1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * super.c 4 * 5 * PURPOSE 6 * Super block routines for the OSTA-UDF(tm) filesystem. 7 * 8 * DESCRIPTION 9 * OSTA-UDF(tm) = Optical Storage Technology Association 10 * Universal Disk Format. 11 * 12 * This code is based on version 2.00 of the UDF specification, 13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 14 * http://www.osta.org/ 15 * https://www.ecma.ch/ 16 * https://www.iso.org/ 17 * 18 * COPYRIGHT 19 * (C) 1998 Dave Boynton 20 * (C) 1998-2004 Ben Fennema 21 * (C) 2000 Stelias Computing Inc 22 * 23 * HISTORY 24 * 25 * 09/24/98 dgb changed to allow compiling outside of kernel, and 26 * added some debugging. 27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 28 * 10/16/98 attempting some multi-session support 29 * 10/17/98 added freespace count for "df" 30 * 11/11/98 gr added novrs option 31 * 11/26/98 dgb added fileset,anchor mount options 32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 33 * vol descs. rewrote option handling based on isofs 34 * 12/20/98 find the free space bitmap (if it exists) 35 */ 36 37 #include "udfdecl.h" 38 39 #include <linux/blkdev.h> 40 #include <linux/slab.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/stat.h> 44 #include <linux/cdrom.h> 45 #include <linux/nls.h> 46 #include <linux/vfs.h> 47 #include <linux/vmalloc.h> 48 #include <linux/errno.h> 49 #include <linux/seq_file.h> 50 #include <linux/bitmap.h> 51 #include <linux/crc-itu-t.h> 52 #include <linux/log2.h> 53 #include <asm/byteorder.h> 54 #include <linux/iversion.h> 55 #include <linux/fs_context.h> 56 #include <linux/fs_parser.h> 57 58 #include "udf_sb.h" 59 #include "udf_i.h" 60 61 #include <linux/init.h> 62 #include <linux/uaccess.h> 63 64 enum { 65 VDS_POS_PRIMARY_VOL_DESC, 66 VDS_POS_UNALLOC_SPACE_DESC, 67 VDS_POS_LOGICAL_VOL_DESC, 68 VDS_POS_IMP_USE_VOL_DESC, 69 VDS_POS_LENGTH 70 }; 71 72 #define VSD_FIRST_SECTOR_OFFSET 32768 73 #define VSD_MAX_SECTOR_OFFSET 0x800000 74 75 /* 76 * Maximum number of Terminating Descriptor / Logical Volume Integrity 77 * Descriptor redirections. The chosen numbers are arbitrary - just that we 78 * hopefully don't limit any real use of rewritten inode on write-once media 79 * but avoid looping for too long on corrupted media. 80 */ 81 #define UDF_MAX_TD_NESTING 64 82 #define UDF_MAX_LVID_NESTING 1000 83 84 enum { UDF_MAX_LINKS = 0xffff }; 85 /* 86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports 87 * more but because the file space is described by a linked list of extents, 88 * each of which can have at most 1GB, the creation and handling of extents 89 * gets unusably slow beyond certain point... 90 */ 91 #define UDF_MAX_FILESIZE (1ULL << 42) 92 93 /* These are the "meat" - everything else is stuffing */ 94 static int udf_fill_super(struct super_block *sb, struct fs_context *fc); 95 static void udf_put_super(struct super_block *); 96 static int udf_sync_fs(struct super_block *, int); 97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 98 static void udf_open_lvid(struct super_block *); 99 static void udf_close_lvid(struct super_block *); 100 static unsigned int udf_count_free(struct super_block *); 101 static int udf_statfs(struct dentry *, struct kstatfs *); 102 static int udf_show_options(struct seq_file *, struct dentry *); 103 static int udf_init_fs_context(struct fs_context *fc); 104 static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param); 105 static int udf_reconfigure(struct fs_context *fc); 106 static void udf_free_fc(struct fs_context *fc); 107 static const struct fs_parameter_spec udf_param_spec[]; 108 109 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 110 { 111 struct logicalVolIntegrityDesc *lvid; 112 unsigned int partnum; 113 unsigned int offset; 114 115 if (!UDF_SB(sb)->s_lvid_bh) 116 return NULL; 117 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 118 partnum = le32_to_cpu(lvid->numOfPartitions); 119 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 120 offset = partnum * 2 * sizeof(uint32_t); 121 return (struct logicalVolIntegrityDescImpUse *) 122 (((uint8_t *)(lvid + 1)) + offset); 123 } 124 125 /* UDF filesystem type */ 126 static int udf_get_tree(struct fs_context *fc) 127 { 128 return get_tree_bdev(fc, udf_fill_super); 129 } 130 131 static const struct fs_context_operations udf_context_ops = { 132 .parse_param = udf_parse_param, 133 .get_tree = udf_get_tree, 134 .reconfigure = udf_reconfigure, 135 .free = udf_free_fc, 136 }; 137 138 static struct file_system_type udf_fstype = { 139 .owner = THIS_MODULE, 140 .name = "udf", 141 .kill_sb = kill_block_super, 142 .fs_flags = FS_REQUIRES_DEV, 143 .init_fs_context = udf_init_fs_context, 144 .parameters = udf_param_spec, 145 }; 146 MODULE_ALIAS_FS("udf"); 147 148 static struct kmem_cache *udf_inode_cachep; 149 150 static struct inode *udf_alloc_inode(struct super_block *sb) 151 { 152 struct udf_inode_info *ei; 153 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL); 154 if (!ei) 155 return NULL; 156 157 ei->i_unique = 0; 158 ei->i_lenExtents = 0; 159 ei->i_lenStreams = 0; 160 ei->i_next_alloc_block = 0; 161 ei->i_next_alloc_goal = 0; 162 ei->i_strat4096 = 0; 163 ei->i_streamdir = 0; 164 ei->i_hidden = 0; 165 init_rwsem(&ei->i_data_sem); 166 ei->cached_extent.lstart = -1; 167 spin_lock_init(&ei->i_extent_cache_lock); 168 inode_set_iversion(&ei->vfs_inode, 1); 169 170 return &ei->vfs_inode; 171 } 172 173 static void udf_free_in_core_inode(struct inode *inode) 174 { 175 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 176 } 177 178 static void init_once(void *foo) 179 { 180 struct udf_inode_info *ei = foo; 181 182 ei->i_data = NULL; 183 inode_init_once(&ei->vfs_inode); 184 } 185 186 static int __init init_inodecache(void) 187 { 188 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 189 sizeof(struct udf_inode_info), 190 0, (SLAB_RECLAIM_ACCOUNT | 191 SLAB_ACCOUNT), 192 init_once); 193 if (!udf_inode_cachep) 194 return -ENOMEM; 195 return 0; 196 } 197 198 static void destroy_inodecache(void) 199 { 200 /* 201 * Make sure all delayed rcu free inodes are flushed before we 202 * destroy cache. 203 */ 204 rcu_barrier(); 205 kmem_cache_destroy(udf_inode_cachep); 206 } 207 208 /* Superblock operations */ 209 static const struct super_operations udf_sb_ops = { 210 .alloc_inode = udf_alloc_inode, 211 .free_inode = udf_free_in_core_inode, 212 .write_inode = udf_write_inode, 213 .evict_inode = udf_evict_inode, 214 .put_super = udf_put_super, 215 .sync_fs = udf_sync_fs, 216 .statfs = udf_statfs, 217 .show_options = udf_show_options, 218 }; 219 220 struct udf_options { 221 unsigned int blocksize; 222 unsigned int session; 223 unsigned int lastblock; 224 unsigned int anchor; 225 unsigned int flags; 226 umode_t umask; 227 kgid_t gid; 228 kuid_t uid; 229 umode_t fmode; 230 umode_t dmode; 231 struct nls_table *nls_map; 232 }; 233 234 /* 235 * UDF has historically preserved prior mount options across 236 * a remount, so copy those here if remounting, otherwise set 237 * initial mount defaults. 238 */ 239 static void udf_init_options(struct fs_context *fc, struct udf_options *uopt) 240 { 241 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 242 struct super_block *sb = fc->root->d_sb; 243 struct udf_sb_info *sbi = UDF_SB(sb); 244 245 uopt->flags = sbi->s_flags; 246 uopt->uid = sbi->s_uid; 247 uopt->gid = sbi->s_gid; 248 uopt->umask = sbi->s_umask; 249 uopt->fmode = sbi->s_fmode; 250 uopt->dmode = sbi->s_dmode; 251 uopt->nls_map = NULL; 252 } else { 253 uopt->flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | 254 (1 << UDF_FLAG_STRICT); 255 /* 256 * By default we'll use overflow[ug]id when UDF 257 * inode [ug]id == -1 258 */ 259 uopt->uid = make_kuid(current_user_ns(), overflowuid); 260 uopt->gid = make_kgid(current_user_ns(), overflowgid); 261 uopt->umask = 0; 262 uopt->fmode = UDF_INVALID_MODE; 263 uopt->dmode = UDF_INVALID_MODE; 264 uopt->nls_map = NULL; 265 uopt->session = 0xFFFFFFFF; 266 } 267 } 268 269 static int udf_init_fs_context(struct fs_context *fc) 270 { 271 struct udf_options *uopt; 272 273 uopt = kzalloc(sizeof(*uopt), GFP_KERNEL); 274 if (!uopt) 275 return -ENOMEM; 276 277 udf_init_options(fc, uopt); 278 279 fc->fs_private = uopt; 280 fc->ops = &udf_context_ops; 281 282 return 0; 283 } 284 285 static void udf_free_fc(struct fs_context *fc) 286 { 287 struct udf_options *uopt = fc->fs_private; 288 289 unload_nls(uopt->nls_map); 290 kfree(fc->fs_private); 291 } 292 293 static int __init init_udf_fs(void) 294 { 295 int err; 296 297 err = init_inodecache(); 298 if (err) 299 goto out1; 300 err = register_filesystem(&udf_fstype); 301 if (err) 302 goto out; 303 304 return 0; 305 306 out: 307 destroy_inodecache(); 308 309 out1: 310 return err; 311 } 312 313 static void __exit exit_udf_fs(void) 314 { 315 unregister_filesystem(&udf_fstype); 316 destroy_inodecache(); 317 } 318 319 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 320 { 321 struct udf_sb_info *sbi = UDF_SB(sb); 322 323 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 324 if (!sbi->s_partmaps) { 325 sbi->s_partitions = 0; 326 return -ENOMEM; 327 } 328 329 sbi->s_partitions = count; 330 return 0; 331 } 332 333 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 334 { 335 int i; 336 int nr_groups = bitmap->s_nr_groups; 337 338 for (i = 0; i < nr_groups; i++) 339 brelse(bitmap->s_block_bitmap[i]); 