1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define UDF_DEFAULT_BLOCKSIZE 2048 77 78 #define VSD_FIRST_SECTOR_OFFSET 32768 79 #define VSD_MAX_SECTOR_OFFSET 0x800000 80 81 enum { UDF_MAX_LINKS = 0xffff }; 82 83 /* These are the "meat" - everything else is stuffing */ 84 static int udf_fill_super(struct super_block *, void *, int); 85 static void udf_put_super(struct super_block *); 86 static int udf_sync_fs(struct super_block *, int); 87 static int udf_remount_fs(struct super_block *, int *, char *); 88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 90 struct kernel_lb_addr *); 91 static void udf_load_fileset(struct super_block *, struct buffer_head *, 92 struct kernel_lb_addr *); 93 static void udf_open_lvid(struct super_block *); 94 static void udf_close_lvid(struct super_block *); 95 static unsigned int udf_count_free(struct super_block *); 96 static int udf_statfs(struct dentry *, struct kstatfs *); 97 static int udf_show_options(struct seq_file *, struct dentry *); 98 99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 100 { 101 struct logicalVolIntegrityDesc *lvid; 102 unsigned int partnum; 103 unsigned int offset; 104 105 if (!UDF_SB(sb)->s_lvid_bh) 106 return NULL; 107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 108 partnum = le32_to_cpu(lvid->numOfPartitions); 109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 110 offsetof(struct logicalVolIntegrityDesc, impUse)) / 111 (2 * sizeof(uint32_t)) < partnum) { 112 udf_err(sb, "Logical volume integrity descriptor corrupted " 113 "(numOfPartitions = %u)!\n", partnum); 114 return NULL; 115 } 116 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 117 offset = partnum * 2 * sizeof(uint32_t); 118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 119 } 120 121 /* UDF filesystem type */ 122 static struct dentry *udf_mount(struct file_system_type *fs_type, 123 int flags, const char *dev_name, void *data) 124 { 125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 126 } 127 128 static struct file_system_type udf_fstype = { 129 .owner = THIS_MODULE, 130 .name = "udf", 131 .mount = udf_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("udf"); 136 137 static struct kmem_cache *udf_inode_cachep; 138 139 static struct inode *udf_alloc_inode(struct super_block *sb) 140 { 141 struct udf_inode_info *ei; 142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 143 if (!ei) 144 return NULL; 145 146 ei->i_unique = 0; 147 ei->i_lenExtents = 0; 148 ei->i_next_alloc_block = 0; 149 ei->i_next_alloc_goal = 0; 150 ei->i_strat4096 = 0; 151 init_rwsem(&ei->i_data_sem); 152 ei->cached_extent.lstart = -1; 153 spin_lock_init(&ei->i_extent_cache_lock); 154 155 return &ei->vfs_inode; 156 } 157 158 static void udf_i_callback(struct rcu_head *head) 159 { 160 struct inode *inode = container_of(head, struct inode, i_rcu); 161 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 162 } 163 164 static void udf_destroy_inode(struct inode *inode) 165 { 166 call_rcu(&inode->i_rcu, udf_i_callback); 167 } 168 169 static void init_once(void *foo) 170 { 171 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 172 173 ei->i_ext.i_data = NULL; 174 inode_init_once(&ei->vfs_inode); 175 } 176 177 static int __init init_inodecache(void) 178 { 179 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 180 sizeof(struct udf_inode_info), 181 0, (SLAB_RECLAIM_ACCOUNT | 182 SLAB_MEM_SPREAD | 183 SLAB_ACCOUNT), 184 init_once); 185 if (!udf_inode_cachep) 186 return -ENOMEM; 187 return 0; 188 } 189 190 static void destroy_inodecache(void) 191 { 192 /* 193 * Make sure all delayed rcu free inodes are flushed before we 194 * destroy cache. 195 */ 196 rcu_barrier(); 197 kmem_cache_destroy(udf_inode_cachep); 198 } 199 200 /* Superblock operations */ 201 static const struct super_operations udf_sb_ops = { 202 .alloc_inode = udf_alloc_inode, 203 .destroy_inode = udf_destroy_inode, 204 .write_inode = udf_write_inode, 205 .evict_inode = udf_evict_inode, 206 .put_super = udf_put_super, 207 .sync_fs = udf_sync_fs, 208 .statfs = udf_statfs, 209 .remount_fs = udf_remount_fs, 210 .show_options = udf_show_options, 211 }; 212 213 struct udf_options { 214 unsigned char novrs; 215 unsigned int blocksize; 216 unsigned int session; 217 unsigned int lastblock; 218 unsigned int anchor; 219 unsigned int volume; 220 unsigned short partition; 221 unsigned int fileset; 222 unsigned int rootdir; 223 unsigned int flags; 224 umode_t umask; 225 kgid_t gid; 226 kuid_t uid; 227 umode_t fmode; 228 umode_t dmode; 229 struct nls_table *nls_map; 230 }; 231 232 static int __init init_udf_fs(void) 233 { 234 int err; 235 236 err = init_inodecache(); 237 if (err) 238 goto out1; 239 err = register_filesystem(&udf_fstype); 240 if (err) 241 goto out; 242 243 return 0; 244 245 out: 246 destroy_inodecache(); 247 248 out1: 249 return err; 250 } 251 252 static void __exit exit_udf_fs(void) 253 { 254 unregister_filesystem(&udf_fstype); 255 destroy_inodecache(); 256 } 257 258 module_init(init_udf_fs) 259 module_exit(exit_udf_fs) 260 261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 262 { 263 struct udf_sb_info *sbi = UDF_SB(sb); 264 265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 266 GFP_KERNEL); 267 if (!sbi->s_partmaps) { 268 udf_err(sb, "Unable to allocate space for %d partition maps\n", 269 count); 270 sbi->s_partitions = 0; 271 return -ENOMEM; 272 } 273 274 sbi->s_partitions = count; 275 return 0; 276 } 277 278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 279 { 280 int i; 281 int nr_groups = bitmap->s_nr_groups; 282 283 for (i = 0; i < nr_groups; i++) 284 if (bitmap->s_block_bitmap[i]) 285 brelse(bitmap->s_block_bitmap[i]); 286 287 kvfree(bitmap); 288 } 289 290 static void udf_free_partition(struct udf_part_map *map) 291 { 292 int i; 293 struct udf_meta_data *mdata; 294 295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 296 iput(map->s_uspace.s_table); 297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 298 iput(map->s_fspace.s_table); 299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 300 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 302 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 303 if (map->s_partition_type == UDF_SPARABLE_MAP15) 304 for (i = 0; i < 4; i++) 305 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 306 else if (map->s_partition_type == UDF_METADATA_MAP25) { 307 mdata = &map->s_type_specific.s_metadata; 308 iput(mdata->s_metadata_fe); 309 mdata->s_metadata_fe = NULL; 310 311 iput(mdata->s_mirror_fe); 312 mdata->s_mirror_fe = NULL; 313 314 iput(mdata->s_bitmap_fe); 315 mdata->s_bitmap_fe = NULL; 316 } 317 } 318 319 static void udf_sb_free_partitions(struct super_block *sb) 320 { 321 struct udf_sb_info *sbi = UDF_SB(sb); 322 int i; 323 if (sbi->s_partmaps == NULL) 324 return; 325 for (i = 0; i < sbi->s_partitions; i++) 326 udf_free_partition(&sbi->s_partmaps[i]); 327 kfree(sbi->s_partmaps); 328 sbi->s_partmaps = NULL; 329 } 330 331 static int udf_show_options(struct seq_file *seq, struct dentry *root) 332 { 333 struct super_block *sb = root->d_sb; 334 struct udf_sb_info *sbi = UDF_SB(sb); 335 336 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 337 seq_puts(seq, ",nostrict"); 338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 339 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 341 seq_puts(seq, ",unhide"); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 343 seq_puts(seq, ",undelete"); 344 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 345 seq_puts(seq, ",noadinicb"); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 347 seq_puts(seq, ",shortad"); 348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 349 seq_puts(seq, ",uid=forget"); 350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 351 seq_puts(seq, ",uid=ignore"); 352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 353 seq_puts(seq, ",gid=forget"); 354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 355 seq_puts(seq, ",gid=ignore"); 356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 357 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 359 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 360 if (sbi->s_umask != 0) 361 seq_printf(seq, ",umask=%ho", sbi->s_umask); 362 if (sbi->s_fmode != UDF_INVALID_MODE) 363 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 364 if (sbi->s_dmode != UDF_INVALID_MODE) 365 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 366 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 367 seq_printf(seq, ",session=%u", sbi->s_session); 368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 369 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 370 if (sbi->s_anchor != 0) 371 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 372 /* 373 * volume, partition, fileset and rootdir seem to be ignored 374 * currently 375 */ 376 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 377 seq_puts(seq, ",utf8"); 378 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 379 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 380 381 return 0; 382 } 383 384 /* 385 * udf_parse_options 386 * 387 * PURPOSE 388 * Parse mount options. 