1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 #define VSD_FIRST_SECTOR_OFFSET 32768 80 #define VSD_MAX_SECTOR_OFFSET 0x800000 81 82 enum { UDF_MAX_LINKS = 0xffff }; 83 84 /* These are the "meat" - everything else is stuffing */ 85 static int udf_fill_super(struct super_block *, void *, int); 86 static void udf_put_super(struct super_block *); 87 static int udf_sync_fs(struct super_block *, int); 88 static int udf_remount_fs(struct super_block *, int *, char *); 89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 91 struct kernel_lb_addr *); 92 static void udf_load_fileset(struct super_block *, struct buffer_head *, 93 struct kernel_lb_addr *); 94 static void udf_open_lvid(struct super_block *); 95 static void udf_close_lvid(struct super_block *); 96 static unsigned int udf_count_free(struct super_block *); 97 static int udf_statfs(struct dentry *, struct kstatfs *); 98 static int udf_show_options(struct seq_file *, struct dentry *); 99 100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 101 { 102 struct logicalVolIntegrityDesc *lvid; 103 unsigned int partnum; 104 unsigned int offset; 105 106 if (!UDF_SB(sb)->s_lvid_bh) 107 return NULL; 108 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 109 partnum = le32_to_cpu(lvid->numOfPartitions); 110 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 111 offsetof(struct logicalVolIntegrityDesc, impUse)) / 112 (2 * sizeof(uint32_t)) < partnum) { 113 udf_err(sb, "Logical volume integrity descriptor corrupted " 114 "(numOfPartitions = %u)!\n", partnum); 115 return NULL; 116 } 117 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 118 offset = partnum * 2 * sizeof(uint32_t); 119 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 120 } 121 122 /* UDF filesystem type */ 123 static struct dentry *udf_mount(struct file_system_type *fs_type, 124 int flags, const char *dev_name, void *data) 125 { 126 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 127 } 128 129 static struct file_system_type udf_fstype = { 130 .owner = THIS_MODULE, 131 .name = "udf", 132 .mount = udf_mount, 133 .kill_sb = kill_block_super, 134 .fs_flags = FS_REQUIRES_DEV, 135 }; 136 MODULE_ALIAS_FS("udf"); 137 138 static struct kmem_cache *udf_inode_cachep; 139 140 static struct inode *udf_alloc_inode(struct super_block *sb) 141 { 142 struct udf_inode_info *ei; 143 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 144 if (!ei) 145 return NULL; 146 147 ei->i_unique = 0; 148 ei->i_lenExtents = 0; 149 ei->i_next_alloc_block = 0; 150 ei->i_next_alloc_goal = 0; 151 ei->i_strat4096 = 0; 152 init_rwsem(&ei->i_data_sem); 153 ei->cached_extent.lstart = -1; 154 spin_lock_init(&ei->i_extent_cache_lock); 155 156 return &ei->vfs_inode; 157 } 158 159 static void udf_i_callback(struct rcu_head *head) 160 { 161 struct inode *inode = container_of(head, struct inode, i_rcu); 162 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 163 } 164 165 static void udf_destroy_inode(struct inode *inode) 166 { 167 call_rcu(&inode->i_rcu, udf_i_callback); 168 } 169 170 static void init_once(void *foo) 171 { 172 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 173 174 ei->i_ext.i_data = NULL; 175 inode_init_once(&ei->vfs_inode); 176 } 177 178 static int __init init_inodecache(void) 179 { 180 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 181 sizeof(struct udf_inode_info), 182 0, (SLAB_RECLAIM_ACCOUNT | 183 SLAB_MEM_SPREAD), 184 init_once); 185 if (!udf_inode_cachep) 186 return -ENOMEM; 187 return 0; 188 } 189 190 static void destroy_inodecache(void) 191 { 192 /* 193 * Make sure all delayed rcu free inodes are flushed before we 194 * destroy cache. 195 */ 196 rcu_barrier(); 197 kmem_cache_destroy(udf_inode_cachep); 198 } 199 200 /* Superblock operations */ 201 static const struct super_operations udf_sb_ops = { 202 .alloc_inode = udf_alloc_inode, 203 .destroy_inode = udf_destroy_inode, 204 .write_inode = udf_write_inode, 205 .evict_inode = udf_evict_inode, 206 .put_super = udf_put_super, 207 .sync_fs = udf_sync_fs, 208 .statfs = udf_statfs, 209 .remount_fs = udf_remount_fs, 210 .show_options = udf_show_options, 211 }; 212 213 struct udf_options { 214 unsigned char novrs; 215 unsigned int blocksize; 216 unsigned int session; 217 unsigned int lastblock; 218 unsigned int anchor; 219 unsigned int volume; 220 unsigned short partition; 221 unsigned int fileset; 222 unsigned int rootdir; 223 unsigned int flags; 224 umode_t umask; 225 kgid_t gid; 226 kuid_t uid; 227 umode_t fmode; 228 umode_t dmode; 229 struct nls_table *nls_map; 230 }; 231 232 static int __init init_udf_fs(void) 233 { 234 int err; 235 236 err = init_inodecache(); 237 if (err) 238 goto out1; 239 err = register_filesystem(&udf_fstype); 240 if (err) 241 goto out; 242 243 return 0; 244 245 out: 246 destroy_inodecache(); 247 248 out1: 249 return err; 250 } 251 252 static void __exit exit_udf_fs(void) 253 { 254 unregister_filesystem(&udf_fstype); 255 destroy_inodecache(); 256 } 257 258 module_init(init_udf_fs) 259 module_exit(exit_udf_fs) 260 261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 262 { 263 struct udf_sb_info *sbi = UDF_SB(sb); 264 265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 266 GFP_KERNEL); 267 if (!sbi->s_partmaps) { 268 udf_err(sb, "Unable to allocate space for %d partition maps\n", 269 count); 270 sbi->s_partitions = 0; 271 return -ENOMEM; 272 } 273 274 sbi->s_partitions = count; 275 return 0; 276 } 277 278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 279 { 280 int i; 281 int nr_groups = bitmap->s_nr_groups; 282 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 283 nr_groups); 284 285 for (i = 0; i < nr_groups; i++) 286 if (bitmap->s_block_bitmap[i]) 287 brelse(bitmap->s_block_bitmap[i]); 288 289 if (size <= PAGE_SIZE) 290 kfree(bitmap); 291 else 292 vfree(bitmap); 293 } 294 295 static void udf_free_partition(struct udf_part_map *map) 296 { 297 int i; 298 struct udf_meta_data *mdata; 299 300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 301 iput(map->s_uspace.s_table); 302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 303 iput(map->s_fspace.s_table); 304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 305 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 307 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 308 if (map->s_partition_type == UDF_SPARABLE_MAP15) 309 for (i = 0; i < 4; i++) 310 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 311 else if (map->s_partition_type == UDF_METADATA_MAP25) { 312 mdata = &map->s_type_specific.s_metadata; 313 iput(mdata->s_metadata_fe); 314 mdata->s_metadata_fe = NULL; 315 316 iput(mdata->s_mirror_fe); 317 mdata->s_mirror_fe = NULL; 318 319 iput(mdata->s_bitmap_fe); 320 mdata->s_bitmap_fe = NULL; 321 } 322 } 323 324 static void udf_sb_free_partitions(struct super_block *sb) 325 { 326 struct udf_sb_info *sbi = UDF_SB(sb); 327 int i; 328 if (sbi->s_partmaps == NULL) 329 return; 330 for (i = 0; i < sbi->s_partitions; i++) 331 udf_free_partition(&sbi->s_partmaps[i]); 332 kfree(sbi->s_partmaps); 333 sbi->s_partmaps = NULL; 334 } 335 336 static int udf_show_options(struct seq_file *seq, struct dentry *root) 337 { 338 struct super_block *sb = root->d_sb; 339 struct udf_sb_info *sbi = UDF_SB(sb); 340 341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 342 seq_puts(seq, ",nostrict"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 344 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 346 seq_puts(seq, ",unhide"); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 348 seq_puts(seq, ",undelete"); 349 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 350 seq_puts(seq, ",noadinicb"); 351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 352 seq_puts(seq, ",shortad"); 353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 354 seq_puts(seq, ",uid=forget"); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 356 seq_puts(seq, ",uid=ignore"); 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 358 seq_puts(seq, ",gid=forget"); 359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 360 seq_puts(seq, ",gid=ignore"); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 362 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 364 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 365 if (sbi->s_umask != 0) 366 seq_printf(seq, ",umask=%ho", sbi->s_umask); 367 if (sbi->s_fmode != UDF_INVALID_MODE) 368 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 369 if (sbi->s_dmode != UDF_INVALID_MODE) 370 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 371 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 372 seq_printf(seq, ",session=%u", sbi->s_session); 373 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 374 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 375 if (sbi->s_anchor != 0) 376 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 377 /* 378 * volume, partition, fileset and rootdir seem to be ignored 379 * currently 380 */ 381 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 382 seq_puts(seq, ",utf8"); 383 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 384 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 385 386 return 0; 387 } 388 389 /* 390 * udf_parse_options 391 * 392 * PURPOSE 393 * Parse mount options. 