fs) 259 260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 261 { 262 struct udf_sb_info *sbi = UDF_SB(sb); 263 264 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 265 GFP_KERNEL); 266 if (!sbi->s_partmaps) { 267 udf_err(sb, "Unable to allocate space for %d partition maps\n", 268 count); 269 sbi->s_partitions = 0; 270 return -ENOMEM; 271 } 272 273 sbi->s_partitions = count; 274 return 0; 275 } 276 277 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 278 { 279 int i; 280 int nr_groups = bitmap->s_nr_groups; 281 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 282 nr_groups); 283 284 for (i = 0; i < nr_groups; i++) 285 if (bitmap->s_block_bitmap[i]) 286 brelse(bitmap->s_block_bitmap[i]); 287 288 if (size <= PAGE_SIZE) 289 kfree(bitmap); 290 else 291 vfree(bitmap); 292 } 293 294 static void udf_free_partition(struct udf_part_map *map) 295 { 296 int i; 297 struct udf_meta_data *mdata; 298 299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 300 iput(map->s_uspace.s_table); 301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 302 iput(map->s_fspace.s_table); 303 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 304 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 305 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 306 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 307 if (map->s_partition_type == UDF_SPARABLE_MAP15) 308 for (i = 0; i < 4; i++) 309 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 310 else if (map->s_partition_type == UDF_METADATA_MAP25) { 311 mdata = &map->s_type_specific.s_metadata; 312 iput(mdata->s_metadata_fe); 313 mdata->s_metadata_fe = NULL; 314 315 iput(mdata->s_mirror_fe); 316 mdata->s_mirror_fe = NULL; 317 318 iput(mdata->s_bitmap_fe); 319 mdata->s_bitmap_fe = NULL; 320 } 321 } 322 323 static void udf_sb_free_partitions(struct super_block *sb) 324 { 325 struct udf_sb_info *sbi = UDF_SB(sb); 326 int i; 327 if (sbi->s_partmaps == NULL) 328 return; 329 for (i = 0; i < sbi->s_partitions; i++) 330 udf_free_partition(&sbi->s_partmaps[i]); 331 kfree(sbi->s_partmaps); 332 sbi->s_partmaps = NULL; 333 } 334 335 static int udf_show_options(struct seq_file *seq, struct dentry *root) 336 { 337 struct super_block *sb = root->d_sb; 338 struct udf_sb_info *sbi = UDF_SB(sb); 339 340 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 341 seq_puts(seq, ",nostrict"); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 343 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 345 seq_puts(seq, ",unhide"); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 347 seq_puts(seq, ",undelete"); 348 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 349 seq_puts(seq, ",noadinicb"); 350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 351 seq_puts(seq, ",shortad"); 352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 353 seq_puts(seq, ",uid=forget"); 354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 355 seq_puts(seq, ",uid=ignore"); 356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 357 seq_puts(seq, ",gid=forget"); 358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 359 seq_puts(seq, ",gid=ignore"); 360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 361 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 362 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 363 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 364 if (sbi->s_umask != 0) 365 seq_printf(seq, ",umask=%ho", sbi->s_umask); 366 if (sbi->s_fmode != UDF_INVALID_MODE) 367 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 368 if (sbi->s_dmode != UDF_INVALID_MODE) 369 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 371 seq_printf(seq, ",session=%u", sbi->s_session); 372 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 373 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 374 if (sbi->s_anchor != 0) 375 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 376 /* 377 * volume, partition, fileset and rootdir seem to be ignored 378 * currently 379 */ 380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 381 seq_puts(seq, ",utf8"); 382 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 383 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 384 385 return 0; 386 } 387 388 /* 389 * udf_parse_options 390 * 391 * PURPOSE 392 * Parse mount options. 393 * 394 * DESCRIPTION 395 * The following mount options are supported: 396 * 397 * gid= Set the default group. 398 * umask= Set the default umask. 399 * mode= Set the default file permissions. 400 * dmode= Set the default directory permissions. 401 * uid= Set the default user. 402 * bs= Set the block size. 403 * unhide Show otherwise hidden files. 404 * undelete Show deleted files in lists. 405 * adinicb Embed data in the inode (default) 406 * noadinicb Don't embed data in the inode 407 * shortad Use short ad's 408 * longad Use long ad's (default) 409 * nostrict Unset strict conformance 410 * iocharset= Set the NLS character set 411 * 412 * The remaining are for debugging and disaster recovery: 413 * 414 * novrs Skip volume sequence recognition 415 * 416 * The following expect a offset from 0. 417 * 418 * session= Set the CDROM session (default= last session) 419 * anchor= Override standard anchor location. (default= 256) 420 * volume= Override the VolumeDesc location. (unused) 421 * partition= Override the PartitionDesc location. (unused) 422 * lastblock= Set the last block of the filesystem/ 423 * 424 * The following expect a offset from the partition root. 425 * 426 * fileset= Override the fileset block location. (unused) 427 * rootdir= Override the root directory location. (unused) 428 * WARNING: overriding the rootdir to a non-directory may 429 * yield highly unpredictable results. 430 * 431 * PRE-CONDITIONS 432 * options Pointer to mount options string. 433 * uopts Pointer to mount options variable. 434 * 435 * POST-CONDITIONS 436 * <return> 1 Mount options parsed okay. 437 * <return> 0 Error parsing mount options. 438 * 439 * HISTORY 440 * July 1, 1997 - Andrew E. Mileski 441 * Written, tested, and released. 442 */ 443 444 enum { 445 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 446 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 447 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 448 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 449 Opt_rootdir, Opt_utf8, Opt_iocharset, 450 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 451 Opt_fmode, Opt_dmode 452 }; 453 454 static const match_table_t tokens = { 455 {Opt_novrs, "novrs"}, 456 {Opt_nostrict, "nostrict"}, 457 {Opt_bs, "bs=%u"}, 458 {Opt_unhide, "unhide"}, 459 {Opt_undelete, "undelete"}, 460 {Opt_noadinicb, "noadinicb"}, 461 {Opt_adinicb, "adinicb"}, 462 {Opt_shortad, "shortad"}, 463 {Opt_longad, "longad"}, 464 {Opt_uforget, "uid=forget"}, 465 {Opt_uignore, "uid=ignore"}, 466 {Opt_gforget, "gid=forget"}, 467 {Opt_gignore, "gid=ignore"}, 468 {Opt_gid, "gid=%u"}, 469 {Opt_uid, "uid=%u"}, 470 {Opt_umask, "umask=%o"}, 471 {Opt_session, "session=%u"}, 472 {Opt_lastblock, "lastblock=%u"}, 473 {Opt_anchor, "anchor=%u"}, 474 {Opt_volume, "volume=%u"}, 475 {Opt_partition, "partition=%u"}, 476 {Opt_fileset, "fileset=%u"}, 477 {Opt_rootdir, "rootdir=%u"}, 478 {Opt_utf8, "utf8"}, 479 {Opt_iocharset, "iocharset=%s"}, 480 {Opt_fmode, "mode=%o"}, 481 {Opt_dmode, "dmode=%o"}, 482 {Opt_err, NULL} 483 }; 484 485 static int udf_parse_options(char *options, struct udf_options *uopt, 486 bool remount) 487 { 488 char *p; 489 int option; 490 491 uopt->novrs = 0; 492 uopt->partition = 0xFFFF; 493 uopt->session = 0xFFFFFFFF; 494 uopt->lastblock = 0; 495 uopt->anchor = 0; 496 uopt->volume = 0xFFFFFFFF; 497 uopt->rootdir = 0xFFFFFFFF; 498 uopt->fileset = 0xFFFFFFFF; 499 uopt->nls_map = NULL; 500 501 if (!options) 502 return 1; 503 504 while ((p = strsep(&options, ",")) != NULL) { 505 substring_t args[MAX_OPT_ARGS]; 506 int token; 507 unsigned n; 508 if (!