1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 96 struct kernel_lb_addr *); 97 static void udf_load_fileset(struct super_block *, struct buffer_head *, 98 struct kernel_lb_addr *); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 116 offsetof(struct logicalVolIntegrityDesc, impUse)) / 117 (2 * sizeof(uint32_t)) < partnum) { 118 udf_err(sb, "Logical volume integrity descriptor corrupted " 119 "(numOfPartitions = %u)!\n", partnum); 120 return NULL; 121 } 122 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 123 offset = partnum * 2 * sizeof(uint32_t); 124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 125 } 126 127 /* UDF filesystem type */ 128 static struct dentry *udf_mount(struct file_system_type *fs_type, 129 int flags, const char *dev_name, void *data) 130 { 131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 132 } 133 134 static struct file_system_type udf_fstype = { 135 .owner = THIS_MODULE, 136 .name = "udf", 137 .mount = udf_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("udf"); 142 143 static struct kmem_cache *udf_inode_cachep; 144 145 static struct inode *udf_alloc_inode(struct super_block *sb) 146 { 147 struct udf_inode_info *ei; 148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 149 if (!ei) 150 return NULL; 151 152 ei->i_unique = 0; 153 ei->i_lenExtents = 0; 154 ei->i_next_alloc_block = 0; 155 ei->i_next_alloc_goal = 0; 156 ei->i_strat4096 = 0; 157 init_rwsem(&ei->i_data_sem); 158 ei->cached_extent.lstart = -1; 159 spin_lock_init(&ei->i_extent_cache_lock); 160 161 return &ei->vfs_inode; 162 } 163 164 static void udf_free_in_core_inode(struct inode *inode) 165 { 166 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 167 } 168 169 static void init_once(void *foo) 170 { 171 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 172 173 ei->i_ext.i_data = NULL; 174 inode_init_once(&ei->vfs_inode); 175 } 176 177 static int __init init_inodecache(void) 178 { 179 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 180 sizeof(struct udf_inode_info), 181 0, (SLAB_RECLAIM_ACCOUNT | 182 SLAB_MEM_SPREAD | 183 SLAB_ACCOUNT), 184 init_once); 185 if (!udf_inode_cachep) 186 return -ENOMEM; 187 return 0; 188 } 189 190 static void destroy_inodecache(void) 191 { 192 /* 193 * Make sure all delayed rcu free inodes are flushed before we 194 * destroy cache. 195 */ 196 rcu_barrier(); 197 kmem_cache_destroy(udf_inode_cachep); 198 } 199 200 /* Superblock operations */ 201 static const struct super_operations udf_sb_ops = { 202 .alloc_inode = udf_alloc_inode, 203 .free_inode = udf_free_in_core_inode, 204 .write_inode = udf_write_inode, 205 .evict_inode = udf_evict_inode, 206 .put_super = udf_put_super, 207 .sync_fs = udf_sync_fs, 208 .statfs = udf_statfs, 209 .remount_fs = udf_remount_fs, 210 .show_options = udf_show_options, 211 }; 212 213 struct udf_options { 214 unsigned char novrs; 215 unsigned int blocksize; 216 unsigned int session; 217 unsigned int lastblock; 218 unsigned int anchor; 219 unsigned int flags; 220 umode_t umask; 221 kgid_t gid; 222 kuid_t uid; 223 umode_t fmode; 224 umode_t dmode; 225 struct nls_table *nls_map; 226 }; 227 228 static int __init init_udf_fs(void) 229 { 230 int err; 231 232 err = init_inodecache(); 233 if (err) 234 goto out1; 235 err = register_filesystem(&udf_fstype); 236 if (err) 237 goto out; 238 239 return 0; 240 241 out: 242 destroy_inodecache(); 243 244 out1: 245 return err; 246 } 247 248 static void __exit exit_udf_fs(void) 249 { 250 unregister_filesystem(&udf_fstype); 251 destroy_inodecache(); 252 } 253 254 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 255 { 256 struct udf_sb_info *sbi = UDF_SB(sb); 257 258 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 259 if (!sbi->s_partmaps) { 260 sbi->s_partitions = 0; 261 return -ENOMEM; 262 } 263 264 sbi->s_partitions = count; 265 return 0; 266 } 267 268 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 269 { 270 int i; 271 int nr_groups = bitmap->s_nr_groups; 272 273 for (i = 0; i < nr_groups; i++) 274 if (bitmap->s_block_bitmap[i]) 275 brelse(bitmap->s_block_bitmap[i]); 276 277 kvfree(bitmap); 278 } 279 280 static void udf_free_partition(struct udf_part_map *map) 281 { 282 int i; 283 struct udf_meta_data *mdata; 284 285 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 286 iput(map->s_uspace.s_table); 287 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 288 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 289 if (map->s_partition_type == UDF_SPARABLE_MAP15) 290 for (i = 0; i < 4; i++) 291 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 292 else if (map->s_partition_type == UDF_METADATA_MAP25) { 293 mdata = &map->s_type_specific.s_metadata; 294 iput(mdata->s_metadata_fe); 295 mdata->s_metadata_fe = NULL; 296 297 iput(mdata->s_mirror_fe); 298 mdata->s_mirror_fe = NULL; 299 300 iput(mdata->s_bitmap_fe); 301 mdata->s_bitmap_fe = NULL; 302 } 303 } 304 305 static void udf_sb_free_partitions(struct super_block *sb) 306 { 307 struct udf_sb_info *sbi = UDF_SB(sb); 308 int i; 309 310 if (!sbi->s_partmaps) 311 return; 312 for (i = 0; i < sbi->s_partitions; i++) 313 udf_free_partition(&sbi->s_partmaps[i]); 314 kfree(sbi->s_partmaps); 315 sbi->s_partmaps = NULL; 316 } 317 318 static int udf_show_options(struct seq_file *seq, struct dentry *root) 319 { 320 struct super_block *sb = root->d_sb; 321 struct udf_sb_info *sbi = UDF_SB(sb); 322 323 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 324 seq_puts(seq, ",nostrict"); 325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 326 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 328 seq_puts(seq, ",unhide"); 329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 330 seq_puts(seq, ",undelete"); 331 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 332 seq_puts(seq, ",noadinicb"); 333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 334 seq_puts(seq, ",shortad"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 336 seq_puts(seq, ",uid=forget"); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 338 seq_puts(seq, ",gid=forget"); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 340 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 341 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 342 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 343 if (sbi->s_umask != 0) 344 seq_printf(seq, ",umask=%ho", sbi->s_umask); 345 if (sbi->s_fmode != UDF_INVALID_MODE) 346 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 347 if (sbi->s_dmode != UDF_INVALID_MODE) 348 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 350 seq_printf(seq, ",session=%d", sbi->s_session); 351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 352 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 353 if (sbi->s_anchor != 0) 354 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 356 seq_puts(seq, ",utf8"); 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 358 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 359 360 return 0; 361 } 362 363 /* 364 * udf_parse_options 365 * 366 * PURPOSE 367 * Parse mount options. 368 * 369 * DESCRIPTION 370 * The following mount options are supported: 371 * 372 * gid= Set the default group. 373 * umask= Set the default umask. 374 * mode= Set the default file permissions. 375 * dmode= Set the default directory permissions. 376 * uid= Set the default user. 377 * bs= Set the block size. 378 * unhide Show otherwise hidden files. 379 * undelete Show deleted files in lists. 380 * adinicb Embed data in the inode (default) 381 * noadinicb Don't embed data in the inode 382 * shortad Use short ad's 383 * longad Use long ad's (default) 384 * nostrict Unset strict conformance 385 * iocharset= Set the NLS character set 386 * 387 * The remaining are for debugging and disaster recovery: 388 * 389 * novrs Skip volume sequence recognition 390 * 391 * The following expect a offset from 0. 392 * 393 * session= Set the CDROM session (default= last session) 394 * anchor= Override standard anchor location. (default= 256) 395 * volume= Override the VolumeDesc location. (unused) 396 * partition= Override the PartitionDesc location. (unused) 397 * lastblock= Set the last block of the filesystem/ 398 * 399 * The following expect a offset from the partition root. 400 * 401 * fileset= Override the fileset block location. (unused) 402 * rootdir= Override the root directory location. (unused) 403 * WARNING: overriding the rootdir to a non-directory may 404 * yield highly unpredictable results. 405 * 406 * PRE-CONDITIONS 407 * options Pointer to mount options string. 408 * uopts Pointer to mount options variable. 409 * 410 * POST-CONDITIONS 411 * <return> 1 Mount options parsed okay. 412 * <return> 0 Error parsing mount options. 