394 * 395 * DESCRIPTION 396 * The following mount options are supported: 397 * 398 * gid= Set the default group. 399 * umask= Set the default umask. 400 * mode= Set the default file permissions. 401 * dmode= Set the default directory permissions. 402 * uid= Set the default user. 403 * bs= Set the block size. 404 * unhide Show otherwise hidden files. 405 * undelete Show deleted files in lists. 406 * adinicb Embed data in the inode (default) 407 * noadinicb Don't embed data in the inode 408 * shortad Use short ad's 409 * longad Use long ad's (default) 410 * nostrict Unset strict conformance 411 * iocharset= Set the NLS character set 412 * 413 * The remaining are for debugging and disaster recovery: 414 * 415 * novrs Skip volume sequence recognition 416 * 417 * The following expect a offset from 0. 418 * 419 * session= Set the CDROM session (default= last session) 420 * anchor= Override standard anchor location. (default= 256) 421 * volume= Override the VolumeDesc location. (unused) 422 * partition= Override the PartitionDesc location. (unused) 423 * lastblock= Set the last block of the filesystem/ 424 * 425 * The following expect a offset from the partition root. 426 * 427 * fileset= Override the fileset block location. (unused) 428 * rootdir= Override the root directory location. (unused) 429 * WARNING: overriding the rootdir to a non-directory may 430 * yield highly unpredictable results. 431 * 432 * PRE-CONDITIONS 433 * options Pointer to mount options string. 434 * uopts Pointer to mount options variable. 435 * 436 * POST-CONDITIONS 437 * <return> 1 Mount options parsed okay. 438 * <return> 0 Error parsing mount options. 439 * 440 * HISTORY 441 * July 1, 1997 - Andrew E. Mileski 442 * Written, tested, and released. 443 */ 444 445 enum { 446 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 447 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 448 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 449 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 450 Opt_rootdir, Opt_utf8, Opt_iocharset, 451 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 452 Opt_fmode, Opt_dmode 453 }; 454 455 static const match_table_t tokens = { 456 {Opt_novrs, "novrs"}, 457 {Opt_nostrict, "nostrict"}, 458 {Opt_bs, "bs=%u"}, 459 {Opt_unhide, "unhide"}, 460 {Opt_undelete, "undelete"}, 461 {Opt_noadinicb, "noadinicb"}, 462 {Opt_adinicb, "adinicb"}, 463 {Opt_shortad, "shortad"}, 464 {Opt_longad, "longad"}, 465 {Opt_uforget, "uid=forget"}, 466 {Opt_uignore, "uid=ignore"}, 467 {Opt_gforget, "gid=forget"}, 468 {Opt_gignore, "gid=ignore"}, 469 {Opt_gid, "gid=%u"}, 470 {Opt_uid, "uid=%u"}, 471 {Opt_umask, "umask=%o"}, 472 {Opt_session, "session=%u"}, 473 {Opt_lastblock, "lastblock=%u"}, 474 {Opt_anchor, "anchor=%u"}, 475 {Opt_volume, "volume=%u"}, 476 {Opt_partition, "partition=%u"}, 477 {Opt_fileset, "fileset=%u"}, 478 {Opt_rootdir, "rootdir=%u"}, 479 {Opt_utf8, "utf8"}, 480 {Opt_iocharset, "iocharset=%s"}, 481 {Opt_fmode, "mode=%o"}, 482 {Opt_dmode, "dmode=%o"}, 483 {Opt_err, NULL} 484 }; 485 486 static int udf_parse_options(char *options, struct udf_options *uopt, 487 bool remount) 488 { 489 char *p; 490 int option; 491 492 uopt->novrs = 0; 493 uopt->partition = 0xFFFF; 494 uopt->session = 0xFFFFFFFF; 495 uopt->lastblock = 0; 496 uopt->anchor = 0; 497 uopt->volume = 0xFFFFFFFF; 498 uopt->rootdir = 0xFFFFFFFF; 499 uopt->fileset = 0xFFFFFFFF; 500 uopt->nls_map = NULL; 501 502 if (!options) 503 return 1; 504 505 while ((p = strsep(&options, ",")) != NULL) { 506 substring_t args[MAX_OPT_ARGS]; 507 int token; 508 unsigned n; 509 if (!*p) 510 continue; 511 512 token = match_token(p, tokens, args); 513 switch (token) { 514 case Opt_novrs: 515 uopt->novrs = 1; 516 break; 517 case Opt_bs: 518 if (match_int(&args[0], &option)) 519 return 0; 520 n = option; 521 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 522 return 0; 523 uopt->blocksize = n; 524 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 525 break; 526 case Opt_unhide: 527 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 528 break; 529 case Opt_undelete: 530 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 531 break; 532 case Opt_noadinicb: 533 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 534 break; 535 case Opt_adinicb: 536 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 537 break; 538 case Opt_shortad: 539 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 540 break; 541 case Opt_longad: 542 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 543 break; 544 case Opt_gid: 545 if (match_int(args, &option)) 546 return 0; 547 uopt->gid = make_kgid(current_user_ns(), option); 548 if (!gid_valid(uopt->gid)) 549 return 0; 550 uopt->flags |= (1 << UDF_FLAG_GID_SET); 551 break; 552 case Opt_uid: 553 if (match_int(args, &option)) 554 return 0; 555 uopt->uid = make_kuid(current_user_ns(), option); 556 if (!uid_valid(uopt->uid)) 557 return 0; 558 uopt->flags |= (1 << UDF_FLAG_UID_SET); 559 break; 560 case Opt_umask: 561 if (match_octal(args, &option)) 562 return 0; 563 uopt->umask = option; 564 break; 565 case Opt_nostrict: 566 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 567 break; 568 case Opt_session: 569 if (match_int(args, &option)) 570 return 0; 571 uopt->session = option; 572 if (!remount) 573 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 574 break; 575 case Opt_lastblock: 576 if (match_int(args, &option)) 577 return 0; 578 uopt->lastblock = option; 579 if (!remount) 580 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 581 break; 582 case Opt_anchor: 583 if (match_int(args, &option)) 584 return 0; 585 uopt->anchor = option; 586 break; 587 case Opt_volume: 588 if (match_int(args, &option)) 589 return 0; 590 uopt->volume = option; 591 break; 592 case Opt_partition: 593 if (match_int(args, &option)) 594 return 0; 595 uopt->partition = option; 596 break; 597 case Opt_fileset: 598 if (match_int(args, &option)) 599 return 0; 600 uopt->fileset = option; 601 break; 602 case Opt_rootdir: 603 if (match_int(args, &option)) 604 return 0; 605 uopt->rootdir = option; 606 break; 607 case Opt_utf8: 608 uopt->flags |= (1 << UDF_FLAG_UTF8); 609 break; 610 #ifdef CONFIG_UDF_NLS 611 case Opt_iocharset: 612 uopt->nls_map = load_nls(args[0].from); 613 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 614 break; 615 #endif 616 case Opt_uignore: 617 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 618 break; 619 case Opt_uforget: 620 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 621 break; 622 case Opt_gignore: 623 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 624 break; 625 case Opt_gforget: 626 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 627 break; 628 case Opt_fmode: 629 if (match_octal(args, &option)) 630 return 0; 631 uopt->fmode = option & 0777; 632 break; 633 case Opt_dmode: 634 if (match_octal(args, &option)) 635 return 0; 636 uopt->dmode = option & 0777; 637 break; 638 default: 639 pr_err("bad mount option \"%s\" or missing value\n", p); 640 return 0; 641 } 642 } 643 return 1; 644 } 645 646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 647 { 648 struct udf_options uopt; 649 struct udf_sb_info *sbi = UDF_SB(sb); 650 int error = 0; 651 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 652 653 sync_filesystem(sb); 654 if (lvidiu) { 655 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 656 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 657 return -EACCES; 658 } 659 660 uopt.flags = sbi->s_flags; 661 uopt.uid = sbi->s_uid; 662 uopt.gid = sbi->s_gid; 663 uopt.umask = sbi->s_umask; 664 uopt.fmode = sbi->s_fmode; 665 uopt.dmode = sbi->s_dmode; 666 667 if (!udf_parse_options(options, &uopt, true)) 668 return -EINVAL; 669 670 write_lock(&sbi->s_cred_lock); 671 sbi->s_flags = uopt.flags; 672 sbi->s_uid = uopt.uid; 673 sbi->s_gid = uopt.gid; 674 sbi->s_umask = uopt.umask; 675 sbi->s_fmode = uopt.fmode; 676 sbi->s_dmode = uopt.dmode; 677 write_unlock(&sbi->s_cred_lock); 678 679 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 680 goto out_unlock; 681 682 if (*flags & MS_RDONLY) 683 udf_close_lvid(sb); 684 else 685 udf_open_lvid(sb); 686 687 out_unlock: 688 return error; 689 } 690 691 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 692 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 693 static loff_t udf_check_vsd(struct super_block *sb) 694 { 695 struct volStructDesc *vsd = NULL; 696 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 697 int sectorsize; 698 struct buffer_head *bh = NULL; 699 int nsr02 = 0; 700 int nsr03 = 0; 701 struct udf_sb_info *sbi; 702 703 sbi = UDF_SB(sb); 704 if (sb->s_blocksize < sizeof(struct volStructDesc)) 705 sectorsize = sizeof(struct volStructDesc); 706 else 707 sectorsize = sb->s_blocksize; 708 709 sector += (sbi->s_session << sb->s_blocksize_bits); 710 711 udf_debug("Starting at sector %u (%ld byte sectors)\n", 712 (unsigned int)(sector >> sb->s_blocksize_bits), 713 sb->s_blocksize); 714 /* Process the sequence (if applicable). The hard limit on the sector 715 * offset is arbitrary, hopefully large enough so that all valid UDF 716 * filesystems will be recognised. There is no mention of an upper 717 * bound to the size of the volume recognition area in the standard. 