389 * 390 * DESCRIPTION 391 * The following mount options are supported: 392 * 393 * gid= Set the default group. 394 * umask= Set the default umask. 395 * mode= Set the default file permissions. 396 * dmode= Set the default directory permissions. 397 * uid= Set the default user. 398 * bs= Set the block size. 399 * unhide Show otherwise hidden files. 400 * undelete Show deleted files in lists. 401 * adinicb Embed data in the inode (default) 402 * noadinicb Don't embed data in the inode 403 * shortad Use short ad's 404 * longad Use long ad's (default) 405 * nostrict Unset strict conformance 406 * iocharset= Set the NLS character set 407 * 408 * The remaining are for debugging and disaster recovery: 409 * 410 * novrs Skip volume sequence recognition 411 * 412 * The following expect a offset from 0. 413 * 414 * session= Set the CDROM session (default= last session) 415 * anchor= Override standard anchor location. (default= 256) 416 * volume= Override the VolumeDesc location. (unused) 417 * partition= Override the PartitionDesc location. (unused) 418 * lastblock= Set the last block of the filesystem/ 419 * 420 * The following expect a offset from the partition root. 421 * 422 * fileset= Override the fileset block location. (unused) 423 * rootdir= Override the root directory location. (unused) 424 * WARNING: overriding the rootdir to a non-directory may 425 * yield highly unpredictable results. 426 * 427 * PRE-CONDITIONS 428 * options Pointer to mount options string. 429 * uopts Pointer to mount options variable. 430 * 431 * POST-CONDITIONS 432 * <return> 1 Mount options parsed okay. 433 * <return> 0 Error parsing mount options. 434 * 435 * HISTORY 436 * July 1, 1997 - Andrew E. Mileski 437 * Written, tested, and released. 438 */ 439 440 enum { 441 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 442 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 443 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 444 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 445 Opt_rootdir, Opt_utf8, Opt_iocharset, 446 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 447 Opt_fmode, Opt_dmode 448 }; 449 450 static const match_table_t tokens = { 451 {Opt_novrs, "novrs"}, 452 {Opt_nostrict, "nostrict"}, 453 {Opt_bs, "bs=%u"}, 454 {Opt_unhide, "unhide"}, 455 {Opt_undelete, "undelete"}, 456 {Opt_noadinicb, "noadinicb"}, 457 {Opt_adinicb, "adinicb"}, 458 {Opt_shortad, "shortad"}, 459 {Opt_longad, "longad"}, 460 {Opt_uforget, "uid=forget"}, 461 {Opt_uignore, "uid=ignore"}, 462 {Opt_gforget, "gid=forget"}, 463 {Opt_gignore, "gid=ignore"}, 464 {Opt_gid, "gid=%u"}, 465 {Opt_uid, "uid=%u"}, 466 {Opt_umask, "umask=%o"}, 467 {Opt_session, "session=%u"}, 468 {Opt_lastblock, "lastblock=%u"}, 469 {Opt_anchor, "anchor=%u"}, 470 {Opt_volume, "volume=%u"}, 471 {Opt_partition, "partition=%u"}, 472 {Opt_fileset, "fileset=%u"}, 473 {Opt_rootdir, "rootdir=%u"}, 474 {Opt_utf8, "utf8"}, 475 {Opt_iocharset, "iocharset=%s"}, 476 {Opt_fmode, "mode=%o"}, 477 {Opt_dmode, "dmode=%o"}, 478 {Opt_err, NULL} 479 }; 480 481 static int udf_parse_options(char *options, struct udf_options *uopt, 482 bool remount) 483 { 484 char *p; 485 int option; 486 487 uopt->novrs = 0; 488 uopt->partition = 0xFFFF; 489 uopt->session = 0xFFFFFFFF; 490 uopt->lastblock = 0; 491 uopt->anchor = 0; 492 uopt->volume = 0xFFFFFFFF; 493 uopt->rootdir = 0xFFFFFFFF; 494 uopt->fileset = 0xFFFFFFFF; 495 uopt->nls_map = NULL; 496 497 if (!options) 498 return 1; 499 500 while ((p = strsep(&options, ",")) != NULL) { 501 substring_t args[MAX_OPT_ARGS]; 502 int token; 503 unsigned n; 504 if (!*p) 505 continue; 506 507 token = match_token(p, tokens, args); 508 switch (token) { 509 case Opt_novrs: 510 uopt->novrs = 1; 511 break; 512 case Opt_bs: 513 if (match_int(&args[0], &option)) 514 return 0; 515 n = option; 516 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 517 return 0; 518 uopt->blocksize = n; 519 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 520 break; 521 case Opt_unhide: 522 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 523 break; 524 case Opt_undelete: 525 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 526 break; 527 case Opt_noadinicb: 528 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 529 break; 530 case Opt_adinicb: 531 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 532 break; 533 case Opt_shortad: 534 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 535 break; 536 case Opt_longad: 537 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 538 break; 539 case Opt_gid: 540 if (match_int(args, &option)) 541 return 0; 542 uopt->gid = make_kgid(current_user_ns(), option); 543 if (!gid_valid(uopt->gid)) 544 return 0; 545 uopt->flags |= (1 << UDF_FLAG_GID_SET); 546 break; 547 case Opt_uid: 548 if (match_int(args, &option)) 549 return 0; 550 uopt->uid = make_kuid(current_user_ns(), option); 551 if (!uid_valid(uopt->uid)) 552 return 0; 553 uopt->flags |= (1 << UDF_FLAG_UID_SET); 554 break; 555 case Opt_umask: 556 if (match_octal(args, &option)) 557 return 0; 558 uopt->umask = option; 559 break; 560 case Opt_nostrict: 561 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 562 break; 563 case Opt_session: 564 if (match_int(args, &option)) 565 return 0; 566 uopt->session = option; 567 if (!remount) 568 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 569 break; 570 case Opt_lastblock: 571 if (match_int(args, &option)) 572 return 0; 573 uopt->lastblock = option; 574 if (!remount) 575 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 576 break; 577 case Opt_anchor: 578 if (match_int(args, &option)) 579 return 0; 580 uopt->anchor = option; 581 break; 582 case Opt_volume: 583 if (match_int(args, &option)) 584 return 0; 585 uopt->volume = option; 586 break; 587 case Opt_partition: 588 if (match_int(args, &option)) 589 return 0; 590 uopt->partition = option; 591 break; 592 case Opt_fileset: 593 if (match_int(args, &option)) 594 return 0; 595 uopt->fileset = option; 596 break; 597 case Opt_rootdir: 598 if (match_int(args, &option)) 599 return 0; 600 uopt->rootdir = option; 601 break; 602 case Opt_utf8: 603 uopt->flags |= (1 << UDF_FLAG_UTF8); 604 break; 605 #ifdef CONFIG_UDF_NLS 606 case Opt_iocharset: 607 uopt->nls_map = load_nls(args[0].from); 608 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 609 break; 610 #endif 611 case Opt_uignore: 612 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 613 break; 614 case Opt_uforget: 615 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 616 break; 617 case Opt_gignore: 618 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 619 break; 620 case Opt_gforget: 621 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 622 break; 623 case Opt_fmode: 624 if (match_octal(args, &option)) 625 return 0; 626 uopt->fmode = option & 0777; 627 break; 628 case Opt_dmode: 629 if (match_octal(args, &option)) 630 return 0; 631 uopt->dmode = option & 0777; 632 break; 633 default: 634 pr_err("bad mount option \"%s\" or missing value\n", p); 635 return 0; 636 } 637 } 638 return 1; 639 } 640 641 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 642 { 643 struct udf_options uopt; 644 struct udf_sb_info *sbi = UDF_SB(sb); 645 int error = 0; 646 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 647 648 sync_filesystem(sb); 649 if (lvidiu) { 650 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 651 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 652 return -EACCES; 653 } 654 655 uopt.flags = sbi->s_flags; 656 uopt.uid = sbi->s_uid; 657 uopt.gid = sbi->s_gid; 658 uopt.umask = sbi->s_umask; 659 uopt.fmode = sbi->s_fmode; 660 uopt.dmode = sbi->s_dmode; 661 662 if (!udf_parse_options(options, &uopt, true)) 663 return -EINVAL; 664 665 write_lock(&sbi->s_cred_lock); 666 sbi->s_flags = uopt.flags; 667 sbi->s_uid = uopt.uid; 668 sbi->s_gid = uopt.gid; 669 sbi->s_umask = uopt.umask; 670 sbi->s_fmode = uopt.fmode; 671 sbi->s_dmode = uopt.dmode; 672 write_unlock(&sbi->s_cred_lock); 673 674 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 675 goto out_unlock; 676 677 if (*flags & MS_RDONLY) 678 udf_close_lvid(sb); 679 else 680 udf_open_lvid(sb); 681 682 out_unlock: 683 return error; 684 } 685 686 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 687 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 688 static loff_t udf_check_vsd(struct super_block *sb) 689 { 690 struct volStructDesc *vsd = NULL; 691 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 692 int sectorsize; 693 struct buffer_head *bh = NULL; 694 int nsr02 = 0; 695 int nsr03 = 0; 696 struct udf_sb_info *sbi; 697 698 sbi = UDF_SB(sb); 699 if (sb->s_blocksize < sizeof(struct volStructDesc)) 700 sectorsize = sizeof(struct volStructDesc); 701 else 702 sectorsize = sb->s_blocksize; 703 704 sector += (sbi->s_session << sb->s_blocksize_bits); 705 706 udf_debug("Starting at sector %u (%ld byte sectors)\n", 707 (unsigned int)(sector >> sb->s_blocksize_bits), 708 sb->s_blocksize); 709 /* Process the sequence (if applicable). The hard limit on the sector 710 * offset is arbitrary, hopefully large enough so that all valid UDF 711 * filesystems will be recognised. There is no mention of an upper 712 * bound to the size of the volume recognition area in the standard. 