413 * 414 * HISTORY 415 * July 1, 1997 - Andrew E. Mileski 416 * Written, tested, and released. 417 */ 418 419 enum { 420 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 421 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 422 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 423 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 424 Opt_rootdir, Opt_utf8, Opt_iocharset, 425 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 426 Opt_fmode, Opt_dmode 427 }; 428 429 static const match_table_t tokens = { 430 {Opt_novrs, "novrs"}, 431 {Opt_nostrict, "nostrict"}, 432 {Opt_bs, "bs=%u"}, 433 {Opt_unhide, "unhide"}, 434 {Opt_undelete, "undelete"}, 435 {Opt_noadinicb, "noadinicb"}, 436 {Opt_adinicb, "adinicb"}, 437 {Opt_shortad, "shortad"}, 438 {Opt_longad, "longad"}, 439 {Opt_uforget, "uid=forget"}, 440 {Opt_uignore, "uid=ignore"}, 441 {Opt_gforget, "gid=forget"}, 442 {Opt_gignore, "gid=ignore"}, 443 {Opt_gid, "gid=%u"}, 444 {Opt_uid, "uid=%u"}, 445 {Opt_umask, "umask=%o"}, 446 {Opt_session, "session=%u"}, 447 {Opt_lastblock, "lastblock=%u"}, 448 {Opt_anchor, "anchor=%u"}, 449 {Opt_volume, "volume=%u"}, 450 {Opt_partition, "partition=%u"}, 451 {Opt_fileset, "fileset=%u"}, 452 {Opt_rootdir, "rootdir=%u"}, 453 {Opt_utf8, "utf8"}, 454 {Opt_iocharset, "iocharset=%s"}, 455 {Opt_fmode, "mode=%o"}, 456 {Opt_dmode, "dmode=%o"}, 457 {Opt_err, NULL} 458 }; 459 460 static int udf_parse_options(char *options, struct udf_options *uopt, 461 bool remount) 462 { 463 char *p; 464 int option; 465 466 uopt->novrs = 0; 467 uopt->session = 0xFFFFFFFF; 468 uopt->lastblock = 0; 469 uopt->anchor = 0; 470 471 if (!options) 472 return 1; 473 474 while ((p = strsep(&options, ",")) != NULL) { 475 substring_t args[MAX_OPT_ARGS]; 476 int token; 477 unsigned n; 478 if (!*p) 479 continue; 480 481 token = match_token(p, tokens, args); 482 switch (token) { 483 case Opt_novrs: 484 uopt->novrs = 1; 485 break; 486 case Opt_bs: 487 if (match_int(&args[0], &option)) 488 return 0; 489 n = option; 490 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 491 return 0; 492 uopt->blocksize = n; 493 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 494 break; 495 case Opt_unhide: 496 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 497 break; 498 case Opt_undelete: 499 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 500 break; 501 case Opt_noadinicb: 502 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 503 break; 504 case Opt_adinicb: 505 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 506 break; 507 case Opt_shortad: 508 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 509 break; 510 case Opt_longad: 511 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 512 break; 513 case Opt_gid: 514 if (match_int(args, &option)) 515 return 0; 516 uopt->gid = make_kgid(current_user_ns(), option); 517 if (!gid_valid(uopt->gid)) 518 return 0; 519 uopt->flags |= (1 << UDF_FLAG_GID_SET); 520 break; 521 case Opt_uid: 522 if (match_int(args, &option)) 523 return 0; 524 uopt->uid = make_kuid(current_user_ns(), option); 525 if (!uid_valid(uopt->uid)) 526 return 0; 527 uopt->flags |= (1 << UDF_FLAG_UID_SET); 528 break; 529 case Opt_umask: 530 if (match_octal(args, &option)) 531 return 0; 532 uopt->umask = option; 533 break; 534 case Opt_nostrict: 535 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 536 break; 537 case Opt_session: 538 if (match_int(args, &option)) 539 return 0; 540 uopt->session = option; 541 if (!remount) 542 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 543 break; 544 case Opt_lastblock: 545 if (match_int(args, &option)) 546 return 0; 547 uopt->lastblock = option; 548 if (!remount) 549 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 550 break; 551 case Opt_anchor: 552 if (match_int(args, &option)) 553 return 0; 554 uopt->anchor = option; 555 break; 556 case Opt_volume: 557 case Opt_partition: 558 case Opt_fileset: 559 case Opt_rootdir: 560 /* Ignored (never implemented properly) */ 561 break; 562 case Opt_utf8: 563 uopt->flags |= (1 << UDF_FLAG_UTF8); 564 break; 565 case Opt_iocharset: 566 if (!remount) { 567 if (uopt->nls_map) 568 unload_nls(uopt->nls_map); 569 /* 570 * load_nls() failure is handled later in 571 * udf_fill_super() after all options are 572 * parsed. 573 */ 574 uopt->nls_map = load_nls(args[0].from); 575 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 576 } 577 break; 578 case Opt_uforget: 579 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 580 break; 581 case Opt_uignore: 582 case Opt_gignore: 583 /* These options are superseeded by uid=<number> */ 584 break; 585 case Opt_gforget: 586 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 587 break; 588 case Opt_fmode: 589 if (match_octal(args, &option)) 590 return 0; 591 uopt->fmode = option & 0777; 592 break; 593 case Opt_dmode: 594 if (match_octal(args, &option)) 595 return 0; 596 uopt->dmode = option & 0777; 597 break; 598 default: 599 pr_err("bad mount option \"%s\" or missing value\n", p); 600 return 0; 601 } 602 } 603 return 1; 604 } 605 606 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 607 { 608 struct udf_options uopt; 609 struct udf_sb_info *sbi = UDF_SB(sb); 610 int error = 0; 611 612 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 613 return -EACCES; 614 615 sync_filesystem(sb); 616 617 uopt.flags = sbi->s_flags; 618 uopt.uid = sbi->s_uid; 619 uopt.gid = sbi->s_gid; 620 uopt.umask = sbi->s_umask; 621 uopt.fmode = sbi->s_fmode; 622 uopt.dmode = sbi->s_dmode; 623 uopt.nls_map = NULL; 624 625 if (!udf_parse_options(options, &uopt, true)) 626 return -EINVAL; 627 628 write_lock(&sbi->s_cred_lock); 629 sbi->s_flags = uopt.flags; 630 sbi->s_uid = uopt.uid; 631 sbi->s_gid = uopt.gid; 632 sbi->s_umask = uopt.umask; 633 sbi->s_fmode = uopt.fmode; 634 sbi->s_dmode = uopt.dmode; 635 write_unlock(&sbi->s_cred_lock); 636 637 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 638 goto out_unlock; 639 640 if (*flags & SB_RDONLY) 641 udf_close_lvid(sb); 642 else 643 udf_open_lvid(sb); 644 645 out_unlock: 646 return error; 647 } 648 649 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 650 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 651 static loff_t udf_check_vsd(struct super_block *sb) 652 { 653 struct volStructDesc *vsd = NULL; 654 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 655 int sectorsize; 656 struct buffer_head *bh = NULL; 657 int nsr02 = 0; 658 int nsr03 = 0; 659 struct udf_sb_info *sbi; 660 661 sbi = UDF_SB(sb); 662 if (sb->s_blocksize < sizeof(struct volStructDesc)) 663 sectorsize = sizeof(struct volStructDesc); 664 else 665 sectorsize = sb->s_blocksize; 666 667 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits); 668 669 udf_debug("Starting at sector %u (%lu byte sectors)\n", 670 (unsigned int)(sector >> sb->s_blocksize_bits), 671 sb->s_blocksize); 672 /* Process the sequence (if applicable). The hard limit on the sector 673 * offset is arbitrary, hopefully large enough so that all valid UDF 674 * filesystems will be recognised. There is no mention of an upper 675 * bound to the size of the volume recognition area in the standard. 676 * The limit will prevent the code to read all the sectors of a 677 * specially crafted image (like a bluray disc full of CD001 sectors), 678 * potentially causing minutes or even hours of uninterruptible I/O 679 * activity. This actually happened with uninitialised SSD partitions 680 * (all 0xFF) before the check for the limit and all valid IDs were 681 * added */ 682 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 683 sector += sectorsize) { 684 /* Read a block */ 685 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 686 if (!bh) 687 break; 688 689 /* Look for ISO descriptors */ 690 vsd = (struct volStructDesc *)(bh->b_data + 691 (sector & (sb->s_blocksize - 1))); 692 693 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 694 VSD_STD_ID_LEN)) { 695 switch (vsd->structType) { 696 case 0: 697 udf_debug("ISO9660 Boot Record found\n"); 698 break; 699 case 1: 700 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 701 break; 702 case 2: 703 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 704 break; 705 case 3: 706 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 707 break; 708 case 255: 709 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 710 break; 711 default: 712 udf_debug("ISO9660 VRS (%u) found\n", 713 vsd->structType); 714 break; 715 } 716 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 717 VSD_STD_ID_LEN)) 718 ; /* nothing */ 719 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 720 VSD_STD_ID_LEN)) { 721 