1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <asm/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define UDF_DEFAULT_BLOCKSIZE 2048 77 78 /* These are the "meat" - everything else is stuffing */ 79 static int udf_fill_super(struct super_block *, void *, int); 80 static void udf_put_super(struct super_block *); 81 static int udf_sync_fs(struct super_block *, int); 82 static int udf_remount_fs(struct super_block *, int *, char *); 83 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 84 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 85 struct kernel_lb_addr *); 86 static void udf_load_fileset(struct super_block *, struct buffer_head *, 87 struct kernel_lb_addr *); 88 static void udf_open_lvid(struct super_block *); 89 static void udf_close_lvid(struct super_block *); 90 static unsigned int udf_count_free(struct super_block *); 91 static int udf_statfs(struct dentry *, struct kstatfs *); 92 static int udf_show_options(struct seq_file *, struct dentry *); 93 94 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 95 { 96 struct logicalVolIntegrityDesc *lvid = 97 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 98 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 99 __u32 offset = number_of_partitions * 2 * 100 sizeof(uint32_t)/sizeof(uint8_t); 101 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 102 } 103 104 /* UDF filesystem type */ 105 static struct dentry *udf_mount(struct file_system_type *fs_type, 106 int flags, const char *dev_name, void *data) 107 { 108 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 109 } 110 111 static struct file_system_type udf_fstype = { 112 .owner = THIS_MODULE, 113 .name = "udf", 114 .mount = udf_mount, 115 .kill_sb = kill_block_super, 116 .fs_flags = FS_REQUIRES_DEV, 117 }; 118 119 static struct kmem_cache *udf_inode_cachep; 120 121 static struct inode *udf_alloc_inode(struct super_block *sb) 122 { 123 struct udf_inode_info *ei; 124 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 125 if (!ei) 126 return NULL; 127 128 ei->i_unique = 0; 129 ei->i_lenExtents = 0; 130 ei->i_next_alloc_block = 0; 131 ei->i_next_alloc_goal = 0; 132 ei->i_strat4096 = 0; 133 init_rwsem(&ei->i_data_sem); 134 135 return &ei->vfs_inode; 136 } 137 138 static void udf_i_callback(struct rcu_head *head) 139 { 140 struct inode *inode = container_of(head, struct inode, i_rcu); 141 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 142 } 143 144 static void udf_destroy_inode(struct inode *inode) 145 { 146 call_rcu(&inode->i_rcu, udf_i_callback); 147 } 148 149 static void init_once(void *foo) 150 { 151 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 152 153 ei->i_ext.i_data = NULL; 154 inode_init_once(&ei->vfs_inode); 155 } 156 157 static int init_inodecache(void) 158 { 159 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 160 sizeof(struct udf_inode_info), 161 0, (SLAB_RECLAIM_ACCOUNT | 162 SLAB_MEM_SPREAD), 163 init_once); 164 if (!udf_inode_cachep) 165 return -ENOMEM; 166 return 0; 167 } 168 169 static void destroy_inodecache(void) 170 { 171 kmem_cache_destroy(udf_inode_cachep); 172 } 173 174 /* Superblock operations */ 175 static const struct super_operations udf_sb_ops = { 176 .alloc_inode = udf_alloc_inode, 177 .destroy_inode = udf_destroy_inode, 178 .write_inode = udf_write_inode, 179 .evict_inode = udf_evict_inode, 180 .put_super = udf_put_super, 181 .sync_fs = udf_sync_fs, 182 .statfs = udf_statfs, 183 .remount_fs = udf_remount_fs, 184 .show_options = udf_show_options, 185 }; 186 187 struct udf_options { 188 unsigned char novrs; 189 unsigned int blocksize; 190 unsigned int session; 191 unsigned int lastblock; 192 unsigned int anchor; 193 unsigned int volume; 194 unsigned short partition; 195 unsigned int fileset; 196 unsigned int rootdir; 197 unsigned int flags; 198 umode_t umask; 199 gid_t gid; 200 uid_t uid; 201 umode_t fmode; 202 umode_t dmode; 203 struct nls_table *nls_map; 204 }; 205 206 static int __init init_udf_fs(void) 207 { 208 int err; 209 210 err = init_inodecache(); 211 if (err) 212 goto out1; 213 err = register_filesystem(&udf_fstype); 214 if (err) 215 goto out; 216 217 return 0; 218 219 out: 220 destroy_inodecache(); 221 222 out1: 223 return err; 224 } 225 226 static void __exit exit_udf_fs(void) 227 { 228 unregister_filesystem(&udf_fstype); 229 destroy_inodecache(); 230 } 231 232 module_init(init_udf_fs) 233 module_exit(exit_udf_fs) 234 235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 236 { 237 struct udf_sb_info *sbi = UDF_SB(sb); 238 239 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 240 GFP_KERNEL); 241 if (!sbi->s_partmaps) { 242 udf_err(sb, "Unable to allocate space for %d partition maps\n", 243 count); 244 sbi->s_partitions = 0; 245 return -ENOMEM; 246 } 247 248 sbi->s_partitions = count; 249 return 0; 250 } 251 252 static int udf_show_options(struct seq_file *seq, struct dentry *root) 253 { 254 struct super_block *sb = root->d_sb; 255 struct udf_sb_info *sbi = UDF_SB(sb); 256 257 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 258 seq_puts(seq, ",nostrict"); 259 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 260 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 261 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 262 seq_puts(seq, ",unhide"); 263 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 264 seq_puts(seq, ",undelete"); 265 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 266 seq_puts(seq, ",noadinicb"); 267 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 268 seq_puts(seq, ",shortad"); 269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 270 seq_puts(seq, ",uid=forget"); 271 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 272 seq_puts(seq, ",uid=ignore"); 273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 274 seq_puts(seq, ",gid=forget"); 275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 276 seq_puts(seq, ",gid=ignore"); 277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 278 seq_printf(seq, ",uid=%u", sbi->s_uid); 279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 280 seq_printf(seq, ",gid=%u", sbi->s_gid); 281 if (sbi->s_umask != 0) 282 seq_printf(seq, ",umask=%ho", sbi->s_umask); 283 if (sbi->s_fmode != UDF_INVALID_MODE) 284 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 285 if (sbi->s_dmode != UDF_INVALID_MODE) 286 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 287 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 288 seq_printf(seq, ",session=%u", sbi->s_session); 289 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 290 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 291 if (sbi->s_anchor != 0) 292 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 293 /* 294 * volume, partition, fileset and rootdir seem to be ignored 295 * currently 296 */ 297 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 298 seq_puts(seq, ",utf8"); 299 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 300 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 301 302 return 0; 303 } 304 305 /* 306 * udf_parse_options 307 * 308 * PURPOSE 309 * Parse mount options. 310 * 311 * DESCRIPTION 312 * The following mount options are supported: 313 * 314 * gid= Set the default group. 315 * umask= Set the default umask. 316 * mode= Set the default file permissions. 317 * dmode= Set the default directory permissions. 318 * uid= Set the default user. 319 * bs= Set the block size. 320 * unhide Show otherwise hidden files. 321 * undelete Show deleted files in lists. 322 * adinicb Embed data in the inode (default) 323 * noadinicb Don't embed data in the inode 324 * shortad Use short ad's 325 * longad Use long ad's (default) 326 * nostrict Unset strict conformance 327 * iocharset= Set the NLS character set 328 * 329 * The remaining are for debugging and disaster recovery: 330 * 331 * novrs Skip volume sequence recognition 332 * 333 * The following expect a offset from 0. 