*p) 509 continue; 510 511 token = match_token(p, tokens, args); 512 switch (token) { 513 case Opt_novrs: 514 uopt->novrs = 1; 515 break; 516 case Opt_bs: 517 if (match_int(&args[0], &option)) 518 return 0; 519 n = option; 520 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 521 return 0; 522 uopt->blocksize = n; 523 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 524 break; 525 case Opt_unhide: 526 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 527 break; 528 case Opt_undelete: 529 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 530 break; 531 case Opt_noadinicb: 532 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 533 break; 534 case Opt_adinicb: 535 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 536 break; 537 case Opt_shortad: 538 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 539 break; 540 case Opt_longad: 541 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 542 break; 543 case Opt_gid: 544 if (match_int(args, &option)) 545 return 0; 546 uopt->gid = make_kgid(current_user_ns(), option); 547 if (!gid_valid(uopt->gid)) 548 return 0; 549 uopt->flags |= (1 << UDF_FLAG_GID_SET); 550 break; 551 case Opt_uid: 552 if (match_int(args, &option)) 553 return 0; 554 uopt->uid = make_kuid(current_user_ns(), option); 555 if (!uid_valid(uopt->uid)) 556 return 0; 557 uopt->flags |= (1 << UDF_FLAG_UID_SET); 558 break; 559 case Opt_umask: 560 if (match_octal(args, &option)) 561 return 0; 562 uopt->umask = option; 563 break; 564 case Opt_nostrict: 565 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 566 break; 567 case Opt_session: 568 if (match_int(args, &option)) 569 return 0; 570 uopt->session = option; 571 if (!remount) 572 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 573 break; 574 case Opt_lastblock: 575 if (match_int(args, &option)) 576 return 0; 577 uopt->lastblock = option; 578 if (!remount) 579 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 580 break; 581 case Opt_anchor: 582 if (match_int(args, &option)) 583 return 0; 584 uopt->anchor = option; 585 break; 586 case Opt_volume: 587 if (match_int(args, &option)) 588 return 0; 589 uopt->volume = option; 590 break; 591 case Opt_partition: 592 if (match_int(args, &option)) 593 return 0; 594 uopt->partition = option; 595 break; 596 case Opt_fileset: 597 if (match_int(args, &option)) 598 return 0; 599 uopt->fileset = option; 600 break; 601 case Opt_rootdir: 602 if (match_int(args, &option)) 603 return 0; 604 uopt->rootdir = option; 605 break; 606 case Opt_utf8: 607 uopt->flags |= (1 << UDF_FLAG_UTF8); 608 break; 609 #ifdef CONFIG_UDF_NLS 610 case Opt_iocharset: 611 uopt->nls_map = load_nls(args[0].from); 612 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 613 break; 614 #endif 615 case Opt_uignore: 616 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 617 break; 618 case Opt_uforget: 619 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 620 break; 621 case Opt_gignore: 622 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 623 break; 624 case Opt_gforget: 625 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 626 break; 627 case Opt_fmode: 628 if (match_octal(args, &option)) 629 return 0; 630 uopt->fmode = option & 0777; 631 break; 632 case Opt_dmode: 633 if (match_octal(args, &option)) 634 return 0; 635 uopt->dmode = option & 0777; 636 break; 637 default: 638 pr_err("bad mount option \"%s\" or missing value\n", p); 639 return 0; 640 } 641 } 642 return 1; 643 } 644 645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 646 { 647 struct udf_options uopt; 648 struct udf_sb_info *sbi = UDF_SB(sb); 649 int error = 0; 650 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 651 652 sync_filesystem(sb); 653 if (lvidiu) { 654 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 655 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 656 return -EACCES; 657 } 658 659 uopt.flags = sbi->s_flags; 660 uopt.uid = sbi->s_uid; 661 uopt.gid = sbi->s_gid; 662 uopt.umask = sbi->s_umask; 663 uopt.fmode = sbi->s_fmode; 664 uopt.dmode = sbi->s_dmode; 665 666 if (!udf_parse_options(options, &uopt, true)) 667 return -EINVAL; 668 669 write_lock(&sbi->s_cred_lock); 670 sbi->s_flags = uopt.flags; 671 sbi->s_uid = uopt.uid; 672 sbi->s_gid = uopt.gid; 673 sbi->s_umask = uopt.umask; 674 sbi->s_fmode = uopt.fmode; 675 sbi->s_dmode = uopt.dmode; 676 write_unlock(&sbi->s_cred_lock); 677 678 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 679 goto out_unlock; 680 681 if (*flags & MS_RDONLY) 682 udf_close_lvid(sb); 683 else 684 udf_open_lvid(sb); 685 686 out_unlock: 687 return error; 688 } 689 690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 692 static loff_t udf_check_vsd(struct super_block *sb) 693 { 694 struct volStructDesc *vsd = NULL; 695 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 696 int sectorsize; 697 struct buffer_head *bh = NULL; 698 int nsr02 = 0; 699 int nsr03 = 0; 700 struct udf_sb_info *sbi; 701 702 sbi = UDF_SB(sb); 703 if (sb->s_blocksize < sizeof(struct volStructDesc)) 704 sectorsize = sizeof(struct volStructDesc); 705 else 706 sectorsize = sb->s_blocksize; 707 708 sector += (sbi->s_session << sb->s_blocksize_bits); 709 710 udf_debug("Starting at sector %u (%ld byte sectors)\n", 711 (unsigned int)(sector >> sb->s_blocksize_bits), 712 sb->s_blocksize); 713 /* Process the sequence (if applicable). The hard limit on the sector 714 * offset is arbitrary, hopefully large enough so that all valid UDF 715 * filesystems will be recognised. There is no mention of an upper 716 * bound to the size of the volume recognition area in the standard. 717 * The limit will prevent the code to read all the sectors of a 718 * specially crafted image (like a bluray disc full of CD001 sectors), 719 * potentially causing minutes or even hours of uninterruptible I/O 720 * activity. This actually happened with uninitialised SSD partitions 721 * (all 0xFF) before the check for the limit and all valid IDs were 722 * added */ 723 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 724 sector += sectorsize) { 725 /* Read a block */ 726 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 727 if (!bh) 728 break; 729 730 /* Look for ISO descriptors */ 731 vsd = (struct volStructDesc *)(bh->b_data + 732 (sector & (sb->s_blocksize - 1))); 733 734 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 735 VSD_STD_ID_LEN)) { 736 switch (vsd->structType) { 737 case 0: 738 udf_debug("ISO9660 Boot Record found\n"); 739 break; 740 case 1: 741 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 742 break; 743 case 2: 744 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 745 break; 746 case 3: 747 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 748 break; 749 case 255: 750 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 751 break; 752 default: 753 udf_debug("ISO9660 VRS (%u) found\n", 754 vsd->structType); 755 break; 756 } 757 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 758 VSD_STD_ID_LEN)) 759 ; /* nothing */ 760 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 761 VSD_STD_ID_LEN)) { 762 brelse(bh); 763 break; 764 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 765 VSD_STD_ID_LEN)) 766 nsr02 = sector; 767 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 768 VSD_STD_ID_LEN)) 769 nsr03 = sector; 770 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 771 VSD_STD_ID_LEN)) 772 ; /* nothing */ 773 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 774 VSD_STD_ID_LEN)) 775 ; /* nothing */ 776 else { 777 /* invalid id : end of volume recognition area */ 778 brelse(bh); 779 break; 780 } 781 brelse(bh); 782 } 783 784 if (nsr03) 785 return nsr03; 786 else if (nsr02) 787 return nsr02; 788 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 789 VSD_FIRST_SECTOR_OFFSET) 790 return -1; 791 else 792 return 0; 793 } 794 795 static int udf_find_fileset(struct super_block *sb, 796 struct kernel_lb_addr *fileset, 797 struct kernel_lb_addr *root) 798 { 799 struct buffer_head *bh = NULL; 800 long lastblock; 801 uint16_t ident; 802 struct udf_sb_info *sbi; 803 804 if (fileset->logicalBlockNum != 0xFFFFFFFF || 805 fileset->partitionReferenceNum != 0xFFFF) { 806 bh = udf_read_ptagged(sb, fileset, 0, &ident); 807 808 if (!bh) { 809 return 1; 810 } else if (ident != TAG_IDENT_FSD) { 811 brelse(bh); 812 return 1; 813 } 814 815 } 816 817 sbi = UDF_SB(sb); 818 if (!bh) { 819 /* Search backwards through