brelse(bh); 722 break; 723 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 724 VSD_STD_ID_LEN)) 725 nsr02 = sector; 726 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 727 VSD_STD_ID_LEN)) 728 nsr03 = sector; 729 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 730 VSD_STD_ID_LEN)) 731 ; /* nothing */ 732 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 733 VSD_STD_ID_LEN)) 734 ; /* nothing */ 735 else { 736 /* invalid id : end of volume recognition area */ 737 brelse(bh); 738 break; 739 } 740 brelse(bh); 741 } 742 743 if (nsr03) 744 return nsr03; 745 else if (nsr02) 746 return nsr02; 747 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 748 VSD_FIRST_SECTOR_OFFSET) 749 return -1; 750 else 751 return 0; 752 } 753 754 static int udf_find_fileset(struct super_block *sb, 755 struct kernel_lb_addr *fileset, 756 struct kernel_lb_addr *root) 757 { 758 struct buffer_head *bh = NULL; 759 uint16_t ident; 760 761 if (fileset->logicalBlockNum != 0xFFFFFFFF || 762 fileset->partitionReferenceNum != 0xFFFF) { 763 bh = udf_read_ptagged(sb, fileset, 0, &ident); 764 765 if (!bh) { 766 return 1; 767 } else if (ident != TAG_IDENT_FSD) { 768 brelse(bh); 769 return 1; 770 } 771 772 udf_debug("Fileset at block=%u, partition=%u\n", 773 fileset->logicalBlockNum, 774 fileset->partitionReferenceNum); 775 776 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 777 udf_load_fileset(sb, bh, root); 778 brelse(bh); 779 return 0; 780 } 781 return 1; 782 } 783 784 /* 785 * Load primary Volume Descriptor Sequence 786 * 787 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 788 * should be tried. 789 */ 790 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 791 { 792 struct primaryVolDesc *pvoldesc; 793 uint8_t *outstr; 794 struct buffer_head *bh; 795 uint16_t ident; 796 int ret = -ENOMEM; 797 #ifdef UDFFS_DEBUG 798 struct timestamp *ts; 799 #endif 800 801 outstr = kmalloc(128, GFP_NOFS); 802 if (!outstr) 803 return -ENOMEM; 804 805 bh = udf_read_tagged(sb, block, block, &ident); 806 if (!bh) { 807 ret = -EAGAIN; 808 goto out2; 809 } 810 811 if (ident != TAG_IDENT_PVD) { 812 ret = -EIO; 813 goto out_bh; 814 } 815 816 pvoldesc = (struct primaryVolDesc *)bh->b_data; 817 818 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 819 pvoldesc->recordingDateAndTime); 820 #ifdef UDFFS_DEBUG 821 ts = &pvoldesc->recordingDateAndTime; 822 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 823 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 824 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 825 #endif 826 827 828 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 829 if (ret < 0) { 830 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 831 pr_warn("incorrect volume identification, setting to " 832 "'InvalidName'\n"); 833 } else { 834 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 835 } 836 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 837 838 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 839 if (ret < 0) { 840 ret = 0; 841 goto out_bh; 842 } 843 outstr[ret] = 0; 844 udf_debug("volSetIdent[] = '%s'\n", outstr); 845 846 ret = 0; 847 out_bh: 848 brelse(bh); 849 out2: 850 kfree(outstr); 851 return ret; 852 } 853 854 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 855 u32 meta_file_loc, u32 partition_ref) 856 { 857 struct kernel_lb_addr addr; 858 struct inode *metadata_fe; 859 860 addr.logicalBlockNum = meta_file_loc; 861 addr.partitionReferenceNum = partition_ref; 862 863 metadata_fe = udf_iget_special(sb, &addr); 864 865 if (IS_ERR(metadata_fe)) { 866 udf_warn(sb, "metadata inode efe not found\n"); 867 return metadata_fe; 868 } 869 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 870 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 871 iput(metadata_fe); 872 return ERR_PTR(-EIO); 873 } 874 875 return metadata_fe; 876 } 877 878 static int udf_load_metadata_files(struct super_block *sb, int partition, 879 int type1_index) 880 { 881 struct udf_sb_info *sbi = UDF_SB(sb); 882 struct udf_part_map *map; 883 struct udf_meta_data *mdata; 884 struct kernel_lb_addr addr; 885 struct inode *fe; 886 887 map = &sbi->s_partmaps[partition]; 888 mdata = &map->s_type_specific.s_metadata; 889 mdata->s_phys_partition_ref = type1_index; 890 891 /* metadata address */ 892 udf_debug("Metadata file location: block = %u part = %u\n", 893 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 894 895 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 896 mdata->s_phys_partition_ref); 897 if (IS_ERR(fe)) { 898 /* mirror file entry */ 899 udf_debug("Mirror metadata file location: block = %u part = %u\n", 900 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 901 902 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 903 mdata->s_phys_partition_ref); 904 905 if (IS_ERR(fe)) { 906 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 907 return PTR_ERR(fe); 908 } 909 mdata->s_mirror_fe = fe; 910 } else 911 mdata->s_metadata_fe = fe; 912 913 914 /* 915 * bitmap file entry 916 * Note: 917 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 918 */ 919 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 920 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 921 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 922 923 udf_debug("Bitmap file location: block = %u part = %u\n", 924 addr.logicalBlockNum, addr.partitionReferenceNum); 925 926 fe = udf_iget_special(sb, &addr); 927 if (IS_ERR(fe)) { 928 if (sb_rdonly(sb)) 929 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 930 else { 931 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 932 return PTR_ERR(fe); 933 } 934 } else 935 mdata->s_bitmap_fe = fe; 936 } 937 938 udf_debug("udf_load_metadata_files Ok\n"); 939 return 0; 940 } 941 942 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 943 struct kernel_lb_addr *root) 944 { 945 struct fileSetDesc *fset; 946 947 fset = (struct fileSetDesc *)bh->b_data; 948 949 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 950 951 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 952 953 udf_debug("Rootdir at block=%u, partition=%u\n", 954 root->logicalBlockNum, root->partitionReferenceNum); 955 } 956 957 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 958 { 959 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 960 return DIV_ROUND_UP(map->s_partition_len + 961 (sizeof(struct spaceBitmapDesc) << 3), 962 sb->s_blocksize * 8); 963 } 964 965 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 966 { 967 struct udf_bitmap *bitmap; 968 int nr_groups; 969 int size; 970 971 nr_groups = udf_compute_nr_groups(sb, index); 972 size = sizeof(struct udf_bitmap) + 973 (sizeof(struct buffer_head *) * nr_groups); 974 975 if (size <= PAGE_SIZE) 976 bitmap = kzalloc(size, GFP_KERNEL); 977 else 978 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 979 980 if (!bitmap) 981 return NULL; 982 983 bitmap->s_nr_groups = nr_groups; 984 return bitmap; 985 } 986 987 static int check_partition_desc(struct super_block *sb, 988 struct partitionDesc *p, 989 struct udf_part_map *map) 990 { 991 bool umap, utable, fmap, ftable; 992 struct partitionHeaderDesc *phd; 993 994 switch (le32_to_cpu(p->accessType)) { 995 case PD_ACCESS_TYPE_READ_ONLY: 996 case PD_ACCESS_TYPE_WRITE_ONCE: 997 case PD_ACCESS_TYPE_REWRITABLE: 998 case PD_ACCESS_TYPE_NONE: 999 goto force_ro; 1000 } 1001 1002 /* No Partition Header Descriptor? */ 1003 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1004 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1005 goto force_ro; 1006 1007 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1008 utable = phd->unallocSpaceTable.extLength; 1009 umap = phd->unallocSpaceBitmap.extLength; 1010 ftable = phd->freedSpaceTable.extLength; 1011 fmap = phd->freedSpaceBitmap.extLength; 1012 1013 /* No allocation info? */ 1014 if (!utable && !umap && !ftable && !fmap) 1015 goto force_ro; 1016 1017 /* We don't support blocks that require erasing before overwrite */ 1018 if (ftable || fmap) 1019 goto force_ro; 1020 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1021 if (utable && umap) 1022 goto force_ro; 1023 1024 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1025 map->s_partition_type == UDF_VIRTUAL_MAP20) 1026 goto force_ro; 1027 1028 return 0; 1029 force_ro: 1030 if (!sb_rdonly(sb)) 1031 return -EACCES; 1032 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1033 return 0; 1034 } 1035 1036 static int udf_fill_partdesc_info(struct super_block *sb, 1037 struct partitionDesc *p, int p_index) 1038 { 1039 struct udf_part_map *map; 1040 struct udf_sb_info *sbi = UDF_SB(sb); 1041 struct partitionHeaderDesc *phd; 1042 int err; 1043 1044 map = &sbi->s_partmaps[p_index]; 1045 1046 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1047 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1048 1049 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1050 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1051 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1052 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1053 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1054 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1055 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1056 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1057 1058 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1059 p_index, map->s_partition_type, 1060 map->s_partition_root, map->s_partition_len); 1061 1062 err = check_partition_desc(sb, p, map); 1063 if (err) 1064 return err; 1065 1066 /* 1067 * Skip loading allocation info it we cannot ever write to the fs. 1068 * This is a correctness thing as we may have decided to force ro mount 1069 * to avoid allocation info we don't support. 