1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 enum { UDF_MAX_LINKS = 0xffff }; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct dentry *); 96 97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 98 { 99 struct logicalVolIntegrityDesc *lvid = 100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 102 __u32 offset = number_of_partitions * 2 * 103 sizeof(uint32_t)/sizeof(uint8_t); 104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 105 } 106 107 /* UDF filesystem type */ 108 static struct dentry *udf_mount(struct file_system_type *fs_type, 109 int flags, const char *dev_name, void *data) 110 { 111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 112 } 113 114 static struct file_system_type udf_fstype = { 115 .owner = THIS_MODULE, 116 .name = "udf", 117 .mount = udf_mount, 118 .kill_sb = kill_block_super, 119 .fs_flags = FS_REQUIRES_DEV, 120 }; 121 122 static struct kmem_cache *udf_inode_cachep; 123 124 static struct inode *udf_alloc_inode(struct super_block *sb) 125 { 126 struct udf_inode_info *ei; 127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 128 if (!ei) 129 return NULL; 130 131 ei->i_unique = 0; 132 ei->i_lenExtents = 0; 133 ei->i_next_alloc_block = 0; 134 ei->i_next_alloc_goal = 0; 135 ei->i_strat4096 = 0; 136 init_rwsem(&ei->i_data_sem); 137 138 return &ei->vfs_inode; 139 } 140 141 static void udf_i_callback(struct rcu_head *head) 142 { 143 struct inode *inode = container_of(head, struct inode, i_rcu); 144 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 145 } 146 147 static void udf_destroy_inode(struct inode *inode) 148 { 149 call_rcu(&inode->i_rcu, udf_i_callback); 150 } 151 152 static void init_once(void *foo) 153 { 154 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 155 156 ei->i_ext.i_data = NULL; 157 inode_init_once(&ei->vfs_inode); 158 } 159 160 static int init_inodecache(void) 161 { 162 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 163 sizeof(struct udf_inode_info), 164 0, (SLAB_RECLAIM_ACCOUNT | 165 SLAB_MEM_SPREAD), 166 init_once); 167 if (!udf_inode_cachep) 168 return -ENOMEM; 169 return 0; 170 } 171 172 static void destroy_inodecache(void) 173 { 174 kmem_cache_destroy(udf_inode_cachep); 175 } 176 177 /* Superblock operations */ 178 static const struct super_operations udf_sb_ops = { 179 .alloc_inode = udf_alloc_inode, 180 .destroy_inode = udf_destroy_inode, 181 .write_inode = udf_write_inode, 182 .evict_inode = udf_evict_inode, 183 .put_super = udf_put_super, 184 .sync_fs = udf_sync_fs, 185 .statfs = udf_statfs, 186 .remount_fs = udf_remount_fs, 187 .show_options = udf_show_options, 188 }; 189 190 struct udf_options { 191 unsigned char novrs; 192 unsigned int blocksize; 193 unsigned int session; 194 unsigned int lastblock; 195 unsigned int anchor; 196 unsigned int volume; 197 unsigned short partition; 198 unsigned int fileset; 199 unsigned int rootdir; 200 unsigned int flags; 201 umode_t umask; 202 gid_t gid; 203 uid_t uid; 204 umode_t fmode; 205 umode_t dmode; 206 struct nls_table *nls_map; 207 }; 208 209 static int __init init_udf_fs(void) 210 { 211 int err; 212 213 err = init_inodecache(); 214 if (err) 215 goto out1; 216 err = register_filesystem(&udf_fstype); 217 if (err) 218 goto out; 219 220 return 0; 221 222 out: 223 destroy_inodecache(); 224 225 out1: 226 return err; 227 } 228 229 static void __exit exit_udf_fs(void) 230 { 231 unregister_filesystem(&udf_fstype); 232 destroy_inodecache(); 233 } 234 235 module_init(init_udf_fs) 236 module_exit(exit_udf_fs) 237 238 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 239 { 240 struct udf_sb_info *sbi = UDF_SB(sb); 241 242 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 243 GFP_KERNEL); 244 if (!sbi->s_partmaps) { 245 udf_err(sb, "Unable to allocate space for %d partition maps\n", 246 count); 247 sbi->s_partitions = 0; 248 return -ENOMEM; 249 } 250 251 sbi->s_partitions = count; 252 return 0; 253 } 254 255 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 256 { 257 int i; 258 int nr_groups = bitmap->s_nr_groups; 259 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 260 nr_groups); 261 262 for (i = 0; i < nr_groups; i++) 263 if (bitmap->s_block_bitmap[i]) 264 brelse(bitmap->s_block_bitmap[i]); 265 266 if (size <= PAGE_SIZE) 267 kfree(bitmap); 268 else 269 vfree(bitmap); 270 } 271 272 static void udf_free_partition(struct udf_part_map *map) 273 { 274 int i; 275 struct udf_meta_data *mdata; 276 277 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 278 iput(map->s_uspace.s_table); 279 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 280 iput(map->s_fspace.s_table); 281 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 282 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 283 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 284 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 285 if (map->s_partition_type == UDF_SPARABLE_MAP15) 286 for (i = 0; i < 4; i++) 287 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 288 else if (map->s_partition_type == UDF_METADATA_MAP25) { 289 mdata = &map->s_type_specific.s_metadata; 290 iput(mdata->s_metadata_fe); 291 mdata->s_metadata_fe = NULL; 292 293 iput(mdata->s_mirror_fe); 294 mdata->s_mirror_fe = NULL; 295 296 iput(mdata->s_bitmap_fe); 297 mdata->s_bitmap_fe = NULL; 298 } 299 } 300 301 static void udf_sb_free_partitions(struct super_block *sb) 302 { 303 struct udf_sb_info *sbi = UDF_SB(sb); 304 int i; 305 306 for (i = 0; i < sbi->s_partitions; i++) 307 udf_free_partition(&sbi->s_partmaps[i]); 308 kfree(sbi->s_partmaps); 309 sbi->s_partmaps = NULL; 310 } 311 312 static int udf_show_options(struct seq_file *seq, struct dentry *root) 313 { 314 struct super_block *sb = root->d_sb; 315 struct udf_sb_info *sbi = UDF_SB(sb); 316 317 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 318 seq_puts(seq, ",nostrict"); 319 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 320 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 321 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 322 seq_puts(seq, ",unhide"); 323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 324 seq_puts(seq, ",undelete"); 325 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 326 seq_puts(seq, ",noadinicb"); 327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 328 seq_puts(seq, ",shortad"); 329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 330 seq_puts(seq, ",uid=forget"); 331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 332 seq_puts(seq, ",uid=ignore"); 333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 334 seq_puts(seq, ",gid=forget"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 336 seq_puts(seq, ",gid=ignore"); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 338 seq_printf(seq, ",uid=%u", sbi->s_uid); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 340 seq_printf(seq, ",gid=%u", sbi->s_gid); 341 if (sbi->s_umask != 0) 342 seq_printf(seq, ",umask=%ho", sbi->s_umask); 343 if (sbi->s_fmode != UDF_INVALID_MODE) 344 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 345 if (sbi->s_dmode != UDF_INVALID_MODE) 346 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 348 seq_printf(seq, ",session=%u", sbi->s_session); 349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 350 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 351 if (sbi->s_anchor != 0) 352 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 353 /* 354 * volume, partition, fileset and rootdir seem to be ignored 355 * currently 356 */ 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 358 seq_puts(seq, ",utf8"); 359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 360 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 361 362 return 0; 363 } 364 365 /* 366 * udf_parse_options 367 * 368 * PURPOSE 369 * Parse mount options. 