334 * 335 * session= Set the CDROM session (default= last session) 336 * anchor= Override standard anchor location. (default= 256) 337 * volume= Override the VolumeDesc location. (unused) 338 * partition= Override the PartitionDesc location. (unused) 339 * lastblock= Set the last block of the filesystem/ 340 * 341 * The following expect a offset from the partition root. 342 * 343 * fileset= Override the fileset block location. (unused) 344 * rootdir= Override the root directory location. (unused) 345 * WARNING: overriding the rootdir to a non-directory may 346 * yield highly unpredictable results. 347 * 348 * PRE-CONDITIONS 349 * options Pointer to mount options string. 350 * uopts Pointer to mount options variable. 351 * 352 * POST-CONDITIONS 353 * <return> 1 Mount options parsed okay. 354 * <return> 0 Error parsing mount options. 355 * 356 * HISTORY 357 * July 1, 1997 - Andrew E. Mileski 358 * Written, tested, and released. 359 */ 360 361 enum { 362 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 363 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 364 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 365 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 366 Opt_rootdir, Opt_utf8, Opt_iocharset, 367 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 368 Opt_fmode, Opt_dmode 369 }; 370 371 static const match_table_t tokens = { 372 {Opt_novrs, "novrs"}, 373 {Opt_nostrict, "nostrict"}, 374 {Opt_bs, "bs=%u"}, 375 {Opt_unhide, "unhide"}, 376 {Opt_undelete, "undelete"}, 377 {Opt_noadinicb, "noadinicb"}, 378 {Opt_adinicb, "adinicb"}, 379 {Opt_shortad, "shortad"}, 380 {Opt_longad, "longad"}, 381 {Opt_uforget, "uid=forget"}, 382 {Opt_uignore, "uid=ignore"}, 383 {Opt_gforget, "gid=forget"}, 384 {Opt_gignore, "gid=ignore"}, 385 {Opt_gid, "gid=%u"}, 386 {Opt_uid, "uid=%u"}, 387 {Opt_umask, "umask=%o"}, 388 {Opt_session, "session=%u"}, 389 {Opt_lastblock, "lastblock=%u"}, 390 {Opt_anchor, "anchor=%u"}, 391 {Opt_volume, "volume=%u"}, 392 {Opt_partition, "partition=%u"}, 393 {Opt_fileset, "fileset=%u"}, 394 {Opt_rootdir, "rootdir=%u"}, 395 {Opt_utf8, "utf8"}, 396 {Opt_iocharset, "iocharset=%s"}, 397 {Opt_fmode, "mode=%o"}, 398 {Opt_dmode, "dmode=%o"}, 399 {Opt_err, NULL} 400 }; 401 402 static int udf_parse_options(char *options, struct udf_options *uopt, 403 bool remount) 404 { 405 char *p; 406 int option; 407 408 uopt->novrs = 0; 409 uopt->partition = 0xFFFF; 410 uopt->session = 0xFFFFFFFF; 411 uopt->lastblock = 0; 412 uopt->anchor = 0; 413 uopt->volume = 0xFFFFFFFF; 414 uopt->rootdir = 0xFFFFFFFF; 415 uopt->fileset = 0xFFFFFFFF; 416 uopt->nls_map = NULL; 417 418 if (!options) 419 return 1; 420 421 while ((p = strsep(&options, ",")) != NULL) { 422 substring_t args[MAX_OPT_ARGS]; 423 int token; 424 if (!*p) 425 continue; 426 427 token = match_token(p, tokens, args); 428 switch (token) { 429 case Opt_novrs: 430 uopt->novrs = 1; 431 break; 432 case Opt_bs: 433 if (match_int(&args[0], &option)) 434 return 0; 435 uopt->blocksize = option; 436 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 437 break; 438 case Opt_unhide: 439 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 440 break; 441 case Opt_undelete: 442 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 443 break; 444 case Opt_noadinicb: 445 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 446 break; 447 case Opt_adinicb: 448 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 449 break; 450 case Opt_shortad: 451 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 452 break; 453 case Opt_longad: 454 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 455 break; 456 case Opt_gid: 457 if (match_int(args, &option)) 458 return 0; 459 uopt->gid = option; 460 uopt->flags |= (1 << UDF_FLAG_GID_SET); 461 break; 462 case Opt_uid: 463 if (match_int(args, &option)) 464 return 0; 465 uopt->uid = option; 466 uopt->flags |= (1 << UDF_FLAG_UID_SET); 467 break; 468 case Opt_umask: 469 if (match_octal(args, &option)) 470 return 0; 471 uopt->umask = option; 472 break; 473 case Opt_nostrict: 474 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 475 break; 476 case Opt_session: 477 if (match_int(args, &option)) 478 return 0; 479 uopt->session = option; 480 if (!remount) 481 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 482 break; 483 case Opt_lastblock: 484 if (match_int(args, &option)) 485 return 0; 486 uopt->lastblock = option; 487 if (!remount) 488 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 489 break; 490 case Opt_anchor: 491 if (match_int(args, &option)) 492 return 0; 493 uopt->anchor = option; 494 break; 495 case Opt_volume: 496 if (match_int(args, &option)) 497 return 0; 498 uopt->volume = option; 499 break; 500 case Opt_partition: 501 if (match_int(args, &option)) 502 return 0; 503 uopt->partition = option; 504 break; 505 case Opt_fileset: 506 if (match_int(args, &option)) 507 return 0; 508 uopt->fileset = option; 509 break; 510 case Opt_rootdir: 511 if (match_int(args, &option)) 512 return 0; 513 uopt->rootdir = option; 514 break; 515 case Opt_utf8: 516 uopt->flags |= (1 << UDF_FLAG_UTF8); 517 break; 518 #ifdef CONFIG_UDF_NLS 519 case Opt_iocharset: 520 uopt->nls_map = load_nls(args[0].from); 521 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 522 break; 523 #endif 524 case Opt_uignore: 525 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 526 break; 527 case Opt_uforget: 528 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 529 break; 530 case Opt_gignore: 531 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 532 break; 533 case Opt_gforget: 534 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 535 break; 536 case Opt_fmode: 537 if (match_octal(args, &option)) 538 return 0; 539 uopt->fmode = option & 0777; 540 break; 541 case Opt_dmode: 542 if (match_octal(args, &option)) 543 return 0; 544 uopt->dmode = option & 0777; 545 break; 546 default: 547 pr_err("bad mount option \"%s\" or missing value\n", p); 548 return 0; 549 } 550 } 551 return 1; 552 } 553 554 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 555 { 556 struct udf_options uopt; 557 struct udf_sb_info *sbi = UDF_SB(sb); 558 int error = 0; 559 560 uopt.flags = sbi->s_flags; 561 uopt.uid = sbi->s_uid; 562 uopt.gid = sbi->s_gid; 563 uopt.umask = sbi->s_umask; 564 uopt.fmode = sbi->s_fmode; 565 uopt.dmode = sbi->s_dmode; 566 567 if (!udf_parse_options(options, &uopt, true)) 568 return -EINVAL; 569 570 write_lock(&sbi->s_cred_lock); 571 sbi->s_flags = uopt.flags; 572 sbi->s_uid = uopt.uid; 573 sbi->s_gid = uopt.gid; 574 sbi->s_umask = uopt.umask; 575 sbi->s_fmode = uopt.fmode; 576 sbi->s_dmode = uopt.dmode; 577 write_unlock(&sbi->s_cred_lock); 578 579 if (sbi->s_lvid_bh) { 580 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 581 if (write_rev > UDF_MAX_WRITE_VERSION) 582 *flags |= MS_RDONLY; 583 } 584 585 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 586 goto out_unlock; 587 588 if (*flags & MS_RDONLY) 589 udf_close_lvid(sb); 590 else 591 udf_open_lvid(sb); 592 593 out_unlock: 594 return error; 595 } 596 597 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 598 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 599 static loff_t udf_check_vsd(struct super_block *sb) 600 { 601 struct volStructDesc *vsd = NULL; 602 loff_t sector = 32768; 603 int sectorsize; 604 struct buffer_head *bh = NULL; 605 int nsr02 = 0; 606 int nsr03 = 0; 607 struct udf_sb_info *sbi; 608 609 sbi = UDF_SB(sb); 610 if (sb->s_blocksize < sizeof(struct volStructDesc)) 611 sectorsize = sizeof(struct volStructDesc); 612 else 613 sectorsize = sb->s_blocksize; 614 615 sector += (sbi->s_session << sb->s_blocksize_bits); 616 617 udf_debug("Starting at sector %u (%ld byte sectors)\n", 618 (unsigned int)(sector >> sb->s_blocksize_bits), 619 sb->s_blocksize); 620 /* Process the sequence (if applicable) */ 621 for (; !nsr02 && !nsr03; sector += sectorsize) { 622 /* Read a block */ 623 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 624 if (!bh) 625 break; 626 627 /* Look for ISO descriptors */ 628 vsd = (struct volStructDesc *)(bh->b_data + 629 (sector & (sb->s_blocksize - 1))); 630 631 if (vsd->stdIdent[0] == 0) { 632 brelse(bh); 633 break; 634 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 635 VSD_STD_ID_LEN)) { 636 switch (vsd->structType) { 637 case 0: 638 udf_debug("ISO9660 Boot Record found\n"); 639 break; 640 case 1: 641 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 