the partitions */ 820 struct kernel_lb_addr newfileset; 821 822 /* --> cvg: FIXME - is it reasonable? */ 823 return 1; 824 825 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 826 (newfileset.partitionReferenceNum != 0xFFFF && 827 fileset->logicalBlockNum == 0xFFFFFFFF && 828 fileset->partitionReferenceNum == 0xFFFF); 829 newfileset.partitionReferenceNum--) { 830 lastblock = sbi->s_partmaps 831 [newfileset.partitionReferenceNum] 832 .s_partition_len; 833 newfileset.logicalBlockNum = 0; 834 835 do { 836 bh = udf_read_ptagged(sb, &newfileset, 0, 837 &ident); 838 if (!bh) { 839 newfileset.logicalBlockNum++; 840 continue; 841 } 842 843 switch (ident) { 844 case TAG_IDENT_SBD: 845 { 846 struct spaceBitmapDesc *sp; 847 sp = (struct spaceBitmapDesc *) 848 bh->b_data; 849 newfileset.logicalBlockNum += 1 + 850 ((le32_to_cpu(sp->numOfBytes) + 851 sizeof(struct spaceBitmapDesc) 852 - 1) >> sb->s_blocksize_bits); 853 brelse(bh); 854 break; 855 } 856 case TAG_IDENT_FSD: 857 *fileset = newfileset; 858 break; 859 default: 860 newfileset.logicalBlockNum++; 861 brelse(bh); 862 bh = NULL; 863 break; 864 } 865 } while (newfileset.logicalBlockNum < lastblock && 866 fileset->logicalBlockNum == 0xFFFFFFFF && 867 fileset->partitionReferenceNum == 0xFFFF); 868 } 869 } 870 871 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 872 fileset->partitionReferenceNum != 0xFFFF) && bh) { 873 udf_debug("Fileset at block=%d, partition=%d\n", 874 fileset->logicalBlockNum, 875 fileset->partitionReferenceNum); 876 877 sbi->s_partition = fileset->partitionReferenceNum; 878 udf_load_fileset(sb, bh, root); 879 brelse(bh); 880 return 0; 881 } 882 return 1; 883 } 884 885 /* 886 * Load primary Volume Descriptor Sequence 887 * 888 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 889 * should be tried. 890 */ 891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 892 { 893 struct primaryVolDesc *pvoldesc; 894 struct ustr *instr, *outstr; 895 struct buffer_head *bh; 896 uint16_t ident; 897 int ret = -ENOMEM; 898 899 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 900 if (!instr) 901 return -ENOMEM; 902 903 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 904 if (!outstr) 905 goto out1; 906 907 bh = udf_read_tagged(sb, block, block, &ident); 908 if (!bh) { 909 ret = -EAGAIN; 910 goto out2; 911 } 912 913 if (ident != TAG_IDENT_PVD) { 914 ret = -EIO; 915 goto out_bh; 916 } 917 918 pvoldesc = (struct primaryVolDesc *)bh->b_data; 919 920 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 921 pvoldesc->recordingDateAndTime)) { 922 #ifdef UDFFS_DEBUG 923 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 924 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 925 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 926 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 927 #endif 928 } 929 930 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) { 931 ret = udf_CS0toUTF8(outstr, instr); 932 if (ret < 0) 933 goto out_bh; 934 935 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 936 outstr->u_len > 31 ? 31 : outstr->u_len); 937 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 938 } 939 940 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) { 941 ret = udf_CS0toUTF8(outstr, instr); 942 if (ret < 0) 943 goto out_bh; 944 945 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 946 } 947 948 ret = 0; 949 out_bh: 950 brelse(bh); 951 out2: 952 kfree(outstr); 953 out1: 954 kfree(instr); 955 return ret; 956 } 957 958 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 959 u32 meta_file_loc, u32 partition_num) 960 { 961 struct kernel_lb_addr addr; 962 struct inode *metadata_fe; 963 964 addr.logicalBlockNum = meta_file_loc; 965 addr.partitionReferenceNum = partition_num; 966 967 metadata_fe = udf_iget_special(sb, &addr); 968 969 if (IS_ERR(metadata_fe)) { 970 udf_warn(sb, "metadata inode efe not found\n"); 971 return metadata_fe; 972 } 973 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 974 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 975 iput(metadata_fe); 976 return ERR_PTR(-EIO); 977 } 978 979 return metadata_fe; 980 } 981 982 static int udf_load_metadata_files(struct super_block *sb, int partition) 983 { 984 struct udf_sb_info *sbi = UDF_SB(sb); 985 struct udf_part_map *map; 986 struct udf_meta_data *mdata; 987 struct kernel_lb_addr addr; 988 struct inode *fe; 989 990 map = &sbi->s_partmaps[partition]; 991 mdata = &map->s_type_specific.s_metadata; 992 993 /* metadata address */ 994 udf_debug("Metadata file location: block = %d part = %d\n", 995 mdata->s_meta_file_loc, map->s_partition_num); 996 997 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 998 map->s_partition_num); 999 if (IS_ERR(fe)) { 1000 /* mirror file entry */ 1001 udf_debug("Mirror metadata file location: block = %d part = %d\n", 1002 mdata->s_mirror_file_loc, map->s_partition_num); 1003 1004 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 1005 map->s_partition_num); 1006 1007 if (IS_ERR(fe)) { 1008 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 1009 return PTR_ERR(fe); 1010 } 1011 mdata->s_mirror_fe = fe; 1012 } else 1013 mdata->s_metadata_fe = fe; 1014 1015 1016 /* 1017 * bitmap file entry 1018 * Note: 1019 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1020 */ 1021 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1022 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1023 addr.partitionReferenceNum = map->s_partition_num; 1024 1025 udf_debug("Bitmap file location: block = %d part = %d\n", 1026 addr.logicalBlockNum, addr.partitionReferenceNum); 1027 1028 fe = udf_iget_special(sb, &addr); 1029 if (IS_ERR(fe)) { 1030 if (sb->s_flags & MS_RDONLY) 1031 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1032 else { 1033 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1034 return PTR_ERR(fe); 1035 } 1036 } else 1037 mdata->s_bitmap_fe = fe; 1038 } 1039 1040 udf_debug("udf_load_metadata_files Ok\n"); 1041 return 0; 1042 } 1043 1044 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1045 struct kernel_lb_addr *root) 1046 { 1047 struct fileSetDesc *fset; 1048 1049 fset = (struct fileSetDesc *)bh->b_data; 1050 1051 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1052 1053 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1054 1055 udf_debug("Rootdir at block=%d, partition=%d\n", 1056 root->logicalBlockNum, root->partitionReferenceNum); 1057 } 1058 1059 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1060 { 1061 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1062 return DIV_ROUND_UP(map->s_partition_len + 1063 (sizeof(struct spaceBitmapDesc) << 3), 1064 sb->s_blocksize * 8); 1065 } 1066 1067 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1068 { 1069 struct udf_bitmap *bitmap; 1070 int nr_groups; 1071 int size; 1072 1073 nr_groups = udf_compute_nr_groups(sb, index); 1074 size = sizeof(struct udf_bitmap) + 1075 (sizeof(struct buffer_head *) * nr_groups); 1076 1077 if (size <= PAGE_SIZE) 1078 bitmap = kzalloc(size, GFP_KERNEL); 1079 else 1080 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1081 1082 if (bitmap == NULL) 1083 return NULL; 1084 1085 bitmap->s_nr_groups = nr_groups; 1086 return bitmap; 1087 } 1088 1089 static int udf_fill_partdesc_info(struct super_block *sb, 1090 struct partitionDesc *p, int p_index) 1091 { 1092 struct udf_part_map *map; 1093 struct udf_sb_info *sbi = UDF_SB(sb); 1094 struct partitionHeaderDesc *phd; 1095 1096 map = &sbi->s_partmaps[p_index]; 1097 1098 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1099 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1100 1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1102 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1103 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1104 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1105 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1106 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1107 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1108 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1109 1110 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1111 p_index, map->s_partition_type, 