718 * The limit will prevent the code to read all the sectors of a 719 * specially crafted image (like a bluray disc full of CD001 sectors), 720 * potentially causing minutes or even hours of uninterruptible I/O 721 * activity. This actually happened with uninitialised SSD partitions 722 * (all 0xFF) before the check for the limit and all valid IDs were 723 * added */ 724 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 725 sector += sectorsize) { 726 /* Read a block */ 727 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 728 if (!bh) 729 break; 730 731 /* Look for ISO descriptors */ 732 vsd = (struct volStructDesc *)(bh->b_data + 733 (sector & (sb->s_blocksize - 1))); 734 735 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 736 VSD_STD_ID_LEN)) { 737 switch (vsd->structType) { 738 case 0: 739 udf_debug("ISO9660 Boot Record found\n"); 740 break; 741 case 1: 742 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 743 break; 744 case 2: 745 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 746 break; 747 case 3: 748 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 749 break; 750 case 255: 751 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 752 break; 753 default: 754 udf_debug("ISO9660 VRS (%u) found\n", 755 vsd->structType); 756 break; 757 } 758 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 759 VSD_STD_ID_LEN)) 760 ; /* nothing */ 761 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 762 VSD_STD_ID_LEN)) { 763 brelse(bh); 764 break; 765 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 766 VSD_STD_ID_LEN)) 767 nsr02 = sector; 768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 769 VSD_STD_ID_LEN)) 770 nsr03 = sector; 771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 772 VSD_STD_ID_LEN)) 773 ; /* nothing */ 774 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 775 VSD_STD_ID_LEN)) 776 ; /* nothing */ 777 else { 778 /* invalid id : end of volume recognition area */ 779 brelse(bh); 780 break; 781 } 782 brelse(bh); 783 } 784 785 if (nsr03) 786 return nsr03; 787 else if (nsr02) 788 return nsr02; 789 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 790 VSD_FIRST_SECTOR_OFFSET) 791 return -1; 792 else 793 return 0; 794 } 795 796 static int udf_find_fileset(struct super_block *sb, 797 struct kernel_lb_addr *fileset, 798 struct kernel_lb_addr *root) 799 { 800 struct buffer_head *bh = NULL; 801 long lastblock; 802 uint16_t ident; 803 struct udf_sb_info *sbi; 804 805 if (fileset->logicalBlockNum != 0xFFFFFFFF || 806 fileset->partitionReferenceNum != 0xFFFF) { 807 bh = udf_read_ptagged(sb, fileset, 0, &ident); 808 809 if (!bh) { 810 return 1; 811 } else if (ident != TAG_IDENT_FSD) { 812 brelse(bh); 813 return 1; 814 } 815 816 } 817 818 sbi = UDF_SB(sb); 819 if (!bh) { 820 /* Search backwards through the partitions */ 821 struct kernel_lb_addr newfileset; 822 823 /* --> cvg: FIXME - is it reasonable? */ 824 return 1; 825 826 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 827 (newfileset.partitionReferenceNum != 0xFFFF && 828 fileset->logicalBlockNum == 0xFFFFFFFF && 829 fileset->partitionReferenceNum == 0xFFFF); 830 newfileset.partitionReferenceNum--) { 831 lastblock = sbi->s_partmaps 832 [newfileset.partitionReferenceNum] 833 .s_partition_len; 834 newfileset.logicalBlockNum = 0; 835 836 do { 837 bh = udf_read_ptagged(sb, &newfileset, 0, 838 &ident); 839 if (!bh) { 840 newfileset.logicalBlockNum++; 841 continue; 842 } 843 844 switch (ident) { 845 case TAG_IDENT_SBD: 846 { 847 struct spaceBitmapDesc *sp; 848 sp = (struct spaceBitmapDesc *) 849 bh->b_data; 850 newfileset.logicalBlockNum += 1 + 851 ((le32_to_cpu(sp->numOfBytes) + 852 sizeof(struct spaceBitmapDesc) 853 - 1) >> sb->s_blocksize_bits); 854 brelse(bh); 855 break; 856 } 857 case TAG_IDENT_FSD: 858 *fileset = newfileset; 859 break; 860 default: 861 newfileset.logicalBlockNum++; 862 brelse(bh); 863 bh = NULL; 864 break; 865 } 866 } while (newfileset.logicalBlockNum < lastblock && 867 fileset->logicalBlockNum == 0xFFFFFFFF && 868 fileset->partitionReferenceNum == 0xFFFF); 869 } 870 } 871 872 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 873 fileset->partitionReferenceNum != 0xFFFF) && bh) { 874 udf_debug("Fileset at block=%d, partition=%d\n", 875 fileset->logicalBlockNum, 876 fileset->partitionReferenceNum); 877 878 sbi->s_partition = fileset->partitionReferenceNum; 879 udf_load_fileset(sb, bh, root); 880 brelse(bh); 881 return 0; 882 } 883 return 1; 884 } 885 886 /* 887 * Load primary Volume Descriptor Sequence 888 * 889 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 890 * should be tried. 891 */ 892 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 893 { 894 struct primaryVolDesc *pvoldesc; 895 struct ustr *instr, *outstr; 896 struct buffer_head *bh; 897 uint16_t ident; 898 int ret = -ENOMEM; 899 900 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 901 if (!instr) 902 return -ENOMEM; 903 904 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 905 if (!outstr) 906 goto out1; 907 908 bh = udf_read_tagged(sb, block, block, &ident); 909 if (!bh) { 910 ret = -EAGAIN; 911 goto out2; 912 } 913 914 if (ident != TAG_IDENT_PVD) { 915 ret = -EIO; 916 goto out_bh; 917 } 918 919 pvoldesc = (struct primaryVolDesc *)bh->b_data; 920 921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 922 pvoldesc->recordingDateAndTime)) { 923 #ifdef UDFFS_DEBUG 924 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 927 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 928 #endif 929 } 930 931 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 932 if (udf_CS0toUTF8(outstr, instr)) { 933 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 934 outstr->u_len > 31 ? 31 : outstr->u_len); 935 udf_debug("volIdent[] = '%s'\n", 936 UDF_SB(sb)->s_volume_ident); 937 } 938 939 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 940 if (udf_CS0toUTF8(outstr, instr)) 941 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 942 943 ret = 0; 944 out_bh: 945 brelse(bh); 946 out2: 947 kfree(outstr); 948 out1: 949 kfree(instr); 950 return ret; 951 } 952 953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 954 u32 meta_file_loc, u32 partition_num) 955 { 956 struct kernel_lb_addr addr; 957 struct inode *metadata_fe; 958 959 addr.logicalBlockNum = meta_file_loc; 960 addr.partitionReferenceNum = partition_num; 961 962 metadata_fe = udf_iget(sb, &addr); 963 964 if (metadata_fe == NULL) 965 udf_warn(sb, "metadata inode efe not found\n"); 966 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 967 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 968 iput(metadata_fe); 969 metadata_fe = NULL; 970 } 971 972 return metadata_fe; 973 } 974 975 static int udf_load_metadata_files(struct super_block *sb, int partition) 976 { 977 struct udf_sb_info *sbi = UDF_SB(sb); 978 struct udf_part_map *map; 979 struct udf_meta_data *mdata; 980 struct kernel_lb_addr addr; 981 982 map = &sbi->s_partmaps[partition]; 983 mdata = &map->s_type_specific.s_metadata; 984 985 /* metadata address */ 986 udf_debug("Metadata file location: block = %d part = %d\n", 987 mdata->s_meta_file_loc, map->s_partition_num); 988 989 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 990 mdata->s_meta_file_loc, map->s_partition_num); 991 992 if (mdata->s_metadata_fe == NULL) { 993 /* mirror file entry */ 994 udf_debug("Mirror metadata file location: block = %d part = %d\n", 995 mdata->s_mirror_file_loc, map->s_partition_num); 996 997 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 998 mdata->s_mirror_file_loc, map->s_partition_num); 999 1000 if (mdata->s_mirror_fe == NULL) { 1001 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 1002 return -EIO; 1003 } 1004 } 1005 1006 /* 1007 * bitmap file entry 1008 * Note: 1009 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1010 */ 1011 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1012 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1013 addr.partitionReferenceNum = map->s_partition_num; 1014 1015 udf_debug("Bitmap file location: block = %d part = %d\n", 1016 addr.logicalBlockNum, addr.partitionReferenceNum); 1017 1018 mdata->s_bitmap_fe = udf_iget(sb, &addr); 1019 if (mdata->s_bitmap_fe == NULL) { 1020 if (sb->s_flags & MS_RDONLY) 1021 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1022 else { 1023 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1024 return -EIO; 1025 } 1026 } 1027 } 1028 1029 udf_debug("udf_load_metadata_files Ok\n"); 1030 return 0; 1031 } 1032 1033 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1034 struct kernel_lb_addr *root) 1035 { 1036 struct fileSetDesc *fset; 1037 1038 fset = (struct fileSetDesc *)bh->b_data; 1039 1040 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1041 1042 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1043 1044 udf_debug("Rootdir at block=%d, partition=%d\n", 1045 root->logicalBlockNum, root->partitionReferenceNum); 1046 } 1047 1048 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1049 { 1050 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1051 return DIV_ROUND_UP(map->s_partition_len + 1052 (sizeof(struct spaceBitmapDesc) << 3), 1053 sb->s_blocksize * 8); 1054 } 1055 1056 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1057 { 1058 struct udf_bitmap *bitmap; 1059 int nr_groups; 1060 int size; 1061 1062 nr_groups = udf_compute_nr_groups(sb, index); 1063 size = sizeof(struct udf_bitmap) + 1064 (sizeof(struct buffer_head *) * nr_groups); 1065 1066 if (size <= PAGE_SIZE) 1067 bitmap = kzalloc(size, GFP_KERNEL); 1068 else 1069 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1070 1071 if (bitmap == NULL) 1072 return NULL; 1073 1074 bitmap->s_nr_groups = nr_groups; 1075 return bitmap; 1076 } 1077 1078 static int udf_fill_partdesc_info(struct super_block *sb, 1079 struct partitionDesc *p, int p_index) 1080 { 1081 struct udf_part_map *map; 1082 struct udf_sb_info *sbi = UDF_SB(sb); 1083 struct partitionHeaderDesc *phd; 1084 1085 map = &sbi->s_partmaps[p_index]; 1086 1087 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1088 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1089 1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1091 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1093 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1094 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1095 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1097 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1098 1099 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1100 p_index, map->s_partition_type, 1101 map->s_partition_root, map->s_partition_len); 1102 1103 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1104 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1105 return 0; 1106 1107 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1108 if (phd->unallocSpaceTable.extLength) { 1109 struct kernel_lb_addr loc = { 1110 .logicalBlockNum = le32_to_cpu( 1111 phd->unallocSpaceTable.extPosition), 1112 .partitionReferenceNum = p_index, 1113 }; 1114 1115 map->s_uspace.s_table = udf_iget(sb, &loc); 1116 if (!map->s_uspace.s_table) { 1117 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1118 p_index); 1119 return -EIO; 1120 } 1121 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1122 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1123 p_index, map->s_uspace.s_table->i_ino); 1124 } 1125 1126 if (phd->unallocSpaceBitmap.extLength) { 1127 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1128 if (!bitmap) 1129 return -ENOMEM; 1130 map->s_uspace.s_bitmap = bitmap; 1131 bitmap->s_extPosition = le32_to_cpu( 1132 phd->unallocSpaceBitmap.extPosition); 1133 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1134 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1135 p_index, bitmap->s_extPosition); 1136 } 1137 1138 if (phd->partitionIntegrityTable.extLength) 1139 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1140 1141 if (phd->freedSpaceTable.extLength) { 1142 struct kernel_lb_addr loc = { 1143 .logicalBlockNum = le32_to_cpu( 1144 phd->freedSpaceTable.extPosition), 1145 .partitionReferenceNum = p_index, 1146 }; 1147 1148 map->s_fspace.s_table = udf_iget(sb, &loc); 1149 if (!map->s_fspace.s_table) { 1150 udf_debug("cannot load freedSpaceTable (part %d)\n", 1151 p_index); 1152 return -EIO; 1153 } 1154 1155 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1156 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1157 p_index, map->s_fspace.s_table->i_ino); 1158 } 1159 1160 if (phd->freedSpaceBitmap.extLength) { 1161 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1162 if (!bitmap) 1163 return -ENOMEM; 1164 map->s_fspace.s_bitmap = bitmap; 1165 bitmap->s_extPosition = le32_to_cpu( 1166 phd->freedSpaceBitmap.extPosition); 1167 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1168 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1169 p_index, bitmap->s_extPosition); 1170 } 1171 return 0; 1172 } 1173 1174 static void udf_find_vat_block(struct super_block *sb, int p_index, 1175 int type1_index, sector_t start_block) 1176 { 1177 struct udf_sb_info *sbi = UDF_SB(sb); 1178 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1179 sector_t vat_block; 1180 struct kernel_lb_addr ino; 1181 1182 /* 1183 * VAT file entry is in the last recorded block. Some broken disks have 1184 * it a few blocks before so try a bit harder... 1185 */ 1186 ino.partitionReferenceNum = type1_index; 1187 for (vat_block = start_block; 1188 vat_block >= map->s_partition_root && 1189 vat_block >= start_block - 3 && 1190 !sbi->s_vat_inode; vat_block--) { 1191 ino.logicalBlockNum = vat_block - map->s_partition_root; 1192 sbi->s_vat_inode = udf_iget(sb, &ino); 1193 } 1194 } 1195 1196 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1197 { 1198 struct udf_sb_info *sbi = UDF_SB(sb); 1199 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1200 struct buffer_head *bh = NULL; 1201 struct udf_inode_info *vati; 1202 uint32_t pos; 1203 struct virtualAllocationTable20 *vat20; 1204 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1205 1206 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1207 if (!sbi->s_vat_inode && 1208 sbi->s_last_block != blocks - 1) { 1209 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1210 (unsigned long)sbi->s_last_block, 1211 (unsigned long)blocks - 1); 1212 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1213 } 1214 if (!sbi->s_vat_inode) 1215 return -EIO; 1216 1217 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1218 map->s_type_specific.s_virtual.s_start_offset = 0; 1219 map->s_type_specific.s_virtual.s_num_entries = 1220 (sbi->s_vat_inode->i_size - 36) >> 2; 1221 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1222 vati = UDF_I(sbi->s_vat_inode); 1223 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1224 pos = udf_block_map(sbi->s_vat_inode, 0); 1225 bh = sb_bread(sb, pos); 1226 if (!bh) 1227 return -EIO; 1228 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1229 } else { 1230 vat20 = (struct virtualAllocationTable20 *) 1231 vati->i_ext.i_data; 1232 } 1233 1234 map->s_type_specific.s_virtual.s_start_offset = 1235 le16_to_cpu(vat20->lengthHeader); 1236 map->s_type_specific.s_virtual.s_num_entries = 1237 (sbi->s_vat_inode->i_size - 1238 map->s_type_specific.s_virtual. 1239 s_start_offset) >> 2; 1240 brelse(bh); 1241 } 1242 return 0; 1243 } 1244 1245 /* 1246 * Load partition descriptor block 1247 * 1248 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1249 * sequence. 