713 * The limit will prevent the code to read all the sectors of a 714 * specially crafted image (like a bluray disc full of CD001 sectors), 715 * potentially causing minutes or even hours of uninterruptible I/O 716 * activity. This actually happened with uninitialised SSD partitions 717 * (all 0xFF) before the check for the limit and all valid IDs were 718 * added */ 719 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 720 sector += sectorsize) { 721 /* Read a block */ 722 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 723 if (!bh) 724 break; 725 726 /* Look for ISO descriptors */ 727 vsd = (struct volStructDesc *)(bh->b_data + 728 (sector & (sb->s_blocksize - 1))); 729 730 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 731 VSD_STD_ID_LEN)) { 732 switch (vsd->structType) { 733 case 0: 734 udf_debug("ISO9660 Boot Record found\n"); 735 break; 736 case 1: 737 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 738 break; 739 case 2: 740 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 741 break; 742 case 3: 743 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 744 break; 745 case 255: 746 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 747 break; 748 default: 749 udf_debug("ISO9660 VRS (%u) found\n", 750 vsd->structType); 751 break; 752 } 753 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 754 VSD_STD_ID_LEN)) 755 ; /* nothing */ 756 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 757 VSD_STD_ID_LEN)) { 758 brelse(bh); 759 break; 760 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 761 VSD_STD_ID_LEN)) 762 nsr02 = sector; 763 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 764 VSD_STD_ID_LEN)) 765 nsr03 = sector; 766 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 767 VSD_STD_ID_LEN)) 768 ; /* nothing */ 769 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 770 VSD_STD_ID_LEN)) 771 ; /* nothing */ 772 else { 773 /* invalid id : end of volume recognition area */ 774 brelse(bh); 775 break; 776 } 777 brelse(bh); 778 } 779 780 if (nsr03) 781 return nsr03; 782 else if (nsr02) 783 return nsr02; 784 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 785 VSD_FIRST_SECTOR_OFFSET) 786 return -1; 787 else 788 return 0; 789 } 790 791 static int udf_find_fileset(struct super_block *sb, 792 struct kernel_lb_addr *fileset, 793 struct kernel_lb_addr *root) 794 { 795 struct buffer_head *bh = NULL; 796 long lastblock; 797 uint16_t ident; 798 struct udf_sb_info *sbi; 799 800 if (fileset->logicalBlockNum != 0xFFFFFFFF || 801 fileset->partitionReferenceNum != 0xFFFF) { 802 bh = udf_read_ptagged(sb, fileset, 0, &ident); 803 804 if (!bh) { 805 return 1; 806 } else if (ident != TAG_IDENT_FSD) { 807 brelse(bh); 808 return 1; 809 } 810 811 } 812 813 sbi = UDF_SB(sb); 814 if (!bh) { 815 /* Search backwards through the partitions */ 816 struct kernel_lb_addr newfileset; 817 818 /* --> cvg: FIXME - is it reasonable? */ 819 return 1; 820 821 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 822 (newfileset.partitionReferenceNum != 0xFFFF && 823 fileset->logicalBlockNum == 0xFFFFFFFF && 824 fileset->partitionReferenceNum == 0xFFFF); 825 newfileset.partitionReferenceNum--) { 826 lastblock = sbi->s_partmaps 827 [newfileset.partitionReferenceNum] 828 .s_partition_len; 829 newfileset.logicalBlockNum = 0; 830 831 do { 832 bh = udf_read_ptagged(sb, &newfileset, 0, 833 &ident); 834 if (!bh) { 835 newfileset.logicalBlockNum++; 836 continue; 837 } 838 839 switch (ident) { 840 case TAG_IDENT_SBD: 841 { 842 struct spaceBitmapDesc *sp; 843 sp = (struct spaceBitmapDesc *) 844 bh->b_data; 845 newfileset.logicalBlockNum += 1 + 846 ((le32_to_cpu(sp->numOfBytes) + 847 sizeof(struct spaceBitmapDesc) 848 - 1) >> sb->s_blocksize_bits); 849 brelse(bh); 850 break; 851 } 852 case TAG_IDENT_FSD: 853 *fileset = newfileset; 854 break; 855 default: 856 newfileset.logicalBlockNum++; 857 brelse(bh); 858 bh = NULL; 859 break; 860 } 861 } while (newfileset.logicalBlockNum < lastblock && 862 fileset->logicalBlockNum == 0xFFFFFFFF && 863 fileset->partitionReferenceNum == 0xFFFF); 864 } 865 } 866 867 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 868 fileset->partitionReferenceNum != 0xFFFF) && bh) { 869 udf_debug("Fileset at block=%d, partition=%d\n", 870 fileset->logicalBlockNum, 871 fileset->partitionReferenceNum); 872 873 sbi->s_partition = fileset->partitionReferenceNum; 874 udf_load_fileset(sb, bh, root); 875 brelse(bh); 876 return 0; 877 } 878 return 1; 879 } 880 881 /* 882 * Load primary Volume Descriptor Sequence 883 * 884 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 885 * should be tried. 886 */ 887 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 888 { 889 struct primaryVolDesc *pvoldesc; 890 struct ustr *instr, *outstr; 891 struct buffer_head *bh; 892 uint16_t ident; 893 int ret = -ENOMEM; 894 895 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 896 if (!instr) 897 return -ENOMEM; 898 899 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 900 if (!outstr) 901 goto out1; 902 903 bh = udf_read_tagged(sb, block, block, &ident); 904 if (!bh) { 905 ret = -EAGAIN; 906 goto out2; 907 } 908 909 if (ident != TAG_IDENT_PVD) { 910 ret = -EIO; 911 goto out_bh; 912 } 913 914 pvoldesc = (struct primaryVolDesc *)bh->b_data; 915 916 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 917 pvoldesc->recordingDateAndTime)) { 918 #ifdef UDFFS_DEBUG 919 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 920 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 921 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 922 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 923 #endif 924 } 925 926 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) { 927 ret = udf_CS0toUTF8(outstr, instr); 928 if (ret < 0) 929 goto out_bh; 930 931 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 932 outstr->u_len > 31 ? 31 : outstr->u_len); 933 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 934 } 935 936 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) { 937 ret = udf_CS0toUTF8(outstr, instr); 938 if (ret < 0) 939 goto out_bh; 940 941 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 942 } 943 944 ret = 0; 945 out_bh: 946 brelse(bh); 947 out2: 948 kfree(outstr); 949 out1: 950 kfree(instr); 951 return ret; 952 } 953 954 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 955 u32 meta_file_loc, u32 partition_num) 956 { 957 struct kernel_lb_addr addr; 958 struct inode *metadata_fe; 959 960 addr.logicalBlockNum = meta_file_loc; 961 addr.partitionReferenceNum = partition_num; 962 963 metadata_fe = udf_iget_special(sb, &addr); 964 965 if (IS_ERR(metadata_fe)) { 966 udf_warn(sb, "metadata inode efe not found\n"); 967 return metadata_fe; 968 } 969 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 970 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 971 iput(metadata_fe); 972 return ERR_PTR(-EIO); 973 } 974 975 return metadata_fe; 976 } 977 978 static int udf_load_metadata_files(struct super_block *sb, int partition) 979 { 980 struct udf_sb_info *sbi = UDF_SB(sb); 981 struct udf_part_map *map; 982 struct udf_meta_data *mdata; 983 struct kernel_lb_addr addr; 984 struct inode *fe; 985 986 map = &sbi->s_partmaps[partition]; 987 mdata = &map->s_type_specific.s_metadata; 988 989 /* metadata address */ 990 udf_debug("Metadata file location: block = %d part = %d\n", 991 mdata->s_meta_file_loc, map->s_partition_num); 992 993 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 994 map->s_partition_num); 995 if (IS_ERR(fe)) { 996 /* mirror file entry */ 997 udf_debug("Mirror metadata file location: block = %d part = %d\n", 998 mdata->s_mirror_file_loc, map->s_partition_num); 999 1000 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 1001 map->s_partition_num); 1002 1003 if (IS_ERR(fe)) { 1004 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 1005 return PTR_ERR(fe); 1006 } 1007 mdata->s_mirror_fe = fe; 1008 } else 1009 mdata->s_metadata_fe = fe; 1010 1011 1012 /* 1013 * bitmap file entry 1014 * Note: 1015 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1016 */ 1017 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1018 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1019 addr.partitionReferenceNum = map->s_partition_num; 1020 1021 udf_debug("Bitmap file location: block = %d part = %d\n", 1022 addr.logicalBlockNum, addr.partitionReferenceNum); 1023 1024 fe = udf_iget_special(sb, &addr); 1025 if (IS_ERR(fe)) { 1026 if (sb->s_flags & MS_RDONLY) 1027 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1028 else { 1029 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1030 return PTR_ERR(fe); 1031 } 1032 } else 1033 mdata->s_bitmap_fe = fe; 1034 } 1035 1036 udf_debug("udf_load_metadata_files Ok\n"); 1037 return 0; 1038 } 1039 1040 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1041 struct kernel_lb_addr *root) 1042 { 1043 struct fileSetDesc *fset; 1044 1045 fset = (struct fileSetDesc *)bh->b_data; 1046 1047 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1048 1049 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1050 1051 udf_debug("Rootdir at block=%d, partition=%d\n", 1052 root->logicalBlockNum, root->partitionReferenceNum); 1053 } 1054 1055 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1056 { 1057 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1058 return DIV_ROUND_UP(map->s_partition_len + 1059 (sizeof(struct spaceBitmapDesc) << 3), 1060 sb->s_blocksize * 8); 1061 } 1062 1063 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1064 { 1065 struct udf_bitmap *bitmap; 1066 int nr_groups; 1067 int size; 1068 1069 nr_groups = udf_compute_nr_groups(sb, index); 1070 size = sizeof(struct udf_bitmap) + 1071 (sizeof(struct buffer_head *) * nr_groups); 1072 1073 if (size <= PAGE_SIZE) 1074 bitmap = kzalloc(size, GFP_KERNEL); 1075 else 1076 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1077 1078 if (bitmap == NULL) 1079 return NULL; 1080 1081 bitmap->s_nr_groups = nr_groups; 1082 return bitmap; 1083 } 1084 1085 static int udf_fill_partdesc_info(struct super_block *sb, 1086 struct partitionDesc *p, int p_index) 1087 { 1088 struct udf_part_map *map; 1089 struct udf_sb_info *sbi = UDF_SB(sb); 1090 struct partitionHeaderDesc *phd; 1091 1092 map = &sbi->s_partmaps[p_index]; 1093 1094 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1095 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1096 1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1098 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1100 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1102 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1103 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1104 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1105 1106 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1107 p_index, map->s_partition_type, 1108 map->s_partition_root, map->s_partition_len); 1109 1110 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1111 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1112 return 0; 1113 1114 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1115 if (phd->unallocSpaceTable.extLength) { 1116 struct kernel_lb_addr loc = { 1117 .logicalBlockNum = le32_to_cpu( 1118 phd->unallocSpaceTable.extPosition), 1119 .partitionReferenceNum = p_index, 1120 }; 1121 struct inode *inode; 1122 1123 inode = udf_iget_special(sb, &loc); 1124 if (IS_ERR(inode)) { 1125 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1126 p_index); 1127 return PTR_ERR(inode); 1128 } 1129 map->s_uspace.s_table = inode; 1130 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1131 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1132 p_index, map->s_uspace.s_table->i_ino); 1133 } 1134 1135 if (phd->unallocSpaceBitmap.extLength) { 1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1137 if (!bitmap) 1138 return -ENOMEM; 1139 map->s_uspace.s_bitmap = bitmap; 1140 bitmap->s_extPosition = le32_to_cpu( 1141 phd->unallocSpaceBitmap.extPosition); 1142 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1143 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1144 p_index, bitmap->s_extPosition); 1145 } 1146 1147 if (phd->partitionIntegrityTable.extLength) 1148 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1149 1150 if (phd->freedSpaceTable.extLength) { 1151 struct kernel_lb_addr loc = { 1152 .logicalBlockNum = le32_to_cpu( 1153 phd->freedSpaceTable.extPosition), 1154 .partitionReferenceNum = p_index, 1155 }; 1156 struct inode *inode; 1157 1158 inode = udf_iget_special(sb, &loc); 1159 if (IS_ERR(inode)) { 1160 udf_debug("cannot load freedSpaceTable (part %d)\n", 1161 p_index); 1162 return PTR_ERR(inode); 1163 } 1164 map->s_fspace.s_table = inode; 1165 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1166 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1167 p_index, map->s_fspace.s_table->i_ino); 1168 } 1169 1170 if (phd->freedSpaceBitmap.extLength) { 1171 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1172 if (!bitmap) 1173 return -ENOMEM; 1174 map->s_fspace.s_bitmap = bitmap; 1175 bitmap->s_extPosition = le32_to_cpu( 1176 phd->freedSpaceBitmap.extPosition); 1177 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1178 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1179 p_index, bitmap->s_extPosition); 1180 } 1181 return 0; 1182 } 1183 1184 static void udf_find_vat_block(struct super_block *sb, int p_index, 1185 int type1_index, sector_t start_block) 1186 { 1187 struct udf_sb_info *sbi = UDF_SB(sb); 1188 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1189 sector_t vat_block; 1190 struct kernel_lb_addr ino; 1191 struct inode *inode; 1192 1193 /* 1194 * VAT file entry is in the last recorded block. Some broken disks have 1195 * it a few blocks before so try a bit harder... 1196 */ 1197 ino.partitionReferenceNum = type1_index; 1198 for (vat_block = start_block; 1199 vat_block >= map->s_partition_root && 1200 vat_block >= start_block - 3; vat_block--) { 1201 ino.logicalBlockNum = vat_block - map->s_partition_root; 1202 inode = udf_iget_special(sb, &ino); 1203 if (!IS_ERR(inode)) { 1204 sbi->s_vat_inode = inode; 1205 break; 1206 } 1207 } 1208 } 1209 1210 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1211 { 1212 struct udf_sb_info *sbi = UDF_SB(sb); 1213 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1214 struct buffer_head *bh = NULL; 1215 struct udf_inode_info *vati; 1216 uint32_t pos; 1217 struct virtualAllocationTable20 *vat20; 1218 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1219 1220 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1221 if (!sbi->s_vat_inode && 1222 sbi->s_last_block != blocks - 1) { 1223 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1224 (unsigned long)sbi->s_last_block, 1225 (unsigned long)blocks - 1); 1226 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1227 } 1228 if (!sbi->s_vat_inode) 1229 return -EIO; 1230 1231 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1232 map->s_type_specific.s_virtual.s_start_offset = 0; 1233 map->s_type_specific.s_virtual.s_num_entries = 1234 (sbi->s_vat_inode->i_size - 36) >> 2; 1235 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1236 vati = UDF_I(sbi->s_vat_inode); 1237 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1238 pos = udf_block_map(sbi->s_vat_inode, 0); 1239 bh = sb_bread(sb, pos); 1240 if (!bh) 1241 return -EIO; 1242 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1243 } else { 1244 vat20 = (struct virtualAllocationTable20 *) 1245 vati->i_ext.i_data; 1246 } 1247 1248 map->s_type_specific.s_virtual.s_start_offset = 1249 le16_to_cpu(vat20->lengthHeader); 1250 map->s_type_specific.s_virtual.s_num_entries = 1251 (sbi->s_vat_inode->i_size - 1252 map->s_type_specific.s_virtual. 1253 s_start_offset) >> 2; 1254 brelse(bh); 1255 } 1256 return 0; 1257 } 1258 1259 /* 1260 * Load partition descriptor block 1261 * 1262 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1263 * sequence. 