1070 */ 1071 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1072 return 0; 1073 1074 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1075 if (phd->unallocSpaceTable.extLength) { 1076 struct kernel_lb_addr loc = { 1077 .logicalBlockNum = le32_to_cpu( 1078 phd->unallocSpaceTable.extPosition), 1079 .partitionReferenceNum = p_index, 1080 }; 1081 struct inode *inode; 1082 1083 inode = udf_iget_special(sb, &loc); 1084 if (IS_ERR(inode)) { 1085 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1086 p_index); 1087 return PTR_ERR(inode); 1088 } 1089 map->s_uspace.s_table = inode; 1090 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1091 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1092 p_index, map->s_uspace.s_table->i_ino); 1093 } 1094 1095 if (phd->unallocSpaceBitmap.extLength) { 1096 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1097 if (!bitmap) 1098 return -ENOMEM; 1099 map->s_uspace.s_bitmap = bitmap; 1100 bitmap->s_extPosition = le32_to_cpu( 1101 phd->unallocSpaceBitmap.extPosition); 1102 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1103 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1104 p_index, bitmap->s_extPosition); 1105 } 1106 1107 return 0; 1108 } 1109 1110 static void udf_find_vat_block(struct super_block *sb, int p_index, 1111 int type1_index, sector_t start_block) 1112 { 1113 struct udf_sb_info *sbi = UDF_SB(sb); 1114 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1115 sector_t vat_block; 1116 struct kernel_lb_addr ino; 1117 struct inode *inode; 1118 1119 /* 1120 * VAT file entry is in the last recorded block. Some broken disks have 1121 * it a few blocks before so try a bit harder... 1122 */ 1123 ino.partitionReferenceNum = type1_index; 1124 for (vat_block = start_block; 1125 vat_block >= map->s_partition_root && 1126 vat_block >= start_block - 3; vat_block--) { 1127 ino.logicalBlockNum = vat_block - map->s_partition_root; 1128 inode = udf_iget_special(sb, &ino); 1129 if (!IS_ERR(inode)) { 1130 sbi->s_vat_inode = inode; 1131 break; 1132 } 1133 } 1134 } 1135 1136 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1137 { 1138 struct udf_sb_info *sbi = UDF_SB(sb); 1139 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1140 struct buffer_head *bh = NULL; 1141 struct udf_inode_info *vati; 1142 uint32_t pos; 1143 struct virtualAllocationTable20 *vat20; 1144 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1145 sb->s_blocksize_bits; 1146 1147 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1148 if (!sbi->s_vat_inode && 1149 sbi->s_last_block != blocks - 1) { 1150 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1151 (unsigned long)sbi->s_last_block, 1152 (unsigned long)blocks - 1); 1153 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1154 } 1155 if (!sbi->s_vat_inode) 1156 return -EIO; 1157 1158 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1159 map->s_type_specific.s_virtual.s_start_offset = 0; 1160 map->s_type_specific.s_virtual.s_num_entries = 1161 (sbi->s_vat_inode->i_size - 36) >> 2; 1162 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1163 vati = UDF_I(sbi->s_vat_inode); 1164 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1165 pos = udf_block_map(sbi->s_vat_inode, 0); 1166 bh = sb_bread(sb, pos); 1167 if (!bh) 1168 return -EIO; 1169 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1170 } else { 1171 vat20 = (struct virtualAllocationTable20 *) 1172 vati->i_ext.i_data; 1173 } 1174 1175 map->s_type_specific.s_virtual.s_start_offset = 1176 le16_to_cpu(vat20->lengthHeader); 1177 map->s_type_specific.s_virtual.s_num_entries = 1178 (sbi->s_vat_inode->i_size - 1179 map->s_type_specific.s_virtual. 1180 s_start_offset) >> 2; 1181 brelse(bh); 1182 } 1183 return 0; 1184 } 1185 1186 /* 1187 * Load partition descriptor block 1188 * 1189 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1190 * sequence. 1191 */ 1192 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1193 { 1194 struct buffer_head *bh; 1195 struct partitionDesc *p; 1196 struct udf_part_map *map; 1197 struct udf_sb_info *sbi = UDF_SB(sb); 1198 int i, type1_idx; 1199 uint16_t partitionNumber; 1200 uint16_t ident; 1201 int ret; 1202 1203 bh = udf_read_tagged(sb, block, block, &ident); 1204 if (!bh) 1205 return -EAGAIN; 1206 if (ident != TAG_IDENT_PD) { 1207 ret = 0; 1208 goto out_bh; 1209 } 1210 1211 p = (struct partitionDesc *)bh->b_data; 1212 partitionNumber = le16_to_cpu(p->partitionNumber); 1213 1214 /* First scan for TYPE1 and SPARABLE partitions */ 1215 for (i = 0; i < sbi->s_partitions; i++) { 1216 map = &sbi->s_partmaps[i]; 1217 udf_debug("Searching map: (%u == %u)\n", 1218 map->s_partition_num, partitionNumber); 1219 if (map->s_partition_num == partitionNumber && 1220 (map->s_partition_type == UDF_TYPE1_MAP15 || 1221 map->s_partition_type == UDF_SPARABLE_MAP15)) 1222 break; 1223 } 1224 1225 if (i >= sbi->s_partitions) { 1226 udf_debug("Partition (%u) not found in partition map\n", 1227 partitionNumber); 1228 ret = 0; 1229 goto out_bh; 1230 } 1231 1232 ret = udf_fill_partdesc_info(sb, p, i); 1233 if (ret < 0) 1234 goto out_bh; 1235 1236 /* 1237 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1238 * PHYSICAL partitions are already set up 1239 */ 1240 type1_idx = i; 1241 #ifdef UDFFS_DEBUG 1242 map = NULL; /* supress 'maybe used uninitialized' warning */ 1243 #endif 1244 for (i = 0; i < sbi->s_partitions; i++) { 1245 map = &sbi->s_partmaps[i]; 1246 1247 if (map->s_partition_num == partitionNumber && 1248 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1249 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1250 map->s_partition_type == UDF_METADATA_MAP25)) 1251 break; 1252 } 1253 1254 if (i >= sbi->s_partitions) { 1255 ret = 0; 1256 goto out_bh; 1257 } 1258 1259 ret = udf_fill_partdesc_info(sb, p, i); 1260 if (ret < 0) 1261 goto out_bh; 1262 1263 if (map->s_partition_type == UDF_METADATA_MAP25) { 1264 ret = udf_load_metadata_files(sb, i, type1_idx); 1265 if (ret < 0) { 1266 udf_err(sb, "error loading MetaData partition map %d\n", 1267 i); 1268 goto out_bh; 1269 } 1270 } else { 1271 /* 1272 * If we have a partition with virtual map, we don't handle 1273 * writing to it (we overwrite blocks instead of relocating 1274 * them). 1275 */ 1276 if (!sb_rdonly(sb)) { 1277 ret = -EACCES; 1278 goto out_bh; 1279 } 1280 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1281 ret = udf_load_vat(sb, i, type1_idx); 1282 if (ret < 0) 1283 goto out_bh; 1284 } 1285 ret = 0; 1286 out_bh: 1287 /* In case loading failed, we handle cleanup in udf_fill_super */ 1288 brelse(bh); 1289 return ret; 1290 } 1291 1292 static int udf_load_sparable_map(struct super_block *sb, 1293 struct udf_part_map *map, 1294 struct sparablePartitionMap *spm) 1295 { 1296 uint32_t loc; 1297 uint16_t ident; 1298 struct sparingTable *st; 1299 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1300 int i; 1301 struct buffer_head *bh; 1302 1303 map->s_partition_type = UDF_SPARABLE_MAP15; 1304 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1305 if (!is_power_of_2(sdata->s_packet_len)) { 1306 udf_err(sb, "error loading logical volume descriptor: " 1307 "Invalid packet length %u\n", 1308 (unsigned)sdata->s_packet_len); 1309 return -EIO; 1310 } 1311 if (spm->numSparingTables > 4) { 1312 udf_err(sb, "error loading logical volume descriptor: " 1313 "Too many sparing tables (%d)\n", 1314 (int)spm->numSparingTables); 1315 return -EIO; 1316 } 1317 1318 for (i = 0; i < spm->numSparingTables; i++) { 1319 loc = le32_to_cpu(spm->locSparingTable[i]); 1320 bh = udf_read_tagged(sb, loc, loc, &ident); 1321 if (!bh) 1322 continue; 1323 1324 st = (struct