1112 map->s_partition_root, map->s_partition_len); 1113 1114 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1115 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1116 return 0; 1117 1118 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1119 if (phd->unallocSpaceTable.extLength) { 1120 struct kernel_lb_addr loc = { 1121 .logicalBlockNum = le32_to_cpu( 1122 phd->unallocSpaceTable.extPosition), 1123 .partitionReferenceNum = p_index, 1124 }; 1125 struct inode *inode; 1126 1127 inode = udf_iget_special(sb, &loc); 1128 if (IS_ERR(inode)) { 1129 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1130 p_index); 1131 return PTR_ERR(inode); 1132 } 1133 map->s_uspace.s_table = inode; 1134 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1135 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1136 p_index, map->s_uspace.s_table->i_ino); 1137 } 1138 1139 if (phd->unallocSpaceBitmap.extLength) { 1140 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1141 if (!bitmap) 1142 return -ENOMEM; 1143 map->s_uspace.s_bitmap = bitmap; 1144 bitmap->s_extPosition = le32_to_cpu( 1145 phd->unallocSpaceBitmap.extPosition); 1146 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1147 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1148 p_index, bitmap->s_extPosition); 1149 } 1150 1151 if (phd->partitionIntegrityTable.extLength) 1152 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1153 1154 if (phd->freedSpaceTable.extLength) { 1155 struct kernel_lb_addr loc = { 1156 .logicalBlockNum = le32_to_cpu( 1157 phd->freedSpaceTable.extPosition), 1158 .partitionReferenceNum = p_index, 1159 }; 1160 struct inode *inode; 1161 1162 inode = udf_iget_special(sb, &loc); 1163 if (IS_ERR(inode)) { 1164 udf_debug("cannot load freedSpaceTable (part %d)\n", 1165 p_index); 1166 return PTR_ERR(inode); 1167 } 1168 map->s_fspace.s_table = inode; 1169 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1170 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1171 p_index, map->s_fspace.s_table->i_ino); 1172 } 1173 1174 if (phd->freedSpaceBitmap.extLength) { 1175 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1176 if (!bitmap) 1177 return -ENOMEM; 1178 map->s_fspace.s_bitmap = bitmap; 1179 bitmap->s_extPosition = le32_to_cpu( 1180 phd->freedSpaceBitmap.extPosition); 1181 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1182 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1183 p_index, bitmap->s_extPosition); 1184 } 1185 return 0; 1186 } 1187 1188 static void udf_find_vat_block(struct super_block *sb, int p_index, 1189 int type1_index, sector_t start_block) 1190 { 1191 struct udf_sb_info *sbi = UDF_SB(sb); 1192 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1193 sector_t vat_block; 1194 struct kernel_lb_addr ino; 1195 struct inode *inode; 1196 1197 /* 1198 * VAT file entry is in the last recorded block. Some broken disks have 1199 * it a few blocks before so try a bit harder... 1200 */ 1201 ino.partitionReferenceNum = type1_index; 1202 for (vat_block = start_block; 1203 vat_block >= map->s_partition_root && 1204 vat_block >= start_block - 3; vat_block--) { 1205 ino.logicalBlockNum = vat_block - map->s_partition_root; 1206 inode = udf_iget_special(sb, &ino); 1207 if (!IS_ERR(inode)) { 1208 sbi->s_vat_inode = inode; 1209 break; 1210 } 1211 } 1212 } 1213 1214 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1215 { 1216 struct udf_sb_info *sbi = UDF_SB(sb); 1217 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1218 struct buffer_head *bh = NULL; 1219 struct udf_inode_info *vati; 1220 uint32_t pos; 1221 struct virtualAllocationTable20 *vat20; 1222 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1223 1224 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1225 if (!sbi->s_vat_inode && 1226 sbi->s_last_block != blocks - 1) { 1227 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1228 (unsigned long)sbi->s_last_block, 1229 (unsigned long)blocks - 1); 1230 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1231 } 1232 if (!sbi->s_vat_inode) 1233 return -EIO; 1234 1235 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1236 map->s_type_specific.s_virtual.s_start_offset = 0; 1237 map->s_type_specific.s_virtual.s_num_entries = 1238 (sbi->s_vat_inode->i_size - 36) >> 2; 1239 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1240 vati = UDF_I(sbi->s_vat_inode); 1241 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1242 pos = udf_block_map(sbi->s_vat_inode, 0); 1243 bh = sb_bread(sb, pos); 1244 if (!bh) 1245 return -EIO; 1246 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1247 } else { 1248 vat20 = (struct virtualAllocationTable20 *) 1249 vati->i_ext.i_data; 1250 } 1251 1252 map->s_type_specific.s_virtual.s_start_offset = 1253 le16_to_cpu(vat20->lengthHeader); 1254 map->s_type_specific.s_virtual.s_num_entries = 1255 (sbi->s_vat_inode->i_size - 1256 map->s_type_specific.s_virtual. 1257 s_start_offset) >> 2; 1258 brelse(bh); 1259 } 1260 return 0; 1261 } 1262 1263 /* 1264 * Load partition descriptor block 1265 * 1266 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1267 * sequence. 1268 */ 1269 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1270 { 1271 struct buffer_head *bh; 1272 struct partitionDesc *p; 1273 struct udf_part_map *map; 1274 struct udf_sb_info *sbi = UDF_SB(sb); 1275 int i, type1_idx; 1276 uint16_t partitionNumber; 1277 uint16_t ident; 1278 int ret; 1279 1280 bh = udf_read_tagged(sb, block, block, &ident); 1281 if (!bh) 1282 return -EAGAIN; 1283 if (ident != TAG_IDENT_PD) { 1284 ret = 0; 1285 goto out_bh; 1286 } 1287 1288 p = (struct partitionDesc *)bh->b_data; 1289 partitionNumber = le16_to_cpu(p->partitionNumber); 1290 1291 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1292 for (i = 0; i < sbi->s_partitions; i++) { 1293 map = &sbi->s_partmaps[i]; 1294 udf_debug("Searching map: (%d == %d)\n", 1295 map->s_partition_num, partitionNumber); 1296 if (map->s_partition_num == partitionNumber && 1297 (map->s_partition_type == UDF_TYPE1_MAP15 || 1298 map->s_partition_type == UDF_SPARABLE_MAP15)) 1299 break; 1300 } 1301 1302 if (i >= sbi->s_partitions) { 1303 udf_debug("Partition (%d) not found in partition map\n", 1304 partitionNumber); 1305 ret = 0; 1306 goto out_bh; 1307 } 1308 1309 ret = udf_fill_partdesc_info(sb, p, i); 1310 if (ret < 0) 1311 goto out_bh; 1312 1313 /* 1314 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1315 * PHYSICAL partitions are already set up 1316 */ 1317 type1_idx = i; 1318 #ifdef UDFFS_DEBUG 1319 map = NULL; /* supress 'maybe used uninitialized' warning */ 1320 #endif 1321 for (i = 0; i < sbi->s_partitions; i++) { 1322 map = &sbi->s_partmaps[i]; 1323 1324 if (map->s_partition_num == partitionNumber && 1325 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1326 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1327 map->s_partition_type == UDF_METADATA_MAP25)) 1328 break; 1329 } 1330 1331 if (i >= sbi->s_partitions) { 1332 ret = 0; 1333 goto out_bh; 1334 } 1335 1336 ret = udf_fill_partdesc_info(sb, p, i); 1337 if (ret < 0) 1338 goto out_bh; 1339 1340 if (map->s_partition_type == UDF_METADATA_MAP25) { 1341 ret = udf_load_metadata_files(sb, i); 1342 if (ret < 0) { 1343 udf_err(sb, "error loading MetaData partition map %d\n", 1344 i); 1345 goto out_bh; 1346 } 1347 } else { 1348 /* 1349 * If we have a partition with virtual map, we don't handle 1350 * writing to it (we overwrite blocks instead of relocating 1351 * them). 1352 */ 1353 if (!