340 341 kvfree(bitmap); 342 } 343 344 static void udf_free_partition(struct udf_part_map *map) 345 { 346 int i; 347 struct udf_meta_data *mdata; 348 349 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 350 iput(map->s_uspace.s_table); 351 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 352 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 353 if (map->s_partition_type == UDF_SPARABLE_MAP15) 354 for (i = 0; i < 4; i++) 355 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 356 else if (map->s_partition_type == UDF_METADATA_MAP25) { 357 mdata = &map->s_type_specific.s_metadata; 358 iput(mdata->s_metadata_fe); 359 mdata->s_metadata_fe = NULL; 360 361 iput(mdata->s_mirror_fe); 362 mdata->s_mirror_fe = NULL; 363 364 iput(mdata->s_bitmap_fe); 365 mdata->s_bitmap_fe = NULL; 366 } 367 } 368 369 static void udf_sb_free_partitions(struct super_block *sb) 370 { 371 struct udf_sb_info *sbi = UDF_SB(sb); 372 int i; 373 374 if (!sbi->s_partmaps) 375 return; 376 for (i = 0; i < sbi->s_partitions; i++) 377 udf_free_partition(&sbi->s_partmaps[i]); 378 kfree(sbi->s_partmaps); 379 sbi->s_partmaps = NULL; 380 } 381 382 static int udf_show_options(struct seq_file *seq, struct dentry *root) 383 { 384 struct super_block *sb = root->d_sb; 385 struct udf_sb_info *sbi = UDF_SB(sb); 386 387 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 388 seq_puts(seq, ",nostrict"); 389 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 390 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 391 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 392 seq_puts(seq, ",unhide"); 393 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 394 seq_puts(seq, ",undelete"); 395 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 396 seq_puts(seq, ",noadinicb"); 397 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 398 seq_puts(seq, ",shortad"); 399 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 400 seq_puts(seq, ",uid=forget"); 401 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 402 seq_puts(seq, ",gid=forget"); 403 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 404 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 405 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 406 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 407 if (sbi->s_umask != 0) 408 seq_printf(seq, ",umask=%ho", sbi->s_umask); 409 if (sbi->s_fmode != UDF_INVALID_MODE) 410 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 411 if (sbi->s_dmode != UDF_INVALID_MODE) 412 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 413 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 414 seq_printf(seq, ",session=%d", sbi->s_session); 415 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 416 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 417 if (sbi->s_anchor != 0) 418 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 419 if (sbi->s_nls_map) 420 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 421 else 422 seq_puts(seq, ",iocharset=utf8"); 423 424 return 0; 425 } 426 427 /* 428 * udf_parse_param 429 * 430 * PURPOSE 431 * Parse mount options. 432 * 433 * DESCRIPTION 434 * The following mount options are supported: 435 * 436 * gid= Set the default group. 437 * umask= Set the default umask. 438 * mode= Set the default file permissions. 439 * dmode= Set the default directory permissions. 440 * uid= Set the default user. 441 * bs= Set the block size. 442 * unhide Show otherwise hidden files. 443 * undelete Show deleted files in lists. 444 * adinicb Embed data in the inode (default) 445 * noadinicb Don't embed data in the inode 446 * shortad Use short ad's 447 * longad Use long ad's (default) 448 * nostrict Unset strict conformance 449 * iocharset= Set the NLS character set 450 * 451 * The remaining are for debugging and disaster recovery: 452 * 453 * novrs Skip volume sequence recognition 454 * 455 * The following expect a offset from 0. 456 * 457 * session= Set the CDROM session (default= last session) 458 * anchor= Override standard anchor location. (default= 256) 459 * volume= Override the VolumeDesc location. (unused) 460 * partition= Override the PartitionDesc location. (unused) 461 * lastblock= Set the last block of the filesystem/ 462 * 463 * The following expect a offset from the partition root. 464 * 465 * fileset= Override the fileset block location. (unused) 466 * rootdir= Override the root directory location. (unused) 467 * WARNING: overriding the rootdir to a non-directory may 468 * yield highly unpredictable results. 469 * 470 * PRE-CONDITIONS 471 * fc fs_context with pointer to mount options variable. 472 * param Pointer to fs_parameter being parsed. 473 * 474 * POST-CONDITIONS 475 * <return> 0 Mount options parsed okay. 476 * <return> errno Error parsing mount options. 477 * 478 * HISTORY 479 * July 1, 1997 - Andrew E. Mileski 480 * Written, tested, and released. 481 */ 482 483 enum { 484 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 485 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 486 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 487 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 488 Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_fmode, Opt_dmode 489 }; 490 491 static const struct fs_parameter_spec udf_param_spec[] = { 492 fsparam_flag ("novrs", Opt_novrs), 493 fsparam_flag ("nostrict", Opt_nostrict), 494 fsparam_u32 ("bs", Opt_bs), 495 fsparam_flag ("unhide", Opt_unhide), 496 fsparam_flag ("undelete", Opt_undelete), 497 fsparam_flag_no ("adinicb", Opt_adinicb), 498 fsparam_flag ("shortad", Opt_shortad), 499 fsparam_flag ("longad", Opt_longad), 500 fsparam_string ("gid", Opt_gid), 501 fsparam_string ("uid", Opt_uid), 502 fsparam_u32 ("umask", Opt_umask), 503 fsparam_u32 ("session", Opt_session), 504 fsparam_u32 ("lastblock", Opt_lastblock), 505 fsparam_u32 ("anchor", Opt_anchor), 506 fsparam_u32 ("volume", Opt_volume), 507 fsparam_u32 ("partition", Opt_partition), 508 fsparam_u32 ("fileset", Opt_fileset), 509 fsparam_u32 ("rootdir", Opt_rootdir), 510 fsparam_flag ("utf8", Opt_utf8), 511 fsparam_string ("iocharset", Opt_iocharset), 512 fsparam_u32 ("mode", Opt_fmode), 513 fsparam_u32 ("dmode", Opt_dmode), 514 {} 515 }; 516 517 static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param) 518 { 519 unsigned int uv; 520 unsigned int n; 521 struct udf_options *uopt = fc->fs_private; 522 struct fs_parse_result result; 523 int token; 524 bool remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE); 525 526 token = fs_parse(fc, udf_param_spec, param, &result); 527 if (token < 0) 528 return token; 529 530 switch (token) { 531 case Opt_novrs: 532 uopt->flags |= (1 << UDF_FLAG_NOVRS); 533 break; 534 case Opt_bs: 535 n = result.uint_32; 536 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 537 return -EINVAL; 538 uopt->blocksize = n; 539 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 540 break; 541 case Opt_unhide: 542 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 543 break; 544 case Opt_undelete: 545 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 546 break; 547 case Opt_adinicb: 548 if (result.negated) 549 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 550 else 551 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 552 break; 553 case Opt_shortad: 554 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 555 break; 556 case Opt_longad: 557 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 558 break; 559 case Opt_gid: 560 if (kstrtoint(param->string, 10, &uv) == 0) { 561 kgid_t gid = make_kgid(current_user_ns(), uv); 562 if (!gid_valid(gid)) 563 return -EINVAL; 564 uopt->gid = gid; 565 uopt->flags |= (1 << UDF_FLAG_GID_SET); 566 } else if (!strcmp(param->string, "forget")) { 567 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 568 } else if (!strcmp(param->string, "ignore")) { 569 /* this option is superseded by gid=<number> */ 570 ; 571 } else { 572 return -EINVAL; 573 } 574 break; 575 case Opt_uid: 576 if (kstrtoint(param->string, 10, &uv) == 0) { 577 kuid_t uid = make_kuid(current_user_ns(), uv); 578 if (!uid_valid(uid)) 579 return -EINVAL; 580 uopt->uid = uid; 581 uopt->flags |= (1 << UDF_FLAG_UID_SET); 582 } else if (!strcmp(param->string, "forget")) { 583 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 584 } else if (!strcmp(param->string, "ignore")) { 585 /* this option is superseded by uid=<number> */ 586 ; 587 } else { 588 return -EINVAL; 589 } 590 break; 591 case Opt_umask: 592 uopt->umask = result.uint_32; 593 break; 594 case Opt_nostrict: 595 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 596 break; 597 case Opt_session: 598 uopt->session = result.uint_32; 599 if (!remount) 600 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 601 break; 602 case Opt_lastblock: 603 uopt->lastblock = result.uint_32; 604 if (!remount) 605 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 606 break; 607 case Opt_anchor: 608 uopt->anchor = result.uint_32; 609 break; 610 case Opt_volume: 611 case Opt_partition: 612 case Opt_fileset: 613 case Opt_rootdir: 614 /* Ignored (never implemented properly) */ 615 break; 616 case Opt_utf8: 617 if (!remount) { 618 unload_nls(uopt->nls_map); 619 uopt->nls_map = NULL; 620 } 621 break; 622 case Opt_iocharset: 623 if (!remount) { 624 unload_nls(uopt->nls_map); 625 uopt->nls_map = NULL; 626 } 627 /* When nls_map is not loaded then