sparingTable *)bh->b_data; 1325 if (ident != 0 || 1326 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1327 strlen(UDF_ID_SPARING)) || 1328 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1329 sb->s_blocksize) { 1330 brelse(bh); 1331 continue; 1332 } 1333 1334 sdata->s_spar_map[i] = bh; 1335 } 1336 map->s_partition_func = udf_get_pblock_spar15; 1337 return 0; 1338 } 1339 1340 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1341 struct kernel_lb_addr *fileset) 1342 { 1343 struct logicalVolDesc *lvd; 1344 int i, offset; 1345 uint8_t type; 1346 struct udf_sb_info *sbi = UDF_SB(sb); 1347 struct genericPartitionMap *gpm; 1348 uint16_t ident; 1349 struct buffer_head *bh; 1350 unsigned int table_len; 1351 int ret; 1352 1353 bh = udf_read_tagged(sb, block, block, &ident); 1354 if (!bh) 1355 return -EAGAIN; 1356 BUG_ON(ident != TAG_IDENT_LVD); 1357 lvd = (struct logicalVolDesc *)bh->b_data; 1358 table_len = le32_to_cpu(lvd->mapTableLength); 1359 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1360 udf_err(sb, "error loading logical volume descriptor: " 1361 "Partition table too long (%u > %lu)\n", table_len, 1362 sb->s_blocksize - sizeof(*lvd)); 1363 ret = -EIO; 1364 goto out_bh; 1365 } 1366 1367 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1368 if (ret) 1369 goto out_bh; 1370 1371 for (i = 0, offset = 0; 1372 i < sbi->s_partitions && offset < table_len; 1373 i++, offset += gpm->partitionMapLength) { 1374 struct udf_part_map *map = &sbi->s_partmaps[i]; 1375 gpm = (struct genericPartitionMap *) 1376 &(lvd->partitionMaps[offset]); 1377 type = gpm->partitionMapType; 1378 if (type == 1) { 1379 struct genericPartitionMap1 *gpm1 = 1380 (struct genericPartitionMap1 *)gpm; 1381 map->s_partition_type = UDF_TYPE1_MAP15; 1382 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1383 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1384 map->s_partition_func = NULL; 1385 } else if (type == 2) { 1386 struct udfPartitionMap2 *upm2 = 1387 (struct udfPartitionMap2 *)gpm; 1388 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1389 strlen(UDF_ID_VIRTUAL))) { 1390 u16 suf = 1391 le16_to_cpu(((__le16 *)upm2->partIdent. 1392 identSuffix)[0]); 1393 if (suf < 0x0200) { 1394 map->s_partition_type = 1395 UDF_VIRTUAL_MAP15; 1396 map->s_partition_func = 1397 udf_get_pblock_virt15; 1398 } else { 1399 map->s_partition_type = 1400 UDF_VIRTUAL_MAP20; 1401 map->s_partition_func = 1402 udf_get_pblock_virt20; 1403 } 1404 } else if (!strncmp(upm2->partIdent.ident, 1405 UDF_ID_SPARABLE, 1406 strlen(UDF_ID_SPARABLE))) { 1407 ret = udf_load_sparable_map(sb, map, 1408 (struct sparablePartitionMap *)gpm); 1409 if (ret < 0) 1410 goto out_bh; 1411 } else if (!strncmp(upm2->partIdent.ident, 1412 UDF_ID_METADATA, 1413 strlen(UDF_ID_METADATA))) { 1414 struct udf_meta_data *mdata = 1415 &map->s_type_specific.s_metadata; 1416 struct metadataPartitionMap *mdm = 1417 (struct metadataPartitionMap *) 1418 &(lvd->partitionMaps[offset]); 1419 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1420 i, type, UDF_ID_METADATA); 1421 1422 map->s_partition_type = UDF_METADATA_MAP25; 1423 map->s_partition_func = udf_get_pblock_meta25; 1424 1425 mdata->s_meta_file_loc = 1426 le32_to_cpu(mdm->metadataFileLoc); 1427 mdata->s_mirror_file_loc = 1428 le32_to_cpu(mdm->metadataMirrorFileLoc); 1429 mdata->s_bitmap_file_loc = 1430 le32_to_cpu(mdm->metadataBitmapFileLoc); 1431 mdata->s_alloc_unit_size = 1432 le32_to_cpu(mdm->allocUnitSize); 1433 mdata->s_align_unit_size = 1434 le16_to_cpu(mdm->alignUnitSize); 1435 if (mdm->flags & 0x01) 1436 mdata->s_flags |= MF_DUPLICATE_MD; 1437 1438 udf_debug("Metadata Ident suffix=0x%x\n", 1439 le16_to_cpu(*(__le16 *) 1440 mdm->partIdent.identSuffix)); 1441 udf_debug("Metadata part num=%u\n", 1442 le16_to_cpu(mdm->partitionNum)); 1443 udf_debug("Metadata part alloc unit size=%u\n", 1444 le32_to_cpu(mdm->allocUnitSize)); 1445 udf_debug("Metadata file loc=%u\n", 1446 le32_to_cpu(mdm->metadataFileLoc)); 1447 udf_debug("Mirror file loc=%u\n", 1448 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1449 udf_debug("Bitmap file loc=%u\n", 1450 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1451 udf_debug("Flags: %d %u\n", 1452 mdata->s_flags, mdm->flags); 1453 } else { 1454 udf_debug("Unknown ident: %s\n", 1455 upm2->partIdent.ident); 1456 continue; 1457 } 1458 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1459 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1460 } 1461 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1462 i, map->s_partition_num, type, map->s_volumeseqnum); 1463 } 1464 1465 if (fileset) { 1466 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1467 1468 *fileset = lelb_to_cpu(la->extLocation); 1469 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1470 fileset->logicalBlockNum, 1471 fileset->partitionReferenceNum); 1472 } 1473 if (lvd->integritySeqExt.extLength) 1474 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1475 ret = 0; 1476 1477 if (!sbi->s_lvid_bh) { 1478 /* We can't generate unique IDs without a valid LVID */ 1479 if (sb_rdonly(sb)) { 1480 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1481 } else { 1482 udf_warn(sb, "Damaged or missing LVID, forcing " 1483 "readonly mount\n"); 1484 ret = -EACCES; 1485 } 1486 } 1487 out_bh: 1488 brelse(bh); 1489 return ret; 1490 } 1491 1492 /* 1493 * Find the prevailing Logical Volume Integrity Descriptor. 1494 */ 1495 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1496 { 1497 struct buffer_head *bh, *final_bh; 1498 uint16_t ident; 1499 struct udf_sb_info *sbi = UDF_SB(sb); 1500 struct logicalVolIntegrityDesc *lvid; 1501 int indirections = 0; 1502 1503 while (++indirections <= UDF_MAX_LVID_NESTING) { 1504 final_bh = NULL; 1505 while (loc.extLength > 0 && 1506 (bh = udf_read_tagged(sb, loc.extLocation, 1507 loc.extLocation, &ident))) { 1508 if (ident != TAG_IDENT_LVID) { 1509 brelse(bh); 1510 break; 1511 } 1512 1513 brelse(final_bh); 1514 final_bh = bh; 1515 1516 loc.extLength -= sb->s_blocksize; 1517 loc.extLocation++; 1518 } 1519 1520 if (!final_bh) 1521 return; 1522 1523 brelse(sbi->s_lvid_bh); 1524 sbi->s_lvid_bh = final_bh; 1525 1526 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1527 if (lvid->nextIntegrityExt.extLength == 0) 1528 return; 1529 1530 loc = leea_to_cpu(lvid->nextIntegrityExt); 1531 } 1532 1533 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1534 UDF_MAX_LVID_NESTING); 1535 brelse(sbi->s_lvid_bh); 1536 sbi->s_lvid_bh = NULL; 1537 } 1538 1539 /* 1540 * Step for reallocation of table of partition descriptor sequence numbers. 1541 * Must be power of 2. 1542 */ 1543 #define PART_DESC_ALLOC_STEP 32 1544 1545 struct part_desc_seq_scan_data { 1546 struct udf_vds_record rec; 1547 u32 partnum; 1548 }; 1549 1550 struct desc_seq_scan_data { 1551 struct udf_vds_record vds[VDS_POS_LENGTH]; 1552 unsigned int size_part_descs; 1553 unsigned int num_part_descs; 1554 struct part_desc_seq_scan_data *part_descs_loc; 1555 }; 1556 1557 static struct udf_vds_record *handle_partition_descriptor( 1558 struct buffer_head *bh, 1559 struct desc_seq_scan_data *data) 1560 { 1561 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1562 int partnum; 1563 int i; 1564 1565 partnum = le16_to_cpu(desc->partitionNumber); 1566 for (i = 0; i < data->num_part_descs; i++) 1567 if (partnum == data->part_descs_loc[i].partnum) 1568 return &(data->part_descs_loc[i].rec); 1569 if (data->num_part_descs >= data->size_part_descs) { 1570 struct part_desc_seq_scan_data *new_loc; 1571 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1572 1573 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1574 if (!new_loc) 1575 return ERR_PTR(-ENOMEM); 1576 memcpy(new_loc, data->part_descs_loc, 1577 data->size_part_descs * sizeof(*new_loc)); 1578 kfree(data->part_descs_loc); 1579 data->part_descs_loc = new_loc; 1580 data->size_part_descs = new_size; 1581 } 1582 return &(data->part_descs_loc[data->num_part_descs++].rec); 1583 } 1584 1585 1586 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1587 struct buffer_head *bh, struct desc_seq_scan_data *data) 1588 { 1589 switch (ident) { 1590 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1591 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1592 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1593 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1594 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1595 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1596 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1597 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1598 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1599 return handle_partition_descriptor(bh, data); 1600 } 1601 return NULL; 1602 } 1603 1604 /* 1605 * Process a main/reserve volume descriptor sequence. 