370 * 371 * DESCRIPTION 372 * The following mount options are supported: 373 * 374 * gid= Set the default group. 375 * umask= Set the default umask. 376 * mode= Set the default file permissions. 377 * dmode= Set the default directory permissions. 378 * uid= Set the default user. 379 * bs= Set the block size. 380 * unhide Show otherwise hidden files. 381 * undelete Show deleted files in lists. 382 * adinicb Embed data in the inode (default) 383 * noadinicb Don't embed data in the inode 384 * shortad Use short ad's 385 * longad Use long ad's (default) 386 * nostrict Unset strict conformance 387 * iocharset= Set the NLS character set 388 * 389 * The remaining are for debugging and disaster recovery: 390 * 391 * novrs Skip volume sequence recognition 392 * 393 * The following expect a offset from 0. 394 * 395 * session= Set the CDROM session (default= last session) 396 * anchor= Override standard anchor location. (default= 256) 397 * volume= Override the VolumeDesc location. (unused) 398 * partition= Override the PartitionDesc location. (unused) 399 * lastblock= Set the last block of the filesystem/ 400 * 401 * The following expect a offset from the partition root. 402 * 403 * fileset= Override the fileset block location. (unused) 404 * rootdir= Override the root directory location. (unused) 405 * WARNING: overriding the rootdir to a non-directory may 406 * yield highly unpredictable results. 407 * 408 * PRE-CONDITIONS 409 * options Pointer to mount options string. 410 * uopts Pointer to mount options variable. 411 * 412 * POST-CONDITIONS 413 * <return> 1 Mount options parsed okay. 414 * <return> 0 Error parsing mount options. 415 * 416 * HISTORY 417 * July 1, 1997 - Andrew E. Mileski 418 * Written, tested, and released. 419 */ 420 421 enum { 422 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 423 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 424 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 425 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 426 Opt_rootdir, Opt_utf8, Opt_iocharset, 427 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 428 Opt_fmode, Opt_dmode 429 }; 430 431 static const match_table_t tokens = { 432 {Opt_novrs, "novrs"}, 433 {Opt_nostrict, "nostrict"}, 434 {Opt_bs, "bs=%u"}, 435 {Opt_unhide, "unhide"}, 436 {Opt_undelete, "undelete"}, 437 {Opt_noadinicb, "noadinicb"}, 438 {Opt_adinicb, "adinicb"}, 439 {Opt_shortad, "shortad"}, 440 {Opt_longad, "longad"}, 441 {Opt_uforget, "uid=forget"}, 442 {Opt_uignore, "uid=ignore"}, 443 {Opt_gforget, "gid=forget"}, 444 {Opt_gignore, "gid=ignore"}, 445 {Opt_gid, "gid=%u"}, 446 {Opt_uid, "uid=%u"}, 447 {Opt_umask, "umask=%o"}, 448 {Opt_session, "session=%u"}, 449 {Opt_lastblock, "lastblock=%u"}, 450 {Opt_anchor, "anchor=%u"}, 451 {Opt_volume, "volume=%u"}, 452 {Opt_partition, "partition=%u"}, 453 {Opt_fileset, "fileset=%u"}, 454 {Opt_rootdir, "rootdir=%u"}, 455 {Opt_utf8, "utf8"}, 456 {Opt_iocharset, "iocharset=%s"}, 457 {Opt_fmode, "mode=%o"}, 458 {Opt_dmode, "dmode=%o"}, 459 {Opt_err, NULL} 460 }; 461 462 static int udf_parse_options(char *options, struct udf_options *uopt, 463 bool remount) 464 { 465 char *p; 466 int option; 467 468 uopt->novrs = 0; 469 uopt->partition = 0xFFFF; 470 uopt->session = 0xFFFFFFFF; 471 uopt->lastblock = 0; 472 uopt->anchor = 0; 473 uopt->volume = 0xFFFFFFFF; 474 uopt->rootdir = 0xFFFFFFFF; 475 uopt->fileset = 0xFFFFFFFF; 476 uopt->nls_map = NULL; 477 478 if (!options) 479 return 1; 480 481 while ((p = strsep(&options, ",")) != NULL) { 482 substring_t args[MAX_OPT_ARGS]; 483 int token; 484 if (!