1264 */ 1265 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1266 { 1267 struct buffer_head *bh; 1268 struct partitionDesc *p; 1269 struct udf_part_map *map; 1270 struct udf_sb_info *sbi = UDF_SB(sb); 1271 int i, type1_idx; 1272 uint16_t partitionNumber; 1273 uint16_t ident; 1274 int ret; 1275 1276 bh = udf_read_tagged(sb, block, block, &ident); 1277 if (!bh) 1278 return -EAGAIN; 1279 if (ident != TAG_IDENT_PD) { 1280 ret = 0; 1281 goto out_bh; 1282 } 1283 1284 p = (struct partitionDesc *)bh->b_data; 1285 partitionNumber = le16_to_cpu(p->partitionNumber); 1286 1287 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1288 for (i = 0; i < sbi->s_partitions; i++) { 1289 map = &sbi->s_partmaps[i]; 1290 udf_debug("Searching map: (%d == %d)\n", 1291 map->s_partition_num, partitionNumber); 1292 if (map->s_partition_num == partitionNumber && 1293 (map->s_partition_type == UDF_TYPE1_MAP15 || 1294 map->s_partition_type == UDF_SPARABLE_MAP15)) 1295 break; 1296 } 1297 1298 if (i >= sbi->s_partitions) { 1299 udf_debug("Partition (%d) not found in partition map\n", 1300 partitionNumber); 1301 ret = 0; 1302 goto out_bh; 1303 } 1304 1305 ret = udf_fill_partdesc_info(sb, p, i); 1306 if (ret < 0) 1307 goto out_bh; 1308 1309 /* 1310 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1311 * PHYSICAL partitions are already set up 1312 */ 1313 type1_idx = i; 1314 #ifdef UDFFS_DEBUG 1315 map = NULL; /* supress 'maybe used uninitialized' warning */ 1316 #endif 1317 for (i = 0; i < sbi->s_partitions; i++) { 1318 map = &sbi->s_partmaps[i]; 1319 1320 if (map->s_partition_num == partitionNumber && 1321 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1322 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1323 map->s_partition_type == UDF_METADATA_MAP25)) 1324 break; 1325 } 1326 1327 if (i >= sbi->s_partitions) { 1328 ret = 0; 1329 goto out_bh; 1330 } 1331 1332 ret = udf_fill_partdesc_info(sb, p, i); 1333 if (ret < 0) 1334 goto out_bh; 1335 1336 if (map->s_partition_type == UDF_METADATA_MAP25) { 1337 ret = udf_load_metadata_files(sb, i); 1338 if (ret < 0) { 1339 udf_err(sb, "error loading MetaData partition map %d\n", 1340 i); 1341 goto out_bh; 1342 } 1343 } else { 1344 /* 1345 * If we have a partition with virtual map, we don't handle 1346 * writing to it (we overwrite blocks instead of relocating 1347 * them). 1348 */ 1349 if (!(sb->s_flags & MS_RDONLY)) { 1350 ret = -EACCES; 1351 goto out_bh; 1352 } 1353 ret = udf_load_vat(sb, i, type1_idx); 1354 if (ret < 0) 1355 goto out_bh; 1356 } 1357 ret = 0; 1358 out_bh: 1359 /* In case loading failed, we handle cleanup in udf_fill_super */ 1360 brelse(bh); 1361 return ret; 1362 } 1363 1364 static int udf_load_sparable_map(struct super_block *sb, 1365 struct udf_part_map *map, 1366 struct sparablePartitionMap *spm) 1367 { 1368 uint32_t loc; 1369 uint16_t ident; 1370 struct sparingTable *st; 1371 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1372 int i; 1373 struct buffer_head *bh; 1374 1375 map->s_partition_type = UDF_SPARABLE_MAP15; 1376 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1377 if (!is_power_of_2(sdata->s_packet_len)) { 1378 udf_err(sb, "error loading logical volume descriptor: " 1379 "Invalid packet length %u\n", 1380 (unsigned)sdata->s_packet_len); 1381 return -EIO; 1382 } 1383 if (spm->numSparingTables > 4) { 1384 udf_err(sb, "error loading logical volume descriptor: " 1385 "Too many sparing tables (%d)\n", 1386 (int)spm->numSparingTables); 1387 return -EIO; 1388 } 1389 1390 for (i = 0; i < spm->numSparingTables; i++) { 1391 loc = le32_to_cpu(spm->locSparingTable[i]); 1392 bh = udf_read_tagged(sb, loc, loc, &ident); 1393 if (!bh) 1394 continue; 1395 1396 st = (struct sparingTable *)bh->b_data; 1397 if (ident != 0 || 1398 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1399 strlen(UDF_ID_SPARING)) || 1400 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1401 sb->s_blocksize) { 1402 brelse(bh); 1403 continue; 1404 } 1405 1406 sdata->s_spar_map[i] = bh; 1407 } 1408 map->s_partition_func = udf_get_pblock_spar15; 1409 return 0; 1410 } 1411 1412 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1413 struct kernel_lb_addr *fileset) 1414 { 1415 struct logicalVolDesc *lvd; 1416 int i, offset; 1417 uint8_t type; 1418 struct udf_sb_info *sbi = UDF_SB(sb); 1419 struct genericPartitionMap *gpm; 1420 uint16_t ident; 1421 struct buffer_head *bh; 1422 unsigned int table_len; 1423 int ret; 1424 1425 bh = udf_read_tagged(sb, block, block, &ident); 1426 if (!bh) 1427 return -EAGAIN; 1428 BUG_ON(ident != TAG_IDENT_LVD); 1429 lvd = (struct logicalVolDesc *)bh->b_data; 1430 table_len = le32_to_cpu(lvd->mapTableLength); 1431 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1432 udf_err(sb, "error loading logical volume descriptor: " 1433 "Partition table too long (%u > %lu)\n", table_len, 1434 sb->s_blocksize - sizeof(*lvd)); 1435 ret = -EIO; 1436 goto out_bh; 1437 } 1438 1439 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1440 if (ret) 1441 goto out_bh; 1442 1443 for (i = 0, offset = 0; 1444 i < sbi->s_partitions && offset < table_len; 1445 i++, offset += gpm->partitionMapLength) { 1446 struct udf_part_map *map = &sbi->s_partmaps[i]; 1447 gpm = (struct genericPartitionMap *) 1448 &(lvd->partitionMaps[offset]); 1449 type = gpm->partitionMapType; 1450 if (type == 1) { 1451 struct genericPartitionMap1 *gpm1 = 1452 (struct genericPartitionMap1 *)gpm; 1453 map->s_partition_type = UDF_TYPE1_MAP15; 1454 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1455 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1456 map->s_partition_func = NULL; 1457 } else if (type == 2) { 1458 struct udfPartitionMap2 *upm2 = 1459 (struct udfPartitionMap2 *)gpm; 1460 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1461 strlen(UDF_ID_VIRTUAL))) { 1462 u16 suf = 1463 le16_to_cpu(((__le16 *)upm2->partIdent. 1464 identSuffix)[0]); 1465 if (suf < 0x0200) { 1466 map->s_partition_type = 1467 UDF_VIRTUAL_MAP15; 1468 map->s_partition_func = 1469 udf_get_pblock_virt15; 1470 } else { 1471 map->s_partition_type = 1472 UDF_VIRTUAL_MAP20; 1473 map->s_partition_func = 1474 udf_get_pblock_virt20; 1475 } 1476 } else if (!strncmp(upm2->partIdent.ident, 1477 UDF_ID_SPARABLE, 1478 strlen(UDF_ID_SPARABLE))) { 1479 ret = udf_load_sparable_map(sb, map, 1480 (struct sparablePartitionMap *)gpm); 1481 if (ret < 0) 1482 goto out_bh; 1483 } else if (!strncmp(upm2->partIdent.ident, 1484 UDF_ID_METADATA, 1485 strlen(UDF_ID_METADATA))) { 1486 struct udf_meta_data *mdata = 1487 &map->s_type_specific.s_metadata; 1488 struct metadataPartitionMap *mdm = 1489 (struct metadataPartitionMap *) 1490 &(lvd->partitionMaps[offset]); 1491 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1492 i, type, UDF_ID_METADATA); 1493 1494 map->s_partition_type = UDF_METADATA_MAP25; 1495 map->s_partition_func = udf_get_pblock_meta25; 1496 1497 mdata->s_meta_file_loc = 1498 le32_to_cpu(mdm->metadataFileLoc); 1499 mdata->s_mirror_file_loc = 1500 le32_to_cpu(mdm->metadataMirrorFileLoc); 1501 mdata->s_bitmap_file_loc = 1502 le32_to_cpu(mdm->metadataBitmapFileLoc); 1503 mdata->s_alloc_unit_size = 1504 le32_to_cpu(mdm->allocUnitSize); 1505 mdata->s_align_unit_size = 1506 le16_to_cpu(mdm->alignUnitSize); 1507 if (mdm->flags & 0x01) 1508 mdata->s_flags |= MF_DUPLICATE_MD; 1509 1510 udf_debug("Metadata Ident suffix=0x%x\n", 1511 le16_to_cpu(*(__le16 *) 1512 mdm->partIdent.identSuffix)); 1513 udf_debug("Metadata part num=%d\n", 1514 le16_to_cpu(mdm->partitionNum)); 1515 udf_debug("Metadata part alloc unit size=%d\n", 1516 le32_to_cpu(mdm->allocUnitSize)); 1517 udf_debug("Metadata file loc=%d\n", 1518 le32_to_cpu(mdm->metadataFileLoc)); 1519 udf_debug("Mirror file loc=%d\n", 1520 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1521 udf_debug("Bitmap file loc=%d\n", 1522 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1523 udf_debug("Flags: %d %d\n", 1524 mdata->s_flags, mdm->flags); 1525 } else { 1526 udf_debug("Unknown ident: %s\n", 1527 upm2->partIdent.ident); 1528 continue; 1529 } 1530 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1531 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1532 } 1533 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1534 i, map->s_partition_num, type, map->s_volumeseqnum); 1535 } 1536 1537 if (fileset) { 1538 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1539 1540 *fileset = lelb_to_cpu(la->extLocation); 1541 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1542 fileset->logicalBlockNum, 1543 fileset->partitionReferenceNum); 1544 } 1545 if (lvd->integritySeqExt.extLength) 1546 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1547 ret = 0; 1548 out_bh: 1549 brelse(bh); 1550 return ret; 1551 } 1552 1553 /* 1554 * udf_load_logicalvolint 1555 * 1556 */ 1557 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1558 { 1559 struct buffer_head *bh = NULL; 1560 uint16_t ident; 1561 struct udf_sb_info *sbi = UDF_SB(sb); 1562 struct logicalVolIntegrityDesc *lvid; 1563 1564 while (loc.extLength > 0 && 1565 (bh = udf_read_tagged(sb, loc.extLocation, 1566 loc.extLocation, &ident)) && 1567 ident == TAG_IDENT_LVID) { 1568 sbi->s_lvid_bh = bh; 1569 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1570 1571 if (lvid->nextIntegrityExt.extLength) 1572 udf_load_logicalvolint(sb, 1573 leea_to_cpu(lvid->nextIntegrityExt)); 1574 1575 if (sbi->s_lvid_bh != bh) 1576 brelse(bh); 1577 loc.extLength -= sb->s_blocksize; 1578 loc.extLocation++; 1579 } 1580 if (sbi->s_lvid_bh != bh) 1581 brelse(bh); 1582 } 1583 1584 /* 1585 * Maximum number of Terminating Descriptor redirections. The chosen number is 1586 * arbitrary - just that we hopefully don't limit any real use of rewritten 1587 * inode on write-once media but avoid looping for too long on corrupted media. 