(sb->s_flags & MS_RDONLY)) { 1354 ret = -EACCES; 1355 goto out_bh; 1356 } 1357 ret = udf_load_vat(sb, i, type1_idx); 1358 if (ret < 0) 1359 goto out_bh; 1360 } 1361 ret = 0; 1362 out_bh: 1363 /* In case loading failed, we handle cleanup in udf_fill_super */ 1364 brelse(bh); 1365 return ret; 1366 } 1367 1368 static int udf_load_sparable_map(struct super_block *sb, 1369 struct udf_part_map *map, 1370 struct sparablePartitionMap *spm) 1371 { 1372 uint32_t loc; 1373 uint16_t ident; 1374 struct sparingTable *st; 1375 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1376 int i; 1377 struct buffer_head *bh; 1378 1379 map->s_partition_type = UDF_SPARABLE_MAP15; 1380 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1381 if (!is_power_of_2(sdata->s_packet_len)) { 1382 udf_err(sb, "error loading logical volume descriptor: " 1383 "Invalid packet length %u\n", 1384 (unsigned)sdata->s_packet_len); 1385 return -EIO; 1386 } 1387 if (spm->numSparingTables > 4) { 1388 udf_err(sb, "error loading logical volume descriptor: " 1389 "Too many sparing tables (%d)\n", 1390 (int)spm->numSparingTables); 1391 return -EIO; 1392 } 1393 1394 for (i = 0; i < spm->numSparingTables; i++) { 1395 loc = le32_to_cpu(spm->locSparingTable[i]); 1396 bh = udf_read_tagged(sb, loc, loc, &ident); 1397 if (!bh) 1398 continue; 1399 1400 st = (struct sparingTable *)bh->b_data; 1401 if (ident != 0 || 1402 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1403 strlen(UDF_ID_SPARING)) || 1404 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1405 sb->s_blocksize) { 1406 brelse(bh); 1407 continue; 1408 } 1409 1410 sdata->s_spar_map[i] = bh; 1411 } 1412 map->s_partition_func = udf_get_pblock_spar15; 1413 return 0; 1414 } 1415 1416 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1417 struct kernel_lb_addr *fileset) 1418 { 1419 struct logicalVolDesc *lvd; 1420 int i, offset; 1421 uint8_t type; 1422 struct udf_sb_info *sbi = UDF_SB(sb); 1423 struct genericPartitionMap *gpm; 1424 uint16_t ident; 1425 struct buffer_head *bh; 1426 unsigned int table_len; 1427 int ret; 1428 1429 bh = udf_read_tagged(sb, block, block, &ident); 1430 if (!bh) 1431 return -EAGAIN; 1432 BUG_ON(ident != TAG_IDENT_LVD); 1433 lvd = (struct logicalVolDesc *)bh->b_data; 1434 table_len = le32_to_cpu(lvd->mapTableLength); 1435 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1436 udf_err(sb, "error loading logical volume descriptor: " 1437 "Partition table too long (%u > %lu)\n", table_len, 1438 sb->s_blocksize - sizeof(*lvd)); 1439 ret = -EIO; 1440 goto out_bh; 1441 } 1442 1443 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1444 if (ret) 1445 goto out_bh; 1446 1447 for (i = 0, offset = 0; 1448 i < sbi->s_partitions && offset < table_len; 1449 i++, offset += gpm->partitionMapLength) { 1450 struct udf_part_map *map = &sbi->s_partmaps[i]; 1451 gpm = (struct genericPartitionMap *) 1452 &(lvd->partitionMaps[offset]); 1453 type = gpm->partitionMapType; 1454 if (type == 1) { 1455 struct genericPartitionMap1 *gpm1 = 1456 (struct genericPartitionMap1 *)gpm; 1457 map->s_partition_type = UDF_TYPE1_MAP15; 1458 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1459 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1460 map->s_partition_func = NULL; 1461 } else if (type == 2) { 1462 struct udfPartitionMap2 *upm2 = 1463 (struct udfPartitionMap2 *)gpm; 1464 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1465 strlen(UDF_ID_VIRTUAL))) { 1466 u16 suf = 1467 le16_to_cpu(((__le16 *)upm2->partIdent. 1468 identSuffix)[0]); 1469 if (suf < 0x0200) { 1470 map->s_partition_type = 1471 UDF_VIRTUAL_MAP15; 1472 map->s_partition_func = 1473 udf_get_pblock_virt15; 1474 } else { 1475 map->s_partition_type = 1476 UDF_VIRTUAL_MAP20; 1477 map->s_partition_func = 1478 udf_get_pblock_virt20; 1479 } 1480 } else if (!strncmp(upm2->partIdent.ident, 1481 UDF_ID_SPARABLE, 1482 strlen(UDF_ID_SPARABLE))) { 1483 ret = udf_load_sparable_map(sb, map, 1484 (struct sparablePartitionMap *)gpm); 1485 if (ret < 0) 1486 goto out_bh; 1487 } else if (!strncmp(upm2->partIdent.ident, 1488 UDF_ID_METADATA, 1489 strlen(UDF_ID_METADATA))) { 1490 struct udf_meta_data *mdata = 1491 &map->s_type_specific.s_metadata; 1492 struct metadataPartitionMap *mdm = 1493 (struct metadataPartitionMap *) 1494 &(lvd->partitionMaps[offset]); 1495 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1496 i, type, UDF_ID_METADATA); 1497 1498 map->s_partition_type = UDF_METADATA_MAP25; 1499 map->s_partition_func = udf_get_pblock_meta25; 1500 1501 mdata->s_meta_file_loc = 1502 le32_to_cpu(mdm->metadataFileLoc); 1503 mdata->s_mirror_file_loc = 1504 le32_to_cpu(mdm->metadataMirrorFileLoc); 1505 mdata->s_bitmap_file_loc = 1506 le32_to_cpu(mdm->metadataBitmapFileLoc); 1507 mdata->s_alloc_unit_size = 1508 le32_to_cpu(mdm->allocUnitSize); 1509 mdata->s_align_unit_size = 1510 le16_to_cpu(mdm->alignUnitSize); 1511 if (mdm->flags & 0x01) 1512 mdata->s_flags |= MF_DUPLICATE_MD; 1513 1514 udf_debug("Metadata Ident suffix=0x%x\n", 1515 le16_to_cpu(*(__le16 *) 1516 mdm->partIdent.identSuffix)); 1517 udf_debug("Metadata part num=%d\n", 1518 le16_to_cpu(mdm->partitionNum)); 1519 udf_debug("Metadata part alloc unit size=%d\n", 1520 le32_to_cpu(mdm->allocUnitSize)); 1521 udf_debug("Metadata file loc=%d\n", 1522 le32_to_cpu(mdm->metadataFileLoc)); 1523 udf_debug("Mirror file loc=%d\n", 1524 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1525 udf_debug("Bitmap file loc=%d\n", 1526 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1527 udf_debug("Flags: %d %d\n", 1528 mdata->s_flags, mdm->flags); 1529 } else { 1530 udf_debug("Unknown ident: %s\n", 1531 upm2->partIdent.ident); 1532 continue; 1533 } 1534 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1535 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1536 } 1537 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1538 i, map->s_partition_num, type, map->s_volumeseqnum); 1539 } 1540 1541 if (fileset) { 1542 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1543 1544 *fileset = lelb_to_cpu(la->extLocation); 1545 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1546 fileset->logicalBlockNum, 1547 fileset->partitionReferenceNum); 1548 } 1549 if (lvd->integritySeqExt.extLength) 1550 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1551 ret = 0; 1552 out_bh: 1553 brelse(bh); 1554 return ret; 1555 } 1556 1557 /* 1558 * udf_load_logicalvolint 1559 * 1560 */ 1561 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1562 { 1563 struct buffer_head *bh = NULL; 1564 uint16_t ident; 1565 struct udf_sb_info *sbi = UDF_SB(sb); 1566 struct logicalVolIntegrityDesc *lvid; 1567 1568 while (loc.extLength > 0 && 1569 (bh = udf_read_tagged(sb, loc.extLocation, 1570 loc.extLocation, &ident)) && 1571 ident == TAG_IDENT_LVID) { 1572 sbi->s_lvid_bh = bh; 1573 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1574 1575 if (lvid->nextIntegrityExt.extLength) 1576 udf_load_logicalvolint(sb, 1577 leea_to_cpu(lvid->nextIntegrityExt)); 1578 1579 if (sbi->s_lvid_bh != bh) 1580 brelse(bh); 1581 loc.extLength -= sb->s_blocksize; 1582 loc.extLocation++; 1583 } 1584 if (sbi->s_lvid_bh != bh) 1585 brelse(bh); 1586 } 1587 1588 /* 1589 * Process a main/reserve volume descriptor sequence. 1590 * @block First block of first extent of the sequence. 1591 * @lastblock Lastblock of first extent of the sequence. 1592 * @fileset There we store extent containing root fileset 1593 * 1594 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1595 * sequence 1596 */ 1597 static noinline int udf_process_sequence( 1598 struct super_block *sb, 1599 sector_t block, sector_t lastblock, 1600 struct kernel_lb_addr *fileset) 1601 { 1602 struct buffer_head *bh = NULL; 1603 struct udf_vds_record vds[VDS_POS_LENGTH]; 1604 struct udf_vds_record *curr; 1605 struct generic_desc *gd; 1606 struct volDescPtr *vdp; 1607 bool done = false; 1608 uint32_t vdsn; 1609 uint16_t ident; 1610 long next_s = 0, next_e = 0; 1611 int ret; 1612 1613 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1614 1615 /* 1616 * Read the main descriptor sequence and find which descriptors 1617 * are in it. 1618 */ 1619 for (; (!done && block <= lastblock); block++) { 1620 1621 bh = udf_read_tagged(sb, block, block, &ident); 1622 if (!bh) { 1623 udf_err(sb, 1624 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1625 (unsigned long long)block); 1626 return -EAGAIN; 1627 } 1628 1629 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1630 gd = (struct generic_desc *)bh->b_data; 1631 vdsn = le32_to_cpu(gd->volDescSeqNum); 1632 switch (ident) { 1633 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1634 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1635 if (vdsn >= curr->volDescSeqNum) { 1636 curr->volDescSeqNum = vdsn; 1637 curr->block = block; 1638 } 1639 break; 1640 