1250 */ 1251 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1252 { 1253 struct buffer_head *bh; 1254 struct partitionDesc *p; 1255 struct udf_part_map *map; 1256 struct udf_sb_info *sbi = UDF_SB(sb); 1257 int i, type1_idx; 1258 uint16_t partitionNumber; 1259 uint16_t ident; 1260 int ret; 1261 1262 bh = udf_read_tagged(sb, block, block, &ident); 1263 if (!bh) 1264 return -EAGAIN; 1265 if (ident != TAG_IDENT_PD) { 1266 ret = 0; 1267 goto out_bh; 1268 } 1269 1270 p = (struct partitionDesc *)bh->b_data; 1271 partitionNumber = le16_to_cpu(p->partitionNumber); 1272 1273 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1274 for (i = 0; i < sbi->s_partitions; i++) { 1275 map = &sbi->s_partmaps[i]; 1276 udf_debug("Searching map: (%d == %d)\n", 1277 map->s_partition_num, partitionNumber); 1278 if (map->s_partition_num == partitionNumber && 1279 (map->s_partition_type == UDF_TYPE1_MAP15 || 1280 map->s_partition_type == UDF_SPARABLE_MAP15)) 1281 break; 1282 } 1283 1284 if (i >= sbi->s_partitions) { 1285 udf_debug("Partition (%d) not found in partition map\n", 1286 partitionNumber); 1287 ret = 0; 1288 goto out_bh; 1289 } 1290 1291 ret = udf_fill_partdesc_info(sb, p, i); 1292 if (ret < 0) 1293 goto out_bh; 1294 1295 /* 1296 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1297 * PHYSICAL partitions are already set up 1298 */ 1299 type1_idx = i; 1300 #ifdef UDFFS_DEBUG 1301 map = NULL; /* supress 'maybe used uninitialized' warning */ 1302 #endif 1303 for (i = 0; i < sbi->s_partitions; i++) { 1304 map = &sbi->s_partmaps[i]; 1305 1306 if (map->s_partition_num == partitionNumber && 1307 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1308 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1309 map->s_partition_type == UDF_METADATA_MAP25)) 1310 break; 1311 } 1312 1313 if (i >= sbi->s_partitions) { 1314 ret = 0; 1315 goto out_bh; 1316 } 1317 1318 ret = udf_fill_partdesc_info(sb, p, i); 1319 if (ret < 0) 1320 goto out_bh; 1321 1322 if (map->s_partition_type == UDF_METADATA_MAP25) { 1323 ret = udf_load_metadata_files(sb, i); 1324 if (ret < 0) { 1325 udf_err(sb, "error loading MetaData partition map %d\n", 1326 i); 1327 goto out_bh; 1328 } 1329 } else { 1330 /* 1331 * If we have a partition with virtual map, we don't handle 1332 * writing to it (we overwrite blocks instead of relocating 1333 * them). 1334 */ 1335 if (!(sb->s_flags & MS_RDONLY)) { 1336 ret = -EACCES; 1337 goto out_bh; 1338 } 1339 ret = udf_load_vat(sb, i, type1_idx); 1340 if (ret < 0) 1341 goto out_bh; 1342 } 1343 ret = 0; 1344 out_bh: 1345 /* In case loading failed, we handle cleanup in udf_fill_super */ 1346 brelse(bh); 1347 return ret; 1348 } 1349 1350 static int udf_load_sparable_map(struct super_block *sb, 1351 struct udf_part_map *map, 1352 struct sparablePartitionMap *spm) 1353 { 1354 uint32_t loc; 1355 uint16_t ident; 1356 struct sparingTable *st; 1357 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1358 int i; 1359 struct buffer_head *bh; 1360 1361 map->s_partition_type = UDF_SPARABLE_MAP15; 1362 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1363 if (!is_power_of_2(sdata->s_packet_len)) { 1364 udf_err(sb, "error loading logical volume descriptor: " 1365 "Invalid packet length %u\n", 1366 (unsigned)sdata->s_packet_len); 1367 return -EIO; 1368 } 1369 if (spm->numSparingTables > 4) { 1370 udf_err(sb, "error loading logical volume descriptor: " 1371 "Too many sparing tables (%d)\n", 1372 (int)spm->numSparingTables); 1373 return -EIO; 1374 } 1375 1376 for (i = 0; i < spm->numSparingTables; i++) { 1377 loc = le32_to_cpu(spm->locSparingTable[i]); 1378 bh = udf_read_tagged(sb, loc, loc, &ident); 1379 if (!bh) 1380 continue; 1381 1382 st = (struct sparingTable *)bh->b_data; 1383 if (ident != 0 || 1384 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1385 strlen(UDF_ID_SPARING)) || 1386 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1387 sb->s_blocksize) { 1388 brelse(bh); 1389 continue; 1390 } 1391 1392 sdata->s_spar_map[i] = bh; 1393 } 1394 map->s_partition_func = udf_get_pblock_spar15; 1395 return 0; 1396 } 1397 1398 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1399 struct kernel_lb_addr *fileset) 1400 { 1401 struct logicalVolDesc *lvd; 1402 int i, offset; 1403 uint8_t type; 1404 struct udf_sb_info *sbi = UDF_SB(sb); 1405 struct genericPartitionMap *gpm; 1406 uint16_t ident; 1407 struct buffer_head *bh; 1408 unsigned int table_len; 1409 int ret; 1410 1411 bh = udf_read_tagged(sb, block, block, &ident); 1412 if (!bh) 1413 return -EAGAIN; 1414 BUG_ON(ident != TAG_IDENT_LVD); 1415 lvd = (struct logicalVolDesc *)bh->b_data; 1416 table_len = le32_to_cpu(lvd->mapTableLength); 1417 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1418 udf_err(sb, "error loading logical volume descriptor: " 1419 "Partition table too long (%u > %lu)\n", table_len, 1420 sb->s_blocksize - sizeof(*lvd)); 1421 ret = -EIO; 1422 goto out_bh; 1423 } 1424 1425 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1426 if (ret) 1427 goto out_bh; 1428 1429 for (i = 0, offset = 0; 1430 i < sbi->s_partitions && offset < table_len; 1431 i++, offset += gpm->partitionMapLength) { 1432 struct udf_part_map *map = &sbi->s_partmaps[i]; 1433 gpm = (struct genericPartitionMap *) 1434 &(lvd->partitionMaps[offset]); 1435 type = gpm->partitionMapType; 1436 if (type == 1) { 1437 struct genericPartitionMap1 *gpm1 = 1438 (struct genericPartitionMap1 *)gpm; 1439 map->s_partition_type = UDF_TYPE1_MAP15; 1440 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1441 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1442 map->s_partition_func = NULL; 1443 } else if (type == 2) { 1444 struct udfPartitionMap2 *upm2 = 1445 (struct udfPartitionMap2 *)gpm; 1446 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1447 strlen(UDF_ID_VIRTUAL))) { 1448 u16 suf = 1449 le16_to_cpu(((__le16 *)upm2->partIdent. 1450 identSuffix)[0]); 1451 if (suf < 0x0200) { 1452 map->s_partition_type = 1453 UDF_VIRTUAL_MAP15; 1454 map->s_partition_func = 1455 udf_get_pblock_virt15; 1456 } else { 1457 map->s_partition_type = 1458 UDF_VIRTUAL_MAP20; 1459 map->s_partition_func = 1460 udf_get_pblock_virt20; 1461 } 1462 } else if (!strncmp(upm2->partIdent.ident, 1463 UDF_ID_SPARABLE, 1464 strlen(UDF_ID_SPARABLE))) { 1465 ret = udf_load_sparable_map(sb, map, 1466 (struct sparablePartitionMap *)gpm); 1467 if (ret < 0) 1468 goto out_bh; 1469 } else if (!strncmp(upm2->partIdent.ident, 1470 UDF_ID_METADATA, 1471 strlen(UDF_ID_METADATA))) { 1472 struct udf_meta_data *mdata = 1473 &map->s_type_specific.s_metadata; 1474 struct metadataPartitionMap *mdm = 1475 (struct metadataPartitionMap *) 1476 &(lvd->partitionMaps[offset]); 1477 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1478 i, type, UDF_ID_METADATA); 1479 1480 map->s_partition_type = UDF_METADATA_MAP25; 1481 map->s_partition_func = udf_get_pblock_meta25; 1482 1483 mdata->s_meta_file_loc = 1484 le32_to_cpu(mdm->metadataFileLoc); 1485 mdata->s_mirror_file_loc = 1486 le32_to_cpu(mdm->metadataMirrorFileLoc); 1487 mdata->s_bitmap_file_loc = 1488 le32_to_cpu(mdm->metadataBitmapFileLoc); 1489 mdata->s_alloc_unit_size = 1490 le32_to_cpu(mdm->allocUnitSize); 1491 mdata->s_align_unit_size = 1492 le16_to_cpu(mdm->alignUnitSize); 1493 if (mdm->flags & 0x01) 1494 mdata->s_flags |= MF_DUPLICATE_MD; 1495 1496 udf_debug("Metadata Ident suffix=0x%x\n", 1497 le16_to_cpu(*(__le16 *) 1498 mdm->partIdent.identSuffix)); 1499 udf_debug("Metadata part num=%d\n", 1500 le16_to_cpu(mdm->partitionNum)); 1501 udf_debug("Metadata part alloc unit size=%d\n", 1502 le32_to_cpu(mdm->allocUnitSize)); 1503 udf_debug("Metadata file loc=%d\n", 1504 le32_to_cpu(mdm->metadataFileLoc)); 1505 udf_debug("Mirror file loc=%d\n", 1506 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1507 udf_debug("Bitmap file loc=%d\n", 1508 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1509 udf_debug("Flags: %d %d\n", 1510 mdata->s_flags, mdm->flags); 1511 } else { 1512 udf_debug("Unknown ident: %s\n", 1513 upm2->partIdent.ident); 1514 continue; 1515 } 1516 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1517 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1518 } 1519 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1520 i, map->s_partition_num, type, map->s_volumeseqnum); 1521 } 1522 1523 if (fileset) { 1524 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1525 1526 *fileset = lelb_to_cpu(la->extLocation); 1527 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1528 fileset->logicalBlockNum, 1529 fileset->partitionReferenceNum); 1530 } 1531 if (lvd->integritySeqExt.extLength) 1532 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1533 ret = 0; 1534 out_bh: 1535 brelse(bh); 1536 return ret; 1537 } 1538 1539 /* 1540 * udf_load_logicalvolint 1541 * 1542 */ 1543 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1544 { 1545 struct buffer_head *bh = NULL; 1546 uint16_t ident; 1547 struct udf_sb_info *sbi = UDF_SB(sb); 1548 struct logicalVolIntegrityDesc *lvid; 1549 1550 while (loc.extLength > 0 && 1551 (bh = udf_read_tagged(sb, loc.extLocation, 1552 loc.extLocation, &ident)) && 1553 ident == TAG_IDENT_LVID) { 1554 sbi->s_lvid_bh = bh; 1555 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1556 1557 if (lvid->nextIntegrityExt.extLength) 1558 udf_load_logicalvolint(sb, 1559 leea_to_cpu(lvid->nextIntegrityExt)); 1560 1561 if (sbi->s_lvid_bh != bh) 1562 brelse(bh); 1563 loc.extLength -= sb->s_blocksize; 1564 loc.extLocation++; 1565 } 1566 if (sbi->s_lvid_bh != bh) 1567 brelse(bh); 1568 } 1569 1570 /* 1571 * Process a main/reserve volume descriptor sequence. 