*p) 485 continue; 486 487 token = match_token(p, tokens, args); 488 switch (token) { 489 case Opt_novrs: 490 uopt->novrs = 1; 491 break; 492 case Opt_bs: 493 if (match_int(&args[0], &option)) 494 return 0; 495 uopt->blocksize = option; 496 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 497 break; 498 case Opt_unhide: 499 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 500 break; 501 case Opt_undelete: 502 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 503 break; 504 case Opt_noadinicb: 505 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 506 break; 507 case Opt_adinicb: 508 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 509 break; 510 case Opt_shortad: 511 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 512 break; 513 case Opt_longad: 514 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 515 break; 516 case Opt_gid: 517 if (match_int(args, &option)) 518 return 0; 519 uopt->gid = option; 520 uopt->flags |= (1 << UDF_FLAG_GID_SET); 521 break; 522 case Opt_uid: 523 if (match_int(args, &option)) 524 return 0; 525 uopt->uid = option; 526 uopt->flags |= (1 << UDF_FLAG_UID_SET); 527 break; 528 case Opt_umask: 529 if (match_octal(args, &option)) 530 return 0; 531 uopt->umask = option; 532 break; 533 case Opt_nostrict: 534 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 535 break; 536 case Opt_session: 537 if (match_int(args, &option)) 538 return 0; 539 uopt->session = option; 540 if (!remount) 541 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 542 break; 543 case Opt_lastblock: 544 if (match_int(args, &option)) 545 return 0; 546 uopt->lastblock = option; 547 if (!remount) 548 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 549 break; 550 case Opt_anchor: 551 if (match_int(args, &option)) 552 return 0; 553 uopt->anchor = option; 554 break; 555 case Opt_volume: 556 if (match_int(args, &option)) 557 return 0; 558 uopt->volume = option; 559 break; 560 case Opt_partition: 561 if (match_int(args, &option)) 562 return 0; 563 uopt->partition = option; 564 break; 565 case Opt_fileset: 566 if (match_int(args, &option)) 567 return 0; 568 uopt->fileset = option; 569 break; 570 case Opt_rootdir: 571 if (match_int(args, &option)) 572 return 0; 573 uopt->rootdir = option; 574 break; 575 case Opt_utf8: 576 uopt->flags |= (1 << UDF_FLAG_UTF8); 577 break; 578 #ifdef CONFIG_UDF_NLS 579 case Opt_iocharset: 580 uopt->nls_map = load_nls(args[0].from); 581 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 582 break; 583 #endif 584 case Opt_uignore: 585 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 586 break; 587 case Opt_uforget: 588 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 589 break; 590 case Opt_gignore: 591 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 592 break; 593 case Opt_gforget: 594 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 595 break; 596 case Opt_fmode: 597 if (match_octal(args, &option)) 598 return 0; 599 uopt->fmode = option & 0777; 600 break; 601 case Opt_dmode: 602 if (match_octal(args, &option)) 603 return 0; 604 uopt->dmode = option & 0777; 605 break; 606 default: 607 pr_err("bad mount option \"%s\" or missing value\n", p); 608 return 0; 609 } 610 } 611 return 1; 612 } 613 614 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 615 { 616 struct udf_options uopt; 617 struct udf_sb_info *sbi = UDF_SB(sb); 618 int error = 0; 619 620 uopt.flags = sbi->s_flags; 621 uopt.uid = sbi->s_uid; 622 uopt.gid = sbi->s_gid; 623 uopt.umask = sbi->s_umask; 624 uopt.fmode = sbi->s_fmode; 625 uopt.dmode = sbi->s_dmode; 626 627 if (!udf_parse_options(options, &uopt, true)) 628 return -EINVAL; 629 630 write_lock(&sbi->s_cred_lock); 631 sbi->s_flags = uopt.flags; 632 sbi->s_uid = uopt.uid; 633 sbi->s_gid = uopt.gid; 634 sbi->s_umask = uopt.umask; 635 sbi->s_fmode = uopt.fmode; 636 sbi->s_dmode = uopt.dmode; 637 write_unlock(&sbi->s_cred_lock); 638 639 if (sbi->s_lvid_bh) { 640 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 641 if (write_rev > UDF_MAX_WRITE_VERSION) 642 *flags |= MS_RDONLY; 643 } 644 645 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 646 goto out_unlock; 647 