1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 #define VDS_POS_PRIMARY_VOL_DESC 0 68 #define VDS_POS_UNALLOC_SPACE_DESC 1 69 #define VDS_POS_LOGICAL_VOL_DESC 2 70 #define VDS_POS_PARTITION_DESC 3 71 #define VDS_POS_IMP_USE_VOL_DESC 4 72 #define VDS_POS_VOL_DESC_PTR 5 73 #define VDS_POS_TERMINATING_DESC 6 74 #define VDS_POS_LENGTH 7 75 76 #define VSD_FIRST_SECTOR_OFFSET 32768 77 #define VSD_MAX_SECTOR_OFFSET 0x800000 78 79 /* 80 * Maximum number of Terminating Descriptor / Logical Volume Integrity 81 * Descriptor redirections. The chosen numbers are arbitrary - just that we 82 * hopefully don't limit any real use of rewritten inode on write-once media 83 * but avoid looping for too long on corrupted media. 84 */ 85 #define UDF_MAX_TD_NESTING 64 86 #define UDF_MAX_LVID_NESTING 1000 87 88 enum { UDF_MAX_LINKS = 0xffff }; 89 90 /* These are the "meat" - everything else is stuffing */ 91 static int udf_fill_super(struct super_block *, void *, int); 92 static void udf_put_super(struct super_block *); 93 static int udf_sync_fs(struct super_block *, int); 94 static int udf_remount_fs(struct super_block *, int *, char *); 95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 97 struct kernel_lb_addr *); 98 static void udf_load_fileset(struct super_block *, struct buffer_head *, 99 struct kernel_lb_addr *); 100 static void udf_open_lvid(struct super_block *); 101 static void udf_close_lvid(struct super_block *); 102 static unsigned int udf_count_free(struct super_block *); 103 static int udf_statfs(struct dentry *, struct kstatfs *); 104 static int udf_show_options(struct seq_file *, struct dentry *); 105 106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 107 { 108 struct logicalVolIntegrityDesc *lvid; 109 unsigned int partnum; 110 unsigned int offset; 111 112 if (!UDF_SB(sb)->s_lvid_bh) 113 return NULL; 114 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 115 partnum = le32_to_cpu(lvid->numOfPartitions); 116 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 117 offsetof(struct logicalVolIntegrityDesc, impUse)) / 118 (2 * sizeof(uint32_t)) < partnum) { 119 udf_err(sb, "Logical volume integrity descriptor corrupted " 120 "(numOfPartitions = %u)!\n", partnum); 121 return NULL; 122 } 123 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 124 offset = partnum * 2 * sizeof(uint32_t); 125 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 126 } 127 128 /* UDF filesystem type */ 129 static struct dentry *udf_mount(struct file_system_type *fs_type, 130 int flags, const char *dev_name, void *data) 131 { 132 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 133 } 134 135 static struct file_system_type udf_fstype = { 136 .owner = THIS_MODULE, 137 .name = "udf", 138 .mount = udf_mount, 139 .kill_sb = kill_block_super, 140 .fs_flags = FS_REQUIRES_DEV, 141 }; 142 MODULE_ALIAS_FS("udf"); 143 144 static struct kmem_cache *udf_inode_cachep; 145 146 static struct inode *udf_alloc_inode(struct super_block *sb) 147 { 148 struct udf_inode_info *ei; 149 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 150 if (!ei) 151 return NULL; 152 153 ei->i_unique = 0; 154 ei->i_lenExtents = 0; 155 ei->i_next_alloc_block = 0; 156 ei->i_next_alloc_goal = 0; 157 ei->i_strat4096 = 0; 158 init_rwsem(&ei->i_data_sem); 159 ei->cached_extent.lstart = -1; 160 spin_lock_init(&ei->i_extent_cache_lock); 161 162 return &ei->vfs_inode; 163 } 164 165 static void udf_i_callback(struct rcu_head *head) 166 { 167 struct inode *inode = container_of(head, struct inode, i_rcu); 168 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 169 } 170 171 static void udf_destroy_inode(struct inode *inode) 172 { 173 call_rcu(&inode->i_rcu, udf_i_callback); 174 } 175 176 static void init_once(void *foo) 177 { 178 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 179 180 ei->i_ext.i_data = NULL; 181 inode_init_once(&ei->vfs_inode); 182 } 183 184 static int __init init_inodecache(void) 185 { 186 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 187 sizeof(struct udf_inode_info), 188 0, (SLAB_RECLAIM_ACCOUNT | 189 SLAB_MEM_SPREAD | 190 SLAB_ACCOUNT), 191 init_once); 192 if (!udf_inode_cachep) 193 return -ENOMEM; 194 return 0; 195 } 196 197 static void destroy_inodecache(void) 198 { 199 /* 200 * Make sure all delayed rcu free inodes are flushed before we 201 * destroy cache. 202 */ 203 rcu_barrier(); 204 kmem_cache_destroy(udf_inode_cachep); 205 } 206 207 /* Superblock operations */ 208 static const struct super_operations udf_sb_ops = { 209 .alloc_inode = udf_alloc_inode, 210 .destroy_inode = udf_destroy_inode, 211 .write_inode = udf_write_inode, 212 .evict_inode = udf_evict_inode, 213 .put_super = udf_put_super, 214 .sync_fs = udf_sync_fs, 215 .statfs = udf_statfs, 216 .remount_fs = udf_remount_fs, 217 .show_options = udf_show_options, 218 }; 219 220 struct udf_options { 221 unsigned char novrs; 222 unsigned int blocksize; 223 unsigned int session; 224 unsigned int lastblock; 225 unsigned int anchor; 226 unsigned int volume; 227 unsigned short partition; 228 unsigned int fileset; 229 unsigned int rootdir; 230 unsigned int flags; 231 umode_t umask; 232 kgid_t gid; 233 kuid_t uid; 234 umode_t fmode; 235 umode_t dmode; 236 struct nls_table *nls_map; 237 }; 238 239 static int __init init_udf_fs(void) 240 { 241 int err; 242 243 err = init_inodecache(); 244 if (err) 245 goto out1; 246 err = register_filesystem(&udf_fstype); 247 if (err) 248 goto out; 249 250 return 0; 251 252 out: 253 destroy_inodecache(); 254 255 out1: 256 return err; 257 } 258 259 static void __exit exit_udf_fs(void) 260 { 261 unregister_filesystem(&udf_fstype); 262 destroy_inodecache(); 263 } 264 265 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 266 { 267 struct udf_sb_info *sbi = UDF_SB(sb); 268 269 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 270 if (!sbi->s_partmaps) { 271 sbi->s_partitions = 0; 272 return -ENOMEM; 273 } 274 275 sbi->s_partitions = count; 276 return 0; 277 } 278 279 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 280 { 281 int i; 282 int nr_groups = bitmap->s_nr_groups; 283 284 for (i = 0; i < nr_groups; i++) 285 if (bitmap->s_block_bitmap[i]) 286 brelse(bitmap->s_block_bitmap[i]); 287 288 kvfree(bitmap); 289 } 290 291 static void udf_free_partition(struct udf_part_map *map) 292 { 293 int i; 294 struct udf_meta_data *mdata; 295 296 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 297 iput(map->s_uspace.s_table); 298 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 299 iput(map->s_fspace.s_table); 300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 301 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 303 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 304 if (map->s_partition_type == UDF_SPARABLE_MAP15) 305 for (i = 0; i < 4; i++) 306 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 307 else if (map->s_partition_type == UDF_METADATA_MAP25) { 308 mdata = &map->s_type_specific.s_metadata; 309 iput(mdata->s_metadata_fe); 310 mdata->s_metadata_fe = NULL; 311 312 iput(mdata->s_mirror_fe); 313 mdata->s_mirror_fe = NULL; 314 315 iput(mdata->s_bitmap_fe); 316 mdata->s_bitmap_fe = NULL; 317 } 318 } 319 320 static void udf_sb_free_partitions(struct super_block *sb) 321 { 322 struct udf_sb_info *sbi = UDF_SB(sb); 323 int i; 324 325 if (!sbi->s_partmaps) 326 return; 327 for (i = 0; i < sbi->s_partitions; i++) 328 udf_free_partition(&sbi->s_partmaps[i]); 329 kfree(sbi->s_partmaps); 330 sbi->s_partmaps = NULL; 331 } 332 333 static int udf_show_options(struct seq_file *seq, struct dentry *root) 334 { 335 struct super_block *sb = root->d_sb; 336 struct udf_sb_info *sbi = UDF_SB(sb); 337 338 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 339 seq_puts(seq, ",nostrict"); 340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 341 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 343 seq_puts(seq, ",unhide"); 344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 345 seq_puts(seq, ",undelete"); 346 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 347 seq_puts(seq, ",noadinicb"); 348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 349 seq_puts(seq, ",shortad"); 350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 351 seq_puts(seq, ",uid=forget"); 352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 353 seq_puts(seq, ",uid=ignore"); 354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 355 seq_puts(seq, ",gid=forget"); 356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 357 seq_puts(seq, ",gid=ignore"); 358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 359 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 361 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 362 if (sbi->s_umask != 0) 363 seq_printf(seq, ",umask=%ho", sbi->s_umask); 364 if (sbi->s_fmode != UDF_INVALID_MODE) 365 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 366 if (sbi->s_dmode != UDF_INVALID_MODE) 367 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 369 seq_printf(seq, ",session=%d", sbi->s_session); 370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 371 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 372 if (sbi->s_anchor != 0) 373 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 374 /* 375 * volume, partition, fileset and rootdir seem to be ignored 376 * currently 377 */ 378 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 379 seq_puts(seq, ",utf8"); 380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 381 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 382 383 return 0; 384 } 385 386 /* 387 * udf_parse_options 388 * 389 * PURPOSE 390 * Parse mount options. 