1572 * @block First block of first extent of the sequence. 1573 * @lastblock Lastblock of first extent of the sequence. 1574 * @fileset There we store extent containing root fileset 1575 * 1576 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1577 * sequence 1578 */ 1579 static noinline int udf_process_sequence( 1580 struct super_block *sb, 1581 sector_t block, sector_t lastblock, 1582 struct kernel_lb_addr *fileset) 1583 { 1584 struct buffer_head *bh = NULL; 1585 struct udf_vds_record vds[VDS_POS_LENGTH]; 1586 struct udf_vds_record *curr; 1587 struct generic_desc *gd; 1588 struct volDescPtr *vdp; 1589 int done = 0; 1590 uint32_t vdsn; 1591 uint16_t ident; 1592 long next_s = 0, next_e = 0; 1593 int ret; 1594 1595 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1596 1597 /* 1598 * Read the main descriptor sequence and find which descriptors 1599 * are in it. 1600 */ 1601 for (; (!done && block <= lastblock); block++) { 1602 1603 bh = udf_read_tagged(sb, block, block, &ident); 1604 if (!bh) { 1605 udf_err(sb, 1606 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1607 (unsigned long long)block); 1608 return -EAGAIN; 1609 } 1610 1611 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1612 gd = (struct generic_desc *)bh->b_data; 1613 vdsn = le32_to_cpu(gd->volDescSeqNum); 1614 switch (ident) { 1615 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1616 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1617 if (vdsn >= curr->volDescSeqNum) { 1618 curr->volDescSeqNum = vdsn; 1619 curr->block = block; 1620 } 1621 break; 1622 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1623 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1624 if (vdsn >= curr->volDescSeqNum) { 1625 curr->volDescSeqNum = vdsn; 1626 curr->block = block; 1627 1628 vdp = (struct volDescPtr *)bh->b_data; 1629 next_s = le32_to_cpu( 1630 vdp->nextVolDescSeqExt.extLocation); 1631 next_e = le32_to_cpu( 1632 vdp->nextVolDescSeqExt.extLength); 1633 next_e = next_e >> sb->s_blocksize_bits; 1634 next_e += next_s; 1635 } 1636 break; 1637 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1638 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1639 if (vdsn >= curr->volDescSeqNum) { 1640 curr->volDescSeqNum = vdsn; 1641 curr->block = block; 1642 } 1643 break; 1644 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1645 curr = &vds[VDS_POS_PARTITION_DESC]; 1646 if (!curr->block) 1647 curr->block = block; 1648 break; 1649 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1650 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1651 if (vdsn >= curr->volDescSeqNum) { 1652 curr->volDescSeqNum = vdsn; 1653 curr->block = block; 1654 } 1655 break; 1656 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1657 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1658 if (vdsn >= curr->volDescSeqNum) { 1659 curr->volDescSeqNum = vdsn; 1660 curr->block = block; 1661 } 1662 break; 1663 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1664 vds[VDS_POS_TERMINATING_DESC].block = block; 1665 if (next_e) { 1666 block = next_s; 1667 lastblock = next_e; 1668 next_s = next_e = 0; 1669 } else 1670 done = 1; 1671 break; 1672 } 1673 brelse(bh); 1674 } 1675 /* 1676 * Now read interesting descriptors again and process them 1677 * in a suitable order 1678 */ 1679 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1680 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1681 return -EAGAIN; 1682 } 1683 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1684 if (ret < 0) 1685 return ret; 1686 1687 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1688 ret = udf_load_logicalvol(sb, 1689 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1690 fileset); 1691 if (ret < 0) 1692 return ret; 1693 } 1694 1695 if (vds[VDS_POS_PARTITION_DESC].block) { 1696 /* 1697 * We rescan the whole descriptor sequence to find 1698 * partition descriptor blocks and process them. 1699 */ 1700 for (block = vds[VDS_POS_PARTITION_DESC].block; 1701 block < vds[VDS_POS_TERMINATING_DESC].block; 1702 block++) { 1703 ret = udf_load_partdesc(sb, block); 1704 if (ret < 0) 1705 return ret; 1706 } 1707 } 1708 1709 return 0; 1710 } 1711 1712 /* 1713 * Load Volume Descriptor Sequence described by anchor in bh 1714 * 1715 * Returns <0 on error, 0 on success 1716 */ 1717 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1718 struct kernel_lb_addr *fileset) 1719 { 1720 struct anchorVolDescPtr *anchor; 1721 sector_t main_s, main_e, reserve_s, reserve_e; 1722 int ret; 1723 1724 anchor = (struct anchorVolDescPtr *)bh->b_data; 1725 1726 /* Locate the main sequence */ 1727 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1728 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1729 main_e = main_e >> sb->s_blocksize_bits; 1730 main_e += main_s; 1731 1732 /* Locate the reserve sequence */ 1733 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1734 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1735 reserve_e = reserve_e >> sb->s_blocksize_bits; 1736 reserve_e += reserve_s; 1737 1738 /* Process the main & reserve sequences */ 1739 /* responsible for finding the PartitionDesc(s) */ 1740 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1741 if (ret != -EAGAIN) 1742 return ret; 1743 udf_sb_free_partitions(sb); 1744 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1745 if (ret < 0) { 1746 udf_sb_free_partitions(sb); 1747 /* No sequence was OK, return -EIO */ 1748 if (ret == -EAGAIN) 1749 ret = -EIO; 1750 } 1751 return ret; 1752 } 1753 1754 /* 1755 * Check whether there is an anchor block in the given block and 1756 * load Volume Descriptor Sequence if so. 1757 * 1758 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1759 * block 1760 */ 1761 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1762 struct kernel_lb_addr *fileset) 1763 { 1764 struct buffer_head *bh; 1765 uint16_t ident; 1766 int ret; 1767 1768 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1769 udf_fixed_to_variable(block) >= 1770 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1771 return -EAGAIN; 1772 1773 bh = udf_read_tagged(sb, block, block, &ident); 1774 if (!bh) 1775 return -EAGAIN; 1776 if (ident != TAG_IDENT_AVDP) { 1777 brelse(bh); 1778 return -EAGAIN; 1779 } 1780 ret = udf_load_sequence(sb, bh, fileset); 1781 brelse(bh); 1782 return ret; 1783 } 1784 1785 /* 1786 * Search for an anchor volume descriptor pointer. 1787 * 1788 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1789 * of anchors. 1790 */ 1791 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1792 struct kernel_lb_addr *fileset) 1793 { 1794 sector_t last[6]; 1795 int i; 1796 struct udf_sb_info *sbi = UDF_SB(sb); 1797 int last_count = 0; 1798 int ret; 1799 1800 /* First try user provided anchor */ 1801 if (sbi->s_anchor) { 1802 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1803 if (ret != -EAGAIN) 1804 return ret; 1805 } 1806 /* 1807 * according to spec, anchor is in either: 1808 * block 256 1809 * lastblock-256 1810 * lastblock 1811 * however, if the disc isn't closed, it could be 512. 1812 */ 1813 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1814 if (ret != -EAGAIN) 1815 return ret; 1816 /* 1817 * The trouble is which block is the last one. Drives often misreport 1818 * this so we try various possibilities. 1819 */ 1820 last[last_count++] = *lastblock; 1821 if (*lastblock >= 1) 1822 last[last_count++] = *lastblock - 1; 1823 last[last_count++] = *lastblock + 1; 1824 if (*lastblock >= 2) 1825 last[last_count++] = *lastblock - 2; 1826 if (*lastblock >= 150) 1827 last[last_count++] = *lastblock - 150; 1828 if (*lastblock >= 152) 1829 last[last_count++] = *lastblock - 152; 1830 1831 for (i = 0; i < last_count; i++) { 1832 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1833 sb->s_blocksize_bits) 1834 continue; 1835 ret = udf_check_anchor_block(sb, last[i], fileset); 1836 if (ret != -EAGAIN) { 1837 if (!ret) 1838 *lastblock = last[i]; 1839 return ret; 1840 } 1841 if (last[i] < 256) 1842 continue; 1843 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1844 if (ret != -EAGAIN) { 1845 if (!ret) 1846 *lastblock = last[i]; 1847 return ret; 1848 } 1849 } 1850 1851 /* Finally try block 512 in case media is open */ 1852 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1853 } 1854 1855 /* 1856 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1857 * area specified by it. The function expects sbi->s_lastblock to be the last 1858 * block on the media. 1859 * 1860 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1861 * was not found. 