UTF-8 is used */ 628 if (!remount && strcmp(param->string, "utf8") != 0) { 629 uopt->nls_map = load_nls(param->string); 630 if (!uopt->nls_map) { 631 errorf(fc, "iocharset %s not found", 632 param->string); 633 return -EINVAL; 634 } 635 } 636 break; 637 case Opt_fmode: 638 uopt->fmode = result.uint_32 & 0777; 639 break; 640 case Opt_dmode: 641 uopt->dmode = result.uint_32 & 0777; 642 break; 643 default: 644 return -EINVAL; 645 } 646 return 0; 647 } 648 649 static int udf_reconfigure(struct fs_context *fc) 650 { 651 struct udf_options *uopt = fc->fs_private; 652 struct super_block *sb = fc->root->d_sb; 653 struct udf_sb_info *sbi = UDF_SB(sb); 654 int readonly = fc->sb_flags & SB_RDONLY; 655 int error = 0; 656 657 if (!readonly && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 658 return -EACCES; 659 660 sync_filesystem(sb); 661 662 write_lock(&sbi->s_cred_lock); 663 sbi->s_flags = uopt->flags; 664 sbi->s_uid = uopt->uid; 665 sbi->s_gid = uopt->gid; 666 sbi->s_umask = uopt->umask; 667 sbi->s_fmode = uopt->fmode; 668 sbi->s_dmode = uopt->dmode; 669 write_unlock(&sbi->s_cred_lock); 670 671 if (readonly == sb_rdonly(sb)) 672 goto out_unlock; 673 674 if (readonly) 675 udf_close_lvid(sb); 676 else 677 udf_open_lvid(sb); 678 679 out_unlock: 680 return error; 681 } 682 683 /* 684 * Check VSD descriptor. Returns -1 in case we are at the end of volume 685 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 686 * we found one of NSR descriptors we are looking for. 687 */ 688 static int identify_vsd(const struct volStructDesc *vsd) 689 { 690 int ret = 0; 691 692 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 693 switch (vsd->structType) { 694 case 0: 695 udf_debug("ISO9660 Boot Record found\n"); 696 break; 697 case 1: 698 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 699 break; 700 case 2: 701 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 702 break; 703 case 3: 704 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 705 break; 706 case 255: 707 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 708 break; 709 default: 710 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 711 break; 712 } 713 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 714 ; /* ret = 0 */ 715 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 716 ret = 1; 717 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 718 ret = 1; 719 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 720 ; /* ret = 0 */ 721 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 722 ; /* ret = 0 */ 723 else { 724 /* TEA01 or invalid id : end of volume recognition area */ 725 ret = -1; 726 } 727 728 return ret; 729 } 730 731 /* 732 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 733 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 734 * @return 1 if NSR02 or NSR03 found, 735 * -1 if first sector read error, 0 otherwise 736 */ 737 static int udf_check_vsd(struct super_block *sb) 738 { 739 struct volStructDesc *vsd = NULL; 740 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 741 int sectorsize; 742 struct buffer_head *bh = NULL; 743 int nsr = 0; 744 struct udf_sb_info *sbi; 745 loff_t session_offset; 746 747 sbi = UDF_SB(sb); 748 if (sb->s_blocksize < sizeof(struct volStructDesc)) 749 sectorsize = sizeof(struct volStructDesc); 750 else 751 sectorsize = sb->s_blocksize; 752 753 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; 754 sector += session_offset; 755 756 udf_debug("Starting at sector %u (%lu byte sectors)\n", 757 (unsigned int)(sector >> sb->s_blocksize_bits), 758 sb->s_blocksize); 759 /* Process the sequence (if applicable). The hard limit on the sector 760 * offset is arbitrary, hopefully large enough so that all valid UDF 761 * filesystems will be recognised. There is no mention of an upper 762 * bound to the size of the volume recognition area in the standard. 763 * The limit will prevent the code to read all the sectors of a 764 * specially crafted image (like a bluray disc full of CD001 sectors), 765 * potentially causing minutes or even hours of uninterruptible I/O 766 * activity. This actually happened with uninitialised SSD partitions 767 * (all 0xFF) before the check for the limit and all valid IDs were 768 * added */ 769 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 770 /* Read a block */ 771 bh = sb_bread(sb, sector >> sb->s_blocksize_bits); 772 if (!bh) 773 break; 774 775 vsd = (struct volStructDesc *)(bh->b_data + 776 (sector & (sb->s_blocksize - 1))); 777 nsr = identify_vsd(vsd); 778 /* Found NSR or end? */ 779 if (nsr) { 780 brelse(bh); 781 break; 782 } 783 /* 784 * Special handling for improperly formatted VRS (e.g., Win10) 785 * where components are separated by 2048 bytes even though 786 * sectors are 4K 787 */ 788 if (sb->s_blocksize == 4096) { 789 nsr = identify_vsd(vsd + 1); 790 /* Ignore unknown IDs... */ 791 if (nsr < 0) 792 nsr = 0; 793 } 794 brelse(bh); 795 } 796 797 if (nsr > 0) 798 return 1; 799 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) 800 return -1; 801 else 802 return 0; 803 } 804 805 static int udf_verify_domain_identifier(struct super_block *sb, 806 struct regid *ident, char *dname) 807 { 808 struct domainIdentSuffix *suffix; 809 810 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 811 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 812 goto force_ro; 813 } 814 if (ident->flags & ENTITYID_FLAGS_DIRTY) { 815 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 816 dname); 817 goto force_ro; 818 } 819 suffix = (struct domainIdentSuffix *)ident->identSuffix; 820 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || 821 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { 822 if (!sb_rdonly(sb)) { 823 udf_warn(sb, "Descriptor for %s marked write protected." 824 " Forcing read only mount.\n", dname); 825 } 826 goto force_ro; 827 } 828 return 0; 829 830 force_ro: 831 if (!sb_rdonly(sb)) 832 return -EACCES; 833 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 834 return 0; 835 } 836 837 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 838 struct kernel_lb_addr *root) 839 { 840 int ret; 841 842 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 843 if (ret < 0) 844 return ret; 845 846 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 847 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 848 849 udf_debug("Rootdir at block=%u, partition=%u\n", 850 root->logicalBlockNum, root->partitionReferenceNum); 851 return 0; 852 } 853 854 static int udf_find_fileset(struct super_block *sb, 855 struct kernel_lb_addr *fileset, 856 struct kernel_lb_addr *root) 857 { 858 struct buffer_head *bh; 859 uint16_t ident; 860 int ret; 861 862 if (fileset->logicalBlockNum == 0xFFFFFFFF && 863 fileset->partitionReferenceNum == 0xFFFF) 864 return -EINVAL; 865 866 bh = udf_read_ptagged(sb, fileset, 0, &ident); 867 if (!bh) 868 return -EIO; 869 if (ident != TAG_IDENT_FSD) { 870 brelse(bh); 871 return -EINVAL; 872 } 873 874 udf_debug("Fileset at block=%u, partition=%u\n", 875 fileset->logicalBlockNum, fileset->partitionReferenceNum); 876 877 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 878 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 879 brelse(bh); 880 return ret; 881 } 882 883 /* 884 * Load primary Volume Descriptor Sequence 885 * 886 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 887 * should be tried. 888 */ 889 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 890 { 891 struct primaryVolDesc *pvoldesc; 892 uint8_t *outstr; 893 struct buffer_head *bh; 894 uint16_t ident; 895 int ret; 896 struct timestamp *ts; 897 898 outstr = kzalloc(128, GFP_KERNEL); 899 if (!outstr) 900 return -ENOMEM; 901 902 bh = udf_read_tagged(sb, block, block, &ident); 903 if (!bh) { 904 ret = -EAGAIN; 905 goto out2; 906 } 907 908 if (ident != TAG_IDENT_PVD) { 909 ret = -EIO; 910 goto out_bh; 911 } 912 913 pvoldesc = (struct primaryVolDesc *)bh->b_data; 914 915 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 916 pvoldesc->recordingDateAndTime); 917 ts = &pvoldesc->recordingDateAndTime; 918 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 919 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 920 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 921 922 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 923 if (ret < 0) { 924 strscpy_pad(UDF_SB(sb)->s_volume_ident, "InvalidName"); 925 pr_warn("incorrect volume identification, setting to " 926 "'InvalidName'\n"); 927 } else { 928 strscpy_pad(UDF_SB(sb)->s_volume_ident, outstr); 929 } 930 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 931 932 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 933 if (ret < 0) { 934 ret = 0; 935 goto out_bh; 936 } 937 outstr[ret] = 0; 938 udf_debug("volSetIdent[] = '%s'\n", outstr); 939 940 ret = 0; 941 out_bh: 942 brelse(bh); 943 out2: 944 kfree(outstr); 945 return ret; 946 } 947 948 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 949 u32 meta_file_loc, u32 partition_ref) 950 { 951 struct kernel_lb_addr addr; 952 struct inode *metadata_fe; 953 954 addr.logicalBlockNum = meta_file_loc; 955 addr.partitionReferenceNum = partition_ref; 956 957 metadata_fe = udf_iget_special(sb, &addr); 958 959 if (IS_ERR(metadata_fe)) { 960 udf_warn(sb, "metadata inode efe not found\n"); 961 return metadata_fe; 962 } 963 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 964 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 