391 * 392 * DESCRIPTION 393 * The following mount options are supported: 394 * 395 * gid= Set the default group. 396 * umask= Set the default umask. 397 * mode= Set the default file permissions. 398 * dmode= Set the default directory permissions. 399 * uid= Set the default user. 400 * bs= Set the block size. 401 * unhide Show otherwise hidden files. 402 * undelete Show deleted files in lists. 403 * adinicb Embed data in the inode (default) 404 * noadinicb Don't embed data in the inode 405 * shortad Use short ad's 406 * longad Use long ad's (default) 407 * nostrict Unset strict conformance 408 * iocharset= Set the NLS character set 409 * 410 * The remaining are for debugging and disaster recovery: 411 * 412 * novrs Skip volume sequence recognition 413 * 414 * The following expect a offset from 0. 415 * 416 * session= Set the CDROM session (default= last session) 417 * anchor= Override standard anchor location. (default= 256) 418 * volume= Override the VolumeDesc location. (unused) 419 * partition= Override the PartitionDesc location. (unused) 420 * lastblock= Set the last block of the filesystem/ 421 * 422 * The following expect a offset from the partition root. 423 * 424 * fileset= Override the fileset block location. (unused) 425 * rootdir= Override the root directory location. (unused) 426 * WARNING: overriding the rootdir to a non-directory may 427 * yield highly unpredictable results. 428 * 429 * PRE-CONDITIONS 430 * options Pointer to mount options string. 431 * uopts Pointer to mount options variable. 432 * 433 * POST-CONDITIONS 434 * <return> 1 Mount options parsed okay. 435 * <return> 0 Error parsing mount options. 436 * 437 * HISTORY 438 * July 1, 1997 - Andrew E. Mileski 439 * Written, tested, and released. 440 */ 441 442 enum { 443 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 444 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 445 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 446 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 447 Opt_rootdir, Opt_utf8, Opt_iocharset, 448 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 449 Opt_fmode, Opt_dmode 450 }; 451 452 static const match_table_t tokens = { 453 {Opt_novrs, "novrs"}, 454 {Opt_nostrict, "nostrict"}, 455 {Opt_bs, "bs=%u"}, 456 {Opt_unhide, "unhide"}, 457 {Opt_undelete, "undelete"}, 458 {Opt_noadinicb, "noadinicb"}, 459 {Opt_adinicb, "adinicb"}, 460 {Opt_shortad, "shortad"}, 461 {Opt_longad, "longad"}, 462 {Opt_uforget, "uid=forget"}, 463 {Opt_uignore, "uid=ignore"}, 464 {Opt_gforget, "gid=forget"}, 465 {Opt_gignore, "gid=ignore"}, 466 {Opt_gid, "gid=%u"}, 467 {Opt_uid, "uid=%u"}, 468 {Opt_umask, "umask=%o"}, 469 {Opt_session, "session=%u"}, 470 {Opt_lastblock, "lastblock=%u"}, 471 {Opt_anchor, "anchor=%u"}, 472 {Opt_volume, "volume=%u"}, 473 {Opt_partition, "partition=%u"}, 474 {Opt_fileset, "fileset=%u"}, 475 {Opt_rootdir, "rootdir=%u"}, 476 {Opt_utf8, "utf8"}, 477 {Opt_iocharset, "iocharset=%s"}, 478 {Opt_fmode, "mode=%o"}, 479 {Opt_dmode, "dmode=%o"}, 480 {Opt_err, NULL} 481 }; 482 483 static int udf_parse_options(char *options, struct udf_options *uopt, 484 bool remount) 485 { 486 char *p; 487 int option; 488 489 uopt->novrs = 0; 490 uopt->partition = 0xFFFF; 491 uopt->session = 0xFFFFFFFF; 492 uopt->lastblock = 0; 493 uopt->anchor = 0; 494 uopt->volume = 0xFFFFFFFF; 495 uopt->rootdir = 0xFFFFFFFF; 496 uopt->fileset = 0xFFFFFFFF; 497 uopt->nls_map = NULL; 498 499 if (!options) 500 return 1; 501 502 while ((p = strsep(&options, ",")) != NULL) { 503 substring_t args[MAX_OPT_ARGS]; 504 int token; 505 unsigned n; 506 if (!*p) 507 continue; 508 509 token = match_token(p, tokens, args); 510 switch (token) { 511 case Opt_novrs: 512 uopt->novrs = 1; 513 break; 514 case Opt_bs: 515 if (match_int(&args[0], &option)) 516 return 0; 517 n = option; 518 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 519 return 0; 520 uopt->blocksize = n; 521 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 522 break; 523 case Opt_unhide: 524 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 525 break; 526 case Opt_undelete: 527 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 528 break; 529 case Opt_noadinicb: 530 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 531 break; 532 case Opt_adinicb: 533 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 534 break; 535 case Opt_shortad: 536 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 537 break; 538 case Opt_longad: 539 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 540 break; 541 case Opt_gid: 542 if (match_int(args, &option)) 543 return 0; 544 uopt->gid = make_kgid(current_user_ns(), option); 545 if (!gid_valid(uopt->gid)) 546 return 0; 547 uopt->flags |= (1 << UDF_FLAG_GID_SET); 548 break; 549 case Opt_uid: 550 if (match_int(args, &option)) 551 return 0; 552 uopt->uid = make_kuid(current_user_ns(), option); 553 if (!uid_valid(uopt->uid)) 554 return 0; 555 uopt->flags |= (1 << UDF_FLAG_UID_SET); 556 break; 557 case Opt_umask: 558 if (match_octal(args, &option)) 559 return 0; 560 uopt->umask = option; 561 break; 562 case Opt_nostrict: 563 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 564 break; 565 case Opt_session: 566 if (match_int(args, &option)) 567 return 0; 568 uopt->session = option; 569 if (!remount) 570 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 571 break; 572 case Opt_lastblock: 573 if (match_int(args, &option)) 574 return 0; 575 uopt->lastblock = option; 576 if (!remount) 577 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 578 break; 579 case Opt_anchor: 580 if (match_int(args, &option)) 581 return 0; 582 uopt->anchor = option; 583 break; 584 case Opt_volume: 585 if (match_int(args, &option)) 586 return 0; 587 uopt->volume = option; 588 break; 589 case Opt_partition: 590 if (match_int(args, &option)) 591 return 0; 592 uopt->partition = option; 593 break; 594 case Opt_fileset: 595 if (match_int(args, &option)) 596 return 0; 597 uopt->fileset = option; 598 break; 599 case Opt_rootdir: 600 if (match_int(args, &option)) 601 return 0; 602 uopt->rootdir = option; 603 break; 604 case Opt_utf8: 605 uopt->flags |= (1 << UDF_FLAG_UTF8); 606 break; 607 #ifdef CONFIG_UDF_NLS 608 case Opt_iocharset: 609 uopt->nls_map = load_nls(args[0].from); 610 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 611 break; 612 #endif 613 case Opt_uignore: 614 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 615 break; 616 case Opt_uforget: 617 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 618 break; 619 case Opt_gignore: 620 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 621 break; 622 case Opt_gforget: 623 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 624 break; 625 case Opt_fmode: 626 if (match_octal(args, &option)) 627 return 0; 628 uopt->fmode = option & 0777; 629 break; 630 case Opt_dmode: 631 if (match_octal(args, &option)) 632 return 0; 633 uopt->dmode = option & 0777; 634 break; 635 default: 636 pr_err("bad mount option \"%s\" or missing value\n", p); 637 return 0; 638 } 639 } 640 return 1; 641 } 642 643 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 644 { 645 struct udf_options uopt; 646 struct udf_sb_info *sbi = UDF_SB(sb); 647 int error = 0; 648 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 649 650 sync_filesystem(sb); 651 if (lvidiu) { 652 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 653 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY)) 654 return -EACCES; 655 } 656 657 uopt.flags = sbi->s_flags; 658 uopt.uid = sbi->s_uid; 659 uopt.gid = sbi->s_gid; 660 uopt.umask = sbi->s_umask; 661 uopt.fmode = sbi->s_fmode; 662 uopt.dmode = sbi->s_dmode; 663 664 if (!udf_parse_options(options, &uopt, true)) 665 return -EINVAL; 666 667 write_lock(&sbi->s_cred_lock); 668 sbi->s_flags = uopt.flags; 669 sbi->s_uid = uopt.uid; 670 sbi->s_gid = uopt.gid; 671 sbi->s_umask = uopt.umask; 672 sbi->s_fmode = uopt.fmode; 673 sbi->s_dmode = uopt.dmode; 674 write_unlock(&sbi->s_cred_lock); 675 676 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 677 goto out_unlock; 678 679 if (*flags & SB_RDONLY) 680 udf_close_lvid(sb); 681 else 682 udf_open_lvid(sb); 683 684 out_unlock: 685 return error; 686 } 687 688 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 689 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 690 static loff_t udf_check_vsd(struct super_block *sb) 691 { 692 struct volStructDesc *vsd = NULL; 693 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 694 int sectorsize; 695 struct buffer_head *bh = NULL; 696 int nsr02 = 0; 697 int nsr03 = 0; 698 struct udf_sb_info *sbi; 699 700 sbi = UDF_SB(sb); 701 if (sb->s_blocksize < sizeof(struct volStructDesc)) 702 sectorsize = sizeof(struct volStructDesc); 703 else 704 sectorsize = sb->s_blocksize; 705 706 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits); 707 708 udf_debug("Starting at sector %u (%lu byte sectors)\n", 709 (unsigned int)(sector >> sb->s_blocksize_bits), 710 sb->s_blocksize); 711 /* Process the sequence (if applicable). The hard limit on the sector 712 * offset is arbitrary, hopefully large enough so that all valid UDF 713 * filesystems will be recognised. There is no mention of an upper 714 * bound to the size of the volume recognition area in the standard. 