1606 * @block First block of first extent of the sequence. 1607 * @lastblock Lastblock of first extent of the sequence. 1608 * @fileset There we store extent containing root fileset 1609 * 1610 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1611 * sequence 1612 */ 1613 static noinline int udf_process_sequence( 1614 struct super_block *sb, 1615 sector_t block, sector_t lastblock, 1616 struct kernel_lb_addr *fileset) 1617 { 1618 struct buffer_head *bh = NULL; 1619 struct udf_vds_record *curr; 1620 struct generic_desc *gd; 1621 struct volDescPtr *vdp; 1622 bool done = false; 1623 uint32_t vdsn; 1624 uint16_t ident; 1625 int ret; 1626 unsigned int indirections = 0; 1627 struct desc_seq_scan_data data; 1628 unsigned int i; 1629 1630 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1631 data.size_part_descs = PART_DESC_ALLOC_STEP; 1632 data.num_part_descs = 0; 1633 data.part_descs_loc = kcalloc(data.size_part_descs, 1634 sizeof(*data.part_descs_loc), 1635 GFP_KERNEL); 1636 if (!data.part_descs_loc) 1637 return -ENOMEM; 1638 1639 /* 1640 * Read the main descriptor sequence and find which descriptors 1641 * are in it. 1642 */ 1643 for (; (!done && block <= lastblock); block++) { 1644 bh = udf_read_tagged(sb, block, block, &ident); 1645 if (!bh) 1646 break; 1647 1648 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1649 gd = (struct generic_desc *)bh->b_data; 1650 vdsn = le32_to_cpu(gd->volDescSeqNum); 1651 switch (ident) { 1652 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1653 if (++indirections > UDF_MAX_TD_NESTING) { 1654 udf_err(sb, "too many Volume Descriptor " 1655 "Pointers (max %u supported)\n", 1656 UDF_MAX_TD_NESTING); 1657 brelse(bh); 1658 return -EIO; 1659 } 1660 1661 vdp = (struct volDescPtr *)bh->b_data; 1662 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1663 lastblock = le32_to_cpu( 1664 vdp->nextVolDescSeqExt.extLength) >> 1665 sb->s_blocksize_bits; 1666 lastblock += block - 1; 1667 /* For loop is going to increment 'block' again */ 1668 block--; 1669 break; 1670 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1671 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1672 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1673 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1674 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1675 curr = get_volume_descriptor_record(ident, bh, &data); 1676 if (IS_ERR(curr)) { 1677 brelse(bh); 1678 return PTR_ERR(curr); 1679 } 1680 /* Descriptor we don't care about? */ 1681 if (!curr) 1682 break; 1683 if (vdsn >= curr->volDescSeqNum) { 1684 curr->volDescSeqNum = vdsn; 1685 curr->block = block; 1686 } 1687 break; 1688 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1689 done = true; 1690 break; 1691 } 1692 brelse(bh); 1693 } 1694 /* 1695 * Now read interesting descriptors again and process them 1696 * in a suitable order 1697 */ 1698 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1699 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1700 return -EAGAIN; 1701 } 1702 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1703 if (ret < 0) 1704 return ret; 1705 1706 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1707 ret = udf_load_logicalvol(sb, 1708 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1709 fileset); 1710 if (ret < 0) 1711 return ret; 1712 } 1713 1714 /* Now handle prevailing Partition Descriptors */ 1715 for (i = 0; i < data.num_part_descs; i++) { 1716 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1717 if (ret < 0) 1718 return ret; 1719 } 1720 1721 return 0; 1722 } 1723 1724 /* 1725 * Load Volume Descriptor Sequence described by anchor in bh 1726 * 1727 * Returns <0 on error, 0 on success 1728 */ 1729 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1730 struct kernel_lb_addr *fileset) 1731 { 1732 struct anchorVolDescPtr *anchor; 1733 sector_t main_s, main_e, reserve_s, reserve_e; 1734 int ret; 1735 1736 anchor = (struct anchorVolDescPtr *)bh->b_data; 1737 1738 /* Locate the main sequence */ 1739 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1740 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1741 main_e = main_e >> sb->s_blocksize_bits; 1742 main_e += main_s - 1; 1743 1744 /* Locate the reserve sequence */ 1745 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1746 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1747 reserve_e = reserve_e >> sb->s_blocksize_bits; 1748 reserve_e += reserve_s - 1; 1749 1750 /* Process the main & reserve sequences */ 1751 /* responsible for finding the PartitionDesc(s) */ 1752 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1753 if (ret != -EAGAIN) 1754 return ret; 1755 udf_sb_free_partitions(sb); 1756 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1757 if (ret < 0) { 1758 udf_sb_free_partitions(sb); 1759 /* No sequence was OK, return -EIO */ 1760 if (ret == -EAGAIN) 1761 ret = -EIO; 1762 } 1763 return ret; 1764 } 1765 1766 /* 1767 * Check whether there is an anchor block in the given block and 1768 * load Volume Descriptor Sequence if so. 1769 * 1770 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1771 * block 1772 */ 1773 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1774 struct kernel_lb_addr *fileset) 1775 { 1776 struct buffer_head *bh; 1777 uint16_t ident; 1778 int ret; 1779 1780 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1781 udf_fixed_to_variable(block) >= 1782 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1783 return -EAGAIN; 1784 1785 bh = udf_read_tagged(sb, block, block, &ident); 1786 if (!bh) 1787 return -EAGAIN; 1788 if (ident != TAG_IDENT_AVDP) { 1789 brelse(bh); 1790 return -EAGAIN; 1791 } 1792 ret = udf_load_sequence(sb, bh, fileset); 1793 brelse(bh); 1794 return ret; 1795 } 1796 1797 /* 1798 * Search for an anchor volume descriptor pointer. 1799 * 1800 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1801 * of anchors. 1802 */ 1803 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1804 struct kernel_lb_addr *fileset) 1805 { 1806 sector_t last[6]; 1807 int i; 1808 struct udf_sb_info *sbi = UDF_SB(sb); 1809 int last_count = 0; 1810 int ret; 1811 1812 /* First try user provided anchor */ 1813 if (sbi->s_anchor) { 1814 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1815 if (ret != -EAGAIN) 1816 return ret; 1817 } 1818 /* 1819 * according to spec, anchor is in either: 1820 * block 256 1821 * lastblock-256 1822 * lastblock 1823 * however, if the disc isn't closed, it could be 512. 1824 */ 1825 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1826 if (ret != -EAGAIN) 1827 return ret; 1828 /* 1829 * The trouble is which block is the last one. Drives often misreport 1830 * this so we try various possibilities. 1831 */ 1832 last[last_count++] = *lastblock; 1833 if (*lastblock >= 1) 1834 last[last_count++] = *lastblock - 1; 1835 last[last_count++] = *lastblock + 1; 1836 if (*lastblock >= 2) 1837 last[last_count++] = *lastblock - 2; 1838 if (*lastblock >= 150) 1839 last[last_count++] = *lastblock - 150; 1840 if (*lastblock >= 152) 1841 last[last_count++] = *lastblock - 152; 1842 1843 for (i = 0; i < last_count; i++) { 1844 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1845 sb->s_blocksize_bits) 1846 continue; 1847 ret = udf_check_anchor_block(sb, last[i], fileset); 1848 if (ret != -EAGAIN) { 1849 if (!ret) 1850 *lastblock = last[i]; 1851 return ret; 1852 } 1853 if (last[i] < 256) 1854 continue; 1855 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1856 if (ret != -EAGAIN) { 1857 if (!ret) 1858 *lastblock = last[i]; 1859 return ret; 1860 } 1861 } 1862 1863 /* Finally try block 512 in case media is open */ 1864 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1865 } 1866 1867 /* 1868 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1869 * area specified by it. The function expects sbi->s_lastblock to be the last 1870 * block on the media. 1871 * 1872 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1873 * was not found. 1874 */ 1875 static int udf_find_anchor(struct super_block *sb, 1876 struct kernel_lb_addr *fileset) 1877 { 1878 struct udf_sb_info *sbi = UDF_SB(sb); 1879 sector_t lastblock = sbi->s_last_block; 1880 int ret; 1881 1882 ret = udf_scan_anchors(sb, &lastblock, fileset); 1883 if (ret != -EAGAIN) 1884 goto out; 1885 1886 /* No anchor found? Try VARCONV conversion of block numbers */ 1887 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1888 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1889 /* Firstly, we try to not convert number of the last block */ 1890 ret = udf_scan_anchors(sb, &lastblock, fileset); 1891 if (ret != -EAGAIN) 1892 goto out; 1893 1894 lastblock = sbi->s_last_block; 1895 /* Secondly, we try with converted number of the last block */ 1896 ret = udf_scan_anchors(sb, &lastblock, fileset); 1897 if (ret < 0) { 1898 /* VARCONV didn't help. Clear it. */ 1899 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1900 } 1901 out: 1902 if (ret == 0) 1903 sbi->s_last_block = lastblock; 1904 return ret; 1905 } 1906 1907 /* 1908 * Check Volume Structure Descriptor, find Anchor block and load Volume 1909 * Descriptor Sequence. 