965 iput(metadata_fe); 966 return ERR_PTR(-EIO); 967 } 968 969 return metadata_fe; 970 } 971 972 static int udf_load_metadata_files(struct super_block *sb, int partition, 973 int type1_index) 974 { 975 struct udf_sb_info *sbi = UDF_SB(sb); 976 struct udf_part_map *map; 977 struct udf_meta_data *mdata; 978 struct kernel_lb_addr addr; 979 struct inode *fe; 980 981 map = &sbi->s_partmaps[partition]; 982 mdata = &map->s_type_specific.s_metadata; 983 mdata->s_phys_partition_ref = type1_index; 984 985 /* metadata address */ 986 udf_debug("Metadata file location: block = %u part = %u\n", 987 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 988 989 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 990 mdata->s_phys_partition_ref); 991 if (IS_ERR(fe)) { 992 /* mirror file entry */ 993 udf_debug("Mirror metadata file location: block = %u part = %u\n", 994 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 995 996 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 997 mdata->s_phys_partition_ref); 998 999 if (IS_ERR(fe)) { 1000 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 1001 return PTR_ERR(fe); 1002 } 1003 mdata->s_mirror_fe = fe; 1004 } else 1005 mdata->s_metadata_fe = fe; 1006 1007 1008 /* 1009 * bitmap file entry 1010 * Note: 1011 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1012 */ 1013 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1014 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1015 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 1016 1017 udf_debug("Bitmap file location: block = %u part = %u\n", 1018 addr.logicalBlockNum, addr.partitionReferenceNum); 1019 1020 fe = udf_iget_special(sb, &addr); 1021 if (IS_ERR(fe)) { 1022 if (sb_rdonly(sb)) 1023 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1024 else { 1025 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1026 return PTR_ERR(fe); 1027 } 1028 } else 1029 mdata->s_bitmap_fe = fe; 1030 } 1031 1032 udf_debug("udf_load_metadata_files Ok\n"); 1033 return 0; 1034 } 1035 1036 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1037 { 1038 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1039 return DIV_ROUND_UP(map->s_partition_len + 1040 (sizeof(struct spaceBitmapDesc) << 3), 1041 sb->s_blocksize * 8); 1042 } 1043 1044 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1045 { 1046 struct udf_bitmap *bitmap; 1047 int nr_groups = udf_compute_nr_groups(sb, index); 1048 1049 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), 1050 GFP_KERNEL); 1051 if (!bitmap) 1052 return NULL; 1053 1054 bitmap->s_nr_groups = nr_groups; 1055 return bitmap; 1056 } 1057 1058 static int check_partition_desc(struct super_block *sb, 1059 struct partitionDesc *p, 1060 struct udf_part_map *map) 1061 { 1062 bool umap, utable, fmap, ftable; 1063 struct partitionHeaderDesc *phd; 1064 1065 switch (le32_to_cpu(p->accessType)) { 1066 case PD_ACCESS_TYPE_READ_ONLY: 1067 case PD_ACCESS_TYPE_WRITE_ONCE: 1068 case PD_ACCESS_TYPE_NONE: 1069 goto force_ro; 1070 } 1071 1072 /* No Partition Header Descriptor? */ 1073 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1074 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1075 goto force_ro; 1076 1077 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1078 utable = phd->unallocSpaceTable.extLength; 1079 umap = phd->unallocSpaceBitmap.extLength; 1080 ftable = phd->freedSpaceTable.extLength; 1081 fmap = phd->freedSpaceBitmap.extLength; 1082 1083 /* No allocation info? */ 1084 if (!utable && !umap && !ftable && !fmap) 1085 goto force_ro; 1086 1087 /* We don't support blocks that require erasing before overwrite */ 1088 if (ftable || fmap) 1089 goto force_ro; 1090 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1091 if (utable && umap) 1092 goto force_ro; 1093 1094 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1095 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1096 map->s_partition_type == UDF_METADATA_MAP25) 1097 goto force_ro; 1098 1099 return 0; 1100 force_ro: 1101 if (!sb_rdonly(sb)) 1102 return -EACCES; 1103 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1104 return 0; 1105 } 1106 1107 static int udf_fill_partdesc_info(struct super_block *sb, 1108 struct partitionDesc *p, int p_index) 1109 { 1110 struct udf_part_map *map; 1111 struct udf_sb_info *sbi = UDF_SB(sb); 1112 struct partitionHeaderDesc *phd; 1113 int err; 1114 1115 map = &sbi->s_partmaps[p_index]; 1116 1117 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1118 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1119 1120 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1121 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1122 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1123 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1124 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1125 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1126 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1127 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1128 1129 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1130 p_index, map->s_partition_type, 1131 map->s_partition_root, map->s_partition_len); 1132 1133 err = check_partition_desc(sb, p, map); 1134 if (err) 1135 return err; 1136 1137 /* 1138 * Skip loading allocation info it we cannot ever write to the fs. 1139 * This is a correctness thing as we may have decided to force ro mount 1140 * to avoid allocation info we don't support. 1141 */ 1142 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1143 return 0; 1144 1145 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1146 if (phd->unallocSpaceTable.extLength) { 1147 struct kernel_lb_addr loc = { 1148 .logicalBlockNum = le32_to_cpu( 1149 phd->unallocSpaceTable.extPosition), 1150 .partitionReferenceNum = p_index, 1151 }; 1152 struct inode *inode; 1153 1154 inode = udf_iget_special(sb, &loc); 1155 if (IS_ERR(inode)) { 1156 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1157 p_index); 1158 return PTR_ERR(inode); 1159 } 1160 map->s_uspace.s_table = inode; 1161 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1162 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1163 p_index, map->s_uspace.s_table->i_ino); 1164 } 1165 1166 if (phd->unallocSpaceBitmap.extLength) { 1167 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1168 if (!bitmap) 1169 return -ENOMEM; 1170 map->s_uspace.s_bitmap = bitmap; 1171 bitmap->s_extPosition = le32_to_cpu( 1172 phd->unallocSpaceBitmap.extPosition); 1173 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1174 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1175 p_index, bitmap->s_extPosition); 1176 } 1177 1178 return 0; 1179 } 1180 1181 static void udf_find_vat_block(struct super_block *sb, int p_index, 1182 int type1_index, sector_t start_block) 1183 { 1184 struct udf_sb_info *sbi = UDF_SB(sb); 1185 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1186 sector_t vat_block; 1187 struct kernel_lb_addr ino; 1188 struct inode *inode; 1189 1190 /* 1191 * VAT file entry is in the last recorded block. Some broken disks have 1192 * it a few blocks before so try a bit harder... 1193 */ 1194 ino.partitionReferenceNum = type1_index; 1195 for (vat_block = start_block; 1196 vat_block >= map->s_partition_root && 1197 vat_block >= start_block - 3; vat_block--) { 1198 ino.logicalBlockNum = vat_block - map->s_partition_root; 1199 inode = udf_iget_special(sb, &ino); 1200 if (!IS_ERR(inode)) { 1201 sbi->s_vat_inode = inode; 1202 break; 1203 } 1204 } 1205 } 1206 1207 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1208 { 1209 struct udf_sb_info *sbi = UDF_SB(sb); 1210 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1211 struct buffer_head *bh = NULL; 1212 struct udf_inode_info *vati; 1213 struct virtualAllocationTable20 *vat20; 1214 sector_t blocks = sb_bdev_nr_blocks(sb); 1215 1216 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1217 if (!sbi->s_vat_inode && 1218 sbi->s_last_block != blocks - 1) { 1219 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1220 (unsigned long)sbi->s_last_block, 1221 (unsigned long)blocks - 1); 1222 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1223 } 1224 if (!sbi->s_vat_inode) 1225 return -EIO; 1226 1227 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1228 map->s_type_specific.s_virtual.s_start_offset = 0; 1229 map->s_type_specific.s_virtual.s_num_entries = 1230 (sbi->s_vat_inode->i_size - 36) >> 2; 1231 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1232 vati = UDF_I(sbi->s_vat_inode); 1233 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1234 int err = 0; 1235 1236 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err); 1237 if (!bh) { 1238 if (!err) 1239 err = -EFSCORRUPTED; 1240 return err; 1241 } 1242 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1243 } else { 1244 vat20 = (struct virtualAllocationTable20 *) 1245 vati->i_data; 1246 } 1247 1248 map->s_type_specific.s_virtual.s_start_offset = 1249 le16_to_cpu(vat20->lengthHeader); 1250 map->s_type_specific.s_virtual.s_num_entries = 1251 (sbi->s_vat_inode->i_size - 1252 map->s_type_specific.s_virtual. 1253 s_start_offset) >> 2; 1254 brelse(bh); 1255 } 1256 return 0; 1257 } 1258 1259 /* 1260 * Load partition descriptor block 1261 * 1262 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1263 * sequence. 