1588 */ 1589 #define UDF_MAX_TD_NESTING 64 1590 1591 /* 1592 * Process a main/reserve volume descriptor sequence. 1593 * @block First block of first extent of the sequence. 1594 * @lastblock Lastblock of first extent of the sequence. 1595 * @fileset There we store extent containing root fileset 1596 * 1597 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1598 * sequence 1599 */ 1600 static noinline int udf_process_sequence( 1601 struct super_block *sb, 1602 sector_t block, sector_t lastblock, 1603 struct kernel_lb_addr *fileset) 1604 { 1605 struct buffer_head *bh = NULL; 1606 struct udf_vds_record vds[VDS_POS_LENGTH]; 1607 struct udf_vds_record *curr; 1608 struct generic_desc *gd; 1609 struct volDescPtr *vdp; 1610 bool done = false; 1611 uint32_t vdsn; 1612 uint16_t ident; 1613 long next_s = 0, next_e = 0; 1614 int ret; 1615 unsigned int indirections = 0; 1616 1617 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1618 1619 /* 1620 * Read the main descriptor sequence and find which descriptors 1621 * are in it. 1622 */ 1623 for (; (!done && block <= lastblock); block++) { 1624 1625 bh = udf_read_tagged(sb, block, block, &ident); 1626 if (!bh) { 1627 udf_err(sb, 1628 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1629 (unsigned long long)block); 1630 return -EAGAIN; 1631 } 1632 1633 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1634 gd = (struct generic_desc *)bh->b_data; 1635 vdsn = le32_to_cpu(gd->volDescSeqNum); 1636 switch (ident) { 1637 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1638 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1639 if (vdsn >= curr->volDescSeqNum) { 1640 curr->volDescSeqNum = vdsn; 1641 curr->block = block; 1642 } 1643 break; 1644 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1645 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1646 if (vdsn >= curr->volDescSeqNum) { 1647 curr->volDescSeqNum = vdsn; 1648 curr->block = block; 1649 1650 vdp = (struct volDescPtr *)bh->b_data; 1651 next_s = le32_to_cpu( 1652 vdp->nextVolDescSeqExt.extLocation); 1653 next_e = le32_to_cpu( 1654 vdp->nextVolDescSeqExt.extLength); 1655 next_e = next_e >> sb->s_blocksize_bits; 1656 next_e += next_s; 1657 } 1658 break; 1659 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1660 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1661 if (vdsn >= curr->volDescSeqNum) { 1662 curr->volDescSeqNum = vdsn; 1663 curr->block = block; 1664 } 1665 break; 1666 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1667 curr = &vds[VDS_POS_PARTITION_DESC]; 1668 if (!curr->block) 1669 curr->block = block; 1670 break; 1671 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1672 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1673 if (vdsn >= curr->volDescSeqNum) { 1674 curr->volDescSeqNum = vdsn; 1675 curr->block = block; 1676 } 1677 break; 1678 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1679 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1680 if (vdsn >= curr->volDescSeqNum) { 1681 curr->volDescSeqNum = vdsn; 1682 curr->block = block; 1683 } 1684 break; 1685 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1686 if (++indirections > UDF_MAX_TD_NESTING) { 1687 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING); 1688 brelse(bh); 1689 return -EIO; 1690 } 1691 1692 vds[VDS_POS_TERMINATING_DESC].block = block; 1693 if (next_e) { 1694 block = next_s; 1695 lastblock = next_e; 1696 next_s = next_e = 0; 1697 } else 1698 done = true; 1699 break; 1700 } 1701 brelse(bh); 1702 } 1703 /* 1704 * Now read interesting descriptors again and process them 1705 * in a suitable order 1706 */ 1707 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1708 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1709 return -EAGAIN; 1710 } 1711 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1712 if (ret < 0) 1713 return ret; 1714 1715 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1716 ret = udf_load_logicalvol(sb, 1717 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1718 fileset); 1719 if (ret < 0) 1720 return ret; 1721 } 1722 1723 if (vds[VDS_POS_PARTITION_DESC].block) { 1724 /* 1725 * We rescan the whole descriptor sequence to find 1726 * partition descriptor blocks and process them. 1727 */ 1728 for (block = vds[VDS_POS_PARTITION_DESC].block; 1729 block < vds[VDS_POS_TERMINATING_DESC].block; 1730 block++) { 1731 ret = udf_load_partdesc(sb, block); 1732 if (ret < 0) 1733 return ret; 1734 } 1735 } 1736 1737 return 0; 1738 } 1739 1740 /* 1741 * Load Volume Descriptor Sequence described by anchor in bh 1742 * 1743 * Returns <0 on error, 0 on success 1744 */ 1745 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1746 struct kernel_lb_addr *fileset) 1747 { 1748 struct anchorVolDescPtr *anchor; 1749 sector_t main_s, main_e, reserve_s, reserve_e; 1750 int ret; 1751 1752 anchor = (struct anchorVolDescPtr *)bh->b_data; 1753 1754 /* Locate the main sequence */ 1755 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1756 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1757 main_e = main_e >> sb->s_blocksize_bits; 1758 main_e += main_s; 1759 1760 /* Locate the reserve sequence */ 1761 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1762 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1763 reserve_e = reserve_e >> sb->s_blocksize_bits; 1764 reserve_e += reserve_s; 1765 1766 /* Process the main & reserve sequences */ 1767 /* responsible for finding the PartitionDesc(s) */ 1768 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1769 if (ret != -EAGAIN) 1770 return ret; 1771 udf_sb_free_partitions(sb); 1772 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1773 if (ret < 0) { 1774 udf_sb_free_partitions(sb); 1775 /* No sequence was OK, return -EIO */ 1776 if (ret == -EAGAIN) 1777 ret = -EIO; 1778 } 1779 return ret; 1780 } 1781 1782 /* 1783 * Check whether there is an anchor block in the given block and 1784 * load Volume Descriptor Sequence if so. 1785 * 1786 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1787 * block 1788 */ 1789 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1790 struct kernel_lb_addr *fileset) 1791 { 1792 struct buffer_head *bh; 1793 uint16_t ident; 1794 int ret; 1795 1796 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1797 udf_fixed_to_variable(block) >= 1798 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1799 return -EAGAIN; 1800 1801 bh = udf_read_tagged(sb, block, block, &ident); 1802 if (!bh) 1803 return -EAGAIN; 1804 if (ident != TAG_IDENT_AVDP) { 1805 brelse(bh); 1806 return -EAGAIN; 1807 } 1808 ret = udf_load_sequence(sb, bh, fileset); 1809 brelse(bh); 1810 return ret; 1811 } 1812 1813 /* 1814 * Search for an anchor volume descriptor pointer. 1815 * 1816 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1817 * of anchors. 1818 */ 1819 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1820 struct kernel_lb_addr *fileset) 1821 { 1822 sector_t last[6]; 1823 int i; 1824 struct udf_sb_info *sbi = UDF_SB(sb); 1825 int last_count = 0; 1826 int ret; 1827 1828 /* First try user provided anchor */ 1829 if (sbi->s_anchor) { 1830 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1831 if (ret != -EAGAIN) 1832 return ret; 1833 } 1834 /* 1835 * according to spec, anchor is in either: 1836 * block 256 1837 * lastblock-256 1838 * lastblock 1839 * however, if the disc isn't closed, it could be 512. 1840 */ 1841 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1842 if (ret != -EAGAIN) 1843 return ret; 1844 /* 1845 * The trouble is which block is the last one. Drives often misreport 1846 * this so we try various possibilities. 1847 */ 1848 last[last_count++] = *lastblock; 1849 if (*lastblock >= 1) 1850 last[last_count++] = *lastblock - 1; 1851 last[last_count++] = *lastblock + 1; 1852 if (*lastblock >= 2) 1853 last[last_count++] = *lastblock - 2; 1854 if (*lastblock >= 150) 1855 last[last_count++] = *lastblock - 150; 1856 if (*lastblock >= 152) 1857 last[last_count++] = *lastblock - 152; 1858 1859 for (i = 0; i < last_count; i++) { 1860 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1861 sb->s_blocksize_bits) 1862 continue; 1863 ret = udf_check_anchor_block(sb, last[i], fileset); 1864 if (ret != -EAGAIN) { 1865 if (!ret) 1866 *lastblock = last[i]; 1867 return ret; 1868 } 1869 if (last[i] < 256) 1870 continue; 1871 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1872 if (ret != -EAGAIN) { 1873 if (!ret) 1874 *lastblock = last[i]; 1875 return ret; 1876 } 1877 } 1878 1879 /* Finally try block 512 in case media is open */ 1880 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1881 } 1882 1883 /* 1884 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1885 * area specified by it. The function expects sbi->s_lastblock to be the last 1886 * block on the media. 