1862 */ 1863 static int udf_find_anchor(struct super_block *sb, 1864 struct kernel_lb_addr *fileset) 1865 { 1866 struct udf_sb_info *sbi = UDF_SB(sb); 1867 sector_t lastblock = sbi->s_last_block; 1868 int ret; 1869 1870 ret = udf_scan_anchors(sb, &lastblock, fileset); 1871 if (ret != -EAGAIN) 1872 goto out; 1873 1874 /* No anchor found? Try VARCONV conversion of block numbers */ 1875 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1876 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1877 /* Firstly, we try to not convert number of the last block */ 1878 ret = udf_scan_anchors(sb, &lastblock, fileset); 1879 if (ret != -EAGAIN) 1880 goto out; 1881 1882 lastblock = sbi->s_last_block; 1883 /* Secondly, we try with converted number of the last block */ 1884 ret = udf_scan_anchors(sb, &lastblock, fileset); 1885 if (ret < 0) { 1886 /* VARCONV didn't help. Clear it. */ 1887 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1888 } 1889 out: 1890 if (ret == 0) 1891 sbi->s_last_block = lastblock; 1892 return ret; 1893 } 1894 1895 /* 1896 * Check Volume Structure Descriptor, find Anchor block and load Volume 1897 * Descriptor Sequence. 1898 * 1899 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1900 * block was not found. 1901 */ 1902 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1903 int silent, struct kernel_lb_addr *fileset) 1904 { 1905 struct udf_sb_info *sbi = UDF_SB(sb); 1906 loff_t nsr_off; 1907 int ret; 1908 1909 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1910 if (!silent) 1911 udf_warn(sb, "Bad block size\n"); 1912 return -EINVAL; 1913 } 1914 sbi->s_last_block = uopt->lastblock; 1915 if (!uopt->novrs) { 1916 /* Check that it is NSR02 compliant */ 1917 nsr_off = udf_check_vsd(sb); 1918 if (!nsr_off) { 1919 if (!silent) 1920 udf_warn(sb, "No VRS found\n"); 1921 return 0; 1922 } 1923 if (nsr_off == -1) 1924 udf_debug("Failed to read sector at offset %d. " 1925 "Assuming open disc. Skipping validity " 1926 "check\n", VSD_FIRST_SECTOR_OFFSET); 1927 if (!sbi->s_last_block) 1928 sbi->s_last_block = udf_get_last_block(sb); 1929 } else { 1930 udf_debug("Validity check skipped because of novrs option\n"); 1931 } 1932 1933 /* Look for anchor block and load Volume Descriptor Sequence */ 1934 sbi->s_anchor = uopt->anchor; 1935 ret = udf_find_anchor(sb, fileset); 1936 if (ret < 0) { 1937 if (!silent && ret == -EAGAIN) 1938 udf_warn(sb, "No anchor found\n"); 1939 return ret; 1940 } 1941 return 0; 1942 } 1943 1944 static void udf_open_lvid(struct super_block *sb) 1945 { 1946 struct udf_sb_info *sbi = UDF_SB(sb); 1947 struct buffer_head *bh = sbi->s_lvid_bh; 1948 struct logicalVolIntegrityDesc *lvid; 1949 struct logicalVolIntegrityDescImpUse *lvidiu; 1950 1951 if (!bh) 1952 return; 1953 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1954 lvidiu = udf_sb_lvidiu(sb); 1955 if (!lvidiu) 1956 return; 1957 1958 mutex_lock(&sbi->s_alloc_mutex); 1959 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1960 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1961 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1962 CURRENT_TIME); 1963 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1964 1965 lvid->descTag.descCRC = cpu_to_le16( 1966 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1967 le16_to_cpu(lvid->descTag.descCRCLength))); 1968 1969 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1970 mark_buffer_dirty(bh); 1971 sbi->s_lvid_dirty = 0; 1972 mutex_unlock(&sbi->s_alloc_mutex); 1973 /* Make opening of filesystem visible on the media immediately */ 1974 sync_dirty_buffer(bh); 1975 } 1976 1977 static void udf_close_lvid(struct super_block *sb) 1978 { 1979 struct udf_sb_info *sbi = UDF_SB(sb); 1980 struct buffer_head *bh = sbi->s_lvid_bh; 1981 struct logicalVolIntegrityDesc *lvid; 1982 struct logicalVolIntegrityDescImpUse *lvidiu; 1983 1984 if (!bh) 1985 return; 1986 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1987 lvidiu = udf_sb_lvidiu(sb); 1988 if (!lvidiu) 1989 return; 1990 1991 mutex_lock(&sbi->s_alloc_mutex); 1992 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1993 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1994 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1995 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1996 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1997 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1998 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1999 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2000 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2001 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2002 2003 lvid->descTag.descCRC = cpu_to_le16( 2004 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2005 le16_to_cpu(lvid->descTag.descCRCLength))); 2006 2007 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2008 /* 2009 * We set buffer uptodate unconditionally here to avoid spurious 2010 * warnings from mark_buffer_dirty() when previous EIO has marked 2011 * the buffer as !uptodate 2012 */ 2013 set_buffer_uptodate(bh); 2014 mark_buffer_dirty(bh); 2015 sbi->s_lvid_dirty = 0; 2016 mutex_unlock(&sbi->s_alloc_mutex); 2017 /* Make closing of filesystem visible on the media immediately */ 2018 sync_dirty_buffer(bh); 2019 } 2020 2021 u64 lvid_get_unique_id(struct super_block *sb) 2022 { 2023 struct buffer_head *bh; 2024 struct udf_sb_info *sbi = UDF_SB(sb); 2025 struct logicalVolIntegrityDesc *lvid; 2026 struct logicalVolHeaderDesc *lvhd; 2027 u64 uniqueID; 2028 u64 ret; 2029 2030 bh = sbi->s_lvid_bh; 2031 if (!bh) 2032 return 0; 2033 2034 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2035 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2036 2037 mutex_lock(&sbi->s_alloc_mutex); 2038 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2039 if (!(++uniqueID & 0xFFFFFFFF)) 2040 uniqueID += 16; 2041 lvhd->uniqueID = cpu_to_le64(uniqueID); 2042 mutex_unlock(&sbi->s_alloc_mutex); 2043 mark_buffer_dirty(bh); 2044 2045 return ret; 2046 } 2047 2048 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2049 { 2050 int ret = -EINVAL; 2051 struct inode *inode = NULL; 2052 struct udf_options uopt; 2053 struct kernel_lb_addr rootdir, fileset; 2054 struct udf_sb_info *sbi; 2055 2056 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2057 uopt.uid = INVALID_UID; 2058 uopt.gid = INVALID_GID; 2059 uopt.umask = 0; 2060 uopt.fmode = UDF_INVALID_MODE; 2061 uopt.dmode = UDF_INVALID_MODE; 2062 2063 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2064 if (!sbi) 2065 return -ENOMEM; 2066 2067 sb->s_fs_info = sbi; 2068 2069 mutex_init(&sbi->s_alloc_mutex); 2070 2071 if (!udf_parse_options((char *)options, &uopt, false)) 2072 goto error_out; 2073 2074 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2075 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2076 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2077 goto error_out; 2078 } 2079 #ifdef CONFIG_UDF_NLS 2080 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2081 uopt.nls_map = load_nls_default(); 2082 if (!uopt.nls_map) 2083 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2084 else 2085 udf_debug("Using default NLS map\n"); 2086 } 2087 #endif 2088 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2089 uopt.flags |= (1 << UDF_FLAG_UTF8); 2090 2091 fileset.logicalBlockNum = 0xFFFFFFFF; 2092 fileset.partitionReferenceNum = 0xFFFF; 2093 2094 sbi->s_flags = uopt.flags; 2095 sbi->s_uid = uopt.uid; 2096 sbi->s_gid = uopt.gid; 2097 sbi->s_umask = uopt.umask; 2098 sbi->s_fmode = uopt.fmode; 2099 sbi->s_dmode = uopt.dmode; 2100 sbi->s_nls_map = uopt.nls_map; 2101 rwlock_init(&sbi->s_cred_lock); 2102 2103 if (uopt.session == 0xFFFFFFFF) 2104 sbi->s_session = udf_get_last_session(sb); 2105 else 2106 sbi->s_session = uopt.session; 2107 2108 udf_debug("Multi-session=%d\n", sbi->s_session); 2109 2110 /* Fill in the rest of the superblock */ 2111 sb->s_op = &udf_sb_ops; 2112 sb->s_export_op = &udf_export_ops; 2113 2114 sb->s_magic = UDF_SUPER_MAGIC; 2115 sb->s_time_gran = 1000; 2116 2117 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2118 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2119 } else { 2120 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2121 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2122 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2123 if (!silent) 2124 pr_notice("Rescanning with blocksize %d\n", 2125 UDF_DEFAULT_BLOCKSIZE); 2126 brelse(sbi->s_lvid_bh); 2127 sbi->s_lvid_bh = NULL; 2128 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2129 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2130 } 2131 } 2132 if (ret < 0) { 2133 if (ret == -EAGAIN) { 2134 udf_warn(sb, "No partition found (1)\n"); 2135 ret = -EINVAL; 2136 } 2137 goto error_out; 2138 } 2139 2140 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2141 2142 if (sbi->s_lvid_bh) { 2143 struct logicalVolIntegrityDescImpUse *lvidiu = 2144 udf_sb_lvidiu(sb); 2145 uint16_t minUDFReadRev; 2146 uint16_t minUDFWriteRev; 2147 2148 if (!lvidiu) { 2149 ret = -EINVAL; 2150 goto error_out; 2151 } 2152 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2153 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2154 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2155 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2156 minUDFReadRev, 2157 UDF_MAX_READ_VERSION); 2158 ret = -EINVAL; 2159 goto error_out; 2160 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2161 !