1264 */ 1265 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1266 { 1267 struct buffer_head *bh; 1268 struct partitionDesc *p; 1269 struct udf_part_map *map; 1270 struct udf_sb_info *sbi = UDF_SB(sb); 1271 int i, type1_idx; 1272 uint16_t partitionNumber; 1273 uint16_t ident; 1274 int ret; 1275 1276 bh = udf_read_tagged(sb, block, block, &ident); 1277 if (!bh) 1278 return -EAGAIN; 1279 if (ident != TAG_IDENT_PD) { 1280 ret = 0; 1281 goto out_bh; 1282 } 1283 1284 p = (struct partitionDesc *)bh->b_data; 1285 partitionNumber = le16_to_cpu(p->partitionNumber); 1286 1287 /* First scan for TYPE1 and SPARABLE partitions */ 1288 for (i = 0; i < sbi->s_partitions; i++) { 1289 map = &sbi->s_partmaps[i]; 1290 udf_debug("Searching map: (%u == %u)\n", 1291 map->s_partition_num, partitionNumber); 1292 if (map->s_partition_num == partitionNumber && 1293 (map->s_partition_type == UDF_TYPE1_MAP15 || 1294 map->s_partition_type == UDF_SPARABLE_MAP15)) 1295 break; 1296 } 1297 1298 if (i >= sbi->s_partitions) { 1299 udf_debug("Partition (%u) not found in partition map\n", 1300 partitionNumber); 1301 ret = 0; 1302 goto out_bh; 1303 } 1304 1305 ret = udf_fill_partdesc_info(sb, p, i); 1306 if (ret < 0) 1307 goto out_bh; 1308 1309 /* 1310 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1311 * PHYSICAL partitions are already set up 1312 */ 1313 type1_idx = i; 1314 map = NULL; /* supress 'maybe used uninitialized' warning */ 1315 for (i = 0; i < sbi->s_partitions; i++) { 1316 map = &sbi->s_partmaps[i]; 1317 1318 if (map->s_partition_num == partitionNumber && 1319 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1320 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1321 map->s_partition_type == UDF_METADATA_MAP25)) 1322 break; 1323 } 1324 1325 if (i >= sbi->s_partitions) { 1326 ret = 0; 1327 goto out_bh; 1328 } 1329 1330 ret = udf_fill_partdesc_info(sb, p, i); 1331 if (ret < 0) 1332 goto out_bh; 1333 1334 if (map->s_partition_type == UDF_METADATA_MAP25) { 1335 ret = udf_load_metadata_files(sb, i, type1_idx); 1336 if (ret < 0) { 1337 udf_err(sb, "error loading MetaData partition map %d\n", 1338 i); 1339 goto out_bh; 1340 } 1341 } else { 1342 /* 1343 * If we have a partition with virtual map, we don't handle 1344 * writing to it (we overwrite blocks instead of relocating 1345 * them). 1346 */ 1347 if (!sb_rdonly(sb)) { 1348 ret = -EACCES; 1349 goto out_bh; 1350 } 1351 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1352 ret = udf_load_vat(sb, i, type1_idx); 1353 if (ret < 0) 1354 goto out_bh; 1355 } 1356 ret = 0; 1357 out_bh: 1358 /* In case loading failed, we handle cleanup in udf_fill_super */ 1359 brelse(bh); 1360 return ret; 1361 } 1362 1363 static int udf_load_sparable_map(struct super_block *sb, 1364 struct udf_part_map *map, 1365 struct sparablePartitionMap *spm) 1366 { 1367 uint32_t loc; 1368 uint16_t ident; 1369 struct sparingTable *st; 1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1371 int i; 1372 struct buffer_head *bh; 1373 1374 map->s_partition_type = UDF_SPARABLE_MAP15; 1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1376 if (!is_power_of_2(sdata->s_packet_len)) { 1377 udf_err(sb, "error loading logical volume descriptor: " 1378 "Invalid packet length %u\n", 1379 (unsigned)sdata->s_packet_len); 1380 return -EIO; 1381 } 1382 if (spm->numSparingTables > 4) { 1383 udf_err(sb, "error loading logical volume descriptor: " 1384 "Too many sparing tables (%d)\n", 1385 (int)spm->numSparingTables); 1386 return -EIO; 1387 } 1388 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { 1389 udf_err(sb, "error loading logical volume descriptor: " 1390 "Too big sparing table size (%u)\n", 1391 le32_to_cpu(spm->sizeSparingTable)); 1392 return -EIO; 1393 } 1394 1395 for (i = 0; i < spm->numSparingTables; i++) { 1396 loc = le32_to_cpu(spm->locSparingTable[i]); 1397 bh = udf_read_tagged(sb, loc, loc, &ident); 1398 if (!bh) 1399 continue; 1400 1401 st = (struct sparingTable *)bh->b_data; 1402 if (ident != 0 || 1403 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1404 strlen(UDF_ID_SPARING)) || 1405 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1406 sb->s_blocksize) { 1407 brelse(bh); 1408 continue; 1409 } 1410 1411 sdata->s_spar_map[i] = bh; 1412 } 1413 map->s_partition_func = udf_get_pblock_spar15; 1414 return 0; 1415 } 1416 1417 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1418 struct kernel_lb_addr *fileset) 1419 { 1420 struct logicalVolDesc *lvd; 1421 int i, offset; 1422 uint8_t type; 1423 struct udf_sb_info *sbi = UDF_SB(sb); 1424 struct genericPartitionMap *gpm; 1425 uint16_t ident; 1426 struct buffer_head *bh; 1427 unsigned int table_len; 1428 int ret; 1429 1430 bh = udf_read_tagged(sb, block, block, &ident); 1431 if (!bh) 1432 return -EAGAIN; 1433 BUG_ON(ident != TAG_IDENT_LVD); 1434 lvd = (struct logicalVolDesc *)bh->b_data; 1435 table_len = le32_to_cpu(lvd->mapTableLength); 1436 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1437 udf_err(sb, "error loading logical volume descriptor: " 1438 "Partition table too long (%u > %lu)\n", table_len, 1439 sb->s_blocksize - sizeof(*lvd)); 1440 ret = -EIO; 1441 goto out_bh; 1442 } 1443 1444 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1445 "logical volume"); 1446 if (ret) 1447 goto out_bh; 1448 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1449 if (ret) 1450 goto out_bh; 1451 1452 for (i = 0, offset = 0; 1453 i < sbi->s_partitions && offset < table_len; 1454 i++, offset += gpm->partitionMapLength) { 1455 struct udf_part_map *map = &sbi->s_partmaps[i]; 1456 gpm = (struct genericPartitionMap *) 1457 &(lvd->partitionMaps[offset]); 1458 type = gpm->partitionMapType; 1459 if (type == 1) { 1460 struct genericPartitionMap1 *gpm1 = 1461 (struct genericPartitionMap1 *)gpm; 1462 map->s_partition_type = UDF_TYPE1_MAP15; 1463 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1464 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1465 map->s_partition_func = NULL; 1466 } else if (type == 2) { 1467 struct udfPartitionMap2 *upm2 = 1468 (struct udfPartitionMap2 *)gpm; 1469 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1470 strlen(UDF_ID_VIRTUAL))) { 1471 u16 suf = 1472 le16_to_cpu(((__le16 *)upm2->partIdent. 1473 identSuffix)[0]); 1474 if (suf < 0x0200) { 1475 map->s_partition_type = 1476 UDF_VIRTUAL_MAP15; 1477 map->s_partition_func = 1478 udf_get_pblock_virt15; 1479 } else { 1480 map->s_partition_type = 1481 UDF_VIRTUAL_MAP20; 1482 map->s_partition_func = 1483 udf_get_pblock_virt20; 1484 } 1485 } else if (!strncmp(upm2->partIdent.ident, 1486 UDF_ID_SPARABLE, 1487 strlen(UDF_ID_SPARABLE))) { 1488 ret = udf_load_sparable_map(sb, map, 1489 (struct sparablePartitionMap *)gpm); 1490 if (ret < 0) 1491 goto out_bh; 1492 } else if (!strncmp(upm2->partIdent.ident, 1493 UDF_ID_METADATA, 1494 strlen(UDF_ID_METADATA))) { 1495 struct udf_meta_data *mdata = 1496 &map->s_type_specific.s_metadata; 1497 struct metadataPartitionMap *mdm = 1498 (struct metadataPartitionMap *) 1499 &(lvd->partitionMaps[offset]); 1500 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1501 i, type, UDF_ID_METADATA); 1502 1503 map->s_partition_type = UDF_METADATA_MAP25; 1504 map->s_partition_func = udf_get_pblock_meta25; 1505 1506 mdata->s_meta_file_loc = 1507 le32_to_cpu(mdm->metadataFileLoc); 1508 mdata->s_mirror_file_loc = 1509 le32_to_cpu(mdm->metadataMirrorFileLoc); 1510 mdata->s_bitmap_file_loc = 1511 le32_to_cpu(mdm->metadataBitmapFileLoc); 1512 mdata->s_alloc_unit_size = 1513 le32_to_cpu(mdm->allocUnitSize); 1514 mdata->s_align_unit_size = 1515 le16_to_cpu(mdm->alignUnitSize); 1516 if (mdm->flags & 0x01) 1517 mdata->s_flags |= MF_DUPLICATE_MD; 1518 1519 udf_debug("Metadata Ident suffix=0x%x\n", 1520 le16_to_cpu(*(__le16 *) 1521 mdm->partIdent.identSuffix)); 1522 udf_debug("Metadata part num=%u\n", 1523 le16_to_cpu(mdm->partitionNum)); 1524 udf_debug("Metadata part alloc unit size=%u\n", 1525 le32_to_cpu(mdm->allocUnitSize)); 1526 udf_debug("Metadata file loc=%u\n", 1527 le32_to_cpu(mdm->metadataFileLoc)); 1528 udf_debug("Mirror file loc=%u\n", 1529 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1530 udf_debug("Bitmap file loc=%u\n", 1531 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1532 udf_debug("Flags: %d %u\n", 1533 mdata->s_flags, mdm->flags); 1534 } else { 1535 udf_debug("Unknown ident: %s\n", 1536 upm2->partIdent.ident); 1537 continue; 1538 } 1539 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1540 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1541 } 1542 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1543 i, map->s_partition_num, type, map->s_volumeseqnum); 1544 } 1545 1546 if (fileset) { 1547 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1548 1549 *fileset = lelb_to_cpu(la->extLocation); 1550 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1551 fileset->logicalBlockNum, 1552 fileset->partitionReferenceNum); 1553 } 1554 if (lvd->integritySeqExt.extLength) 1555 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1556 ret = 0; 1557 1558 if (!sbi->s_lvid_bh) { 1559 /* We can't generate unique IDs without a valid LVID */ 1560 if (sb_rdonly(sb)) { 1561 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1562 } else { 1563 udf_warn(sb, "Damaged or missing LVID, forcing " 1564 "readonly mount\n"); 1565 ret = -EACCES; 1566 } 1567 } 1568 out_bh: 1569 brelse(bh); 1570 return ret; 1571 } 1572 1573 static bool udf_lvid_valid(struct super_block *sb, 1574 struct logicalVolIntegrityDesc *lvid) 1575 { 1576 u32 parts, impuselen; 1577 1578 parts = le32_to_cpu(lvid->numOfPartitions); 1579 impuselen = le32_to_cpu(lvid->lengthOfImpUse); 1580 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize || 1581 sizeof(struct logicalVolIntegrityDesc) + impuselen + 1582 2 * parts * sizeof(u32) > sb->s_blocksize) 1583 return false; 1584 return true; 1585 } 1586 1587 /* 1588 * Find the prevailing Logical Volume Integrity Descriptor. 