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1641 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1642 if (vdsn >= curr->volDescSeqNum) { 1643 curr->volDescSeqNum = vdsn; 1644 curr->block = block; 1645 1646 vdp = (struct volDescPtr *)bh->b_data; 1647 next_s = le32_to_cpu( 1648 vdp->nextVolDescSeqExt.extLocation); 1649 next_e = le32_to_cpu( 1650 vdp->nextVolDescSeqExt.extLength); 1651 next_e = next_e >> sb->s_blocksize_bits; 1652 next_e += next_s; 1653 } 1654 break; 1655 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1656 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1657 if (vdsn >= curr->volDescSeqNum) { 1658 curr->volDescSeqNum = vdsn; 1659 curr->block = block; 1660 } 1661 break; 1662 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1663 curr = &vds[VDS_POS_PARTITION_DESC]; 1664 if (!curr->block) 1665 curr->block = block; 1666 break; 1667 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1668 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1669 if (vdsn >= curr->volDescSeqNum) { 1670 curr->volDescSeqNum = vdsn; 1671 curr->block = block; 1672 } 1673 break; 1674 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1675 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1676 if (vdsn >= curr->volDescSeqNum) { 1677 curr->volDescSeqNum = vdsn; 1678 curr->block = block; 1679 } 1680 break; 1681 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1682 vds[VDS_POS_TERMINATING_DESC].block = block; 1683 if (next_e) { 1684 block = next_s; 1685 lastblock = next_e; 1686 next_s = next_e = 0; 1687 } else 1688 done = true; 1689 break; 1690 } 1691 brelse(bh); 1692 } 1693 /* 1694 * Now read interesting descriptors again and process them 1695 * in a suitable order 1696 */ 1697 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1698 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1699 return -EAGAIN; 1700 } 1701 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1702 if (ret < 0) 1703 return ret; 1704 1705 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1706 ret = udf_load_logicalvol(sb, 1707 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1708 fileset); 1709 if (ret < 0) 1710 return ret; 1711 } 1712 1713 if (vds[VDS_POS_PARTITION_DESC].block) { 1714 /* 1715 * We rescan the whole descriptor sequence to find 1716 * partition descriptor blocks and process them. 1717 */ 1718 for (block = vds[VDS_POS_PARTITION_DESC].block; 1719 block < vds[VDS_POS_TERMINATING_DESC].block; 1720 block++) { 1721 ret = udf_load_partdesc(sb, block); 1722 if (ret < 0) 1723 return ret; 1724 } 1725 } 1726 1727 return 0; 1728 } 1729 1730 /* 1731 * Load Volume Descriptor Sequence described by anchor in bh 1732 * 1733 * Returns <0 on error, 0 on success 1734 */ 1735 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1736 struct kernel_lb_addr *fileset) 1737 { 1738 struct anchorVolDescPtr *anchor; 1739 sector_t main_s, main_e, reserve_s, reserve_e; 1740 int ret; 1741 1742 anchor = (struct anchorVolDescPtr *)bh->b_data; 1743 1744 /* Locate the main sequence */ 1745 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1746 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1747 main_e = main_e >> sb->s_blocksize_bits; 1748 main_e += main_s; 1749 1750 /* Locate the reserve sequence */ 1751 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1752 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1753 reserve_e = reserve_e >> sb->s_blocksize_bits; 1754 reserve_e += reserve_s; 1755 1756 /* Process the main & reserve sequences */ 1757 /* responsible for finding the PartitionDesc(s) */ 1758 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1759 if (ret != -EAGAIN) 1760 return ret; 1761 udf_sb_free_partitions(sb); 1762 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1763 if (ret < 0) { 1764 udf_sb_free_partitions(sb); 1765 /* No sequence was OK, return -EIO */ 1766 if (ret == -EAGAIN) 1767 ret = -EIO; 1768 } 1769 return ret; 1770 } 1771 1772 /* 1773 * Check whether there is an anchor block in the given block and 1774 * load Volume Descriptor Sequence if so. 1775 * 1776 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1777 * block 1778 */ 1779 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1780 struct kernel_lb_addr *fileset) 1781 { 1782 struct buffer_head *bh; 1783 uint16_t ident; 1784 int ret; 1785 1786 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1787 udf_fixed_to_variable(block) >= 1788 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1789 return -EAGAIN; 1790 1791 bh = udf_read_tagged(sb, block, block, &ident); 1792 if (!bh) 1793 return -EAGAIN; 1794 if (ident != TAG_IDENT_AVDP) { 1795 brelse(bh); 1796 return -EAGAIN; 1797 } 1798 ret = udf_load_sequence(sb, bh, fileset); 1799 brelse(bh); 1800 return ret; 1801 } 1802 1803 /* 1804 * Search for an anchor volume descriptor pointer. 1805 * 1806 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1807 * of anchors. 1808 */ 1809 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1810 struct kernel_lb_addr *fileset) 1811 { 1812 sector_t last[6]; 1813 int i; 1814 struct udf_sb_info *sbi = UDF_SB(sb); 1815 int last_count = 0; 1816 int ret; 1817 1818 /* First try user provided anchor */ 1819 if (sbi->s_anchor) { 1820 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1821 if (ret != -EAGAIN) 1822 return ret; 1823 } 1824 /* 1825 * according to spec, anchor is in either: 1826 * block 256 1827 * lastblock-256 1828 * lastblock 1829 * however, if the disc isn't closed, it could be 512. 1830 */ 1831 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1832 if (ret != -EAGAIN) 1833 return ret; 1834 /* 1835 * The trouble is which block is the last one. Drives often misreport 1836 * this so we try various possibilities. 1837 */ 1838 last[last_count++] = *lastblock; 1839 if (*lastblock >= 1) 1840 last[last_count++] = *lastblock - 1; 1841 last[last_count++] = *lastblock + 1; 1842 if (*lastblock >= 2) 1843 last[last_count++] = *lastblock - 2; 1844 if (*lastblock >= 150) 1845 last[last_count++] = *lastblock - 150; 1846 if (*lastblock >= 152) 1847 last[last_count++] = *lastblock - 152; 1848 1849 for (i = 0; i < last_count; i++) { 1850 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1851 sb->s_blocksize_bits) 1852 continue; 1853 ret = udf_check_anchor_block(sb, last[i], fileset); 1854 if (ret != -EAGAIN) { 1855 if (!ret) 1856 *lastblock = last[i]; 1857 return ret; 1858 } 1859 if (last[i] < 256) 1860 continue; 1861 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1862 if (ret != -EAGAIN) { 1863 if (!ret) 1864 *lastblock = last[i]; 1865 return ret; 1866 } 1867 } 1868 1869 /* Finally try block 512 in case media is open */ 1870 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1871 } 1872 1873 /* 1874 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1875 * area specified by it. The function expects sbi->s_lastblock to be the last 1876 * block on the media. 1877 * 1878 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1879 * was not found. 1880 */ 1881 static int udf_find_anchor(struct super_block *sb, 1882 struct kernel_lb_addr *fileset) 1883 { 1884 struct udf_sb_info *sbi = UDF_SB(sb); 1885 sector_t lastblock = sbi->s_last_block; 1886 int ret; 1887 1888 ret = udf_scan_anchors(sb, &lastblock, fileset); 1889 if (ret != -EAGAIN) 1890 goto out; 1891 1892 /* No anchor found? Try VARCONV conversion of block numbers */ 1893 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1894 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1895 /* Firstly, we try to not convert number of the last block */ 1896 ret = udf_scan_anchors(sb, &lastblock, fileset); 1897 if (ret != -EAGAIN) 1898 goto out; 1899 1900 lastblock = sbi->s_last_block; 1901 /* Secondly, we try with converted number of the last block */ 1902 ret = udf_scan_anchors(sb, &lastblock, fileset); 1903 if (ret < 0) { 1904 /* VARCONV didn't help. Clear it. */ 1905 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1906 } 1907 out: 1908 if (ret == 0) 1909 sbi->s_last_block = lastblock; 1910 return ret; 1911 } 1912 1913 /* 1914 * Check Volume Structure Descriptor, find Anchor block and load Volume 1915 * Descriptor Sequence. 