1887 * 1888 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1889 * was not found. 1890 */ 1891 static int udf_find_anchor(struct super_block *sb, 1892 struct kernel_lb_addr *fileset) 1893 { 1894 struct udf_sb_info *sbi = UDF_SB(sb); 1895 sector_t lastblock = sbi->s_last_block; 1896 int ret; 1897 1898 ret = udf_scan_anchors(sb, &lastblock, fileset); 1899 if (ret != -EAGAIN) 1900 goto out; 1901 1902 /* No anchor found? Try VARCONV conversion of block numbers */ 1903 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1904 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1905 /* Firstly, we try to not convert number of the last block */ 1906 ret = udf_scan_anchors(sb, &lastblock, fileset); 1907 if (ret != -EAGAIN) 1908 goto out; 1909 1910 lastblock = sbi->s_last_block; 1911 /* Secondly, we try with converted number of the last block */ 1912 ret = udf_scan_anchors(sb, &lastblock, fileset); 1913 if (ret < 0) { 1914 /* VARCONV didn't help. Clear it. */ 1915 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1916 } 1917 out: 1918 if (ret == 0) 1919 sbi->s_last_block = lastblock; 1920 return ret; 1921 } 1922 1923 /* 1924 * Check Volume Structure Descriptor, find Anchor block and load Volume 1925 * Descriptor Sequence. 1926 * 1927 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1928 * block was not found. 1929 */ 1930 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1931 int silent, struct kernel_lb_addr *fileset) 1932 { 1933 struct udf_sb_info *sbi = UDF_SB(sb); 1934 loff_t nsr_off; 1935 int ret; 1936 1937 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1938 if (!silent) 1939 udf_warn(sb, "Bad block size\n"); 1940 return -EINVAL; 1941 } 1942 sbi->s_last_block = uopt->lastblock; 1943 if (!uopt->novrs) { 1944 /* Check that it is NSR02 compliant */ 1945 nsr_off = udf_check_vsd(sb); 1946 if (!nsr_off) { 1947 if (!silent) 1948 udf_warn(sb, "No VRS found\n"); 1949 return 0; 1950 } 1951 if (nsr_off == -1) 1952 udf_debug("Failed to read sector at offset %d. " 1953 "Assuming open disc. Skipping validity " 1954 "check\n", VSD_FIRST_SECTOR_OFFSET); 1955 if (!sbi->s_last_block) 1956 sbi->s_last_block = udf_get_last_block(sb); 1957 } else { 1958 udf_debug("Validity check skipped because of novrs option\n"); 1959 } 1960 1961 /* Look for anchor block and load Volume Descriptor Sequence */ 1962 sbi->s_anchor = uopt->anchor; 1963 ret = udf_find_anchor(sb, fileset); 1964 if (ret < 0) { 1965 if (!silent && ret == -EAGAIN) 1966 udf_warn(sb, "No anchor found\n"); 1967 return ret; 1968 } 1969 return 0; 1970 } 1971 1972 static void udf_open_lvid(struct super_block *sb) 1973 { 1974 struct udf_sb_info *sbi = UDF_SB(sb); 1975 struct buffer_head *bh = sbi->s_lvid_bh; 1976 struct logicalVolIntegrityDesc *lvid; 1977 struct logicalVolIntegrityDescImpUse *lvidiu; 1978 1979 if (!bh) 1980 return; 1981 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1982 lvidiu = udf_sb_lvidiu(sb); 1983 if (!lvidiu) 1984 return; 1985 1986 mutex_lock(&sbi->s_alloc_mutex); 1987 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1988 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1989 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1990 CURRENT_TIME); 1991 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1992 1993 lvid->descTag.descCRC = cpu_to_le16( 1994 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1995 le16_to_cpu(lvid->descTag.descCRCLength))); 1996 1997 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1998 mark_buffer_dirty(bh); 1999 sbi->s_lvid_dirty = 0; 2000 mutex_unlock(&sbi->s_alloc_mutex); 2001 /* Make opening of filesystem visible on the media immediately */ 2002 sync_dirty_buffer(bh); 2003 } 2004 2005 static void udf_close_lvid(struct super_block *sb) 2006 { 2007 struct udf_sb_info *sbi = UDF_SB(sb); 2008 struct buffer_head *bh = sbi->s_lvid_bh; 2009 struct logicalVolIntegrityDesc *lvid; 2010 struct logicalVolIntegrityDescImpUse *lvidiu; 2011 2012 if (!bh) 2013 return; 2014 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2015 lvidiu = udf_sb_lvidiu(sb); 2016 if (!lvidiu) 2017 return; 2018 2019 mutex_lock(&sbi->s_alloc_mutex); 2020 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2021 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2022 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 2023 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2024 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2025 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2026 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2027 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2028 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2029 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2030 2031 lvid->descTag.descCRC = cpu_to_le16( 2032 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2033 le16_to_cpu(lvid->descTag.descCRCLength))); 2034 2035 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2036 /* 2037 * We set buffer uptodate unconditionally here to avoid spurious 2038 * warnings from mark_buffer_dirty() when previous EIO has marked 2039 * the buffer as !uptodate 2040 */ 2041 set_buffer_uptodate(bh); 2042 mark_buffer_dirty(bh); 2043 sbi->s_lvid_dirty = 0; 2044 mutex_unlock(&sbi->s_alloc_mutex); 2045 /* Make closing of filesystem visible on the media immediately */ 2046 sync_dirty_buffer(bh); 2047 } 2048 2049 u64 lvid_get_unique_id(struct super_block *sb) 2050 { 2051 struct buffer_head *bh; 2052 struct udf_sb_info *sbi = UDF_SB(sb); 2053 struct logicalVolIntegrityDesc *lvid; 2054 struct logicalVolHeaderDesc *lvhd; 2055 u64 uniqueID; 2056 u64 ret; 2057 2058 bh = sbi->s_lvid_bh; 2059 if (!bh) 2060 return 0; 2061 2062 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2063 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2064 2065 mutex_lock(&sbi->s_alloc_mutex); 2066 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2067 if (!(++uniqueID & 0xFFFFFFFF)) 2068 uniqueID += 16; 2069 lvhd->uniqueID = cpu_to_le64(uniqueID); 2070 mutex_unlock(&sbi->s_alloc_mutex); 2071 mark_buffer_dirty(bh); 2072 2073 return ret; 2074 } 2075 2076 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2077 { 2078 int ret = -EINVAL; 2079 struct inode *inode = NULL; 2080 struct udf_options uopt; 2081 struct kernel_lb_addr rootdir, fileset; 2082 struct udf_sb_info *sbi; 2083 bool lvid_open = false; 2084 2085 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2086 uopt.uid = INVALID_UID; 2087 uopt.gid = INVALID_GID; 2088 uopt.umask = 0; 2089 uopt.fmode = UDF_INVALID_MODE; 2090 uopt.dmode = UDF_INVALID_MODE; 2091 2092 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2093 if (!sbi) 2094 return -ENOMEM; 2095 2096 sb->s_fs_info = sbi; 2097 2098 mutex_init(&sbi->s_alloc_mutex); 2099 2100 if (!udf_parse_options((char *)options, &uopt, false)) 2101 goto parse_options_failure; 2102 2103 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2104 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2105 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2106 goto parse_options_failure; 2107 } 2108 #ifdef CONFIG_UDF_NLS 2109 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2110 uopt.nls_map = load_nls_default(); 2111 if (!uopt.nls_map) 2112 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2113 else 2114 udf_debug("Using default NLS map\n"); 2115 } 2116 #endif 2117 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2118 uopt.flags |= (1 << UDF_FLAG_UTF8); 2119 2120 fileset.logicalBlockNum = 0xFFFFFFFF; 2121 fileset.partitionReferenceNum = 0xFFFF; 2122 2123 sbi->s_flags = uopt.flags; 2124 sbi->s_uid = uopt.uid; 2125 sbi->s_gid = uopt.gid; 2126 sbi->s_umask = uopt.umask; 2127 sbi->s_fmode = uopt.fmode; 2128 sbi->s_dmode = uopt.dmode; 2129 sbi->s_nls_map = uopt.nls_map; 2130 rwlock_init(&sbi->s_cred_lock); 2131 2132 if (uopt.session == 0xFFFFFFFF) 2133 sbi->s_session = udf_get_last_session(sb); 2134 else 2135 sbi->s_session = uopt.session; 2136 2137 udf_debug("Multi-session=%d\n", sbi->s_session); 2138 2139 /* Fill in the rest of the superblock */ 2140 sb->s_op = &udf_sb_ops; 2141 sb->s_export_op = &udf_export_ops; 2142 2143 sb->s_magic = UDF_SUPER_MAGIC; 2144 sb->s_time_gran = 1000; 2145 2146 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2147 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2148 } else { 2149 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2150 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2151 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2152 if (!silent) 2153 pr_notice("Rescanning with blocksize %d\n", 2154 UDF_DEFAULT_BLOCKSIZE); 2155 brelse(sbi->s_lvid_bh); 2156 sbi->s_lvid_bh = NULL; 2157 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2158 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2159 } 2160 } 2161 if (ret < 0) { 2162 if (ret == -EAGAIN) { 2163 udf_warn(sb, "No partition found (1)\n"); 2164 ret = -EINVAL; 2165 } 2166 goto error_out; 2167 } 2168 2169 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2170 2171 if (sbi->s_lvid_bh) { 2172 struct logicalVolIntegrityDescImpUse *lvidiu = 2173 udf_sb_lvidiu(sb); 2174 uint16_t minUDFReadRev; 2175 uint16_t minUDFWriteRev; 2176 2177 if (!lvidiu) { 2178 ret = -EINVAL; 2179 goto error_out; 2180 } 2181 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2182 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2183 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2184 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2185 minUDFReadRev, 2186 UDF_MAX_READ_VERSION); 2187 ret = -EINVAL; 2188 goto error_out; 2189 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2190 !