642 break; 643 case 2: 644 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 645 break; 646 case 3: 647 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 648 break; 649 case 255: 650 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 651 break; 652 default: 653 udf_debug("ISO9660 VRS (%u) found\n", 654 vsd->structType); 655 break; 656 } 657 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 658 VSD_STD_ID_LEN)) 659 ; /* nothing */ 660 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 661 VSD_STD_ID_LEN)) { 662 brelse(bh); 663 break; 664 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 665 VSD_STD_ID_LEN)) 666 nsr02 = sector; 667 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 668 VSD_STD_ID_LEN)) 669 nsr03 = sector; 670 brelse(bh); 671 } 672 673 if (nsr03) 674 return nsr03; 675 else if (nsr02) 676 return nsr02; 677 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 678 return -1; 679 else 680 return 0; 681 } 682 683 static int udf_find_fileset(struct super_block *sb, 684 struct kernel_lb_addr *fileset, 685 struct kernel_lb_addr *root) 686 { 687 struct buffer_head *bh = NULL; 688 long lastblock; 689 uint16_t ident; 690 struct udf_sb_info *sbi; 691 692 if (fileset->logicalBlockNum != 0xFFFFFFFF || 693 fileset->partitionReferenceNum != 0xFFFF) { 694 bh = udf_read_ptagged(sb, fileset, 0, &ident); 695 696 if (!bh) { 697 return 1; 698 } else if (ident != TAG_IDENT_FSD) { 699 brelse(bh); 700 return 1; 701 } 702 703 } 704 705 sbi = UDF_SB(sb); 706 if (!bh) { 707 /* Search backwards through the partitions */ 708 struct kernel_lb_addr newfileset; 709 710 /* --> cvg: FIXME - is it reasonable? */ 711 return 1; 712 713 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 714 (newfileset.partitionReferenceNum != 0xFFFF && 715 fileset->logicalBlockNum == 0xFFFFFFFF && 716 fileset->partitionReferenceNum == 0xFFFF); 717 newfileset.partitionReferenceNum--) { 718 lastblock = sbi->s_partmaps 719 [newfileset.partitionReferenceNum] 720 .s_partition_len; 721 newfileset.logicalBlockNum = 0; 722 723 do { 724 bh = udf_read_ptagged(sb, &newfileset, 0, 725 &ident); 726 if (!bh) { 727 newfileset.logicalBlockNum++; 728 continue; 729 } 730 731 switch (ident) { 732 case TAG_IDENT_SBD: 733 { 734 struct spaceBitmapDesc *sp; 735 sp = (struct spaceBitmapDesc *) 736 bh->b_data; 737 newfileset.logicalBlockNum += 1 + 738 ((le32_to_cpu(sp->numOfBytes) + 739 sizeof(struct spaceBitmapDesc) 740 - 1) >> sb->s_blocksize_bits); 741 brelse(bh); 742 break; 743 } 744 case TAG_IDENT_FSD: 745 *fileset = newfileset; 746 break; 747 default: 748 newfileset.logicalBlockNum++; 749 brelse(bh); 750 bh = NULL; 751 break; 752 } 753 } while (newfileset.logicalBlockNum < lastblock && 754 fileset->logicalBlockNum == 0xFFFFFFFF && 755 fileset->partitionReferenceNum == 0xFFFF); 756 } 757 } 758 759 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 760 fileset->partitionReferenceNum != 0xFFFF) && bh) { 761 udf_debug("Fileset at block=%d, partition=%d\n", 762 fileset->logicalBlockNum, 763 fileset->partitionReferenceNum); 764 765 sbi->s_partition = fileset->partitionReferenceNum; 766 udf_load_fileset(sb, bh, root); 767 brelse(bh); 768 return 0; 769 } 770 return 1; 771 } 772 773 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 774 { 775 struct primaryVolDesc *pvoldesc; 776 struct ustr *instr, *outstr; 777 struct buffer_head *bh; 778 uint16_t ident; 779 int ret = 1; 780 781 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 782 if (!instr) 783 return 1; 784 785 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 786 if (!outstr) 787 goto out1; 788 789 bh = udf_read_tagged(sb, block, block, &ident); 790 if (!bh) 791 goto out2; 792 793 BUG_ON(ident != TAG_IDENT_PVD); 794 795 pvoldesc = (struct primaryVolDesc *)bh->b_data; 796 797 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 798 pvoldesc->recordingDateAndTime)) { 799 #ifdef UDFFS_DEBUG 800 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 801 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 802 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 803 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 804 #endif 805 } 806 807 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 808 if (udf_CS0toUTF8(outstr, instr)) { 809 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 810 outstr->u_len > 31 ? 31 : outstr->u_len); 811 udf_debug("volIdent[] = '%s'\n", 812 UDF_SB(sb)->s_volume_ident); 813 } 814 815 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 816 if (udf_CS0toUTF8(outstr, instr)) 817 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 818 819 brelse(bh); 820 ret = 0; 821 out2: 822 kfree(outstr); 823 out1: 824 kfree(instr); 825 return ret; 826 } 827 828 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 829 u32 meta_file_loc, u32 partition_num) 830 { 831 struct kernel_lb_addr addr; 832 struct inode *metadata_fe; 833 834 addr.logicalBlockNum = meta_file_loc; 835 addr.partitionReferenceNum = partition_num; 836 837 metadata_fe = udf_iget(sb, &addr); 838 839 if (metadata_fe == NULL) 840 udf_warn(sb, "metadata inode efe not found\n"); 841 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 842 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 843 iput(metadata_fe); 844 metadata_fe = NULL; 845 } 846 847 return metadata_fe; 848 } 849 850 static int udf_load_metadata_files(struct super_block *sb, int partition) 851 { 852 struct udf_sb_info *sbi = UDF_SB(sb); 853 struct udf_part_map *map; 854 struct udf_meta_data *mdata; 855 struct kernel_lb_addr addr; 856 857 map = &sbi->s_partmaps[partition]; 858 mdata = &map->s_type_specific.s_metadata; 859 860 /* metadata address */ 861 udf_debug("Metadata file location: block = %d part = %d\n", 862 mdata->s_meta_file_loc, map->s_partition_num); 863 864 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 865 mdata->s_meta_file_loc, map->s_partition_num); 866 867 if (mdata->s_metadata_fe == NULL) { 868 /* mirror file entry */ 869 udf_debug("Mirror metadata file location: block = %d part = %d\n", 870 mdata->s_mirror_file_loc, map->s_partition_num); 871 872 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 873 mdata->s_mirror_file_loc, map->s_partition_num); 874 875 if (mdata->s_mirror_fe == NULL) { 876 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 877 goto error_exit; 878 } 879 } 880 881 /* 882 * bitmap file entry 883 * Note: 884 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 885 */ 886 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 887 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 888 addr.partitionReferenceNum = map->s_partition_num; 889 890 udf_debug("Bitmap file location: block = %d part = %d\n", 891 addr.logicalBlockNum, addr.partitionReferenceNum); 892 893 mdata->s_bitmap_fe = udf_iget(sb, &addr); 894 895 if (mdata->s_bitmap_fe == NULL) { 896 if (sb->s_flags & MS_RDONLY) 897 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 898 else { 899 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 900 goto error_exit; 901 } 902 } 903 } 904 905 udf_debug("udf_load_metadata_files Ok\n"); 906 907 return 0; 908 909 error_exit: 910 return 1; 911 } 912 913 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 914 struct kernel_lb_addr *root) 915 { 916 struct fileSetDesc *fset; 917 918 fset = (struct fileSetDesc *)bh->b_data; 919 920 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 921 922 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 923 924 udf_debug("Rootdir at block=%d, partition=%d\n", 925 root->logicalBlockNum, root->partitionReferenceNum); 926 } 927 928 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 929 { 930 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 931 return DIV_ROUND_UP(map->s_partition_len + 932 (sizeof(struct spaceBitmapDesc) << 3), 933 sb->s_blocksize * 8); 934 } 935 936 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 937 { 938 struct udf_bitmap *bitmap; 939 int nr_groups; 940 int size; 941 942 nr_groups = udf_compute_nr_groups(sb, index); 943 size = sizeof(struct udf_bitmap) + 944 (sizeof(struct buffer_head *) * nr_groups); 945 946 if (size <= PAGE_SIZE) 947 bitmap = kzalloc(size, GFP_KERNEL); 