1589 */ 1590 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1591 { 1592 struct buffer_head *bh, *final_bh; 1593 uint16_t ident; 1594 struct udf_sb_info *sbi = UDF_SB(sb); 1595 struct logicalVolIntegrityDesc *lvid; 1596 int indirections = 0; 1597 1598 while (++indirections <= UDF_MAX_LVID_NESTING) { 1599 final_bh = NULL; 1600 while (loc.extLength > 0 && 1601 (bh = udf_read_tagged(sb, loc.extLocation, 1602 loc.extLocation, &ident))) { 1603 if (ident != TAG_IDENT_LVID) { 1604 brelse(bh); 1605 break; 1606 } 1607 1608 brelse(final_bh); 1609 final_bh = bh; 1610 1611 loc.extLength -= sb->s_blocksize; 1612 loc.extLocation++; 1613 } 1614 1615 if (!final_bh) 1616 return; 1617 1618 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1619 if (udf_lvid_valid(sb, lvid)) { 1620 brelse(sbi->s_lvid_bh); 1621 sbi->s_lvid_bh = final_bh; 1622 } else { 1623 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), " 1624 "ignoring.\n", 1625 le32_to_cpu(lvid->numOfPartitions), 1626 le32_to_cpu(lvid->lengthOfImpUse)); 1627 } 1628 1629 if (lvid->nextIntegrityExt.extLength == 0) 1630 return; 1631 1632 loc = leea_to_cpu(lvid->nextIntegrityExt); 1633 } 1634 1635 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1636 UDF_MAX_LVID_NESTING); 1637 brelse(sbi->s_lvid_bh); 1638 sbi->s_lvid_bh = NULL; 1639 } 1640 1641 /* 1642 * Step for reallocation of table of partition descriptor sequence numbers. 1643 * Must be power of 2. 1644 */ 1645 #define PART_DESC_ALLOC_STEP 32 1646 1647 struct part_desc_seq_scan_data { 1648 struct udf_vds_record rec; 1649 u32 partnum; 1650 }; 1651 1652 struct desc_seq_scan_data { 1653 struct udf_vds_record vds[VDS_POS_LENGTH]; 1654 unsigned int size_part_descs; 1655 unsigned int num_part_descs; 1656 struct part_desc_seq_scan_data *part_descs_loc; 1657 }; 1658 1659 static struct udf_vds_record *handle_partition_descriptor( 1660 struct buffer_head *bh, 1661 struct desc_seq_scan_data *data) 1662 { 1663 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1664 int partnum; 1665 int i; 1666 1667 partnum = le16_to_cpu(desc->partitionNumber); 1668 for (i = 0; i < data->num_part_descs; i++) 1669 if (partnum == data->part_descs_loc[i].partnum) 1670 return &(data->part_descs_loc[i].rec); 1671 if (data->num_part_descs >= data->size_part_descs) { 1672 struct part_desc_seq_scan_data *new_loc; 1673 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1674 1675 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1676 if (!new_loc) 1677 return ERR_PTR(-ENOMEM); 1678 memcpy(new_loc, data->part_descs_loc, 1679 data->size_part_descs * sizeof(*new_loc)); 1680 kfree(data->part_descs_loc); 1681 data->part_descs_loc = new_loc; 1682 data->size_part_descs = new_size; 1683 } 1684 return &(data->part_descs_loc[data->num_part_descs++].rec); 1685 } 1686 1687 1688 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1689 struct buffer_head *bh, struct desc_seq_scan_data *data) 1690 { 1691 switch (ident) { 1692 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1693 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1694 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1695 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1696 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1697 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1698 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1699 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1700 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1701 return handle_partition_descriptor(bh, data); 1702 } 1703 return NULL; 1704 } 1705 1706 /* 1707 * Process a main/reserve volume descriptor sequence. 1708 * @block First block of first extent of the sequence. 1709 * @lastblock Lastblock of first extent of the sequence. 1710 * @fileset There we store extent containing root fileset 1711 * 1712 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1713 * sequence 1714 */ 1715 static noinline int udf_process_sequence( 1716 struct super_block *sb, 1717 sector_t block, sector_t lastblock, 1718 struct kernel_lb_addr *fileset) 1719 { 1720 struct buffer_head *bh = NULL; 1721 struct udf_vds_record *curr; 1722 struct generic_desc *gd; 1723 struct volDescPtr *vdp; 1724 bool done = false; 1725 uint32_t vdsn; 1726 uint16_t ident; 1727 int ret; 1728 unsigned int indirections = 0; 1729 struct desc_seq_scan_data data; 1730 unsigned int i; 1731 1732 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1733 data.size_part_descs = PART_DESC_ALLOC_STEP; 1734 data.num_part_descs = 0; 1735 data.part_descs_loc = kcalloc(data.size_part_descs, 1736 sizeof(*data.part_descs_loc), 1737 GFP_KERNEL); 1738 if (!data.part_descs_loc) 1739 return -ENOMEM; 1740 1741 /* 1742 * Read the main descriptor sequence and find which descriptors 1743 * are in it. 1744 */ 1745 for (; (!done && block <= lastblock); block++) { 1746 bh = udf_read_tagged(sb, block, block, &ident); 1747 if (!bh) 1748 break; 1749 1750 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1751 gd = (struct generic_desc *)bh->b_data; 1752 vdsn = le32_to_cpu(gd->volDescSeqNum); 1753 switch (ident) { 1754 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1755 if (++indirections > UDF_MAX_TD_NESTING) { 1756 udf_err(sb, "too many Volume Descriptor " 1757 "Pointers (max %u supported)\n", 1758 UDF_MAX_TD_NESTING); 1759 brelse(bh); 1760 ret = -EIO; 1761 goto out; 1762 } 1763 1764 vdp = (struct volDescPtr *)bh->b_data; 1765 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1766 lastblock = le32_to_cpu( 1767 vdp->nextVolDescSeqExt.extLength) >> 1768 sb->s_blocksize_bits; 1769 lastblock += block - 1; 1770 /* For loop is going to increment 'block' again */ 1771 block--; 1772 break; 1773 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1774 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1775 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1776 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1777 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1778 curr = get_volume_descriptor_record(ident, bh, &data); 1779 if (IS_ERR(curr)) { 1780 brelse(bh); 1781 ret = PTR_ERR(curr); 1782 goto out; 1783 } 1784 /* Descriptor we don't care about? */ 1785 if (!curr) 1786 break; 1787 if (vdsn >= curr->volDescSeqNum) { 1788 curr->volDescSeqNum = vdsn; 1789 curr->block = block; 1790 } 1791 break; 1792 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1793 done = true; 1794 break; 1795 } 1796 brelse(bh); 1797 } 1798 /* 1799 * Now read interesting descriptors again and process them 1800 * in a suitable order 1801 */ 1802 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1803 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1804 ret = -EAGAIN; 1805 goto out; 1806 } 1807 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1808 if (ret < 0) 1809 goto out; 1810 1811 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1812 ret = udf_load_logicalvol(sb, 1813 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1814 fileset); 1815 if (ret < 0) 1816 goto out; 1817 } 1818 1819 /* Now handle prevailing Partition Descriptors */ 1820 for (i = 0; i < data.num_part_descs; i++) { 1821 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1822 if (ret < 0) 1823 goto out; 1824 } 1825 ret = 0; 1826 out: 1827 kfree(data.part_descs_loc); 1828 return ret; 1829 } 1830 1831 /* 1832 * Load Volume Descriptor Sequence described by anchor in bh 1833 * 1834 * Returns <0 on error, 0 on success 1835 */ 1836 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1837 struct kernel_lb_addr *fileset) 1838 { 1839 struct anchorVolDescPtr *anchor; 1840 sector_t main_s, main_e, reserve_s, reserve_e; 1841 int ret; 1842 1843 anchor = (struct anchorVolDescPtr *)bh->b_data; 1844 1845 /* Locate the main sequence */ 1846 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1847 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1848 main_e = main_e >> sb->s_blocksize_bits; 1849 main_e += main_s - 1; 1850 1851 /* Locate the reserve sequence */ 1852 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1853 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1854 reserve_e = reserve_e >> sb->s_blocksize_bits; 1855 reserve_e += reserve_s - 1; 1856 1857 /* Process the main & reserve sequences */ 1858 /* responsible for finding the PartitionDesc(s) */ 1859 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1860 if (ret != -EAGAIN) 1861 return ret; 1862 udf_sb_free_partitions(sb); 1863 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1864 if (ret < 0) { 1865 udf_sb_free_partitions(sb); 1866 /* No sequence was OK, return -EIO */ 1867 if (ret == -EAGAIN) 1868 ret = -EIO; 1869 } 1870 return ret; 1871 } 1872 1873 /* 1874 * Check whether there is an anchor block in the given block and 1875 * load Volume Descriptor Sequence if so. 1876 * 1877 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1878 * block 1879 */ 1880 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1881 struct kernel_lb_addr *fileset) 1882 { 1883 struct buffer_head *bh; 1884 uint16_t ident; 1885 int ret; 1886 1887 bh = udf_read_tagged(sb, block, block, &ident); 1888 if (!bh) 1889 return -EAGAIN; 1890 if (ident != TAG_IDENT_AVDP) { 1891 brelse(bh); 1892 return -EAGAIN; 1893 } 1894 ret = udf_load_sequence(sb, bh, fileset); 1895 brelse(bh); 1896 return ret; 1897 } 1898 1899 /* 1900 * Search for an anchor volume descriptor pointer. 