1910 * 1911 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1912 * block was not found. 1913 */ 1914 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1915 int silent, struct kernel_lb_addr *fileset) 1916 { 1917 struct udf_sb_info *sbi = UDF_SB(sb); 1918 loff_t nsr_off; 1919 int ret; 1920 1921 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1922 if (!silent) 1923 udf_warn(sb, "Bad block size\n"); 1924 return -EINVAL; 1925 } 1926 sbi->s_last_block = uopt->lastblock; 1927 if (!uopt->novrs) { 1928 /* Check that it is NSR02 compliant */ 1929 nsr_off = udf_check_vsd(sb); 1930 if (!nsr_off) { 1931 if (!silent) 1932 udf_warn(sb, "No VRS found\n"); 1933 return -EINVAL; 1934 } 1935 if (nsr_off == -1) 1936 udf_debug("Failed to read sector at offset %d. " 1937 "Assuming open disc. Skipping validity " 1938 "check\n", VSD_FIRST_SECTOR_OFFSET); 1939 if (!sbi->s_last_block) 1940 sbi->s_last_block = udf_get_last_block(sb); 1941 } else { 1942 udf_debug("Validity check skipped because of novrs option\n"); 1943 } 1944 1945 /* Look for anchor block and load Volume Descriptor Sequence */ 1946 sbi->s_anchor = uopt->anchor; 1947 ret = udf_find_anchor(sb, fileset); 1948 if (ret < 0) { 1949 if (!silent && ret == -EAGAIN) 1950 udf_warn(sb, "No anchor found\n"); 1951 return ret; 1952 } 1953 return 0; 1954 } 1955 1956 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 1957 { 1958 struct timespec64 ts; 1959 1960 ktime_get_real_ts64(&ts); 1961 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1962 lvid->descTag.descCRC = cpu_to_le16( 1963 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1964 le16_to_cpu(lvid->descTag.descCRCLength))); 1965 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1966 } 1967 1968 static void udf_open_lvid(struct super_block *sb) 1969 { 1970 struct udf_sb_info *sbi = UDF_SB(sb); 1971 struct buffer_head *bh = sbi->s_lvid_bh; 1972 struct logicalVolIntegrityDesc *lvid; 1973 struct logicalVolIntegrityDescImpUse *lvidiu; 1974 1975 if (!bh) 1976 return; 1977 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1978 lvidiu = udf_sb_lvidiu(sb); 1979 if (!lvidiu) 1980 return; 1981 1982 mutex_lock(&sbi->s_alloc_mutex); 1983 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1984 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1985 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 1986 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1987 else 1988 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 1989 1990 udf_finalize_lvid(lvid); 1991 mark_buffer_dirty(bh); 1992 sbi->s_lvid_dirty = 0; 1993 mutex_unlock(&sbi->s_alloc_mutex); 1994 /* Make opening of filesystem visible on the media immediately */ 1995 sync_dirty_buffer(bh); 1996 } 1997 1998 static void udf_close_lvid(struct super_block *sb) 1999 { 2000 struct udf_sb_info *sbi = UDF_SB(sb); 2001 struct buffer_head *bh = sbi->s_lvid_bh; 2002 struct logicalVolIntegrityDesc *lvid; 2003 struct logicalVolIntegrityDescImpUse *lvidiu; 2004 2005 if (!bh) 2006 return; 2007 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2008 lvidiu = udf_sb_lvidiu(sb); 2009 if (!lvidiu) 2010 return; 2011 2012 mutex_lock(&sbi->s_alloc_mutex); 2013 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2014 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2015 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2016 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2017 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2018 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2019 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2020 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2021 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2022 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2023 2024 /* 2025 * We set buffer uptodate unconditionally here to avoid spurious 2026 * warnings from mark_buffer_dirty() when previous EIO has marked 2027 * the buffer as !uptodate 2028 */ 2029 set_buffer_uptodate(bh); 2030 udf_finalize_lvid(lvid); 2031 mark_buffer_dirty(bh); 2032 sbi->s_lvid_dirty = 0; 2033 mutex_unlock(&sbi->s_alloc_mutex); 2034 /* Make closing of filesystem visible on the media immediately */ 2035 sync_dirty_buffer(bh); 2036 } 2037 2038 u64 lvid_get_unique_id(struct super_block *sb) 2039 { 2040 struct buffer_head *bh; 2041 struct udf_sb_info *sbi = UDF_SB(sb); 2042 struct logicalVolIntegrityDesc *lvid; 2043 struct logicalVolHeaderDesc *lvhd; 2044 u64 uniqueID; 2045 u64 ret; 2046 2047 bh = sbi->s_lvid_bh; 2048 if (!bh) 2049 return 0; 2050 2051 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2052 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2053 2054 mutex_lock(&sbi->s_alloc_mutex); 2055 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2056 if (!(++uniqueID & 0xFFFFFFFF)) 2057 uniqueID += 16; 2058 lvhd->uniqueID = cpu_to_le64(uniqueID); 2059 udf_updated_lvid(sb); 2060 mutex_unlock(&sbi->s_alloc_mutex); 2061 2062 return ret; 2063 } 2064 2065 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2066 { 2067 int ret = -EINVAL; 2068 struct inode *inode = NULL; 2069 struct udf_options uopt; 2070 struct kernel_lb_addr rootdir, fileset; 2071 struct udf_sb_info *sbi; 2072 bool lvid_open = false; 2073 2074 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2075 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2076 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2077 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2078 uopt.umask = 0; 2079 uopt.fmode = UDF_INVALID_MODE; 2080 uopt.dmode = UDF_INVALID_MODE; 2081 uopt.nls_map = NULL; 2082 2083 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2084 if (!sbi) 2085 return -ENOMEM; 2086 2087 sb->s_fs_info = sbi; 2088 2089 mutex_init(&sbi->s_alloc_mutex); 2090 2091 if (!udf_parse_options((char *)options, &uopt, false)) 2092 goto parse_options_failure; 2093 2094 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2095 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2096 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2097 goto parse_options_failure; 2098 } 2099 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2100 uopt.nls_map = load_nls_default(); 2101 if (!uopt.nls_map) 2102 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2103 else 2104 udf_debug("Using default NLS map\n"); 2105 } 2106 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2107 uopt.flags |= (1 << UDF_FLAG_UTF8); 2108 2109 fileset.logicalBlockNum = 0xFFFFFFFF; 2110 fileset.partitionReferenceNum = 0xFFFF; 2111 2112 sbi->s_flags = uopt.flags; 2113 sbi->s_uid = uopt.uid; 2114 sbi->s_gid = uopt.gid; 2115 sbi->s_umask = uopt.umask; 2116 sbi->s_fmode = uopt.fmode; 2117 sbi->s_dmode = uopt.dmode; 2118 sbi->s_nls_map = uopt.nls_map; 2119 rwlock_init(&sbi->s_cred_lock); 2120 2121 if (uopt.session == 0xFFFFFFFF) 2122 sbi->s_session = udf_get_last_session(sb); 2123 else 2124 sbi->s_session = uopt.session; 2125 2126 udf_debug("Multi-session=%d\n", sbi->s_session); 2127 2128 /* Fill in the rest of the superblock */ 2129 sb->s_op = &udf_sb_ops; 2130 sb->s_export_op = &udf_export_ops; 2131 2132 sb->s_magic = UDF_SUPER_MAGIC; 2133 sb->s_time_gran = 1000; 2134 2135 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2136 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2137 } else { 2138 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2139 while (uopt.blocksize <= 4096) { 2140 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2141 if (ret < 0) { 2142 if (!silent && ret != -EACCES) { 2143 pr_notice("Scanning with blocksize %u failed\n", 2144 uopt.blocksize); 2145 } 2146 brelse(sbi->s_lvid_bh); 2147 sbi->s_lvid_bh = NULL; 2148 /* 2149 * EACCES is special - we want to propagate to 2150 * upper layers that we cannot handle RW mount. 