715 * The limit will prevent the code to read all the sectors of a 716 * specially crafted image (like a bluray disc full of CD001 sectors), 717 * potentially causing minutes or even hours of uninterruptible I/O 718 * activity. This actually happened with uninitialised SSD partitions 719 * (all 0xFF) before the check for the limit and all valid IDs were 720 * added */ 721 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 722 sector += sectorsize) { 723 /* Read a block */ 724 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 725 if (!bh) 726 break; 727 728 /* Look for ISO descriptors */ 729 vsd = (struct volStructDesc *)(bh->b_data + 730 (sector & (sb->s_blocksize - 1))); 731 732 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 733 VSD_STD_ID_LEN)) { 734 switch (vsd->structType) { 735 case 0: 736 udf_debug("ISO9660 Boot Record found\n"); 737 break; 738 case 1: 739 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 740 break; 741 case 2: 742 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 743 break; 744 case 3: 745 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 746 break; 747 case 255: 748 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 749 break; 750 default: 751 udf_debug("ISO9660 VRS (%u) found\n", 752 vsd->structType); 753 break; 754 } 755 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 756 VSD_STD_ID_LEN)) 757 ; /* nothing */ 758 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 759 VSD_STD_ID_LEN)) { 760 brelse(bh); 761 break; 762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 763 VSD_STD_ID_LEN)) 764 nsr02 = sector; 765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 766 VSD_STD_ID_LEN)) 767 nsr03 = sector; 768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 769 VSD_STD_ID_LEN)) 770 ; /* nothing */ 771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 772 VSD_STD_ID_LEN)) 773 ; /* nothing */ 774 else { 775 /* invalid id : end of volume recognition area */ 776 brelse(bh); 777 break; 778 } 779 brelse(bh); 780 } 781 782 if (nsr03) 783 return nsr03; 784 else if (nsr02) 785 return nsr02; 786 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 787 VSD_FIRST_SECTOR_OFFSET) 788 return -1; 789 else 790 return 0; 791 } 792 793 static int udf_find_fileset(struct super_block *sb, 794 struct kernel_lb_addr *fileset, 795 struct kernel_lb_addr *root) 796 { 797 struct buffer_head *bh = NULL; 798 long lastblock; 799 uint16_t ident; 800 struct udf_sb_info *sbi; 801 802 if (fileset->logicalBlockNum != 0xFFFFFFFF || 803 fileset->partitionReferenceNum != 0xFFFF) { 804 bh = udf_read_ptagged(sb, fileset, 0, &ident); 805 806 if (!bh) { 807 return 1; 808 } else if (ident != TAG_IDENT_FSD) { 809 brelse(bh); 810 return 1; 811 } 812 813 } 814 815 sbi = UDF_SB(sb); 816 if (!bh) { 817 /* Search backwards through the partitions */ 818 struct kernel_lb_addr newfileset; 819 820 /* --> cvg: FIXME - is it reasonable? */ 821 return 1; 822 823 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 824 (newfileset.partitionReferenceNum != 0xFFFF && 825 fileset->logicalBlockNum == 0xFFFFFFFF && 826 fileset->partitionReferenceNum == 0xFFFF); 827 newfileset.partitionReferenceNum--) { 828 lastblock = sbi->s_partmaps 829 [newfileset.partitionReferenceNum] 830 .s_partition_len; 831 newfileset.logicalBlockNum = 0; 832 833 do { 834 bh = udf_read_ptagged(sb, &newfileset, 0, 835 &ident); 836 if (!bh) { 837 newfileset.logicalBlockNum++; 838 continue; 839 } 840 841 switch (ident) { 842 case TAG_IDENT_SBD: 843 { 844 struct spaceBitmapDesc *sp; 845 sp = (struct spaceBitmapDesc *) 846 bh->b_data; 847 newfileset.logicalBlockNum += 1 + 848 ((le32_to_cpu(sp->numOfBytes) + 849 sizeof(struct spaceBitmapDesc) 850 - 1) >> sb->s_blocksize_bits); 851 brelse(bh); 852 break; 853 } 854 case TAG_IDENT_FSD: 855 *fileset = newfileset; 856 break; 857 default: 858 newfileset.logicalBlockNum++; 859 brelse(bh); 860 bh = NULL; 861 break; 862 } 863 } while (newfileset.logicalBlockNum < lastblock && 864 fileset->logicalBlockNum == 0xFFFFFFFF && 865 fileset->partitionReferenceNum == 0xFFFF); 866 } 867 } 868 869 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 870 fileset->partitionReferenceNum != 0xFFFF) && bh) { 871 udf_debug("Fileset at block=%u, partition=%u\n", 872 fileset->logicalBlockNum, 873 fileset->partitionReferenceNum); 874 875 sbi->s_partition = fileset->partitionReferenceNum; 876 udf_load_fileset(sb, bh, root); 877 brelse(bh); 878 return 0; 879 } 880 return 1; 881 } 882 883 /* 884 * Load primary Volume Descriptor Sequence 885 * 886 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 887 * should be tried. 888 */ 889 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 890 { 891 struct primaryVolDesc *pvoldesc; 892 uint8_t *outstr; 893 struct buffer_head *bh; 894 uint16_t ident; 895 int ret = -ENOMEM; 896 897 outstr = kmalloc(128, GFP_NOFS); 898 if (!outstr) 899 return -ENOMEM; 900 901 bh = udf_read_tagged(sb, block, block, &ident); 902 if (!bh) { 903 ret = -EAGAIN; 904 goto out2; 905 } 906 907 if (ident != TAG_IDENT_PVD) { 908 ret = -EIO; 909 goto out_bh; 910 } 911 912 pvoldesc = (struct primaryVolDesc *)bh->b_data; 913 914 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 915 pvoldesc->recordingDateAndTime)) { 916 #ifdef UDFFS_DEBUG 917 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 918 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 919 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 920 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 921 #endif 922 } 923 924 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32); 925 if (ret < 0) 926 goto out_bh; 927 928 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 929 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 930 931 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128); 932 if (ret < 0) 933 goto out_bh; 934 935 outstr[ret] = 0; 936 udf_debug("volSetIdent[] = '%s'\n", outstr); 937 938 ret = 0; 939 out_bh: 940 brelse(bh); 941 out2: 942 kfree(outstr); 943 return ret; 944 } 945 946 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 947 u32 meta_file_loc, u32 partition_ref) 948 { 949 struct kernel_lb_addr addr; 950 struct inode *metadata_fe; 951 952 addr.logicalBlockNum = meta_file_loc; 953 addr.partitionReferenceNum = partition_ref; 954 955 metadata_fe = udf_iget_special(sb, &addr); 956 957 if (IS_ERR(metadata_fe)) { 958 udf_warn(sb, "metadata inode efe not found\n"); 959 return metadata_fe; 960 } 961 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 962 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 963 iput(metadata_fe); 964 return ERR_PTR(-EIO); 965 } 966 967 return metadata_fe; 968 } 969 970 static int udf_load_metadata_files(struct super_block *sb, int partition, 971 int type1_index) 972 { 973 struct udf_sb_info *sbi = UDF_SB(sb); 974 struct udf_part_map *map; 975 struct udf_meta_data *mdata; 976 struct kernel_lb_addr addr; 977 struct inode *fe; 978 979 map = &sbi->s_partmaps[partition]; 980 mdata = &map->s_type_specific.s_metadata; 981 mdata->s_phys_partition_ref = type1_index; 982 983 /* metadata address */ 984 udf_debug("Metadata file location: block = %u part = %u\n", 985 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 986 987 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 988 mdata->s_phys_partition_ref); 989 if (IS_ERR(fe)) { 990 /* mirror file entry */ 991 udf_debug("Mirror metadata file location: block = %u part = %u\n", 992 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 993 994 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 995 mdata->s_phys_partition_ref); 996 997 if (IS_ERR(fe)) { 998 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 999 return PTR_ERR(fe); 1000 } 1001 mdata->s_mirror_fe = fe; 1002 } else 1003 mdata->s_metadata_fe = fe; 1004 1005 1006 /* 1007 * bitmap file entry 1008 * Note: 1009 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1010 */ 1011 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1012 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1013 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 1014 1015 udf_debug("Bitmap file location: block = %u part = %u\n", 1016 addr.logicalBlockNum, addr.partitionReferenceNum); 1017 1018 fe = udf_iget_special(sb, &addr); 1019 if (IS_ERR(fe)) { 1020 if (sb_rdonly(sb)) 1021 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1022 else { 1023 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1024 return PTR_ERR(fe); 1025 } 1026 } else 1027 mdata->s_bitmap_fe = fe; 1028 } 1029 1030 udf_debug("udf_load_metadata_files Ok\n"); 1031 return 0; 1032 } 1033 1034 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1035 struct kernel_lb_addr *root) 1036 { 1037 struct fileSetDesc *fset; 1038 1039 fset = (struct fileSetDesc *)bh->b_data; 1040 1041 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1042 1043 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1044 1045 udf_debug("Rootdir at block=%u, partition=%u\n", 1046 root->logicalBlockNum, root->partitionReferenceNum); 1047 } 1048 1049 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1050 { 1051 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1052 return DIV_ROUND_UP(map->s_partition_len + 1053 (sizeof(struct spaceBitmapDesc) << 3), 1054 sb->s_blocksize * 8); 1055 } 1056 1057 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1058 { 1059 struct udf_bitmap *bitmap; 1060 int nr_groups; 1061 int size; 1062 1063 nr_groups = udf_compute_nr_groups(sb, index); 1064 size = sizeof(struct udf_bitmap) + 1065 (sizeof(struct buffer_head *) * nr_groups); 1066 1067 if (size <= PAGE_SIZE) 1068 bitmap = kzalloc(size, GFP_KERNEL); 1069 else 1070 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1071 1072 if (!bitmap) 1073 return NULL; 1074 1075 bitmap->s_nr_groups = nr_groups; 1076 return bitmap; 1077 } 1078 1079 static int udf_fill_partdesc_info(struct super_block *sb, 1080 struct partitionDesc *p, int p_index) 1081 { 1082 struct udf_part_map *map; 1083 struct udf_sb_info *sbi = UDF_SB(sb); 1084 struct partitionHeaderDesc *phd; 1085 1086 map = &sbi->s_partmaps[p_index]; 1087 1088 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1089 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1090 1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1092 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1094 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1096 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1098 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1099 1100 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1101 p_index, map->s_partition_type, 1102 map->s_partition_root, map->s_partition_len); 1103 1104 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1105 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1106 return 0; 1107 1108 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1109 if (phd->unallocSpaceTable.extLength) { 1110 struct kernel_lb_addr loc = { 1111 .logicalBlockNum = le32_to_cpu( 1112 phd->unallocSpaceTable.extPosition), 1113 .partitionReferenceNum = p_index, 1114 }; 1115 struct inode *inode; 1116 1117 inode = udf_iget_special(sb, &loc); 1118 if (IS_ERR(inode)) { 1119 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1120 p_index); 1121 return PTR_ERR(inode); 1122 } 1123 map->s_uspace.s_table = inode; 1124 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1125 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1126 p_index, map->s_uspace.s_table->i_ino); 1127 } 1128 1129 if (phd->unallocSpaceBitmap.extLength) { 1130 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1131 if (!bitmap) 1132 return -ENOMEM; 1133 map->s_uspace.s_bitmap = bitmap; 1134 bitmap->s_extPosition = le32_to_cpu( 1135 phd->unallocSpaceBitmap.extPosition); 1136 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1137 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1138 p_index, bitmap->s_extPosition); 1139 } 1140 1141 if (phd->partitionIntegrityTable.extLength) 1142 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1143 1144 if (phd->freedSpaceTable.extLength) { 1145 struct kernel_lb_addr loc = { 1146 .logicalBlockNum = le32_to_cpu( 1147 phd->freedSpaceTable.extPosition), 1148 .partitionReferenceNum = p_index, 1149 }; 1150 struct inode *inode; 1151 1152 inode = udf_iget_special(sb, &loc); 1153 if (IS_ERR(inode)) { 1154 udf_debug("cannot load freedSpaceTable (part %d)\n", 1155 p_index); 1156 return PTR_ERR(inode); 1157 } 1158 map->s_fspace.s_table = inode; 1159 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1160 udf_debug("freedSpaceTable (part %d) @ %lu\n", 1161 p_index, map->s_fspace.s_table->i_ino); 1162 } 1163 1164 if (phd->freedSpaceBitmap.extLength) { 1165 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1166 if (!bitmap) 1167 return -ENOMEM; 1168 map->s_fspace.s_bitmap = bitmap; 1169 bitmap->s_extPosition = le32_to_cpu( 1170 phd->freedSpaceBitmap.extPosition); 1171 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1172 udf_debug("freedSpaceBitmap (part %d) @ %u\n", 1173 p_index, bitmap->s_extPosition); 1174 } 1175 return 0; 1176 } 1177 1178 static void udf_find_vat_block(struct super_block *sb, int p_index, 1179 int type1_index, sector_t start_block) 1180 { 1181 struct udf_sb_info *sbi = UDF_SB(sb); 1182 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1183 sector_t vat_block; 1184 struct kernel_lb_addr ino; 1185 struct inode *inode; 1186 1187 /* 1188 * VAT file entry is in the last recorded block. Some broken disks have 1189 * it a few blocks before so try a bit harder... 1190 */ 1191 ino.partitionReferenceNum = type1_index; 1192 for (vat_block = start_block; 1193 vat_block >= map->s_partition_root && 1194 vat_block >= start_block - 3; vat_block--) { 1195 ino.logicalBlockNum = vat_block - map->s_partition_root; 1196 inode = udf_iget_special(sb, &ino); 1197 if (!IS_ERR(inode)) { 1198 sbi->s_vat_inode = inode; 1199 break; 1200 } 1201 } 1202 } 1203 1204 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1205 { 1206 struct udf_sb_info *sbi = UDF_SB(sb); 1207 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1208 struct buffer_head *bh = NULL; 1209 struct udf_inode_info *vati; 1210 uint32_t pos; 1211 struct virtualAllocationTable20 *vat20; 1212 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1213 sb->s_blocksize_bits; 1214 1215 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1216 if (!sbi->s_vat_inode && 1217 sbi->s_last_block != blocks - 1) { 1218 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1219 (unsigned long)sbi->s_last_block, 1220 (unsigned long)blocks - 1); 1221 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1222 } 1223 if (!sbi->s_vat_inode) 1224 return -EIO; 1225 1226 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1227 map->s_type_specific.s_virtual.s_start_offset = 0; 1228 map->s_type_specific.s_virtual.s_num_entries = 1229 (sbi->s_vat_inode->i_size - 36) >> 2; 1230 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1231 vati = UDF_I(sbi->s_vat_inode); 1232 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1233 pos = udf_block_map(sbi->s_vat_inode, 0); 1234 bh = sb_bread(sb, pos); 1235 if (!bh) 1236 return -EIO; 1237 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1238 } else { 1239 vat20 = (struct virtualAllocationTable20 *) 1240 vati->i_ext.i_data; 1241 } 1242 1243 map->s_type_specific.s_virtual.s_start_offset = 1244 le16_to_cpu(vat20->lengthHeader); 1245 map->s_type_specific.s_virtual.s_num_entries = 1246 (sbi->s_vat_inode->i_size - 1247 map->s_type_specific.s_virtual. 1248 s_start_offset) >> 2; 1249 brelse(bh); 1250 } 1251 return 0; 1252 } 1253 1254 /* 1255 * Load partition descriptor block 1256 * 1257 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1258 * sequence. 