648 if (*flags & MS_RDONLY) 649 udf_close_lvid(sb); 650 else 651 udf_open_lvid(sb); 652 653 out_unlock: 654 return error; 655 } 656 657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 659 static loff_t udf_check_vsd(struct super_block *sb) 660 { 661 struct volStructDesc *vsd = NULL; 662 loff_t sector = 32768; 663 int sectorsize; 664 struct buffer_head *bh = NULL; 665 int nsr02 = 0; 666 int nsr03 = 0; 667 struct udf_sb_info *sbi; 668 669 sbi = UDF_SB(sb); 670 if (sb->s_blocksize < sizeof(struct volStructDesc)) 671 sectorsize = sizeof(struct volStructDesc); 672 else 673 sectorsize = sb->s_blocksize; 674 675 sector += (sbi->s_session << sb->s_blocksize_bits); 676 677 udf_debug("Starting at sector %u (%ld byte sectors)\n", 678 (unsigned int)(sector >> sb->s_blocksize_bits), 679 sb->s_blocksize); 680 /* Process the sequence (if applicable) */ 681 for (; !nsr02 && !nsr03; sector += sectorsize) { 682 /* Read a block */ 683 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 684 if (!bh) 685 break; 686 687 /* Look for ISO descriptors */ 688 vsd = (struct volStructDesc *)(bh->b_data + 689 (sector & (sb->s_blocksize - 1))); 690 691 if (vsd->stdIdent[0] == 0) { 692 brelse(bh); 693 break; 694 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 695 VSD_STD_ID_LEN)) { 696 switch (vsd->structType) { 697 case 0: 698 udf_debug("ISO9660 Boot Record found\n"); 699 break; 700 case 1: 701 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 702 break; 703 case 2: 704 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 705 break; 706 case 3: 707 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 708 break; 709 case 255: 710 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 711 break; 712 default: 713 udf_debug("ISO9660 VRS (%u) found\n", 714 vsd->structType); 715 break; 716 } 717 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 718 VSD_STD_ID_LEN)) 719 ; /* nothing */ 720 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 721 VSD_STD_ID_LEN)) { 722 brelse(bh); 723 break; 724 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 725 VSD_STD_ID_LEN)) 726 nsr02 = sector; 727 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 728 VSD_STD_ID_LEN)) 729 nsr03 = sector; 730 brelse(bh); 731 } 732 733 if (nsr03) 734 return nsr03; 735 else if (nsr02) 736 return nsr02; 737 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 738 return -1; 739 else 740 return 0; 741 } 742 743 static int udf_find_fileset(struct super_block *sb, 744 struct kernel_lb_addr *fileset, 745 struct kernel_lb_addr *root) 746 { 747 struct buffer_head *bh = NULL; 748 long lastblock; 749 uint16_t ident; 750 struct udf_sb_info *sbi; 751 752 if (fileset->logicalBlockNum != 0xFFFFFFFF || 753 fileset->partitionReferenceNum != 0xFFFF) { 754 bh = udf_read_ptagged(sb, fileset, 0, &ident); 755 756 if (!bh) { 757 return 1; 758 } else if (ident != TAG_IDENT_FSD) { 759 brelse(bh); 760 return 1; 761 } 762 763 } 764 765 sbi = UDF_SB(sb); 766 if (!bh) { 767 /* Search backwards through the partitions */ 768 struct kernel_lb_addr newfileset; 769 770 /* --> cvg: FIXME - is it reasonable? */ 771 return 1; 772 773 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 774 (newfileset.partitionReferenceNum != 0xFFFF && 775 fileset->logicalBlockNum == 0xFFFFFFFF && 776 fileset->partitionReferenceNum == 0xFFFF); 777 newfileset.partitionReferenceNum--) { 778 lastblock = sbi->s_partmaps 779 [newfileset.partitionReferenceNum] 780 .s_partition_len; 781 newfileset.logicalBlockNum = 0; 782 783 do { 784 bh = udf_read_ptagged(sb, &newfileset, 0, 785 &ident); 786 if (!bh) { 787 newfileset.logicalBlockNum++; 788 continue; 789 } 790 791 switch (ident) { 792 case TAG_IDENT_SBD: 793 { 794 struct spaceBitmapDesc *sp; 795 sp = (struct spaceBitmapDesc *) 796 bh->b_data; 797 newfileset.logicalBlockNum += 1 + 798 ((le32_to_cpu(sp->numOfBytes) + 799 sizeof(struct spaceBitmapDesc) 