(sb->s_flags & MS_RDONLY)) { 2162 ret = -EACCES; 2163 goto error_out; 2164 } 2165 2166 sbi->s_udfrev = minUDFWriteRev; 2167 2168 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2169 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2170 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2171 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2172 } 2173 2174 if (!sbi->s_partitions) { 2175 udf_warn(sb, "No partition found (2)\n"); 2176 ret = -EINVAL; 2177 goto error_out; 2178 } 2179 2180 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2181 UDF_PART_FLAG_READ_ONLY && 2182 !(sb->s_flags & MS_RDONLY)) { 2183 ret = -EACCES; 2184 goto error_out; 2185 } 2186 2187 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2188 udf_warn(sb, "No fileset found\n"); 2189 ret = -EINVAL; 2190 goto error_out; 2191 } 2192 2193 if (!silent) { 2194 struct timestamp ts; 2195 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2196 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2197 sbi->s_volume_ident, 2198 le16_to_cpu(ts.year), ts.month, ts.day, 2199 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2200 } 2201 if (!(sb->s_flags & MS_RDONLY)) 2202 udf_open_lvid(sb); 2203 2204 /* Assign the root inode */ 2205 /* assign inodes by physical block number */ 2206 /* perhaps it's not extensible enough, but for now ... */ 2207 inode = udf_iget(sb, &rootdir); 2208 if (!inode) { 2209 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2210 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2211 ret = -EIO; 2212 goto error_out; 2213 } 2214 2215 /* Allocate a dentry for the root inode */ 2216 sb->s_root = d_make_root(inode); 2217 if (!sb->s_root) { 2218 udf_err(sb, "Couldn't allocate root dentry\n"); 2219 ret = -ENOMEM; 2220 goto error_out; 2221 } 2222 sb->s_maxbytes = MAX_LFS_FILESIZE; 2223 sb->s_max_links = UDF_MAX_LINKS; 2224 return 0; 2225 2226 error_out: 2227 if (sbi->s_vat_inode) 2228 iput(sbi->s_vat_inode); 2229 #ifdef CONFIG_UDF_NLS 2230 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2231 unload_nls(sbi->s_nls_map); 2232 #endif 2233 if (!(sb->s_flags & MS_RDONLY)) 2234 udf_close_lvid(sb); 2235 brelse(sbi->s_lvid_bh); 2236 udf_sb_free_partitions(sb); 2237 kfree(sbi); 2238 sb->s_fs_info = NULL; 2239 2240 return ret; 2241 } 2242 2243 void _udf_err(struct super_block *sb, const char *function, 2244 const char *fmt, ...) 2245 { 2246 struct va_format vaf; 2247 va_list args; 2248 2249 va_start(args, fmt); 2250 2251 vaf.fmt = fmt; 2252 vaf.va = &args; 2253 2254 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2255 2256 va_end(args); 2257 } 2258 2259 void _udf_warn(struct super_block *sb, const char *function, 2260 const char *fmt, ...) 2261 { 2262 struct va_format vaf; 2263 va_list args; 2264 2265 va_start(args, fmt); 2266 2267 vaf.fmt = fmt; 2268 vaf.va = &args; 2269 2270 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2271 2272 va_end(args); 2273 } 2274 2275 static void udf_put_super(struct super_block *sb) 2276 { 2277 struct udf_sb_info *sbi; 2278 2279 sbi = UDF_SB(sb); 2280 2281 if (sbi->s_vat_inode) 2282 iput(sbi->s_vat_inode); 2283 #ifdef CONFIG_UDF_NLS 2284 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2285 unload_nls(sbi->s_nls_map); 2286 #endif 2287 if (!(sb->s_flags & MS_RDONLY)) 2288 udf_close_lvid(sb); 2289 brelse(sbi->s_lvid_bh); 2290 udf_sb_free_partitions(sb); 2291 kfree(sb->s_fs_info); 2292 sb->s_fs_info = NULL; 2293 } 2294 2295 static int udf_sync_fs(struct super_block *sb, int wait) 2296 { 2297 struct udf_sb_info *sbi = UDF_SB(sb); 2298 2299 mutex_lock(&sbi->s_alloc_mutex); 2300 if (sbi->s_lvid_dirty) { 2301 /* 2302 * Blockdevice will be synced later so we don't have to submit 2303 * the buffer for IO 2304 */ 2305 mark_buffer_dirty(sbi->s_lvid_bh); 2306 sbi->s_lvid_dirty = 0; 2307 } 2308 mutex_unlock(&sbi->s_alloc_mutex); 2309 2310 return 0; 2311 } 2312 2313 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2314 { 2315 struct super_block *sb = dentry->d_sb; 2316 struct udf_sb_info *sbi = UDF_SB(sb); 2317 struct logicalVolIntegrityDescImpUse *lvidiu; 2318 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2319 2320 lvidiu = udf_sb_lvidiu(sb); 2321 buf->f_type = UDF_SUPER_MAGIC; 2322 buf->f_bsize = sb->s_blocksize; 2323 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2324 buf->f_bfree = udf_count_free(sb); 2325 buf->f_bavail = buf->f_bfree; 2326 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2327 le32_to_cpu(lvidiu->numDirs)) : 0) 2328 + buf->f_bfree; 2329 buf->f_ffree = buf->f_bfree; 2330 buf->f_namelen = UDF_NAME_LEN - 2; 2331 buf->f_fsid.val[0] = (u32)id; 2332 buf->f_fsid.val[1] = (u32)(id >> 32); 2333 2334 return 0; 2335 } 2336 2337 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2338 struct udf_bitmap *bitmap) 2339 { 2340 struct buffer_head *bh = NULL; 2341 unsigned int accum = 0; 2342 int index; 2343 int block = 0, newblock; 2344 struct kernel_lb_addr loc; 2345 uint32_t bytes; 2346 uint8_t *ptr; 2347 uint16_t ident; 2348 struct spaceBitmapDesc *bm; 2349 2350 loc.logicalBlockNum = bitmap->s_extPosition; 2351 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2352 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2353 2354 if (!bh) { 2355 udf_err(sb, "udf_count_free failed\n"); 2356 goto out; 2357 } else if (ident != TAG_IDENT_SBD) { 2358 brelse(bh); 2359 udf_err(sb, "udf_count_free failed\n"); 2360 goto out; 2361 } 2362 2363 bm = (struct spaceBitmapDesc *)bh->b_data; 2364 bytes = le32_to_cpu(bm->numOfBytes); 2365 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2366 ptr = (uint8_t *)bh->b_data; 2367 2368 while (bytes > 0) { 2369 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2370 accum += bitmap_weight((const unsigned long *)(ptr + index), 2371 cur_bytes * 8); 2372 bytes -= cur_bytes; 2373 if (bytes) { 2374 brelse(bh); 2375 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2376 bh = udf_tread(sb, newblock); 2377 if (!bh) { 2378 udf_debug("read failed\n"); 2379 goto out; 2380 } 2381 index = 0; 2382 ptr = (uint8_t *)bh->b_data; 2383 } 2384 } 2385 brelse(bh); 2386 out: 2387 return accum; 2388 } 2389 2390 static unsigned int udf_count_free_table(struct super_block *sb, 2391 struct inode *table) 2392 { 2393 unsigned int accum = 0; 2394 uint32_t elen; 2395 struct kernel_lb_addr eloc; 2396 int8_t etype; 2397 struct extent_position epos; 2398 2399 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2400 epos.block = UDF_I(table)->i_location; 2401 epos.offset = sizeof(struct unallocSpaceEntry); 2402 epos.bh = NULL; 2403 2404 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2405 accum += (elen >> table->i_sb->s_blocksize_bits); 2406 2407 brelse(epos.bh); 2408 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2409 2410 return accum; 2411 } 2412 2413 static unsigned int udf_count_free(struct super_block *sb) 2414 { 2415 unsigned int accum = 0; 2416 struct udf_sb_info *sbi; 2417 struct udf_part_map *map; 2418 2419 sbi = UDF_SB(sb); 2420 if (sbi->s_lvid_bh) { 2421 struct logicalVolIntegrityDesc *lvid = 2422 (struct logicalVolIntegrityDesc *) 2423 sbi->s_lvid_bh->b_data; 2424 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2425 accum = le32_to_cpu( 2426 lvid->freeSpaceTable[sbi->s_partition]); 2427 if (accum == 0xFFFFFFFF) 2428 accum = 0; 2429 } 2430 } 2431 2432 if (accum) 2433 return accum; 2434 2435 map = &sbi->s_partmaps[sbi->s_partition]; 2436 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2437 accum += udf_count_free_bitmap(sb, 2438 map->s_uspace.s_bitmap); 2439 } 2440 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2441 accum += udf_count_free_bitmap(sb, 2442 map->s_fspace.s_bitmap); 2443 } 2444 if (accum) 2445 return accum; 2446 2447 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2448 accum += udf_count_free_table(sb, 2449 map->s_uspace.s_table); 2450 } 2451 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2452 accum += udf_count_free_table(sb, 2453 map->s_fspace.s_table); 2454 } 2455 2456 return accum; 2457 } 2458