1259 */ 1260 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1261 { 1262 struct buffer_head *bh; 1263 struct partitionDesc *p; 1264 struct udf_part_map *map; 1265 struct udf_sb_info *sbi = UDF_SB(sb); 1266 int i, type1_idx; 1267 uint16_t partitionNumber; 1268 uint16_t ident; 1269 int ret; 1270 1271 bh = udf_read_tagged(sb, block, block, &ident); 1272 if (!bh) 1273 return -EAGAIN; 1274 if (ident != TAG_IDENT_PD) { 1275 ret = 0; 1276 goto out_bh; 1277 } 1278 1279 p = (struct partitionDesc *)bh->b_data; 1280 partitionNumber = le16_to_cpu(p->partitionNumber); 1281 1282 /* First scan for TYPE1 and SPARABLE partitions */ 1283 for (i = 0; i < sbi->s_partitions; i++) { 1284 map = &sbi->s_partmaps[i]; 1285 udf_debug("Searching map: (%u == %u)\n", 1286 map->s_partition_num, partitionNumber); 1287 if (map->s_partition_num == partitionNumber && 1288 (map->s_partition_type == UDF_TYPE1_MAP15 || 1289 map->s_partition_type == UDF_SPARABLE_MAP15)) 1290 break; 1291 } 1292 1293 if (i >= sbi->s_partitions) { 1294 udf_debug("Partition (%u) not found in partition map\n", 1295 partitionNumber); 1296 ret = 0; 1297 goto out_bh; 1298 } 1299 1300 ret = udf_fill_partdesc_info(sb, p, i); 1301 if (ret < 0) 1302 goto out_bh; 1303 1304 /* 1305 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1306 * PHYSICAL partitions are already set up 1307 */ 1308 type1_idx = i; 1309 #ifdef UDFFS_DEBUG 1310 map = NULL; /* supress 'maybe used uninitialized' warning */ 1311 #endif 1312 for (i = 0; i < sbi->s_partitions; i++) { 1313 map = &sbi->s_partmaps[i]; 1314 1315 if (map->s_partition_num == partitionNumber && 1316 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1317 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1318 map->s_partition_type == UDF_METADATA_MAP25)) 1319 break; 1320 } 1321 1322 if (i >= sbi->s_partitions) { 1323 ret = 0; 1324 goto out_bh; 1325 } 1326 1327 ret = udf_fill_partdesc_info(sb, p, i); 1328 if (ret < 0) 1329 goto out_bh; 1330 1331 if (map->s_partition_type == UDF_METADATA_MAP25) { 1332 ret = udf_load_metadata_files(sb, i, type1_idx); 1333 if (ret < 0) { 1334 udf_err(sb, "error loading MetaData partition map %d\n", 1335 i); 1336 goto out_bh; 1337 } 1338 } else { 1339 /* 1340 * If we have a partition with virtual map, we don't handle 1341 * writing to it (we overwrite blocks instead of relocating 1342 * them). 1343 */ 1344 if (!sb_rdonly(sb)) { 1345 ret = -EACCES; 1346 goto out_bh; 1347 } 1348 ret = udf_load_vat(sb, i, type1_idx); 1349 if (ret < 0) 1350 goto out_bh; 1351 } 1352 ret = 0; 1353 out_bh: 1354 /* In case loading failed, we handle cleanup in udf_fill_super */ 1355 brelse(bh); 1356 return ret; 1357 } 1358 1359 static int udf_load_sparable_map(struct super_block *sb, 1360 struct udf_part_map *map, 1361 struct sparablePartitionMap *spm) 1362 { 1363 uint32_t loc; 1364 uint16_t ident; 1365 struct sparingTable *st; 1366 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1367 int i; 1368 struct buffer_head *bh; 1369 1370 map->s_partition_type = UDF_SPARABLE_MAP15; 1371 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1372 if (!is_power_of_2(sdata->s_packet_len)) { 1373 udf_err(sb, "error loading logical volume descriptor: " 1374 "Invalid packet length %u\n", 1375 (unsigned)sdata->s_packet_len); 1376 return -EIO; 1377 } 1378 if (spm->numSparingTables > 4) { 1379 udf_err(sb, "error loading logical volume descriptor: " 1380 "Too many sparing tables (%d)\n", 1381 (int)spm->numSparingTables); 1382 return -EIO; 1383 } 1384 1385 for (i = 0; i < spm->numSparingTables; i++) { 1386 loc = le32_to_cpu(spm->locSparingTable[i]); 1387 bh = udf_read_tagged(sb, loc, loc, &ident); 1388 if (!bh) 1389 continue; 1390 1391 st = (struct sparingTable *)bh->b_data; 1392 if (ident != 0 || 1393 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1394 strlen(UDF_ID_SPARING)) || 1395 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1396 sb->s_blocksize) { 1397 brelse(bh); 1398 continue; 1399 } 1400 1401 sdata->s_spar_map[i] = bh; 1402 } 1403 map->s_partition_func = udf_get_pblock_spar15; 1404 return 0; 1405 } 1406 1407 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1408 struct kernel_lb_addr *fileset) 1409 { 1410 struct logicalVolDesc *lvd; 1411 int i, offset; 1412 uint8_t type; 1413 struct udf_sb_info *sbi = UDF_SB(sb); 1414 struct genericPartitionMap *gpm; 1415 uint16_t ident; 1416 struct buffer_head *bh; 1417 unsigned int table_len; 1418 int ret; 1419 1420 bh = udf_read_tagged(sb, block, block, &ident); 1421 if (!bh) 1422 return -EAGAIN; 1423 BUG_ON(ident != TAG_IDENT_LVD); 1424 lvd = (struct logicalVolDesc *)bh->b_data; 1425 table_len = le32_to_cpu(lvd->mapTableLength); 1426 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1427 udf_err(sb, "error loading logical volume descriptor: " 1428 "Partition table too long (%u > %lu)\n", table_len, 1429 sb->s_blocksize - sizeof(*lvd)); 1430 ret = -EIO; 1431 goto out_bh; 1432 } 1433 1434 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1435 if (ret) 1436 goto out_bh; 1437 1438 for (i = 0, offset = 0; 1439 i < sbi->s_partitions && offset < table_len; 1440 i++, offset += gpm->partitionMapLength) { 1441 struct udf_part_map *map = &sbi->s_partmaps[i]; 1442 gpm = (struct genericPartitionMap *) 1443 &(lvd->partitionMaps[offset]); 1444 type = gpm->partitionMapType; 1445 if (type == 1) { 1446 struct genericPartitionMap1 *gpm1 = 1447 (struct genericPartitionMap1 *)gpm; 1448 map->s_partition_type = UDF_TYPE1_MAP15; 1449 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1450 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1451 map->s_partition_func = NULL; 1452 } else if (type == 2) { 1453 struct udfPartitionMap2 *upm2 = 1454 (struct udfPartitionMap2 *)gpm; 1455 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1456 strlen(UDF_ID_VIRTUAL))) { 1457 u16 suf = 1458 le16_to_cpu(((__le16 *)upm2->partIdent. 1459 identSuffix)[0]); 1460 if (suf < 0x0200) { 1461 map->s_partition_type = 1462 UDF_VIRTUAL_MAP15; 1463 map->s_partition_func = 1464 udf_get_pblock_virt15; 1465 } else { 1466 map->s_partition_type = 1467 UDF_VIRTUAL_MAP20; 1468 map->s_partition_func = 1469 udf_get_pblock_virt20; 1470 } 1471 } else if (!strncmp(upm2->partIdent.ident, 1472 UDF_ID_SPARABLE, 1473 strlen(UDF_ID_SPARABLE))) { 1474 ret = udf_load_sparable_map(sb, map, 1475 (struct sparablePartitionMap *)gpm); 1476 if (ret < 0) 1477 goto out_bh; 1478 } else if (!strncmp(upm2->partIdent.ident, 1479 UDF_ID_METADATA, 1480 strlen(UDF_ID_METADATA))) { 1481 struct udf_meta_data *mdata = 1482 &map->s_type_specific.s_metadata; 1483 struct metadataPartitionMap *mdm = 1484 (struct metadataPartitionMap *) 1485 &(lvd->partitionMaps[offset]); 1486 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1487 i, type, UDF_ID_METADATA); 1488 1489 map->s_partition_type = UDF_METADATA_MAP25; 1490 map->s_partition_func = udf_get_pblock_meta25; 1491 1492 mdata->s_meta_file_loc = 1493 le32_to_cpu(mdm->metadataFileLoc); 1494 mdata->s_mirror_file_loc = 1495 le32_to_cpu(mdm->metadataMirrorFileLoc); 1496 mdata->s_bitmap_file_loc = 1497 le32_to_cpu(mdm->metadataBitmapFileLoc); 1498 mdata->s_alloc_unit_size = 1499 le32_to_cpu(mdm->allocUnitSize); 1500 mdata->s_align_unit_size = 1501 le16_to_cpu(mdm->alignUnitSize); 1502 if (mdm->flags & 0x01) 1503 mdata->s_flags |= MF_DUPLICATE_MD; 1504 1505 udf_debug("Metadata Ident suffix=0x%x\n", 1506 le16_to_cpu(*(__le16 *) 1507 mdm->partIdent.identSuffix)); 1508 udf_debug("Metadata part num=%u\n", 1509 le16_to_cpu(mdm->partitionNum)); 1510 udf_debug("Metadata part alloc unit size=%u\n", 1511 le32_to_cpu(mdm->allocUnitSize)); 1512 udf_debug("Metadata file loc=%u\n", 1513 le32_to_cpu(mdm->metadataFileLoc)); 1514 udf_debug("Mirror file loc=%u\n", 1515 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1516 udf_debug("Bitmap file loc=%u\n", 1517 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1518 udf_debug("Flags: %d %u\n", 1519 mdata->s_flags, mdm->flags); 1520 } else { 1521 udf_debug("Unknown ident: %s\n", 1522 upm2->partIdent.ident); 1523 continue; 1524 } 1525 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1526 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1527 } 1528 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1529 i, map->s_partition_num, type, map->s_volumeseqnum); 1530 } 1531 1532 if (fileset) { 1533 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1534 1535 *fileset = lelb_to_cpu(la->extLocation); 1536 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1537 fileset->logicalBlockNum, 1538 fileset->partitionReferenceNum); 1539 } 1540 if (lvd->integritySeqExt.extLength) 1541 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1542 ret = 0; 1543 out_bh: 1544 brelse(bh); 1545 return ret; 1546 } 1547 1548 /* 1549 * Find the prevailing Logical Volume Integrity Descriptor. 1550 */ 1551 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1552 { 1553 struct buffer_head *bh, *final_bh; 1554 uint16_t ident; 1555 struct udf_sb_info *sbi = UDF_SB(sb); 1556 struct logicalVolIntegrityDesc *lvid; 1557 int indirections = 0; 1558 1559 while (++indirections <= UDF_MAX_LVID_NESTING) { 1560 final_bh = NULL; 1561 while (loc.extLength > 0 && 1562 (bh = udf_read_tagged(sb, loc.extLocation, 1563 loc.extLocation, &ident))) { 1564 if (ident != TAG_IDENT_LVID) { 1565 brelse(bh); 1566 break; 1567 } 1568 1569 brelse(final_bh); 1570 final_bh = bh; 1571 1572 loc.extLength -= sb->s_blocksize; 1573 loc.extLocation++; 1574 } 1575 1576 if (!final_bh) 1577 return; 1578 1579 brelse(sbi->s_lvid_bh); 1580 sbi->s_lvid_bh = final_bh; 1581 1582 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1583 if (lvid->nextIntegrityExt.extLength == 0) 1584 return; 1585 1586 loc = leea_to_cpu(lvid->nextIntegrityExt); 1587 } 1588 1589 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1590 UDF_MAX_LVID_NESTING); 1591 brelse(sbi->s_lvid_bh); 1592 sbi->s_lvid_bh = NULL; 1593 } 1594 1595 1596 /* 1597 * Process a main/reserve volume descriptor sequence. 