948 else 949 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 950 951 if (bitmap == NULL) { 952 udf_err(sb, "Unable to allocate space for bitmap and %d buffer_head pointers\n", 953 nr_groups); 954 return NULL; 955 } 956 957 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 958 bitmap->s_nr_groups = nr_groups; 959 return bitmap; 960 } 961 962 static int udf_fill_partdesc_info(struct super_block *sb, 963 struct partitionDesc *p, int p_index) 964 { 965 struct udf_part_map *map; 966 struct udf_sb_info *sbi = UDF_SB(sb); 967 struct partitionHeaderDesc *phd; 968 969 map = &sbi->s_partmaps[p_index]; 970 971 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 972 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 973 974 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 975 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 976 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 977 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 978 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 979 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 980 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 981 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 982 983 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 984 p_index, map->s_partition_type, 985 map->s_partition_root, map->s_partition_len); 986 987 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 988 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 989 return 0; 990 991 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 992 if (phd->unallocSpaceTable.extLength) { 993 struct kernel_lb_addr loc = { 994 .logicalBlockNum = le32_to_cpu( 995 phd->unallocSpaceTable.extPosition), 996 .partitionReferenceNum = p_index, 997 }; 998 999 map->s_uspace.s_table = udf_iget(sb, &loc); 1000 if (!map->s_uspace.s_table) { 1001 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1002 p_index); 1003 return 1; 1004 } 1005 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1006 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1007 p_index, map->s_uspace.s_table->i_ino); 1008 } 1009 1010 if (phd->unallocSpaceBitmap.extLength) { 1011 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1012 if (!bitmap) 1013 return 1; 1014 map->s_uspace.s_bitmap = bitmap; 1015 bitmap->s_extLength = le32_to_cpu( 1016 phd->unallocSpaceBitmap.extLength); 1017 bitmap->s_extPosition = le32_to_cpu( 1018 phd->unallocSpaceBitmap.extPosition); 1019 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1020 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1021 p_index, bitmap->s_extPosition); 1022 } 1023 1024 if (phd->partitionIntegrityTable.extLength) 1025 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1026 1027 if (phd->freedSpaceTable.extLength) { 1028 struct kernel_lb_addr loc = { 1029 .logicalBlockNum = le32_to_cpu( 1030 phd->freedSpaceTable.extPosition), 1031 .partitionReferenceNum = p_index, 1032 }; 1033 1034 map->s_fspace.s_table = udf_iget(sb, &loc); 1035 if (!map->s_fspace.s_table) { 1036 udf_debug("cannot load freedSpaceTable (part %d)\n", 1037 p_index); 1038 return 1; 1039 } 1040 1041 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1042 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1043 p_index, map->s_fspace.s_table->i_ino); 1044 } 1045 1046 if (phd->freedSpaceBitmap.extLength) { 1047 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1048 if (!bitmap) 1049 return 1; 1050 map->s_fspace.s_bitmap = bitmap; 1051 bitmap->s_extLength = le32_to_cpu( 1052 phd->freedSpaceBitmap.extLength); 1053 bitmap->s_extPosition = le32_to_cpu( 1054 phd->freedSpaceBitmap.extPosition); 1055 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1056 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1057 p_index, bitmap->s_extPosition); 1058 } 1059 return 0; 1060 } 1061 1062 static void udf_find_vat_block(struct super_block *sb, int p_index, 1063 int type1_index, sector_t start_block) 1064 { 1065 struct udf_sb_info *sbi = UDF_SB(sb); 1066 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1067 sector_t vat_block; 1068 struct kernel_lb_addr ino; 1069 1070 /* 1071 * VAT file entry is in the last recorded block. Some broken disks have 1072 * it a few blocks before so try a bit harder... 1073 */ 1074 ino.partitionReferenceNum = type1_index; 1075 for (vat_block = start_block; 1076 vat_block >= map->s_partition_root && 1077 vat_block >= start_block - 3 && 1078 !sbi->s_vat_inode; vat_block--) { 1079 ino.logicalBlockNum = vat_block - map->s_partition_root; 1080 sbi->s_vat_inode = udf_iget(sb, &ino); 1081 } 1082 } 1083 1084 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1085 { 1086 struct udf_sb_info *sbi = UDF_SB(sb); 1087 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1088 struct buffer_head *bh = NULL; 1089 struct udf_inode_info *vati; 1090 uint32_t pos; 1091 struct virtualAllocationTable20 *vat20; 1092 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1093 1094 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1095 if (!sbi->s_vat_inode && 1096 sbi->s_last_block != blocks - 1) { 1097 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1098 (unsigned long)sbi->s_last_block, 1099 (unsigned long)blocks - 1); 1100 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1101 } 1102 if (!sbi->s_vat_inode) 1103 return 1; 1104 1105 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1106 map->s_type_specific.s_virtual.s_start_offset = 0; 1107 map->s_type_specific.s_virtual.s_num_entries = 1108 (sbi->s_vat_inode->i_size - 36) >> 2; 1109 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1110 vati = UDF_I(sbi->s_vat_inode); 1111 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1112 pos = udf_block_map(sbi->s_vat_inode, 0); 1113 bh = sb_bread(sb, pos); 1114 if (!bh) 1115 return 1; 1116 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1117 } else { 1118 vat20 = (struct virtualAllocationTable20 *) 1119 vati->i_ext.i_data; 1120 } 1121 1122 map->s_type_specific.s_virtual.s_start_offset = 1123 le16_to_cpu(vat20->lengthHeader); 1124 map->s_type_specific.s_virtual.s_num_entries = 1125 (sbi->s_vat_inode->i_size - 1126 map->s_type_specific.s_virtual. 1127 s_start_offset) >> 2; 1128 brelse(bh); 1129 } 1130 return 0; 1131 } 1132 1133 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1134 { 1135 struct buffer_head *bh; 1136 struct partitionDesc *p; 1137 struct udf_part_map *map; 1138 struct udf_sb_info *sbi = UDF_SB(sb); 1139 int i, type1_idx; 1140 uint16_t partitionNumber; 1141 uint16_t ident; 1142 int ret = 0; 1143 1144 bh = udf_read_tagged(sb, block, block, &ident); 1145 if (!bh) 1146 return 1; 1147 if (ident != TAG_IDENT_PD) 1148 goto out_bh; 1149 1150 p = (struct partitionDesc *)bh->b_data; 1151 partitionNumber = le16_to_cpu(p->partitionNumber); 1152 1153 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1154 for (i = 0; i < sbi->s_partitions; i++) { 1155 map = &sbi->s_partmaps[i]; 1156 udf_debug("Searching map: (%d == %d)\n", 1157 map->s_partition_num, partitionNumber); 1158 if (map->s_partition_num == partitionNumber && 1159 (map->s_partition_type == UDF_TYPE1_MAP15 || 1160 map->s_partition_type == UDF_SPARABLE_MAP15)) 1161 break; 1162 } 1163 1164 if (i >= sbi->s_partitions) { 1165 udf_debug("Partition (%d) not found in partition map\n", 1166 partitionNumber); 1167 goto out_bh; 1168 } 1169 1170 ret = udf_fill_partdesc_info(sb, p, i); 1171 1172 /* 1173 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1174 * PHYSICAL partitions are already set up 1175 */ 1176 type1_idx = i; 1177 for (i = 0; i < sbi->s_partitions; i++) { 1178 map = &sbi->s_partmaps[i]; 1179 1180 if (map->s_partition_num == partitionNumber && 1181 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1182 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1183 map->s_partition_type == UDF_METADATA_MAP25)) 1184 break; 1185 } 1186 1187 if (i >= sbi->s_partitions) 1188 goto out_bh; 1189 1190 ret = udf_fill_partdesc_info(sb, p, i); 1191 if (ret) 1192 goto out_bh; 1193 1194 if (map->s_partition_type == UDF_METADATA_MAP25) { 1195 ret = udf_load_metadata_files(sb, i); 1196 if (ret) { 1197 udf_err(sb, "error loading MetaData partition map %d\n", 1198 i); 1199 goto out_bh; 1200 } 1201 } else { 1202 ret = udf_load_vat(sb, i, type1_idx); 1203 if (ret) 1204 goto out_bh; 1205 /* 1206 * Mark filesystem read-only if we have a partition with 1207 * virtual map since we don't handle writing to it (we 1208 * overwrite blocks instead of relocating them). 