1901 * 1902 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1903 * of anchors. 1904 */ 1905 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock, 1906 struct kernel_lb_addr *fileset) 1907 { 1908 udf_pblk_t last[6]; 1909 int i; 1910 struct udf_sb_info *sbi = UDF_SB(sb); 1911 int last_count = 0; 1912 int ret; 1913 1914 /* First try user provided anchor */ 1915 if (sbi->s_anchor) { 1916 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1917 if (ret != -EAGAIN) 1918 return ret; 1919 } 1920 /* 1921 * according to spec, anchor is in either: 1922 * block 256 1923 * lastblock-256 1924 * lastblock 1925 * however, if the disc isn't closed, it could be 512. 1926 */ 1927 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1928 if (ret != -EAGAIN) 1929 return ret; 1930 /* 1931 * The trouble is which block is the last one. Drives often misreport 1932 * this so we try various possibilities. 1933 */ 1934 last[last_count++] = *lastblock; 1935 if (*lastblock >= 1) 1936 last[last_count++] = *lastblock - 1; 1937 last[last_count++] = *lastblock + 1; 1938 if (*lastblock >= 2) 1939 last[last_count++] = *lastblock - 2; 1940 if (*lastblock >= 150) 1941 last[last_count++] = *lastblock - 150; 1942 if (*lastblock >= 152) 1943 last[last_count++] = *lastblock - 152; 1944 1945 for (i = 0; i < last_count; i++) { 1946 if (last[i] >= sb_bdev_nr_blocks(sb)) 1947 continue; 1948 ret = udf_check_anchor_block(sb, last[i], fileset); 1949 if (ret != -EAGAIN) { 1950 if (!ret) 1951 *lastblock = last[i]; 1952 return ret; 1953 } 1954 if (last[i] < 256) 1955 continue; 1956 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1957 if (ret != -EAGAIN) { 1958 if (!ret) 1959 *lastblock = last[i]; 1960 return ret; 1961 } 1962 } 1963 1964 /* Finally try block 512 in case media is open */ 1965 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1966 } 1967 1968 /* 1969 * Check Volume Structure Descriptor, find Anchor block and load Volume 1970 * Descriptor Sequence. 1971 * 1972 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1973 * block was not found. 1974 */ 1975 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1976 int silent, struct kernel_lb_addr *fileset) 1977 { 1978 struct udf_sb_info *sbi = UDF_SB(sb); 1979 int nsr = 0; 1980 int ret; 1981 1982 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1983 if (!silent) 1984 udf_warn(sb, "Bad block size\n"); 1985 return -EINVAL; 1986 } 1987 sbi->s_last_block = uopt->lastblock; 1988 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_NOVRS)) { 1989 /* Check that it is NSR02 compliant */ 1990 nsr = udf_check_vsd(sb); 1991 if (!nsr) { 1992 if (!silent) 1993 udf_warn(sb, "No VRS found\n"); 1994 return -EINVAL; 1995 } 1996 if (nsr == -1) 1997 udf_debug("Failed to read sector at offset %d. " 1998 "Assuming open disc. Skipping validity " 1999 "check\n", VSD_FIRST_SECTOR_OFFSET); 2000 if (!sbi->s_last_block) 2001 sbi->s_last_block = udf_get_last_block(sb); 2002 } else { 2003 udf_debug("Validity check skipped because of novrs option\n"); 2004 } 2005 2006 /* Look for anchor block and load Volume Descriptor Sequence */ 2007 sbi->s_anchor = uopt->anchor; 2008 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset); 2009 if (ret < 0) { 2010 if (!silent && ret == -EAGAIN) 2011 udf_warn(sb, "No anchor found\n"); 2012 return ret; 2013 } 2014 return 0; 2015 } 2016 2017 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 2018 { 2019 struct timespec64 ts; 2020 2021 ktime_get_real_ts64(&ts); 2022 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2023 lvid->descTag.descCRC = cpu_to_le16( 2024 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2025 le16_to_cpu(lvid->descTag.descCRCLength))); 2026 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2027 } 2028 2029 static void udf_open_lvid(struct super_block *sb) 2030 { 2031 struct udf_sb_info *sbi = UDF_SB(sb); 2032 struct buffer_head *bh = sbi->s_lvid_bh; 2033 struct logicalVolIntegrityDesc *lvid; 2034 struct logicalVolIntegrityDescImpUse *lvidiu; 2035 2036 if (!bh) 2037 return; 2038 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2039 lvidiu = udf_sb_lvidiu(sb); 2040 if (!lvidiu) 2041 return; 2042 2043 mutex_lock(&sbi->s_alloc_mutex); 2044 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2045 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2046 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2047 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2048 else 2049 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2050 2051 udf_finalize_lvid(lvid); 2052 mark_buffer_dirty(bh); 2053 sbi->s_lvid_dirty = 0; 2054 mutex_unlock(&sbi->s_alloc_mutex); 2055 /* Make opening of filesystem visible on the media immediately */ 2056 sync_dirty_buffer(bh); 2057 } 2058 2059 static void udf_close_lvid(struct super_block *sb) 2060 { 2061 struct udf_sb_info *sbi = UDF_SB(sb); 2062 struct buffer_head *bh = sbi->s_lvid_bh; 2063 struct logicalVolIntegrityDesc *lvid; 2064 struct logicalVolIntegrityDescImpUse *lvidiu; 2065 2066 if (!bh) 2067 return; 2068 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2069 lvidiu = udf_sb_lvidiu(sb); 2070 if (!lvidiu) 2071 return; 2072 2073 mutex_lock(&sbi->s_alloc_mutex); 2074 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2075 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2076 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2077 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2078 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2079 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2080 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2081 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2082 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2083 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2084 2085 /* 2086 * We set buffer uptodate unconditionally here to avoid spurious 2087 * warnings from mark_buffer_dirty() when previous EIO has marked 2088 * the buffer as !uptodate 2089 */ 2090 set_buffer_uptodate(bh); 2091 udf_finalize_lvid(lvid); 2092 mark_buffer_dirty(bh); 2093 sbi->s_lvid_dirty = 0; 2094 mutex_unlock(&sbi->s_alloc_mutex); 2095 /* Make closing of filesystem visible on the media immediately */ 2096 sync_dirty_buffer(bh); 2097 } 2098 2099 u64 lvid_get_unique_id(struct super_block *sb) 2100 { 2101 struct buffer_head *bh; 2102 struct udf_sb_info *sbi = UDF_SB(sb); 2103 struct logicalVolIntegrityDesc *lvid; 2104 struct logicalVolHeaderDesc *lvhd; 2105 u64 uniqueID; 2106 u64 ret; 2107 2108 bh = sbi->s_lvid_bh; 2109 if (!bh) 2110 return 0; 2111 2112 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2113 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2114 2115 mutex_lock(&sbi->s_alloc_mutex); 2116 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2117 if (!(++uniqueID & 0xFFFFFFFF)) 2118 uniqueID += 16; 2119 lvhd->uniqueID = cpu_to_le64(uniqueID); 2120 udf_updated_lvid(sb); 2121 mutex_unlock(&sbi->s_alloc_mutex); 2122 2123 return ret; 2124 } 2125 2126 static int udf_fill_super(struct super_block *sb, struct fs_context *fc) 2127 { 2128 int ret = -EINVAL; 2129 struct inode *inode = NULL; 2130 struct udf_options *uopt = fc->fs_private; 2131 struct kernel_lb_addr rootdir, fileset; 2132 struct udf_sb_info *sbi; 2133 bool lvid_open = false; 2134 int silent = fc->sb_flags & SB_SILENT; 2135 2136 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2137 if (!sbi) 2138 return -ENOMEM; 2139 2140 sb->s_fs_info = sbi; 2141 2142 mutex_init(&sbi->s_alloc_mutex); 2143 2144 fileset.logicalBlockNum = 0xFFFFFFFF; 2145 fileset.partitionReferenceNum = 0xFFFF; 2146 2147 sbi->s_flags = uopt->flags; 2148 sbi->s_uid = uopt->uid; 2149 sbi->s_gid = uopt->gid; 2150 sbi->s_umask = uopt->umask; 2151 sbi->s_fmode = uopt->fmode; 2152 sbi->s_dmode = uopt->dmode; 2153 sbi->s_nls_map = uopt->nls_map; 2154 uopt->nls_map = NULL; 2155 rwlock_init(&sbi->s_cred_lock); 2156 2157 if (uopt->session == 0xFFFFFFFF) 2158 sbi->s_session = udf_get_last_session(sb); 2159 else 2160 sbi->s_session = uopt->session; 2161 2162 udf_debug("Multi-session=%d\n", sbi->s_session); 2163 2164 /* Fill in the rest of the superblock */ 2165 sb->s_op = &udf_sb_ops; 2166 sb->s_export_op = &udf_export_ops; 2167 2168 sb->s_magic = UDF_SUPER_MAGIC; 2169 sb->s_time_gran = 1000; 2170 2171 if (uopt->flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2172 ret = udf_load_vrs(sb, uopt, silent, &fileset); 2173 } else { 2174 uopt->blocksize = bdev_logical_block_size(sb->s_bdev); 2175 while (uopt->blocksize <= 4096) { 2176 ret = udf_load_vrs(sb, uopt, silent, &fileset); 2177 if (ret < 0) { 2178 if (!silent && ret != -EACCES) { 2179 pr_notice("Scanning with blocksize %u failed\n", 2180 uopt->blocksize); 2181 } 2182 brelse(sbi->s_lvid_bh); 2183 sbi->s_lvid_bh = NULL; 2184 /* 2185 * EACCES is special - we want to propagate to 2186 * upper layers that we cannot handle RW mount. 