1916 * 1917 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1918 * block was not found. 1919 */ 1920 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1921 int silent, struct kernel_lb_addr *fileset) 1922 { 1923 struct udf_sb_info *sbi = UDF_SB(sb); 1924 loff_t nsr_off; 1925 int ret; 1926 1927 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1928 if (!silent) 1929 udf_warn(sb, "Bad block size\n"); 1930 return -EINVAL; 1931 } 1932 sbi->s_last_block = uopt->lastblock; 1933 if (!uopt->novrs) { 1934 /* Check that it is NSR02 compliant */ 1935 nsr_off = udf_check_vsd(sb); 1936 if (!nsr_off) { 1937 if (!silent) 1938 udf_warn(sb, "No VRS found\n"); 1939 return 0; 1940 } 1941 if (nsr_off == -1) 1942 udf_debug("Failed to read sector at offset %d. " 1943 "Assuming open disc. Skipping validity " 1944 "check\n", VSD_FIRST_SECTOR_OFFSET); 1945 if (!sbi->s_last_block) 1946 sbi->s_last_block = udf_get_last_block(sb); 1947 } else { 1948 udf_debug("Validity check skipped because of novrs option\n"); 1949 } 1950 1951 /* Look for anchor block and load Volume Descriptor Sequence */ 1952 sbi->s_anchor = uopt->anchor; 1953 ret = udf_find_anchor(sb, fileset); 1954 if (ret < 0) { 1955 if (!silent && ret == -EAGAIN) 1956 udf_warn(sb, "No anchor found\n"); 1957 return ret; 1958 } 1959 return 0; 1960 } 1961 1962 static void udf_open_lvid(struct super_block *sb) 1963 { 1964 struct udf_sb_info *sbi = UDF_SB(sb); 1965 struct buffer_head *bh = sbi->s_lvid_bh; 1966 struct logicalVolIntegrityDesc *lvid; 1967 struct logicalVolIntegrityDescImpUse *lvidiu; 1968 1969 if (!bh) 1970 return; 1971 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1972 lvidiu = udf_sb_lvidiu(sb); 1973 if (!lvidiu) 1974 return; 1975 1976 mutex_lock(&sbi->s_alloc_mutex); 1977 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1978 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1979 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1980 CURRENT_TIME); 1981 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1982 1983 lvid->descTag.descCRC = cpu_to_le16( 1984 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1985 le16_to_cpu(lvid->descTag.descCRCLength))); 1986 1987 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1988 mark_buffer_dirty(bh); 1989 sbi->s_lvid_dirty = 0; 1990 mutex_unlock(&sbi->s_alloc_mutex); 1991 /* Make opening of filesystem visible on the media immediately */ 1992 sync_dirty_buffer(bh); 1993 } 1994 1995 static void udf_close_lvid(struct super_block *sb) 1996 { 1997 struct udf_sb_info *sbi = UDF_SB(sb); 1998 struct buffer_head *bh = sbi->s_lvid_bh; 1999 struct logicalVolIntegrityDesc *lvid; 2000 struct logicalVolIntegrityDescImpUse *lvidiu; 2001 2002 if (!bh) 2003 return; 2004 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2005 lvidiu = udf_sb_lvidiu(sb); 2006 if (!lvidiu) 2007 return; 2008 2009 mutex_lock(&sbi->s_alloc_mutex); 2010 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2011 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2012 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 2013 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2014 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2015 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2016 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2017 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2018 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2019 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2020 2021 lvid->descTag.descCRC = cpu_to_le16( 2022 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2023 le16_to_cpu(lvid->descTag.descCRCLength))); 2024 2025 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2026 /* 2027 * We set buffer uptodate unconditionally here to avoid spurious 2028 * warnings from mark_buffer_dirty() when previous EIO has marked 2029 * the buffer as !uptodate 2030 */ 2031 set_buffer_uptodate(bh); 2032 mark_buffer_dirty(bh); 2033 sbi->s_lvid_dirty = 0; 2034 mutex_unlock(&sbi->s_alloc_mutex); 2035 /* Make closing of filesystem visible on the media immediately */ 2036 sync_dirty_buffer(bh); 2037 } 2038 2039 u64 lvid_get_unique_id(struct super_block *sb) 2040 { 2041 struct buffer_head *bh; 2042 struct udf_sb_info *sbi = UDF_SB(sb); 2043 struct logicalVolIntegrityDesc *lvid; 2044 struct logicalVolHeaderDesc *lvhd; 2045 u64 uniqueID; 2046 u64 ret; 2047 2048 bh = sbi->s_lvid_bh; 2049 if (!bh) 2050 return 0; 2051 2052 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2053 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2054 2055 mutex_lock(&sbi->s_alloc_mutex); 2056 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2057 if (!(++uniqueID & 0xFFFFFFFF)) 2058 uniqueID += 16; 2059 lvhd->uniqueID = cpu_to_le64(uniqueID); 2060 mutex_unlock(&sbi->s_alloc_mutex); 2061 mark_buffer_dirty(bh); 2062 2063 return ret; 2064 } 2065 2066 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2067 { 2068 int ret = -EINVAL; 2069 struct inode *inode = NULL; 2070 struct udf_options uopt; 2071 struct kernel_lb_addr rootdir, fileset; 2072 struct udf_sb_info *sbi; 2073 2074 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2075 uopt.uid = INVALID_UID; 2076 uopt.gid = INVALID_GID; 2077 uopt.umask = 0; 2078 uopt.fmode = UDF_INVALID_MODE; 2079 uopt.dmode = UDF_INVALID_MODE; 2080 2081 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2082 if (!sbi) 2083 return -ENOMEM; 2084 2085 sb->s_fs_info = sbi; 2086 2087 mutex_init(&sbi->s_alloc_mutex); 2088 2089 if (!udf_parse_options((char *)options, &uopt, false)) 2090 goto parse_options_failure; 2091 2092 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2093 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2094 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2095 goto parse_options_failure; 2096 } 2097 #ifdef CONFIG_UDF_NLS 2098 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2099 uopt.nls_map = load_nls_default(); 2100 if (!uopt.nls_map) 2101 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2102 else 2103 udf_debug("Using default NLS map\n"); 2104 } 2105 #endif 2106 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2107 uopt.flags |= (1 << UDF_FLAG_UTF8); 2108 2109 fileset.logicalBlockNum = 0xFFFFFFFF; 2110 fileset.partitionReferenceNum = 0xFFFF; 2111 2112 sbi->s_flags = uopt.flags; 2113 sbi->s_uid = uopt.uid; 2114 sbi->s_gid = uopt.gid; 2115 sbi->s_umask = uopt.umask; 2116 sbi->s_fmode = uopt.fmode; 2117 sbi->s_dmode = uopt.dmode; 2118 sbi->s_nls_map = uopt.nls_map; 2119 rwlock_init(&sbi->s_cred_lock); 2120 2121 if (uopt.session == 0xFFFFFFFF) 2122 sbi->s_session = udf_get_last_session(sb); 2123 else 2124 sbi->s_session = uopt.session; 2125 2126 udf_debug("Multi-session=%d\n", sbi->s_session); 2127 2128 /* Fill in the rest of the superblock */ 2129 sb->s_op = &udf_sb_ops; 2130 sb->s_export_op = &udf_export_ops; 2131 2132 sb->s_magic = UDF_SUPER_MAGIC; 2133 sb->s_time_gran = 1000; 2134 2135 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2136 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2137 } else { 2138 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2139 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2140 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2141 if (!silent) 2142 pr_notice("Rescanning with blocksize %d\n", 2143 UDF_DEFAULT_BLOCKSIZE); 2144 brelse(sbi->s_lvid_bh); 2145 sbi->s_lvid_bh = NULL; 2146 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2147 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2148 } 2149 } 2150 if (ret < 0) { 2151 if (ret == -EAGAIN) { 2152 udf_warn(sb, "No partition found (1)\n"); 2153 ret = -EINVAL; 2154 } 2155 goto error_out; 2156 } 2157 2158 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2159 2160 if (sbi->s_lvid_bh) { 2161 struct logicalVolIntegrityDescImpUse *lvidiu = 2162 udf_sb_lvidiu(sb); 2163 uint16_t minUDFReadRev; 2164 uint16_t minUDFWriteRev; 2165 2166 if (!lvidiu) { 2167 ret = -EINVAL; 2168 goto error_out; 2169 } 2170 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2171 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2172 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2173 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2174 minUDFReadRev, 2175 UDF_MAX_READ_VERSION); 2176 ret = -EINVAL; 2177 goto error_out; 2178 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2179 !