1209 */ 1210 sb->s_flags |= MS_RDONLY; 1211 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); 1212 } 1213 out_bh: 1214 /* In case loading failed, we handle cleanup in udf_fill_super */ 1215 brelse(bh); 1216 return ret; 1217 } 1218 1219 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1220 struct kernel_lb_addr *fileset) 1221 { 1222 struct logicalVolDesc *lvd; 1223 int i, j, offset; 1224 uint8_t type; 1225 struct udf_sb_info *sbi = UDF_SB(sb); 1226 struct genericPartitionMap *gpm; 1227 uint16_t ident; 1228 struct buffer_head *bh; 1229 int ret = 0; 1230 1231 bh = udf_read_tagged(sb, block, block, &ident); 1232 if (!bh) 1233 return 1; 1234 BUG_ON(ident != TAG_IDENT_LVD); 1235 lvd = (struct logicalVolDesc *)bh->b_data; 1236 1237 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1238 if (i != 0) { 1239 ret = i; 1240 goto out_bh; 1241 } 1242 1243 for (i = 0, offset = 0; 1244 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1245 i++, offset += gpm->partitionMapLength) { 1246 struct udf_part_map *map = &sbi->s_partmaps[i]; 1247 gpm = (struct genericPartitionMap *) 1248 &(lvd->partitionMaps[offset]); 1249 type = gpm->partitionMapType; 1250 if (type == 1) { 1251 struct genericPartitionMap1 *gpm1 = 1252 (struct genericPartitionMap1 *)gpm; 1253 map->s_partition_type = UDF_TYPE1_MAP15; 1254 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1255 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1256 map->s_partition_func = NULL; 1257 } else if (type == 2) { 1258 struct udfPartitionMap2 *upm2 = 1259 (struct udfPartitionMap2 *)gpm; 1260 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1261 strlen(UDF_ID_VIRTUAL))) { 1262 u16 suf = 1263 le16_to_cpu(((__le16 *)upm2->partIdent. 1264 identSuffix)[0]); 1265 if (suf < 0x0200) { 1266 map->s_partition_type = 1267 UDF_VIRTUAL_MAP15; 1268 map->s_partition_func = 1269 udf_get_pblock_virt15; 1270 } else { 1271 map->s_partition_type = 1272 UDF_VIRTUAL_MAP20; 1273 map->s_partition_func = 1274 udf_get_pblock_virt20; 1275 } 1276 } else if (!strncmp(upm2->partIdent.ident, 1277 UDF_ID_SPARABLE, 1278 strlen(UDF_ID_SPARABLE))) { 1279 uint32_t loc; 1280 struct sparingTable *st; 1281 struct sparablePartitionMap *spm = 1282 (struct sparablePartitionMap *)gpm; 1283 1284 map->s_partition_type = UDF_SPARABLE_MAP15; 1285 map->s_type_specific.s_sparing.s_packet_len = 1286 le16_to_cpu(spm->packetLength); 1287 for (j = 0; j < spm->numSparingTables; j++) { 1288 struct buffer_head *bh2; 1289 1290 loc = le32_to_cpu( 1291 spm->locSparingTable[j]); 1292 bh2 = udf_read_tagged(sb, loc, loc, 1293 &ident); 1294 map->s_type_specific.s_sparing. 1295 s_spar_map[j] = bh2; 1296 1297 if (bh2 == NULL) 1298 continue; 1299 1300 st = (struct sparingTable *)bh2->b_data; 1301 if (ident != 0 || strncmp( 1302 st->sparingIdent.ident, 1303 UDF_ID_SPARING, 1304 strlen(UDF_ID_SPARING))) { 1305 brelse(bh2); 1306 map->s_type_specific.s_sparing. 1307 s_spar_map[j] = NULL; 1308 } 1309 } 1310 map->s_partition_func = udf_get_pblock_spar15; 1311 } else if (!strncmp(upm2->partIdent.ident, 1312 UDF_ID_METADATA, 1313 strlen(UDF_ID_METADATA))) { 1314 struct udf_meta_data *mdata = 1315 &map->s_type_specific.s_metadata; 1316 struct metadataPartitionMap *mdm = 1317 (struct metadataPartitionMap *) 1318 &(lvd->partitionMaps[offset]); 1319 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1320 i, type, UDF_ID_METADATA); 1321 1322 map->s_partition_type = UDF_METADATA_MAP25; 1323 map->s_partition_func = udf_get_pblock_meta25; 1324 1325 mdata->s_meta_file_loc = 1326 le32_to_cpu(mdm->metadataFileLoc); 1327 mdata->s_mirror_file_loc = 1328 le32_to_cpu(mdm->metadataMirrorFileLoc); 1329 mdata->s_bitmap_file_loc = 1330 le32_to_cpu(mdm->metadataBitmapFileLoc); 1331 mdata->s_alloc_unit_size = 1332 le32_to_cpu(mdm->allocUnitSize); 1333 mdata->s_align_unit_size = 1334 le16_to_cpu(mdm->alignUnitSize); 1335 if (mdm->flags & 0x01) 1336 mdata->s_flags |= MF_DUPLICATE_MD; 1337 1338 udf_debug("Metadata Ident suffix=0x%x\n", 1339 le16_to_cpu(*(__le16 *) 1340 mdm->partIdent.identSuffix)); 1341 udf_debug("Metadata part num=%d\n", 1342 le16_to_cpu(mdm->partitionNum)); 1343 udf_debug("Metadata part alloc unit size=%d\n", 1344 le32_to_cpu(mdm->allocUnitSize)); 1345 udf_debug("Metadata file loc=%d\n", 1346 le32_to_cpu(mdm->metadataFileLoc)); 1347 udf_debug("Mirror file loc=%d\n", 1348 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1349 udf_debug("Bitmap file loc=%d\n", 1350 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1351 udf_debug("Flags: %d %d\n", 1352 mdata->s_flags, mdm->flags); 1353 } else { 1354 udf_debug("Unknown ident: %s\n", 1355 upm2->partIdent.ident); 1356 continue; 1357 } 1358 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1359 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1360 } 1361 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1362 i, map->s_partition_num, type, map->s_volumeseqnum); 1363 } 1364 1365 if (fileset) { 1366 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1367 1368 *fileset = lelb_to_cpu(la->extLocation); 1369 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1370 fileset->logicalBlockNum, 1371 fileset->partitionReferenceNum); 1372 } 1373 if (lvd->integritySeqExt.extLength) 1374 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1375 1376 out_bh: 1377 brelse(bh); 1378 return ret; 1379 } 1380 1381 /* 1382 * udf_load_logicalvolint 1383 * 1384 */ 1385 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1386 { 1387 struct buffer_head *bh = NULL; 1388 uint16_t ident; 1389 struct udf_sb_info *sbi = UDF_SB(sb); 1390 struct logicalVolIntegrityDesc *lvid; 1391 1392 while (loc.extLength > 0 && 1393 (bh = udf_read_tagged(sb, loc.extLocation, 1394 loc.extLocation, &ident)) && 1395 ident == TAG_IDENT_LVID) { 1396 sbi->s_lvid_bh = bh; 1397 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1398 1399 if (lvid->nextIntegrityExt.extLength) 1400 udf_load_logicalvolint(sb, 1401 leea_to_cpu(lvid->nextIntegrityExt)); 1402 1403 if (sbi->s_lvid_bh != bh) 1404 brelse(bh); 1405 loc.extLength -= sb->s_blocksize; 1406 loc.extLocation++; 1407 } 1408 if (sbi->s_lvid_bh != bh) 1409 brelse(bh); 1410 } 1411 1412 /* 1413 * udf_process_sequence 1414 * 1415 * PURPOSE 1416 * Process a main/reserve volume descriptor sequence. 1417 * 1418 * PRE-CONDITIONS 1419 * sb Pointer to _locked_ superblock. 1420 * block First block of first extent of the sequence. 1421 * lastblock Lastblock of first extent of the sequence. 1422 * 1423 * HISTORY 1424 * July 1, 1997 - Andrew E. Mileski 1425 * Written, tested, and released. 1426 */ 1427 static noinline int udf_process_sequence(struct super_block *sb, long block, 1428 long lastblock, struct kernel_lb_addr *fileset) 1429 { 1430 struct buffer_head *bh = NULL; 1431 struct udf_vds_record vds[VDS_POS_LENGTH]; 1432 struct udf_vds_record *curr; 1433 struct generic_desc *gd; 1434 struct volDescPtr *vdp; 1435 int done = 0; 1436 uint32_t vdsn; 1437 uint16_t ident; 1438 long next_s = 0, next_e = 0; 1439 1440 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1441 1442 /* 1443 * Read the main descriptor sequence and find which descriptors 1444 * are in it. 1445 */ 1446 for (; (!done && block <= lastblock); block++) { 1447 1448 bh = udf_read_tagged(sb, block, block, &ident); 1449 if (!bh) { 1450 udf_err(sb, 1451 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1452 (unsigned long long)block); 1453 return 1; 1454 } 1455 1456 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1457 gd = (struct generic_desc *)bh->b_data; 1458 vdsn = le32_to_cpu(gd->volDescSeqNum); 1459 switch (ident) { 1460 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1461 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1462 if (vdsn >= curr->volDescSeqNum) { 1463 curr->volDescSeqNum = vdsn; 1464 curr->block = block; 1465 } 1466 break; 1467 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1468 