2151 */ 2152 if (ret == -EACCES) 2153 break; 2154 } else 2155 break; 2156 2157 uopt.blocksize <<= 1; 2158 } 2159 } 2160 if (ret < 0) { 2161 if (ret == -EAGAIN) { 2162 udf_warn(sb, "No partition found (1)\n"); 2163 ret = -EINVAL; 2164 } 2165 goto error_out; 2166 } 2167 2168 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2169 2170 if (sbi->s_lvid_bh) { 2171 struct logicalVolIntegrityDescImpUse *lvidiu = 2172 udf_sb_lvidiu(sb); 2173 uint16_t minUDFReadRev; 2174 uint16_t minUDFWriteRev; 2175 2176 if (!lvidiu) { 2177 ret = -EINVAL; 2178 goto error_out; 2179 } 2180 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2181 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2182 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2183 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2184 minUDFReadRev, 2185 UDF_MAX_READ_VERSION); 2186 ret = -EINVAL; 2187 goto error_out; 2188 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2189 if (!sb_rdonly(sb)) { 2190 ret = -EACCES; 2191 goto error_out; 2192 } 2193 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2194 } 2195 2196 sbi->s_udfrev = minUDFWriteRev; 2197 2198 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2199 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2200 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2201 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2202 } 2203 2204 if (!sbi->s_partitions) { 2205 udf_warn(sb, "No partition found (2)\n"); 2206 ret = -EINVAL; 2207 goto error_out; 2208 } 2209 2210 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2211 UDF_PART_FLAG_READ_ONLY) { 2212 if (!sb_rdonly(sb)) { 2213 ret = -EACCES; 2214 goto error_out; 2215 } 2216 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2217 } 2218 2219 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2220 udf_warn(sb, "No fileset found\n"); 2221 ret = -EINVAL; 2222 goto error_out; 2223 } 2224 2225 if (!silent) { 2226 struct timestamp ts; 2227 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2228 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2229 sbi->s_volume_ident, 2230 le16_to_cpu(ts.year), ts.month, ts.day, 2231 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2232 } 2233 if (!sb_rdonly(sb)) { 2234 udf_open_lvid(sb); 2235 lvid_open = true; 2236 } 2237 2238 /* Assign the root inode */ 2239 /* assign inodes by physical block number */ 2240 /* perhaps it's not extensible enough, but for now ... */ 2241 inode = udf_iget(sb, &rootdir); 2242 if (IS_ERR(inode)) { 2243 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2244 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2245 ret = PTR_ERR(inode); 2246 goto error_out; 2247 } 2248 2249 /* Allocate a dentry for the root inode */ 2250 sb->s_root = d_make_root(inode); 2251 if (!sb->s_root) { 2252 udf_err(sb, "Couldn't allocate root dentry\n"); 2253 ret = -ENOMEM; 2254 goto error_out; 2255 } 2256 sb->s_maxbytes = MAX_LFS_FILESIZE; 2257 sb->s_max_links = UDF_MAX_LINKS; 2258 return 0; 2259 2260 error_out: 2261 iput(sbi->s_vat_inode); 2262 parse_options_failure: 2263 if (uopt.nls_map) 2264 unload_nls(uopt.nls_map); 2265 if (lvid_open) 2266 udf_close_lvid(sb); 2267 brelse(sbi->s_lvid_bh); 2268 udf_sb_free_partitions(sb); 2269 kfree(sbi); 2270 sb->s_fs_info = NULL; 2271 2272 return ret; 2273 } 2274 2275 void _udf_err(struct super_block *sb, const char *function, 2276 const char *fmt, ...) 2277 { 2278 struct va_format vaf; 2279 va_list args; 2280 2281 va_start(args, fmt); 2282 2283 vaf.fmt = fmt; 2284 vaf.va = &args; 2285 2286 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2287 2288 va_end(args); 2289 } 2290 2291 void _udf_warn(struct super_block *sb, const char *function, 2292 const char *fmt, ...) 2293 { 2294 struct va_format vaf; 2295 va_list args; 2296 2297 va_start(args, fmt); 2298 2299 vaf.fmt = fmt; 2300 vaf.va = &args; 2301 2302 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2303 2304 va_end(args); 2305 } 2306 2307 static void udf_put_super(struct super_block *sb) 2308 { 2309 struct udf_sb_info *sbi; 2310 2311 sbi = UDF_SB(sb); 2312 2313 iput(sbi->s_vat_inode); 2314 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2315 unload_nls(sbi->s_nls_map); 2316 if (!sb_rdonly(sb)) 2317 udf_close_lvid(sb); 2318 brelse(sbi->s_lvid_bh); 2319 udf_sb_free_partitions(sb); 2320 mutex_destroy(&sbi->s_alloc_mutex); 2321 kfree(sb->s_fs_info); 2322 sb->s_fs_info = NULL; 2323 } 2324 2325 static int udf_sync_fs(struct super_block *sb, int wait) 2326 { 2327 struct udf_sb_info *sbi = UDF_SB(sb); 2328 2329 mutex_lock(&sbi->s_alloc_mutex); 2330 if (sbi->s_lvid_dirty) { 2331 struct buffer_head *bh = sbi->s_lvid_bh; 2332 struct logicalVolIntegrityDesc *lvid; 2333 2334 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2335 udf_finalize_lvid(lvid); 2336 2337 /* 2338 * Blockdevice will be synced later so we don't have to submit 2339 * the buffer for IO 2340 */ 2341 mark_buffer_dirty(bh); 2342 sbi->s_lvid_dirty = 0; 2343 } 2344 mutex_unlock(&sbi->s_alloc_mutex); 2345 2346 return 0; 2347 } 2348 2349 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2350 { 2351 struct super_block *sb = dentry->d_sb; 2352 struct udf_sb_info *sbi = UDF_SB(sb); 2353 struct logicalVolIntegrityDescImpUse *lvidiu; 2354 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2355 2356 lvidiu = udf_sb_lvidiu(sb); 2357 buf->f_type = UDF_SUPER_MAGIC; 2358 buf->f_bsize = sb->s_blocksize; 2359 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2360 buf->f_bfree = udf_count_free(sb); 2361 buf->f_bavail = buf->f_bfree; 2362 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2363 le32_to_cpu(lvidiu->numDirs)) : 0) 2364 + buf->f_bfree; 2365 buf->f_ffree = buf->f_bfree; 2366 buf->f_namelen = UDF_NAME_LEN; 2367 buf->f_fsid.val[0] = (u32)id; 2368 buf->f_fsid.val[1] = (u32)(id >> 32); 2369 2370 return 0; 2371 } 2372 2373 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2374 struct udf_bitmap *bitmap) 2375 { 2376 struct buffer_head *bh = NULL; 2377 unsigned int accum = 0; 2378 int index; 2379 udf_pblk_t block = 0, newblock; 2380 struct kernel_lb_addr loc; 2381 uint32_t bytes; 2382 uint8_t *ptr; 2383 uint16_t ident; 2384 struct spaceBitmapDesc *bm; 2385 2386 loc.logicalBlockNum = bitmap->s_extPosition; 2387 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2388 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2389 2390 if (!bh) { 2391 udf_err(sb, "udf_count_free failed\n"); 2392 goto out; 2393 } else if (ident != TAG_IDENT_SBD) { 2394 brelse(bh); 2395 udf_err(sb, "udf_count_free failed\n"); 2396 goto out; 2397 } 2398 2399 bm = (struct spaceBitmapDesc *)bh->b_data; 2400 bytes = le32_to_cpu(bm->numOfBytes); 2401 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2402 ptr = (uint8_t *)bh->b_data; 2403 2404 while (bytes > 0) { 2405 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2406 accum += bitmap_weight((const unsigned long *)(ptr + index), 2407 cur_bytes * 8); 2408 bytes -= cur_bytes; 2409 if (bytes) { 2410 brelse(bh); 2411 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2412 bh = udf_tread(sb, newblock); 2413 if (!bh) { 2414 udf_debug("read failed\n"); 2415 goto out; 2416 } 2417 index = 0; 2418 ptr = (uint8_t *)bh->b_data; 2419 } 2420 } 2421 brelse(bh); 2422 out: 2423 return accum; 2424 } 2425 2426 static unsigned int udf_count_free_table(struct super_block *sb, 2427 struct inode *table) 2428 { 2429 unsigned int accum = 0; 2430 uint32_t elen; 2431 struct kernel_lb_addr eloc; 2432 int8_t etype; 2433 struct extent_position epos; 2434 2435 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2436 epos.block = UDF_I(table)->i_location; 2437 epos.offset = sizeof(struct unallocSpaceEntry); 2438 epos.bh = NULL; 2439 2440 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2441 accum += (elen >> table->i_sb->s_blocksize_bits); 2442 2443 brelse(epos.bh); 2444 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2445 2446 return accum; 2447 } 2448 2449 static unsigned int udf_count_free(struct super_block *sb) 2450 { 2451 unsigned int accum = 0; 2452 struct udf_sb_info *sbi; 2453 struct udf_part_map *map; 2454 2455 sbi = UDF_SB(sb); 2456 if (sbi->s_lvid_bh) { 2457 struct logicalVolIntegrityDesc *lvid = 2458 (struct logicalVolIntegrityDesc *) 2459 sbi->s_lvid_bh->b_data; 2460 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2461 accum = le32_to_cpu( 2462 lvid->freeSpaceTable[sbi->s_partition]); 2463 if (accum == 0xFFFFFFFF) 2464 accum = 0; 2465 } 2466 } 2467 2468 if (accum) 2469 return accum; 2470 2471 map = &sbi->s_partmaps[sbi->s_partition]; 2472 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2473 accum += udf_count_free_bitmap(sb, 2474 map->s_uspace.s_bitmap); 2475 } 2476 if (accum) 2477 return accum; 2478 2479 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2480 accum += udf_count_free_table(sb, 2481 map->s_uspace.s_table); 2482 } 2483 return accum; 2484 } 2485 2486 MODULE_AUTHOR("Ben Fennema"); 2487 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2488 MODULE_LICENSE("GPL"); 2489 module_init(init_udf_fs) 2490 module_exit(exit_udf_fs) 2491