(sb->s_flags & MS_RDONLY)) { 2191 ret = -EACCES; 2192 goto error_out; 2193 } 2194 2195 sbi->s_udfrev = minUDFWriteRev; 2196 2197 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2198 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2199 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2200 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2201 } 2202 2203 if (!sbi->s_partitions) { 2204 udf_warn(sb, "No partition found (2)\n"); 2205 ret = -EINVAL; 2206 goto error_out; 2207 } 2208 2209 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2210 UDF_PART_FLAG_READ_ONLY && 2211 !(sb->s_flags & MS_RDONLY)) { 2212 ret = -EACCES; 2213 goto error_out; 2214 } 2215 2216 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2217 udf_warn(sb, "No fileset found\n"); 2218 ret = -EINVAL; 2219 goto error_out; 2220 } 2221 2222 if (!silent) { 2223 struct timestamp ts; 2224 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2225 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2226 sbi->s_volume_ident, 2227 le16_to_cpu(ts.year), ts.month, ts.day, 2228 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2229 } 2230 if (!(sb->s_flags & MS_RDONLY)) { 2231 udf_open_lvid(sb); 2232 lvid_open = true; 2233 } 2234 2235 /* Assign the root inode */ 2236 /* assign inodes by physical block number */ 2237 /* perhaps it's not extensible enough, but for now ... */ 2238 inode = udf_iget(sb, &rootdir); 2239 if (IS_ERR(inode)) { 2240 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2241 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2242 ret = PTR_ERR(inode); 2243 goto error_out; 2244 } 2245 2246 /* Allocate a dentry for the root inode */ 2247 sb->s_root = d_make_root(inode); 2248 if (!sb->s_root) { 2249 udf_err(sb, "Couldn't allocate root dentry\n"); 2250 ret = -ENOMEM; 2251 goto error_out; 2252 } 2253 sb->s_maxbytes = MAX_LFS_FILESIZE; 2254 sb->s_max_links = UDF_MAX_LINKS; 2255 return 0; 2256 2257 error_out: 2258 iput(sbi->s_vat_inode); 2259 parse_options_failure: 2260 #ifdef CONFIG_UDF_NLS 2261 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2262 unload_nls(sbi->s_nls_map); 2263 #endif 2264 if (lvid_open) 2265 udf_close_lvid(sb); 2266 brelse(sbi->s_lvid_bh); 2267 udf_sb_free_partitions(sb); 2268 kfree(sbi); 2269 sb->s_fs_info = NULL; 2270 2271 return ret; 2272 } 2273 2274 void _udf_err(struct super_block *sb, const char *function, 2275 const char *fmt, ...) 2276 { 2277 struct va_format vaf; 2278 va_list args; 2279 2280 va_start(args, fmt); 2281 2282 vaf.fmt = fmt; 2283 vaf.va = &args; 2284 2285 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2286 2287 va_end(args); 2288 } 2289 2290 void _udf_warn(struct super_block *sb, const char *function, 2291 const char *fmt, ...) 2292 { 2293 struct va_format vaf; 2294 va_list args; 2295 2296 va_start(args, fmt); 2297 2298 vaf.fmt = fmt; 2299 vaf.va = &args; 2300 2301 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2302 2303 va_end(args); 2304 } 2305 2306 static void udf_put_super(struct super_block *sb) 2307 { 2308 struct udf_sb_info *sbi; 2309 2310 sbi = UDF_SB(sb); 2311 2312 iput(sbi->s_vat_inode); 2313 #ifdef CONFIG_UDF_NLS 2314 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2315 unload_nls(sbi->s_nls_map); 2316 #endif 2317 if (!(sb->s_flags & MS_RDONLY)) 2318 udf_close_lvid(sb); 2319 brelse(sbi->s_lvid_bh); 2320 udf_sb_free_partitions(sb); 2321 mutex_destroy(&sbi->s_alloc_mutex); 2322 kfree(sb->s_fs_info); 2323 sb->s_fs_info = NULL; 2324 } 2325 2326 static int udf_sync_fs(struct super_block *sb, int wait) 2327 { 2328 struct udf_sb_info *sbi = UDF_SB(sb); 2329 2330 mutex_lock(&sbi->s_alloc_mutex); 2331 if (sbi->s_lvid_dirty) { 2332 /* 2333 * Blockdevice will be synced later so we don't have to submit 2334 * the buffer for IO 2335 */ 2336 mark_buffer_dirty(sbi->s_lvid_bh); 2337 sbi->s_lvid_dirty = 0; 2338 } 2339 mutex_unlock(&sbi->s_alloc_mutex); 2340 2341 return 0; 2342 } 2343 2344 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2345 { 2346 struct super_block *sb = dentry->d_sb; 2347 struct udf_sb_info *sbi = UDF_SB(sb); 2348 struct logicalVolIntegrityDescImpUse *lvidiu; 2349 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2350 2351 lvidiu = udf_sb_lvidiu(sb); 2352 buf->f_type = UDF_SUPER_MAGIC; 2353 buf->f_bsize = sb->s_blocksize; 2354 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2355 buf->f_bfree = udf_count_free(sb); 2356 buf->f_bavail = buf->f_bfree; 2357 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2358 le32_to_cpu(lvidiu->numDirs)) : 0) 2359 + buf->f_bfree; 2360 buf->f_ffree = buf->f_bfree; 2361 buf->f_namelen = UDF_NAME_LEN - 2; 2362 buf->f_fsid.val[0] = (u32)id; 2363 buf->f_fsid.val[1] = (u32)(id >> 32); 2364 2365 return 0; 2366 } 2367 2368 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2369 struct udf_bitmap *bitmap) 2370 { 2371 struct buffer_head *bh = NULL; 2372 unsigned int accum = 0; 2373 int index; 2374 int block = 0, newblock; 2375 struct kernel_lb_addr loc; 2376 uint32_t bytes; 2377 uint8_t *ptr; 2378 uint16_t ident; 2379 struct spaceBitmapDesc *bm; 2380 2381 loc.logicalBlockNum = bitmap->s_extPosition; 2382 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2383 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2384 2385 if (!bh) { 2386 udf_err(sb, "udf_count_free failed\n"); 2387 goto out; 2388 } else if (ident != TAG_IDENT_SBD) { 2389 brelse(bh); 2390 udf_err(sb, "udf_count_free failed\n"); 2391 goto out; 2392 } 2393 2394 bm = (struct spaceBitmapDesc *)bh->b_data; 2395 bytes = le32_to_cpu(bm->numOfBytes); 2396 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2397 ptr = (uint8_t *)bh->b_data; 2398 2399 while (bytes > 0) { 2400 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2401 accum += bitmap_weight((const unsigned long *)(ptr + index), 2402 cur_bytes * 8); 2403 bytes -= cur_bytes; 2404 if (bytes) { 2405 brelse(bh); 2406 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2407 bh = udf_tread(sb, newblock); 2408 if (!bh) { 2409 udf_debug("read failed\n"); 2410 goto out; 2411 } 2412 index = 0; 2413 ptr = (uint8_t *)bh->b_data; 2414 } 2415 } 2416 brelse(bh); 2417 out: 2418 return accum; 2419 } 2420 2421 static unsigned int udf_count_free_table(struct super_block *sb, 2422 struct inode *table) 2423 { 2424 unsigned int accum = 0; 2425 uint32_t elen; 2426 struct kernel_lb_addr eloc; 2427 int8_t etype; 2428 struct extent_position epos; 2429 2430 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2431 epos.block = UDF_I(table)->i_location; 2432 epos.offset = sizeof(struct unallocSpaceEntry); 2433 epos.bh = NULL; 2434 2435 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2436 accum += (elen >> table->i_sb->s_blocksize_bits); 2437 2438 brelse(epos.bh); 2439 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2440 2441 return accum; 2442 } 2443 2444 static unsigned int udf_count_free(struct super_block *sb) 2445 { 2446 unsigned int accum = 0; 2447 struct udf_sb_info *sbi; 2448 struct udf_part_map *map; 2449 2450 sbi = UDF_SB(sb); 2451 if (sbi->s_lvid_bh) { 2452 struct logicalVolIntegrityDesc *lvid = 2453 (struct logicalVolIntegrityDesc *) 2454 sbi->s_lvid_bh->b_data; 2455 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2456 accum = le32_to_cpu( 2457 lvid->freeSpaceTable[sbi->s_partition]); 2458 if (accum == 0xFFFFFFFF) 2459 accum = 0; 2460 } 2461 } 2462 2463 if (accum) 2464 return accum; 2465 2466 map = &sbi->s_partmaps[sbi->s_partition]; 2467 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2468 accum += udf_count_free_bitmap(sb, 2469 map->s_uspace.s_bitmap); 2470 } 2471 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2472 accum += udf_count_free_bitmap(sb, 2473 map->s_fspace.s_bitmap); 2474 } 2475 if (accum) 2476 return accum; 2477 2478 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2479 accum += udf_count_free_table(sb, 2480 map->s_uspace.s_table); 2481 } 2482 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2483 accum += udf_count_free_table(sb, 2484 map->s_fspace.s_table); 2485 } 2486 2487 return accum; 2488 } 2489