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1469 if (vdsn >= curr->volDescSeqNum) { 1470 curr->volDescSeqNum = vdsn; 1471 curr->block = block; 1472 1473 vdp = (struct volDescPtr *)bh->b_data; 1474 next_s = le32_to_cpu( 1475 vdp->nextVolDescSeqExt.extLocation); 1476 next_e = le32_to_cpu( 1477 vdp->nextVolDescSeqExt.extLength); 1478 next_e = next_e >> sb->s_blocksize_bits; 1479 next_e += next_s; 1480 } 1481 break; 1482 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1483 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1484 if (vdsn >= curr->volDescSeqNum) { 1485 curr->volDescSeqNum = vdsn; 1486 curr->block = block; 1487 } 1488 break; 1489 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1490 curr = &vds[VDS_POS_PARTITION_DESC]; 1491 if (!curr->block) 1492 curr->block = block; 1493 break; 1494 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1495 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1496 if (vdsn >= curr->volDescSeqNum) { 1497 curr->volDescSeqNum = vdsn; 1498 curr->block = block; 1499 } 1500 break; 1501 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1502 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1503 if (vdsn >= curr->volDescSeqNum) { 1504 curr->volDescSeqNum = vdsn; 1505 curr->block = block; 1506 } 1507 break; 1508 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1509 vds[VDS_POS_TERMINATING_DESC].block = block; 1510 if (next_e) { 1511 block = next_s; 1512 lastblock = next_e; 1513 next_s = next_e = 0; 1514 } else 1515 done = 1; 1516 break; 1517 } 1518 brelse(bh); 1519 } 1520 /* 1521 * Now read interesting descriptors again and process them 1522 * in a suitable order 1523 */ 1524 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1525 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1526 return 1; 1527 } 1528 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1529 return 1; 1530 1531 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1532 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1533 return 1; 1534 1535 if (vds[VDS_POS_PARTITION_DESC].block) { 1536 /* 1537 * We rescan the whole descriptor sequence to find 1538 * partition descriptor blocks and process them. 1539 */ 1540 for (block = vds[VDS_POS_PARTITION_DESC].block; 1541 block < vds[VDS_POS_TERMINATING_DESC].block; 1542 block++) 1543 if (udf_load_partdesc(sb, block)) 1544 return 1; 1545 } 1546 1547 return 0; 1548 } 1549 1550 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1551 struct kernel_lb_addr *fileset) 1552 { 1553 struct anchorVolDescPtr *anchor; 1554 long main_s, main_e, reserve_s, reserve_e; 1555 1556 anchor = (struct anchorVolDescPtr *)bh->b_data; 1557 1558 /* Locate the main sequence */ 1559 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1560 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1561 main_e = main_e >> sb->s_blocksize_bits; 1562 main_e += main_s; 1563 1564 /* Locate the reserve sequence */ 1565 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1566 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1567 reserve_e = reserve_e >> sb->s_blocksize_bits; 1568 reserve_e += reserve_s; 1569 1570 /* Process the main & reserve sequences */ 1571 /* responsible for finding the PartitionDesc(s) */ 1572 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1573 return 1; 1574 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1575 } 1576 1577 /* 1578 * Check whether there is an anchor block in the given block and 1579 * load Volume Descriptor Sequence if so. 1580 */ 1581 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1582 struct kernel_lb_addr *fileset) 1583 { 1584 struct buffer_head *bh; 1585 uint16_t ident; 1586 int ret; 1587 1588 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1589 udf_fixed_to_variable(block) >= 1590 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1591 return 0; 1592 1593 bh = udf_read_tagged(sb, block, block, &ident); 1594 if (!bh) 1595 return 0; 1596 if (ident != TAG_IDENT_AVDP) { 1597 brelse(bh); 1598 return 0; 1599 } 1600 ret = udf_load_sequence(sb, bh, fileset); 1601 brelse(bh); 1602 return ret; 1603 } 1604 1605 /* Search for an anchor volume descriptor pointer */ 1606 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1607 struct kernel_lb_addr *fileset) 1608 { 1609 sector_t last[6]; 1610 int i; 1611 struct udf_sb_info *sbi = UDF_SB(sb); 1612 int last_count = 0; 1613 1614 /* First try user provided anchor */ 1615 if (sbi->s_anchor) { 1616 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1617 return lastblock; 1618 } 1619 /* 1620 * according to spec, anchor is in either: 1621 * block 256 1622 * lastblock-256 1623 * lastblock 1624 * however, if the disc isn't closed, it could be 512. 1625 */ 1626 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1627 return lastblock; 1628 /* 1629 * The trouble is which block is the last one. Drives often misreport 1630 * this so we try various possibilities. 1631 */ 1632 last[last_count++] = lastblock; 1633 if (lastblock >= 1) 1634 last[last_count++] = lastblock - 1; 1635 last[last_count++] = lastblock + 1; 1636 if (lastblock >= 2) 1637 last[last_count++] = lastblock - 2; 1638 if (lastblock >= 150) 1639 last[last_count++] = lastblock - 150; 1640 if (lastblock >= 152) 1641 last[last_count++] = lastblock - 152; 1642 1643 for (i = 0; i < last_count; i++) { 1644 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1645 sb->s_blocksize_bits) 1646 continue; 1647 if (udf_check_anchor_block(sb, last[i], fileset)) 1648 return last[i]; 1649 if (last[i] < 256) 1650 continue; 1651 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1652 return last[i]; 1653 } 1654 1655 /* Finally try block 512 in case media is open */ 1656 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1657 return last[0]; 1658 return 0; 1659 } 1660 1661 /* 1662 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1663 * area specified by it. The function expects sbi->s_lastblock to be the last 1664 * block on the media. 1665 * 1666 * Return 1 if ok, 0 if not found. 1667 * 1668 */ 1669 static int udf_find_anchor(struct super_block *sb, 1670 struct kernel_lb_addr *fileset) 1671 { 1672 sector_t lastblock; 1673 struct udf_sb_info *sbi = UDF_SB(sb); 1674 1675 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1676 if (lastblock) 1677 goto out; 1678 1679 /* No anchor found? Try VARCONV conversion of block numbers */ 1680 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1681 /* Firstly, we try to not convert number of the last block */ 1682 lastblock = udf_scan_anchors(sb, 1683 udf_variable_to_fixed(sbi->s_last_block), 1684 fileset); 1685 if (lastblock) 1686 goto out; 1687 1688 /* Secondly, we try with converted number of the last block */ 1689 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1690 if (!lastblock) { 1691 /* VARCONV didn't help. Clear it. */ 1692 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1693 return 0; 1694 } 1695 out: 1696 sbi->s_last_block = lastblock; 1697 return 1; 1698 } 1699 1700 /* 1701 * Check Volume Structure Descriptor, find Anchor block and load Volume 1702 * Descriptor Sequence 1703 */ 1704 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1705 int silent, struct kernel_lb_addr *fileset) 1706 { 1707 struct udf_sb_info *sbi = UDF_SB(sb); 1708 loff_t nsr_off; 1709 1710 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1711 if (!silent) 1712 udf_warn(sb, "Bad block size\n"); 1713 return 0; 1714 } 1715 sbi->s_last_block = uopt->lastblock; 1716 if (!uopt->novrs) { 1717 /* Check that it is NSR02 compliant */ 1718 nsr_off = udf_check_vsd(sb); 1719 if (!nsr_off) { 1720 if (!silent) 1721 udf_warn(sb, "No VRS found\n"); 1722 return 0; 1723 } 1724 if (nsr_off == -1) 1725 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1726 if (!sbi->s_last_block) 1727 sbi->s_last_block = udf_get_last_block(sb); 1728 } else { 1729 udf_debug("Validity check skipped because of novrs option\n"); 1730 } 1731 1732 /* Look for anchor block and load Volume Descriptor Sequence */ 1733 sbi->s_anchor = uopt->anchor; 1734 if (!udf_find_anchor(sb, fileset)) { 1735 if (!silent) 1736 udf_warn(sb, "No anchor found\n"); 1737 return 0; 1738 } 1739 return 