2187 */ 2188 if (ret == -EACCES) 2189 break; 2190 } else 2191 break; 2192 2193 uopt->blocksize <<= 1; 2194 } 2195 } 2196 if (ret < 0) { 2197 if (ret == -EAGAIN) { 2198 udf_warn(sb, "No partition found (1)\n"); 2199 ret = -EINVAL; 2200 } 2201 goto error_out; 2202 } 2203 2204 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2205 2206 if (sbi->s_lvid_bh) { 2207 struct logicalVolIntegrityDescImpUse *lvidiu = 2208 udf_sb_lvidiu(sb); 2209 uint16_t minUDFReadRev; 2210 uint16_t minUDFWriteRev; 2211 2212 if (!lvidiu) { 2213 ret = -EINVAL; 2214 goto error_out; 2215 } 2216 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2217 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2218 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2219 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2220 minUDFReadRev, 2221 UDF_MAX_READ_VERSION); 2222 ret = -EINVAL; 2223 goto error_out; 2224 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2225 if (!sb_rdonly(sb)) { 2226 ret = -EACCES; 2227 goto error_out; 2228 } 2229 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2230 } 2231 2232 sbi->s_udfrev = minUDFWriteRev; 2233 2234 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2235 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2236 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2237 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2238 } 2239 2240 if (!sbi->s_partitions) { 2241 udf_warn(sb, "No partition found (2)\n"); 2242 ret = -EINVAL; 2243 goto error_out; 2244 } 2245 2246 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2247 UDF_PART_FLAG_READ_ONLY) { 2248 if (!sb_rdonly(sb)) { 2249 ret = -EACCES; 2250 goto error_out; 2251 } 2252 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2253 } 2254 2255 ret = udf_find_fileset(sb, &fileset, &rootdir); 2256 if (ret < 0) { 2257 udf_warn(sb, "No fileset found\n"); 2258 goto error_out; 2259 } 2260 2261 if (!silent) { 2262 struct timestamp ts; 2263 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2264 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2265 sbi->s_volume_ident, 2266 le16_to_cpu(ts.year), ts.month, ts.day, 2267 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2268 } 2269 if (!sb_rdonly(sb)) { 2270 udf_open_lvid(sb); 2271 lvid_open = true; 2272 } 2273 2274 /* Assign the root inode */ 2275 /* assign inodes by physical block number */ 2276 /* perhaps it's not extensible enough, but for now ... */ 2277 inode = udf_iget(sb, &rootdir); 2278 if (IS_ERR(inode)) { 2279 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2280 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2281 ret = PTR_ERR(inode); 2282 goto error_out; 2283 } 2284 2285 /* Allocate a dentry for the root inode */ 2286 sb->s_root = d_make_root(inode); 2287 if (!sb->s_root) { 2288 udf_err(sb, "Couldn't allocate root dentry\n"); 2289 ret = -ENOMEM; 2290 goto error_out; 2291 } 2292 sb->s_maxbytes = UDF_MAX_FILESIZE; 2293 sb->s_max_links = UDF_MAX_LINKS; 2294 return 0; 2295 2296 error_out: 2297 iput(sbi->s_vat_inode); 2298 unload_nls(uopt->nls_map); 2299 if (lvid_open) 2300 udf_close_lvid(sb); 2301 brelse(sbi->s_lvid_bh); 2302 udf_sb_free_partitions(sb); 2303 kfree(sbi); 2304 sb->s_fs_info = NULL; 2305 2306 return ret; 2307 } 2308 2309 void _udf_err(struct super_block *sb, const char *function, 2310 const char *fmt, ...) 2311 { 2312 struct va_format vaf; 2313 va_list args; 2314 2315 va_start(args, fmt); 2316 2317 vaf.fmt = fmt; 2318 vaf.va = &args; 2319 2320 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2321 2322 va_end(args); 2323 } 2324 2325 void _udf_warn(struct super_block *sb, const char *function, 2326 const char *fmt, ...) 2327 { 2328 struct va_format vaf; 2329 va_list args; 2330 2331 va_start(args, fmt); 2332 2333 vaf.fmt = fmt; 2334 vaf.va = &args; 2335 2336 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2337 2338 va_end(args); 2339 } 2340 2341 static void udf_put_super(struct super_block *sb) 2342 { 2343 struct udf_sb_info *sbi; 2344 2345 sbi = UDF_SB(sb); 2346 2347 iput(sbi->s_vat_inode); 2348 unload_nls(sbi->s_nls_map); 2349 if (!sb_rdonly(sb)) 2350 udf_close_lvid(sb); 2351 brelse(sbi->s_lvid_bh); 2352 udf_sb_free_partitions(sb); 2353 mutex_destroy(&sbi->s_alloc_mutex); 2354 kfree(sb->s_fs_info); 2355 sb->s_fs_info = NULL; 2356 } 2357 2358 static int udf_sync_fs(struct super_block *sb, int wait) 2359 { 2360 struct udf_sb_info *sbi = UDF_SB(sb); 2361 2362 mutex_lock(&sbi->s_alloc_mutex); 2363 if (sbi->s_lvid_dirty) { 2364 struct buffer_head *bh = sbi->s_lvid_bh; 2365 struct logicalVolIntegrityDesc *lvid; 2366 2367 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2368 udf_finalize_lvid(lvid); 2369 2370 /* 2371 * Blockdevice will be synced later so we don't have to submit 2372 * the buffer for IO 2373 */ 2374 mark_buffer_dirty(bh); 2375 sbi->s_lvid_dirty = 0; 2376 } 2377 mutex_unlock(&sbi->s_alloc_mutex); 2378 2379 return 0; 2380 } 2381 2382 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2383 { 2384 struct super_block *sb = dentry->d_sb; 2385 struct udf_sb_info *sbi = UDF_SB(sb); 2386 struct logicalVolIntegrityDescImpUse *lvidiu; 2387 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2388 2389 lvidiu = udf_sb_lvidiu(sb); 2390 buf->f_type = UDF_SUPER_MAGIC; 2391 buf->f_bsize = sb->s_blocksize; 2392 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2393 buf->f_bfree = udf_count_free(sb); 2394 buf->f_bavail = buf->f_bfree; 2395 /* 2396 * Let's pretend each free block is also a free 'inode' since UDF does 2397 * not have separate preallocated table of inodes. 2398 */ 2399 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2400 le32_to_cpu(lvidiu->numDirs)) : 0) 2401 + buf->f_bfree; 2402 buf->f_ffree = buf->f_bfree; 2403 buf->f_namelen = UDF_NAME_LEN; 2404 buf->f_fsid = u64_to_fsid(id); 2405 2406 return 0; 2407 } 2408 2409 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2410 struct udf_bitmap *bitmap) 2411 { 2412 struct buffer_head *bh = NULL; 2413 unsigned int accum = 0; 2414 int index; 2415 udf_pblk_t block = 0, newblock; 2416 struct kernel_lb_addr loc; 2417 uint32_t bytes; 2418 uint8_t *ptr; 2419 uint16_t ident; 2420 struct spaceBitmapDesc *bm; 2421 2422 loc.logicalBlockNum = bitmap->s_extPosition; 2423 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2424 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2425 2426 if (!bh) { 2427 udf_err(sb, "udf_count_free failed\n"); 2428 goto out; 2429 } else if (ident != TAG_IDENT_SBD) { 2430 brelse(bh); 2431 udf_err(sb, "udf_count_free failed\n"); 2432 goto out; 2433 } 2434 2435 bm = (struct spaceBitmapDesc *)bh->b_data; 2436 bytes = le32_to_cpu(bm->numOfBytes); 2437 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2438 ptr = (uint8_t *)bh->b_data; 2439 2440 while (bytes > 0) { 2441 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2442 accum += bitmap_weight((const unsigned long *)(ptr + index), 2443 cur_bytes * 8); 2444 bytes -= cur_bytes; 2445 if (bytes) { 2446 brelse(bh); 2447 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2448 bh = sb_bread(sb, newblock); 2449 if (!bh) { 2450 udf_debug("read failed\n"); 2451 goto out; 2452 } 2453 index = 0; 2454 ptr = (uint8_t *)bh->b_data; 2455 } 2456 } 2457 brelse(bh); 2458 out: 2459 return accum; 2460 } 2461 2462 static unsigned int udf_count_free_table(struct super_block *sb, 2463 struct inode *table) 2464 { 2465 unsigned int accum = 0; 2466 uint32_t elen; 2467 struct kernel_lb_addr eloc; 2468 struct extent_position epos; 2469 2470 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2471 epos.block = UDF_I(table)->i_location; 2472 epos.offset = sizeof(struct unallocSpaceEntry); 2473 epos.bh = NULL; 2474 2475 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1) 2476 accum += (elen >> table->i_sb->s_blocksize_bits); 2477 2478 brelse(epos.bh); 2479 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2480 2481 return accum; 2482 } 2483 2484 static unsigned int udf_count_free(struct super_block *sb) 2485 { 2486 unsigned int accum = 0; 2487 struct udf_sb_info *sbi = UDF_SB(sb); 2488 struct udf_part_map *map; 2489 unsigned int part = sbi->s_partition; 2490 int ptype = sbi->s_partmaps[part].s_partition_type; 2491 2492 if (ptype == UDF_METADATA_MAP25) { 2493 part = sbi->s_partmaps[part].s_type_specific.s_metadata. 2494 s_phys_partition_ref; 2495 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { 2496 /* 2497 * Filesystems with VAT are append-only and we cannot write to 2498 * them. Let's just report 0 here. 2499 */ 2500 return 0; 2501 } 2502 2503 if (sbi->s_lvid_bh) { 2504 struct logicalVolIntegrityDesc *lvid = 2505 (struct logicalVolIntegrityDesc *) 2506 sbi->s_lvid_bh->b_data; 2507 if (le32_to_cpu(lvid->numOfPartitions) > part) { 2508 accum = le32_to_cpu( 2509 lvid->freeSpaceTable[part]); 2510 if (accum == 0xFFFFFFFF) 2511 accum = 0; 2512 } 2513 } 2514 2515 if (accum) 2516 return accum; 2517 2518 map = &sbi->s_partmaps[part]; 2519 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2520 accum += udf_count_free_bitmap(sb, 2521 map->s_uspace.s_bitmap); 2522 } 2523 if (accum) 2524 return accum; 2525 2526 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2527 accum += udf_count_free_table(sb, 2528 map->s_uspace.s_table); 2529 } 2530 return accum; 2531 } 2532 2533 MODULE_AUTHOR("Ben Fennema"); 2534 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2535 MODULE_LICENSE("GPL"); 2536 module_init(init_udf_fs) 2537 module_exit(exit_udf_fs) 2538