(sb->s_flags & MS_RDONLY)) { 2180 ret = -EACCES; 2181 goto error_out; 2182 } 2183 2184 sbi->s_udfrev = minUDFWriteRev; 2185 2186 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2187 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2188 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2189 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2190 } 2191 2192 if (!sbi->s_partitions) { 2193 udf_warn(sb, "No partition found (2)\n"); 2194 ret = -EINVAL; 2195 goto error_out; 2196 } 2197 2198 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2199 UDF_PART_FLAG_READ_ONLY && 2200 !(sb->s_flags & MS_RDONLY)) { 2201 ret = -EACCES; 2202 goto error_out; 2203 } 2204 2205 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2206 udf_warn(sb, "No fileset found\n"); 2207 ret = -EINVAL; 2208 goto error_out; 2209 } 2210 2211 if (!silent) { 2212 struct timestamp ts; 2213 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2214 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2215 sbi->s_volume_ident, 2216 le16_to_cpu(ts.year), ts.month, ts.day, 2217 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2218 } 2219 if (!(sb->s_flags & MS_RDONLY)) 2220 udf_open_lvid(sb); 2221 2222 /* Assign the root inode */ 2223 /* assign inodes by physical block number */ 2224 /* perhaps it's not extensible enough, but for now ... */ 2225 inode = udf_iget(sb, &rootdir); 2226 if (IS_ERR(inode)) { 2227 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2228 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2229 ret = PTR_ERR(inode); 2230 goto error_out; 2231 } 2232 2233 /* Allocate a dentry for the root inode */ 2234 sb->s_root = d_make_root(inode); 2235 if (!sb->s_root) { 2236 udf_err(sb, "Couldn't allocate root dentry\n"); 2237 ret = -ENOMEM; 2238 goto error_out; 2239 } 2240 sb->s_maxbytes = MAX_LFS_FILESIZE; 2241 sb->s_max_links = UDF_MAX_LINKS; 2242 return 0; 2243 2244 error_out: 2245 iput(sbi->s_vat_inode); 2246 parse_options_failure: 2247 #ifdef CONFIG_UDF_NLS 2248 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2249 unload_nls(sbi->s_nls_map); 2250 #endif 2251 if (!(sb->s_flags & MS_RDONLY)) 2252 udf_close_lvid(sb); 2253 brelse(sbi->s_lvid_bh); 2254 udf_sb_free_partitions(sb); 2255 kfree(sbi); 2256 sb->s_fs_info = NULL; 2257 2258 return ret; 2259 } 2260 2261 void _udf_err(struct super_block *sb, const char *function, 2262 const char *fmt, ...) 2263 { 2264 struct va_format vaf; 2265 va_list args; 2266 2267 va_start(args, fmt); 2268 2269 vaf.fmt = fmt; 2270 vaf.va = &args; 2271 2272 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2273 2274 va_end(args); 2275 } 2276 2277 void _udf_warn(struct super_block *sb, const char *function, 2278 const char *fmt, ...) 2279 { 2280 struct va_format vaf; 2281 va_list args; 2282 2283 va_start(args, fmt); 2284 2285 vaf.fmt = fmt; 2286 vaf.va = &args; 2287 2288 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2289 2290 va_end(args); 2291 } 2292 2293 static void udf_put_super(struct super_block *sb) 2294 { 2295 struct udf_sb_info *sbi; 2296 2297 sbi = UDF_SB(sb); 2298 2299 iput(sbi->s_vat_inode); 2300 #ifdef CONFIG_UDF_NLS 2301 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2302 unload_nls(sbi->s_nls_map); 2303 #endif 2304 if (!(sb->s_flags & MS_RDONLY)) 2305 udf_close_lvid(sb); 2306 brelse(sbi->s_lvid_bh); 2307 udf_sb_free_partitions(sb); 2308 mutex_destroy(&sbi->s_alloc_mutex); 2309 kfree(sb->s_fs_info); 2310 sb->s_fs_info = NULL; 2311 } 2312 2313 static int udf_sync_fs(struct super_block *sb, int wait) 2314 { 2315 struct udf_sb_info *sbi = UDF_SB(sb); 2316 2317 mutex_lock(&sbi->s_alloc_mutex); 2318 if (sbi->s_lvid_dirty) { 2319 /* 2320 * Blockdevice will be synced later so we don't have to submit 2321 * the buffer for IO 2322 */ 2323 mark_buffer_dirty(sbi->s_lvid_bh); 2324 sbi->s_lvid_dirty = 0; 2325 } 2326 mutex_unlock(&sbi->s_alloc_mutex); 2327 2328 return 0; 2329 } 2330 2331 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2332 { 2333 struct super_block *sb = dentry->d_sb; 2334 struct udf_sb_info *sbi = UDF_SB(sb); 2335 struct logicalVolIntegrityDescImpUse *lvidiu; 2336 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2337 2338 lvidiu = udf_sb_lvidiu(sb); 2339 buf->f_type = UDF_SUPER_MAGIC; 2340 buf->f_bsize = sb->s_blocksize; 2341 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2342 buf->f_bfree = udf_count_free(sb); 2343 buf->f_bavail = buf->f_bfree; 2344 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2345 le32_to_cpu(lvidiu->numDirs)) : 0) 2346 + buf->f_bfree; 2347 buf->f_ffree = buf->f_bfree; 2348 buf->f_namelen = UDF_NAME_LEN - 2; 2349 buf->f_fsid.val[0] = (u32)id; 2350 buf->f_fsid.val[1] = (u32)(id >> 32); 2351 2352 return 0; 2353 } 2354 2355 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2356 struct udf_bitmap *bitmap) 2357 { 2358 struct buffer_head *bh = NULL; 2359 unsigned int accum = 0; 2360 int index; 2361 int block = 0, newblock; 2362 struct kernel_lb_addr loc; 2363 uint32_t bytes; 2364 uint8_t *ptr; 2365 uint16_t ident; 2366 struct spaceBitmapDesc *bm; 2367 2368 loc.logicalBlockNum = bitmap->s_extPosition; 2369 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2370 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2371 2372 if (!bh) { 2373 udf_err(sb, "udf_count_free failed\n"); 2374 goto out; 2375 } else if (ident != TAG_IDENT_SBD) { 2376 brelse(bh); 2377 udf_err(sb, "udf_count_free failed\n"); 2378 goto out; 2379 } 2380 2381 bm = (struct spaceBitmapDesc *)bh->b_data; 2382 bytes = le32_to_cpu(bm->numOfBytes); 2383 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2384 ptr = (uint8_t *)bh->b_data; 2385 2386 while (bytes > 0) { 2387 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2388 accum += bitmap_weight((const unsigned long *)(ptr + index), 2389 cur_bytes * 8); 2390 bytes -= cur_bytes; 2391 if (bytes) { 2392 brelse(bh); 2393 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2394 bh = udf_tread(sb, newblock); 2395 if (!bh) { 2396 udf_debug("read failed\n"); 2397 goto out; 2398 } 2399 index = 0; 2400 ptr = (uint8_t *)bh->b_data; 2401 } 2402 } 2403 brelse(bh); 2404 out: 2405 return accum; 2406 } 2407 2408 static unsigned int udf_count_free_table(struct super_block *sb, 2409 struct inode *table) 2410 { 2411 unsigned int accum = 0; 2412 uint32_t elen; 2413 struct kernel_lb_addr eloc; 2414 int8_t etype; 2415 struct extent_position epos; 2416 2417 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2418 epos.block = UDF_I(table)->i_location; 2419 epos.offset = sizeof(struct unallocSpaceEntry); 2420 epos.bh = NULL; 2421 2422 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2423 accum += (elen >> table->i_sb->s_blocksize_bits); 2424 2425 brelse(epos.bh); 2426 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2427 2428 return accum; 2429 } 2430 2431 static unsigned int udf_count_free(struct super_block *sb) 2432 { 2433 unsigned int accum = 0; 2434 struct udf_sb_info *sbi; 2435 struct udf_part_map *map; 2436 2437 sbi = UDF_SB(sb); 2438 if (sbi->s_lvid_bh) { 2439 struct logicalVolIntegrityDesc *lvid = 2440 (struct logicalVolIntegrityDesc *) 2441 sbi->s_lvid_bh->b_data; 2442 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2443 accum = le32_to_cpu( 2444 lvid->freeSpaceTable[sbi->s_partition]); 2445 if (accum == 0xFFFFFFFF) 2446 accum = 0; 2447 } 2448 } 2449 2450 if (accum) 2451 return accum; 2452 2453 map = &sbi->s_partmaps[sbi->s_partition]; 2454 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2455 accum += udf_count_free_bitmap(sb, 2456 map->s_uspace.s_bitmap); 2457 } 2458 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2459 accum += udf_count_free_bitmap(sb, 2460 map->s_fspace.s_bitmap); 2461 } 2462 if (accum) 2463 return accum; 2464 2465 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2466 accum += udf_count_free_table(sb, 2467 map->s_uspace.s_table); 2468 } 2469 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2470 accum += udf_count_free_table(sb, 2471 map->s_fspace.s_table); 2472 } 2473 2474 return accum; 2475 } 2476