1; 1740 } 1741 1742 static void udf_open_lvid(struct super_block *sb) 1743 { 1744 struct udf_sb_info *sbi = UDF_SB(sb); 1745 struct buffer_head *bh = sbi->s_lvid_bh; 1746 struct logicalVolIntegrityDesc *lvid; 1747 struct logicalVolIntegrityDescImpUse *lvidiu; 1748 1749 if (!bh) 1750 return; 1751 1752 mutex_lock(&sbi->s_alloc_mutex); 1753 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1754 lvidiu = udf_sb_lvidiu(sbi); 1755 1756 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1757 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1758 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1759 CURRENT_TIME); 1760 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1761 1762 lvid->descTag.descCRC = cpu_to_le16( 1763 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1764 le16_to_cpu(lvid->descTag.descCRCLength))); 1765 1766 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1767 mark_buffer_dirty(bh); 1768 sbi->s_lvid_dirty = 0; 1769 mutex_unlock(&sbi->s_alloc_mutex); 1770 } 1771 1772 static void udf_close_lvid(struct super_block *sb) 1773 { 1774 struct udf_sb_info *sbi = UDF_SB(sb); 1775 struct buffer_head *bh = sbi->s_lvid_bh; 1776 struct logicalVolIntegrityDesc *lvid; 1777 struct logicalVolIntegrityDescImpUse *lvidiu; 1778 1779 if (!bh) 1780 return; 1781 1782 mutex_lock(&sbi->s_alloc_mutex); 1783 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1784 lvidiu = udf_sb_lvidiu(sbi); 1785 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1786 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1787 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1788 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1789 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1790 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1791 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1792 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1793 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1794 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1795 1796 lvid->descTag.descCRC = cpu_to_le16( 1797 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1798 le16_to_cpu(lvid->descTag.descCRCLength))); 1799 1800 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1801 /* 1802 * We set buffer uptodate unconditionally here to avoid spurious 1803 * warnings from mark_buffer_dirty() when previous EIO has marked 1804 * the buffer as !uptodate 1805 */ 1806 set_buffer_uptodate(bh); 1807 mark_buffer_dirty(bh); 1808 sbi->s_lvid_dirty = 0; 1809 mutex_unlock(&sbi->s_alloc_mutex); 1810 } 1811 1812 u64 lvid_get_unique_id(struct super_block *sb) 1813 { 1814 struct buffer_head *bh; 1815 struct udf_sb_info *sbi = UDF_SB(sb); 1816 struct logicalVolIntegrityDesc *lvid; 1817 struct logicalVolHeaderDesc *lvhd; 1818 u64 uniqueID; 1819 u64 ret; 1820 1821 bh = sbi->s_lvid_bh; 1822 if (!bh) 1823 return 0; 1824 1825 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1826 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1827 1828 mutex_lock(&sbi->s_alloc_mutex); 1829 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1830 if (!(++uniqueID & 0xFFFFFFFF)) 1831 uniqueID += 16; 1832 lvhd->uniqueID = cpu_to_le64(uniqueID); 1833 mutex_unlock(&sbi->s_alloc_mutex); 1834 mark_buffer_dirty(bh); 1835 1836 return ret; 1837 } 1838 1839 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1840 { 1841 int i; 1842 int nr_groups = bitmap->s_nr_groups; 1843 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1844 nr_groups); 1845 1846 for (i = 0; i < nr_groups; i++) 1847 if (bitmap->s_block_bitmap[i]) 1848 brelse(bitmap->s_block_bitmap[i]); 1849 1850 if (size <= PAGE_SIZE) 1851 kfree(bitmap); 1852 else 1853 vfree(bitmap); 1854 } 1855 1856 static void udf_free_partition(struct udf_part_map *map) 1857 { 1858 int i; 1859 struct udf_meta_data *mdata; 1860 1861 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1862 iput(map->s_uspace.s_table); 1863 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1864 iput(map->s_fspace.s_table); 1865 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1866 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1867 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1868 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1869 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1870 for (i = 0; i < 4; i++) 1871 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1872 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1873 mdata = &map->s_type_specific.s_metadata; 1874 iput(mdata->s_metadata_fe); 1875 mdata->s_metadata_fe = NULL; 1876 1877 iput(mdata->s_mirror_fe); 1878 mdata->s_mirror_fe = NULL; 1879 1880 iput(mdata->s_bitmap_fe); 1881 mdata->s_bitmap_fe = NULL; 1882 } 1883 } 1884 1885 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1886 { 1887 int i; 1888 int ret; 1889 struct inode *inode = NULL; 1890 struct udf_options uopt; 1891 struct kernel_lb_addr rootdir, fileset; 1892 struct udf_sb_info *sbi; 1893 1894 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1895 uopt.uid = -1; 1896 uopt.gid = -1; 1897 uopt.umask = 0; 1898 uopt.fmode = UDF_INVALID_MODE; 1899 uopt.dmode = UDF_INVALID_MODE; 1900 1901 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1902 if (!sbi) 1903 return -ENOMEM; 1904 1905 sb->s_fs_info = sbi; 1906 1907 mutex_init(&sbi->s_alloc_mutex); 1908 1909 if (!udf_parse_options((char *)options, &uopt, false)) 1910 goto error_out; 1911 1912 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1913 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1914 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 1915 goto error_out; 1916 } 1917 #ifdef CONFIG_UDF_NLS 1918 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1919 uopt.nls_map = load_nls_default(); 1920 if (!uopt.nls_map) 1921 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1922 else 1923 udf_debug("Using default NLS map\n"); 1924 } 1925 #endif 1926 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1927 uopt.flags |= (1 << UDF_FLAG_UTF8); 1928 1929 fileset.logicalBlockNum = 0xFFFFFFFF; 1930 fileset.partitionReferenceNum = 0xFFFF; 1931 1932 sbi->s_flags = uopt.flags; 1933 sbi->s_uid = uopt.uid; 1934 sbi->s_gid = uopt.gid; 1935 sbi->s_umask = uopt.umask; 1936 sbi->s_fmode = uopt.fmode; 1937 sbi->s_dmode = uopt.dmode; 1938 sbi->s_nls_map = uopt.nls_map; 1939 rwlock_init(&sbi->s_cred_lock); 1940 1941 if (uopt.session == 0xFFFFFFFF) 1942 sbi->s_session = udf_get_last_session(sb); 1943 else 1944 sbi->s_session = uopt.session; 1945 1946 udf_debug("Multi-session=%d\n", sbi->s_session); 1947 1948 /* Fill in the rest of the superblock */ 1949 sb->s_op = &udf_sb_ops; 1950 sb->s_export_op = &udf_export_ops; 1951 1952 sb->s_dirt = 0; 1953 sb->s_magic = UDF_SUPER_MAGIC; 1954 sb->s_time_gran = 1000; 1955 1956 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1957 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1958 } else { 1959 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 1960 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1961 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 1962 if (!silent) 1963 pr_notice("Rescanning with blocksize %d\n", 1964 UDF_DEFAULT_BLOCKSIZE); 1965 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 1966 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1967 } 1968 } 1969 if (!ret) { 1970 udf_warn(sb, "No partition found (1)\n"); 1971 goto error_out; 1972 } 1973 1974 udf_debug("Lastblock=%d\n", sbi->s_last_block); 1975 1976 if (sbi->s_lvid_bh) { 1977 struct logicalVolIntegrityDescImpUse *lvidiu = 1978 udf_sb_lvidiu(sbi); 1979 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 1980 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 1981 /* uint16_t maxUDFWriteRev = 1982 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 1983 1984 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 1985 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 1986 le16_to_cpu(lvidiu->minUDFReadRev), 1987 UDF_MAX_READ_VERSION); 1988 goto error_out; 1989 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 1990 sb->s_flags |= MS_RDONLY; 1991 1992 sbi->s_udfrev = minUDFWriteRev; 1993 1994 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 1995 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 1996 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 1997 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 1998 } 1999 2000 if (!sbi->s_partitions) { 2001 udf_warn(sb, "No partition found (2)\n"); 2002 goto error_out; 2003 } 2004 2005 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2006 UDF_PART_FLAG_READ_ONLY) { 2007 pr_notice("Partition marked readonly; forcing readonly mount\n"); 2008 sb->s_flags |= MS_RDONLY; 2009 } 2010 2011 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2012 udf_warn(sb, "No fileset found\n"); 2013 goto error_out; 2014 } 2015 2016 if (!silent) { 2017 struct timestamp ts; 2018 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2019 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2020 sbi->s_volume_ident, 2021 le16_to_cpu(ts.year), ts.month, ts.day, 2022 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2023 } 2024 if (!