1598 * @block First block of first extent of the sequence. 1599 * @lastblock Lastblock of first extent of the sequence. 1600 * @fileset There we store extent containing root fileset 1601 * 1602 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1603 * sequence 1604 */ 1605 static noinline int udf_process_sequence( 1606 struct super_block *sb, 1607 sector_t block, sector_t lastblock, 1608 struct kernel_lb_addr *fileset) 1609 { 1610 struct buffer_head *bh = NULL; 1611 struct udf_vds_record vds[VDS_POS_LENGTH]; 1612 struct udf_vds_record *curr; 1613 struct generic_desc *gd; 1614 struct volDescPtr *vdp; 1615 bool done = false; 1616 uint32_t vdsn; 1617 uint16_t ident; 1618 long next_s = 0, next_e = 0; 1619 int ret; 1620 unsigned int indirections = 0; 1621 1622 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1623 1624 /* 1625 * Read the main descriptor sequence and find which descriptors 1626 * are in it. 1627 */ 1628 for (; (!done && block <= lastblock); block++) { 1629 1630 bh = udf_read_tagged(sb, block, block, &ident); 1631 if (!bh) { 1632 udf_err(sb, 1633 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1634 (unsigned long long)block); 1635 return -EAGAIN; 1636 } 1637 1638 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1639 gd = (struct generic_desc *)bh->b_data; 1640 vdsn = le32_to_cpu(gd->volDescSeqNum); 1641 switch (ident) { 1642 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1643 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1644 if (vdsn >= curr->volDescSeqNum) { 1645 curr->volDescSeqNum = vdsn; 1646 curr->block = block; 1647 } 1648 break; 1649 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1650 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1651 if (vdsn >= curr->volDescSeqNum) { 1652 curr->volDescSeqNum = vdsn; 1653 curr->block = block; 1654 1655 vdp = (struct volDescPtr *)bh->b_data; 1656 next_s = le32_to_cpu( 1657 vdp->nextVolDescSeqExt.extLocation); 1658 next_e = le32_to_cpu( 1659 vdp->nextVolDescSeqExt.extLength); 1660 next_e = next_e >> sb->s_blocksize_bits; 1661 next_e += next_s; 1662 } 1663 break; 1664 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1665 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1666 if (vdsn >= curr->volDescSeqNum) { 1667 curr->volDescSeqNum = vdsn; 1668 curr->block = block; 1669 } 1670 break; 1671 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1672 curr = &vds[VDS_POS_PARTITION_DESC]; 1673 if (!curr->block) 1674 curr->block = block; 1675 break; 1676 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1677 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1678 if (vdsn >= curr->volDescSeqNum) { 1679 curr->volDescSeqNum = vdsn; 1680 curr->block = block; 1681 } 1682 break; 1683 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1684 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1685 if (vdsn >= curr->volDescSeqNum) { 1686 curr->volDescSeqNum = vdsn; 1687 curr->block = block; 1688 } 1689 break; 1690 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1691 if (++indirections > UDF_MAX_TD_NESTING) { 1692 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING); 1693 brelse(bh); 1694 return -EIO; 1695 } 1696 1697 vds[VDS_POS_TERMINATING_DESC].block = block; 1698 if (next_e) { 1699 block = next_s; 1700 lastblock = next_e; 1701 next_s = next_e = 0; 1702 } else 1703 done = true; 1704 break; 1705 } 1706 brelse(bh); 1707 } 1708 /* 1709 * Now read interesting descriptors again and process them 1710 * in a suitable order 1711 */ 1712 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1713 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1714 return -EAGAIN; 1715 } 1716 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1717 if (ret < 0) 1718 return ret; 1719 1720 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1721 ret = udf_load_logicalvol(sb, 1722 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1723 fileset); 1724 if (ret < 0) 1725 return ret; 1726 } 1727 1728 if (vds[VDS_POS_PARTITION_DESC].block) { 1729 /* 1730 * We rescan the whole descriptor sequence to find 1731 * partition descriptor blocks and process them. 1732 */ 1733 for (block = vds[VDS_POS_PARTITION_DESC].block; 1734 block < vds[VDS_POS_TERMINATING_DESC].block; 1735 block++) { 1736 ret = udf_load_partdesc(sb, block); 1737 if (ret < 0) 1738 return ret; 1739 } 1740 } 1741 1742 return 0; 1743 } 1744 1745 /* 1746 * Load Volume Descriptor Sequence described by anchor in bh 1747 * 1748 * Returns <0 on error, 0 on success 1749 */ 1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1751 struct kernel_lb_addr *fileset) 1752 { 1753 struct anchorVolDescPtr *anchor; 1754 sector_t main_s, main_e, reserve_s, reserve_e; 1755 int ret; 1756 1757 anchor = (struct anchorVolDescPtr *)bh->b_data; 1758 1759 /* Locate the main sequence */ 1760 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1761 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1762 main_e = main_e >> sb->s_blocksize_bits; 1763 main_e += main_s; 1764 1765 /* Locate the reserve sequence */ 1766 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1767 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1768 reserve_e = reserve_e >> sb->s_blocksize_bits; 1769 reserve_e += reserve_s; 1770 1771 /* Process the main & reserve sequences */ 1772 /* responsible for finding the PartitionDesc(s) */ 1773 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1774 if (ret != -EAGAIN) 1775 return ret; 1776 udf_sb_free_partitions(sb); 1777 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1778 if (ret < 0) { 1779 udf_sb_free_partitions(sb); 1780 /* No sequence was OK, return -EIO */ 1781 if (ret == -EAGAIN) 1782 ret = -EIO; 1783 } 1784 return ret; 1785 } 1786 1787 /* 1788 * Check whether there is an anchor block in the given block and 1789 * load Volume Descriptor Sequence if so. 1790 * 1791 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1792 * block 1793 */ 1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1795 struct kernel_lb_addr *fileset) 1796 { 1797 struct buffer_head *bh; 1798 uint16_t ident; 1799 int ret; 1800 1801 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1802 udf_fixed_to_variable(block) >= 1803 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1804 return -EAGAIN; 1805 1806 bh = udf_read_tagged(sb, block, block, &ident); 1807 if (!bh) 1808 return -EAGAIN; 1809 if (ident != TAG_IDENT_AVDP) { 1810 brelse(bh); 1811 return -EAGAIN; 1812 } 1813 ret = udf_load_sequence(sb, bh, fileset); 1814 brelse(bh); 1815 return ret; 1816 } 1817 1818 /* 1819 * Search for an anchor volume descriptor pointer. 1820 * 1821 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1822 * of anchors. 1823 */ 1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1825 struct kernel_lb_addr *fileset) 1826 { 1827 sector_t last[6]; 1828 int i; 1829 struct udf_sb_info *sbi = UDF_SB(sb); 1830 int last_count = 0; 1831 int ret; 1832 1833 /* First try user provided anchor */ 1834 if (sbi->s_anchor) { 1835 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1836 if (ret != -EAGAIN) 1837 return ret; 1838 } 1839 /* 1840 * according to spec, anchor is in either: 1841 * block 256 1842 * lastblock-256 1843 * lastblock 1844 * however, if the disc isn't closed, it could be 512. 1845 */ 1846 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1847 if (ret != -EAGAIN) 1848 return ret; 1849 /* 1850 * The trouble is which block is the last one. Drives often misreport 1851 * this so we try various possibilities. 1852 */ 1853 last[last_count++] = *lastblock; 1854 if (*lastblock >= 1) 1855 last[last_count++] = *lastblock - 1; 1856 last[last_count++] = *lastblock + 1; 1857 if (*lastblock >= 2) 1858 last[last_count++] = *lastblock - 2; 1859 if (*lastblock >= 150) 1860 last[last_count++] = *lastblock - 150; 1861 if (*lastblock >= 152) 1862 last[last_count++] = *lastblock - 152; 1863 1864 for (i = 0; i < last_count; i++) { 1865 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1866 sb->s_blocksize_bits) 1867 continue; 1868 ret = udf_check_anchor_block(sb, last[i], fileset); 1869 if (ret != -EAGAIN) { 1870 if (!ret) 1871 *lastblock = last[i]; 1872 return ret; 1873 } 1874 if (last[i] < 256) 1875 continue; 1876 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1877 if (ret != -EAGAIN) { 1878 if (!ret) 1879 *lastblock = last[i]; 1880 return ret; 1881 } 1882 } 1883 1884 /* Finally try block 512 in case media is open */ 1885 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1886 } 1887 1888 /* 1889 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1890 * area specified by it. The function expects sbi->s_lastblock to be the last 1891 * block on the media. 1892 * 1893 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1894 * was not found. 