(sb->s_flags & MS_RDONLY)) 2025 udf_open_lvid(sb); 2026 2027 /* Assign the root inode */ 2028 /* assign inodes by physical block number */ 2029 /* perhaps it's not extensible enough, but for now ... */ 2030 inode = udf_iget(sb, &rootdir); 2031 if (!inode) { 2032 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2033 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2034 goto error_out; 2035 } 2036 2037 /* Allocate a dentry for the root inode */ 2038 sb->s_root = d_alloc_root(inode); 2039 if (!sb->s_root) { 2040 udf_err(sb, "Couldn't allocate root dentry\n"); 2041 iput(inode); 2042 goto error_out; 2043 } 2044 sb->s_maxbytes = MAX_LFS_FILESIZE; 2045 return 0; 2046 2047 error_out: 2048 if (sbi->s_vat_inode) 2049 iput(sbi->s_vat_inode); 2050 if (sbi->s_partitions) 2051 for (i = 0; i < sbi->s_partitions; i++) 2052 udf_free_partition(&sbi->s_partmaps[i]); 2053 #ifdef CONFIG_UDF_NLS 2054 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2055 unload_nls(sbi->s_nls_map); 2056 #endif 2057 if (!(sb->s_flags & MS_RDONLY)) 2058 udf_close_lvid(sb); 2059 brelse(sbi->s_lvid_bh); 2060 2061 kfree(sbi->s_partmaps); 2062 kfree(sbi); 2063 sb->s_fs_info = NULL; 2064 2065 return -EINVAL; 2066 } 2067 2068 void _udf_err(struct super_block *sb, const char *function, 2069 const char *fmt, ...) 2070 { 2071 struct va_format vaf; 2072 va_list args; 2073 2074 /* mark sb error */ 2075 if (!(sb->s_flags & MS_RDONLY)) 2076 sb->s_dirt = 1; 2077 2078 va_start(args, fmt); 2079 2080 vaf.fmt = fmt; 2081 vaf.va = &args; 2082 2083 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2084 2085 va_end(args); 2086 } 2087 2088 void _udf_warn(struct super_block *sb, const char *function, 2089 const char *fmt, ...) 2090 { 2091 struct va_format vaf; 2092 va_list args; 2093 2094 va_start(args, fmt); 2095 2096 vaf.fmt = fmt; 2097 vaf.va = &args; 2098 2099 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2100 2101 va_end(args); 2102 } 2103 2104 static void udf_put_super(struct super_block *sb) 2105 { 2106 int i; 2107 struct udf_sb_info *sbi; 2108 2109 sbi = UDF_SB(sb); 2110 2111 if (sbi->s_vat_inode) 2112 iput(sbi->s_vat_inode); 2113 if (sbi->s_partitions) 2114 for (i = 0; i < sbi->s_partitions; i++) 2115 udf_free_partition(&sbi->s_partmaps[i]); 2116 #ifdef CONFIG_UDF_NLS 2117 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2118 unload_nls(sbi->s_nls_map); 2119 #endif 2120 if (!(sb->s_flags & MS_RDONLY)) 2121 udf_close_lvid(sb); 2122 brelse(sbi->s_lvid_bh); 2123 kfree(sbi->s_partmaps); 2124 kfree(sb->s_fs_info); 2125 sb->s_fs_info = NULL; 2126 } 2127 2128 static int udf_sync_fs(struct super_block *sb, int wait) 2129 { 2130 struct udf_sb_info *sbi = UDF_SB(sb); 2131 2132 mutex_lock(&sbi->s_alloc_mutex); 2133 if (sbi->s_lvid_dirty) { 2134 /* 2135 * Blockdevice will be synced later so we don't have to submit 2136 * the buffer for IO 2137 */ 2138 mark_buffer_dirty(sbi->s_lvid_bh); 2139 sb->s_dirt = 0; 2140 sbi->s_lvid_dirty = 0; 2141 } 2142 mutex_unlock(&sbi->s_alloc_mutex); 2143 2144 return 0; 2145 } 2146 2147 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2148 { 2149 struct super_block *sb = dentry->d_sb; 2150 struct udf_sb_info *sbi = UDF_SB(sb); 2151 struct logicalVolIntegrityDescImpUse *lvidiu; 2152 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2153 2154 if (sbi->s_lvid_bh != NULL) 2155 lvidiu = udf_sb_lvidiu(sbi); 2156 else 2157 lvidiu = NULL; 2158 2159 buf->f_type = UDF_SUPER_MAGIC; 2160 buf->f_bsize = sb->s_blocksize; 2161 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2162 buf->f_bfree = udf_count_free(sb); 2163 buf->f_bavail = buf->f_bfree; 2164 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2165 le32_to_cpu(lvidiu->numDirs)) : 0) 2166 + buf->f_bfree; 2167 buf->f_ffree = buf->f_bfree; 2168 buf->f_namelen = UDF_NAME_LEN - 2; 2169 buf->f_fsid.val[0] = (u32)id; 2170 buf->f_fsid.val[1] = (u32)(id >> 32); 2171 2172 return 0; 2173 } 2174 2175 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2176 struct udf_bitmap *bitmap) 2177 { 2178 struct buffer_head *bh = NULL; 2179 unsigned int accum = 0; 2180 int index; 2181 int block = 0, newblock; 2182 struct kernel_lb_addr loc; 2183 uint32_t bytes; 2184 uint8_t *ptr; 2185 uint16_t ident; 2186 struct spaceBitmapDesc *bm; 2187 2188 loc.logicalBlockNum = bitmap->s_extPosition; 2189 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2190 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2191 2192 if (!bh) { 2193 udf_err(sb, "udf_count_free failed\n"); 2194 goto out; 2195 } else if (ident != TAG_IDENT_SBD) { 2196 brelse(bh); 2197 udf_err(sb, "udf_count_free failed\n"); 2198 goto out; 2199 } 2200 2201 bm = (struct spaceBitmapDesc *)bh->b_data; 2202 bytes = le32_to_cpu(bm->numOfBytes); 2203 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2204 ptr = (uint8_t *)bh->b_data; 2205 2206 while (bytes > 0) { 2207 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2208 accum += bitmap_weight((const unsigned long *)(ptr + index), 2209 cur_bytes * 8); 2210 bytes -= cur_bytes; 2211 if (bytes) { 2212 brelse(bh); 2213 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2214 bh = udf_tread(sb, newblock); 2215 if (!bh) { 2216 udf_debug("read failed\n"); 2217 goto out; 2218 } 2219 index = 0; 2220 ptr = (uint8_t *)bh->b_data; 2221 } 2222 } 2223 brelse(bh); 2224 out: 2225 return accum; 2226 } 2227 2228 static unsigned int udf_count_free_table(struct super_block *sb, 2229 struct inode *table) 2230 { 2231 unsigned int accum = 0; 2232 uint32_t elen; 2233 struct kernel_lb_addr eloc; 2234 int8_t etype; 2235 struct extent_position epos; 2236 2237 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2238 epos.block = UDF_I(table)->i_location; 2239 epos.offset = sizeof(struct unallocSpaceEntry); 2240 epos.bh = NULL; 2241 2242 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2243 accum += (elen >> table->i_sb->s_blocksize_bits); 2244 2245 brelse(epos.bh); 2246 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2247 2248 return accum; 2249 } 2250 2251 static unsigned int udf_count_free(struct super_block *sb) 2252 { 2253 unsigned int accum = 0; 2254 struct udf_sb_info *sbi; 2255 struct udf_part_map *map; 2256 2257 sbi = UDF_SB(sb); 2258 if (sbi->s_lvid_bh) { 2259 struct logicalVolIntegrityDesc *lvid = 2260 (struct logicalVolIntegrityDesc *) 2261 sbi->s_lvid_bh->b_data; 2262 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2263 accum = le32_to_cpu( 2264 lvid->freeSpaceTable[sbi->s_partition]); 2265 if (accum == 0xFFFFFFFF) 2266 accum = 0; 2267 } 2268 } 2269 2270 if (accum) 2271 return accum; 2272 2273 map = &sbi->s_partmaps[sbi->s_partition]; 2274 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2275 accum += udf_count_free_bitmap(sb, 2276 map->s_uspace.s_bitmap); 2277 } 2278 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2279 accum += udf_count_free_bitmap(sb, 2280 map->s_fspace.s_bitmap); 2281 } 2282 if (accum) 2283 return accum; 2284 2285 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2286 accum += udf_count_free_table(sb, 2287 map->s_uspace.s_table); 2288 } 2289 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2290 accum += udf_count_free_table(sb, 2291 map->s_fspace.s_table); 2292 } 2293 2294 return accum; 2295 } 2296