1895 */ 1896 static int udf_find_anchor(struct super_block *sb, 1897 struct kernel_lb_addr *fileset) 1898 { 1899 struct udf_sb_info *sbi = UDF_SB(sb); 1900 sector_t lastblock = sbi->s_last_block; 1901 int ret; 1902 1903 ret = udf_scan_anchors(sb, &lastblock, fileset); 1904 if (ret != -EAGAIN) 1905 goto out; 1906 1907 /* No anchor found? Try VARCONV conversion of block numbers */ 1908 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1909 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1910 /* Firstly, we try to not convert number of the last block */ 1911 ret = udf_scan_anchors(sb, &lastblock, fileset); 1912 if (ret != -EAGAIN) 1913 goto out; 1914 1915 lastblock = sbi->s_last_block; 1916 /* Secondly, we try with converted number of the last block */ 1917 ret = udf_scan_anchors(sb, &lastblock, fileset); 1918 if (ret < 0) { 1919 /* VARCONV didn't help. Clear it. */ 1920 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1921 } 1922 out: 1923 if (ret == 0) 1924 sbi->s_last_block = lastblock; 1925 return ret; 1926 } 1927 1928 /* 1929 * Check Volume Structure Descriptor, find Anchor block and load Volume 1930 * Descriptor Sequence. 1931 * 1932 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1933 * block was not found. 1934 */ 1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1936 int silent, struct kernel_lb_addr *fileset) 1937 { 1938 struct udf_sb_info *sbi = UDF_SB(sb); 1939 loff_t nsr_off; 1940 int ret; 1941 1942 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1943 if (!silent) 1944 udf_warn(sb, "Bad block size\n"); 1945 return -EINVAL; 1946 } 1947 sbi->s_last_block = uopt->lastblock; 1948 if (!uopt->novrs) { 1949 /* Check that it is NSR02 compliant */ 1950 nsr_off = udf_check_vsd(sb); 1951 if (!nsr_off) { 1952 if (!silent) 1953 udf_warn(sb, "No VRS found\n"); 1954 return -EINVAL; 1955 } 1956 if (nsr_off == -1) 1957 udf_debug("Failed to read sector at offset %d. " 1958 "Assuming open disc. Skipping validity " 1959 "check\n", VSD_FIRST_SECTOR_OFFSET); 1960 if (!sbi->s_last_block) 1961 sbi->s_last_block = udf_get_last_block(sb); 1962 } else { 1963 udf_debug("Validity check skipped because of novrs option\n"); 1964 } 1965 1966 /* Look for anchor block and load Volume Descriptor Sequence */ 1967 sbi->s_anchor = uopt->anchor; 1968 ret = udf_find_anchor(sb, fileset); 1969 if (ret < 0) { 1970 if (!silent && ret == -EAGAIN) 1971 udf_warn(sb, "No anchor found\n"); 1972 return ret; 1973 } 1974 return 0; 1975 } 1976 1977 static void udf_open_lvid(struct super_block *sb) 1978 { 1979 struct udf_sb_info *sbi = UDF_SB(sb); 1980 struct buffer_head *bh = sbi->s_lvid_bh; 1981 struct logicalVolIntegrityDesc *lvid; 1982 struct logicalVolIntegrityDescImpUse *lvidiu; 1983 struct timespec ts; 1984 1985 if (!bh) 1986 return; 1987 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1988 lvidiu = udf_sb_lvidiu(sb); 1989 if (!lvidiu) 1990 return; 1991 1992 mutex_lock(&sbi->s_alloc_mutex); 1993 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1994 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1995 ktime_get_real_ts(&ts); 1996 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1997 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1998 1999 lvid->descTag.descCRC = cpu_to_le16( 2000 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2001 le16_to_cpu(lvid->descTag.descCRCLength))); 2002 2003 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2004 mark_buffer_dirty(bh); 2005 sbi->s_lvid_dirty = 0; 2006 mutex_unlock(&sbi->s_alloc_mutex); 2007 /* Make opening of filesystem visible on the media immediately */ 2008 sync_dirty_buffer(bh); 2009 } 2010 2011 static void udf_close_lvid(struct super_block *sb) 2012 { 2013 struct udf_sb_info *sbi = UDF_SB(sb); 2014 struct buffer_head *bh = sbi->s_lvid_bh; 2015 struct logicalVolIntegrityDesc *lvid; 2016 struct logicalVolIntegrityDescImpUse *lvidiu; 2017 struct timespec ts; 2018 2019 if (!bh) 2020 return; 2021 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2022 lvidiu = udf_sb_lvidiu(sb); 2023 if (!lvidiu) 2024 return; 2025 2026 mutex_lock(&sbi->s_alloc_mutex); 2027 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2028 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2029 ktime_get_real_ts(&ts); 2030 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2031 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2032 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2033 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2034 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2035 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2036 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2037 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2038 2039 lvid->descTag.descCRC = cpu_to_le16( 2040 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2041 le16_to_cpu(lvid->descTag.descCRCLength))); 2042 2043 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2044 /* 2045 * We set buffer uptodate unconditionally here to avoid spurious 2046 * warnings from mark_buffer_dirty() when previous EIO has marked 2047 * the buffer as !uptodate 2048 */ 2049 set_buffer_uptodate(bh); 2050 mark_buffer_dirty(bh); 2051 sbi->s_lvid_dirty = 0; 2052 mutex_unlock(&sbi->s_alloc_mutex); 2053 /* Make closing of filesystem visible on the media immediately */ 2054 sync_dirty_buffer(bh); 2055 } 2056 2057 u64 lvid_get_unique_id(struct super_block *sb) 2058 { 2059 struct buffer_head *bh; 2060 struct udf_sb_info *sbi = UDF_SB(sb); 2061 struct logicalVolIntegrityDesc *lvid; 2062 struct logicalVolHeaderDesc *lvhd; 2063 u64 uniqueID; 2064 u64 ret; 2065 2066 bh = sbi->s_lvid_bh; 2067 if (!bh) 2068 return 0; 2069 2070 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2071 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2072 2073 mutex_lock(&sbi->s_alloc_mutex); 2074 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2075 if (!(++uniqueID & 0xFFFFFFFF)) 2076 uniqueID += 16; 2077 lvhd->uniqueID = cpu_to_le64(uniqueID); 2078 mutex_unlock(&sbi->s_alloc_mutex); 2079 mark_buffer_dirty(bh); 2080 2081 return ret; 2082 } 2083 2084 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2085 { 2086 int ret = -EINVAL; 2087 struct inode *inode = NULL; 2088 struct udf_options uopt; 2089 struct kernel_lb_addr rootdir, fileset; 2090 struct udf_sb_info *sbi; 2091 bool lvid_open = false; 2092 2093 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2094 uopt.uid = INVALID_UID; 2095 uopt.gid = INVALID_GID; 2096 uopt.umask = 0; 2097 uopt.fmode = UDF_INVALID_MODE; 2098 uopt.dmode = UDF_INVALID_MODE; 2099 2100 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2101 if (!sbi) 2102 return -ENOMEM; 2103 2104 sb->s_fs_info = sbi; 2105 2106 mutex_init(&sbi->s_alloc_mutex); 2107 2108 if (!udf_parse_options((char *)options, &uopt, false)) 2109 goto parse_options_failure; 2110 2111 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2112 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2113 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2114 goto parse_options_failure; 2115 } 2116 #ifdef CONFIG_UDF_NLS 2117 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2118 uopt.nls_map = load_nls_default(); 2119 if (!uopt.nls_map) 2120 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2121 else 2122 udf_debug("Using default NLS map\n"); 2123 } 2124 #endif 2125 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2126 uopt.flags |= (1 << UDF_FLAG_UTF8); 2127 2128 fileset.logicalBlockNum = 0xFFFFFFFF; 2129 fileset.partitionReferenceNum = 0xFFFF; 2130 2131 sbi->s_flags = uopt.flags; 2132 sbi->s_uid = uopt.uid; 2133 sbi->s_gid = uopt.gid; 2134 sbi->s_umask = uopt.umask; 2135 sbi->s_fmode = uopt.fmode; 2136 sbi->s_dmode = uopt.dmode; 2137 sbi->s_nls_map = uopt.nls_map; 2138 rwlock_init(&sbi->s_cred_lock); 2139 2140 if (uopt.session == 0xFFFFFFFF) 2141 sbi->s_session = udf_get_last_session(sb); 2142 else 2143 sbi->s_session = uopt.session; 2144 2145 udf_debug("Multi-session=%d\n", sbi->s_session); 2146 2147 /* Fill in the rest of the superblock */ 2148 sb->s_op = &udf_sb_ops; 2149 sb->s_export_op = &udf_export_ops; 2150 2151 sb->s_magic = UDF_SUPER_MAGIC; 2152 sb->s_time_gran = 1000; 2153 2154 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2155 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2156 } else { 2157 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2158 while (uopt.blocksize <= 4096) { 2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2160 if (ret < 0) { 2161 if (!silent && ret != -EACCES) { 2162 pr_notice("Scanning with blocksize %u failed\n", 2163 uopt.blocksize); 2164 } 2165 brelse(sbi->s_lvid_bh); 2166 sbi->s_lvid_bh = NULL; 2167 /* 2168 * EACCES is special - we want to propagate to 2169 * upper layers that we cannot handle RW mount. 2170 */ 2171 if (ret == -EACCES) 2172 break; 2173 } else 2174 break; 2175 2176 uopt.blocksize <<= 1; 2177 } 2178 } 2179 if (ret < 0) { 2180 if (ret == -EAGAIN) { 2181 udf_warn(sb, "No partition found (1)\n"); 2182 ret = -EINVAL; 2183 } 2184 goto error_out; 2185 } 2186 2187 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2188 2189 if (sbi->s_lvid_bh) { 2190 struct logicalVolIntegrityDescImpUse *lvidiu = 2191 udf_sb_lvidiu(sb); 2192 uint16_t minUDFReadRev; 2193 uint16_t minUDFWriteRev; 2194 2195 if (!lvidiu) { 2196 ret = -EINVAL; 2197 goto error_out; 2198 } 2199 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2200 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2201 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2202 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2203 minUDFReadRev, 2204 UDF_MAX_READ_VERSION); 2205 ret = -EINVAL; 2206 goto error_out; 2207 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2208 !sb_rdonly(sb)) { 2209 ret = -EACCES; 2210 goto error_out; 2211 } 2212 2213 sbi->s_udfrev = minUDFWriteRev; 2214 2215 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2216 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2217 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2218 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2219 } 2220 2221 if (!sbi->s_partitions) { 2222 udf_warn(sb, "No partition found (2)\n"); 2223 ret = -EINVAL; 2224 goto error_out; 2225 } 2226 2227 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2228 UDF_PART_FLAG_READ_ONLY && 2229 !sb_rdonly(sb)) { 2230 ret = -EACCES; 2231 goto error_out; 2232 } 2233 2234 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2235 udf_warn(sb, "No fileset found\n"); 2236 ret = -EINVAL; 2237 goto error_out; 2238 } 2239 2240 if (!silent) { 2241 struct timestamp ts; 2242 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2243 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2244 sbi->s_volume_ident, 2245 le16_to_cpu(ts.year), ts.month, ts.day, 2246 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2247 } 2248 if (!sb_rdonly(sb)) { 2249 udf_open_lvid(sb); 2250 lvid_open = true; 2251 } 2252 2253 /* Assign the root inode */ 2254 /* assign inodes by physical block number */ 2255 /* perhaps it's not extensible enough, but for now ... */ 2256 inode = udf_iget(sb, &rootdir); 2257 if (IS_ERR(inode)) { 2258 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2259 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2260 ret = PTR_ERR(inode); 2261 goto error_out; 2262 } 2263 2264 /* Allocate a dentry for the root inode */ 2265 sb->s_root = d_make_root(inode); 2266 if (!sb->s_root) { 2267 udf_err(sb, "Couldn't allocate root dentry\n"); 2268 ret = -ENOMEM; 2269 goto error_out; 2270 } 2271 sb->s_maxbytes = MAX_LFS_FILESIZE; 2272 sb->s_max_links = UDF_MAX_LINKS; 2273 return 0; 2274 2275 error_out: 2276 iput(sbi->s_vat_inode); 2277 parse_options_failure: 2278 #ifdef CONFIG_UDF_NLS 2279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2280 unload_nls(sbi->s_nls_map); 2281 #endif 2282 if (lvid_open) 2283 udf_close_lvid(sb); 2284 brelse(sbi->s_lvid_bh); 2285 udf_sb_free_partitions(sb); 2286 kfree(sbi); 2287 sb->s_fs_info = NULL; 2288 2289 return ret; 2290 } 2291 2292 void _udf_err(struct super_block *sb, const char *function, 2293 const char *fmt, ...) 2294 { 2295 struct va_format vaf; 2296 va_list args; 2297 2298 va_start(args, fmt); 2299 2300 vaf.fmt = fmt; 2301 vaf.va = &args; 2302 2303 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2304 2305 va_end(args); 2306 } 2307 2308 void _udf_warn(struct super_block *sb, const char *function, 2309 const char *fmt, ...) 2310 { 2311 struct va_format vaf; 2312 va_list args; 2313 2314 va_start(args, fmt); 2315 2316 vaf.fmt = fmt; 2317 vaf.va = &args; 2318 2319 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2320 2321 va_end(args); 2322 } 2323 2324 static void udf_put_super(struct super_block *sb) 2325 { 2326 struct udf_sb_info *sbi; 2327 2328 sbi = UDF_SB(sb); 2329 2330 iput(sbi->s_vat_inode); 2331 #ifdef CONFIG_UDF_NLS 2332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2333 unload_nls(sbi->s_nls_map); 2334 #endif 2335 if (!sb_rdonly(sb)) 2336 udf_close_lvid(sb); 2337 brelse(sbi->s_lvid_bh); 2338 udf_sb_free_partitions(sb); 2339 mutex_destroy(&sbi->s_alloc_mutex); 2340 kfree(sb->s_fs_info); 2341 sb->s_fs_info = NULL; 2342 } 2343 2344 static int udf_sync_fs(struct super_block *sb, int wait) 2345 { 2346 struct udf_sb_info *sbi = UDF_SB(sb); 2347 2348 mutex_lock(&sbi->s_alloc_mutex); 2349 if (sbi->s_lvid_dirty) { 2350 /* 2351 * Blockdevice will be synced later so we don't have to submit 2352 * the buffer for IO 2353 */ 2354 mark_buffer_dirty(sbi->s_lvid_bh); 2355 sbi->s_lvid_dirty = 0; 2356 } 2357 mutex_unlock(&sbi->s_alloc_mutex); 2358 2359 return 0; 2360 } 2361 2362 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2363 { 2364 struct super_block *sb = dentry->d_sb; 2365 struct udf_sb_info *sbi = UDF_SB(sb); 2366 struct logicalVolIntegrityDescImpUse *lvidiu; 2367 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2368 2369 lvidiu = udf_sb_lvidiu(sb); 2370 buf->f_type = UDF_SUPER_MAGIC; 2371 buf->f_bsize = sb->s_blocksize; 2372 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2373 buf->f_bfree = udf_count_free(sb); 2374 buf->f_bavail = buf->f_bfree; 2375 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2376 le32_to_cpu(lvidiu->numDirs)) : 0) 2377 + buf->f_bfree; 2378 buf->f_ffree = buf->f_bfree; 2379 buf->f_namelen = UDF_NAME_LEN; 2380 buf->f_fsid.val[0] = (u32)id; 2381 buf->f_fsid.val[1] = (u32)(id >> 32); 2382 2383 return 0; 2384 } 2385 2386 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2387 struct udf_bitmap *bitmap) 2388 { 2389 struct buffer_head *bh = NULL; 2390 unsigned int accum = 0; 2391 int index; 2392 udf_pblk_t block = 0, newblock; 2393 struct kernel_lb_addr loc; 2394 uint32_t bytes; 2395 uint8_t *ptr; 2396 uint16_t ident; 2397 struct spaceBitmapDesc *bm; 2398 2399 loc.logicalBlockNum = bitmap->s_extPosition; 2400 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2401 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2402 2403 if (!bh) { 2404 udf_err(sb, "udf_count_free failed\n"); 2405 goto out; 2406 } else if (ident != TAG_IDENT_SBD) { 2407 brelse(bh); 2408 udf_err(sb, "udf_count_free failed\n"); 2409 goto out; 2410 } 2411 2412 bm = (struct spaceBitmapDesc *)bh->b_data; 2413 bytes = le32_to_cpu(bm->numOfBytes); 2414 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2415 ptr = (uint8_t *)bh->b_data; 2416 2417 while (bytes > 0) { 2418 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2419 accum += bitmap_weight((const unsigned long *)(ptr + index), 2420 cur_bytes * 8); 2421 bytes -= cur_bytes; 2422 if (bytes) { 2423 brelse(bh); 2424 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2425 bh = udf_tread(sb, newblock); 2426 if (!bh) { 2427 udf_debug("read failed\n"); 2428 goto out; 2429 } 2430 index = 0; 2431 ptr = (uint8_t *)bh->b_data; 2432 } 2433 } 2434 brelse(bh); 2435 out: 2436 return accum; 2437 } 2438 2439 static unsigned int udf_count_free_table(struct super_block *sb, 2440 struct inode *table) 2441 { 2442 unsigned int accum = 0; 2443 uint32_t elen; 2444 struct kernel_lb_addr eloc; 2445 int8_t etype; 2446 struct extent_position epos; 2447 2448 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2449 epos.block = UDF_I(table)->i_location; 2450 epos.offset = sizeof(struct unallocSpaceEntry); 2451 epos.bh = NULL; 2452 2453 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2454 accum += (elen >> table->i_sb->s_blocksize_bits); 2455 2456 brelse(epos.bh); 2457 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2458 2459 return accum; 2460 } 2461 2462 static unsigned int udf_count_free(struct super_block *sb) 2463 { 2464 unsigned int accum = 0; 2465 struct udf_sb_info *sbi; 2466 struct udf_part_map *map; 2467 2468 sbi = UDF_SB(sb); 2469 if (sbi->s_lvid_bh) { 2470 struct logicalVolIntegrityDesc *lvid = 2471 (struct logicalVolIntegrityDesc *) 2472 sbi->s_lvid_bh->b_data; 2473 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2474 accum = le32_to_cpu( 2475 lvid->freeSpaceTable[sbi->s_partition]); 2476 if (accum == 0xFFFFFFFF) 2477 accum = 0; 2478 } 2479 } 2480 2481 if (accum) 2482 return accum; 2483 2484 map = &sbi->s_partmaps[sbi->s_partition]; 2485 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2486 accum += udf_count_free_bitmap(sb, 2487 map->s_uspace.s_bitmap); 2488 } 2489 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2490 accum += udf_count_free_bitmap(sb, 2491 map->s_fspace.s_bitmap); 2492 } 2493 if (accum) 2494 return accum; 2495 2496 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2497 accum += udf_count_free_table(sb, 2498 map->s_uspace.s_table); 2499 } 2500 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2501 accum += udf_count_free_table(sb, 2502 map->s_fspace.s_table); 2503 } 2504 2505 return accum; 2506 } 2507 2508 MODULE_AUTHOR("Ben Fennema"); 2509 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2510 MODULE_LICENSE("GPL"); 2511 module_init(init_udf_fs) 2512 module_exit(exit_udf_fs) 2513