800 - 1) >> sb->s_blocksize_bits); 801 brelse(bh); 802 break; 803 } 804 case TAG_IDENT_FSD: 805 *fileset = newfileset; 806 break; 807 default: 808 newfileset.logicalBlockNum++; 809 brelse(bh); 810 bh = NULL; 811 break; 812 } 813 } while (newfileset.logicalBlockNum < lastblock && 814 fileset->logicalBlockNum == 0xFFFFFFFF && 815 fileset->partitionReferenceNum == 0xFFFF); 816 } 817 } 818 819 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 820 fileset->partitionReferenceNum != 0xFFFF) && bh) { 821 udf_debug("Fileset at block=%d, partition=%d\n", 822 fileset->logicalBlockNum, 823 fileset->partitionReferenceNum); 824 825 sbi->s_partition = fileset->partitionReferenceNum; 826 udf_load_fileset(sb, bh, root); 827 brelse(bh); 828 return 0; 829 } 830 return 1; 831 } 832 833 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 834 { 835 struct primaryVolDesc *pvoldesc; 836 struct ustr *instr, *outstr; 837 struct buffer_head *bh; 838 uint16_t ident; 839 int ret = 1; 840 841 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 842 if (!instr) 843 return 1; 844 845 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 846 if (!outstr) 847 goto out1; 848 849 bh = udf_read_tagged(sb, block, block, &ident); 850 if (!bh) 851 goto out2; 852 853 BUG_ON(ident != TAG_IDENT_PVD); 854 855 pvoldesc = (struct primaryVolDesc *)bh->b_data; 856 857 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 858 pvoldesc->recordingDateAndTime)) { 859 #ifdef UDFFS_DEBUG 860 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 861 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 862 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 863 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 864 #endif 865 } 866 867 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 868 if (udf_CS0toUTF8(outstr, instr)) { 869 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 870 outstr->u_len > 31 ? 31 : outstr->u_len); 871 udf_debug("volIdent[] = '%s'\n", 872 UDF_SB(sb)->s_volume_ident); 873 } 874 875 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 876 if (udf_CS0toUTF8(outstr, instr)) 877 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 878 879 brelse(bh); 880 ret = 0; 881 out2: 882 kfree(outstr); 883 out1: 884 kfree(instr); 885 return ret; 886 } 887 888 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 889 u32 meta_file_loc, u32 partition_num) 890 { 891 struct kernel_lb_addr addr; 892 struct inode *metadata_fe; 893 894 addr.logicalBlockNum = meta_file_loc; 895 addr.partitionReferenceNum = partition_num; 896 897 metadata_fe = udf_iget(sb, &addr); 898 899 if (metadata_fe == NULL) 900 udf_warn(sb, "metadata inode efe not found\n"); 901 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 902 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 903 iput(metadata_fe); 904 metadata_fe = NULL; 905 } 906 907 return metadata_fe; 908 } 909 910 static int udf_load_metadata_files(struct super_block *sb, int partition) 911 { 912 struct udf_sb_info *sbi = UDF_SB(sb); 913 struct udf_part_map *map; 914 struct udf_meta_data *mdata; 915 struct kernel_lb_addr addr; 916 917 map = &sbi->s_partmaps[partition]; 918 mdata = &map->s_type_specific.s_metadata; 919 920 /* metadata address */ 921 udf_debug("Metadata file location: block = %d part = %d\n", 922 mdata->s_meta_file_loc, map->s_partition_num); 923 924 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 925 mdata->s_meta_file_loc, map->s_partition_num); 926 927 if (mdata->s_metadata_fe == NULL) { 928 /* mirror file entry */ 929 udf_debug("Mirror metadata file location: block = %d part = %d\n", 930 mdata->s_mirror_file_loc, map->s_partition_num); 931 932 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 933 mdata->s_mirror_file_loc, map->s_partition_num); 934 935 if (mdata->s_mirror_fe == NULL) { 936 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 937 goto error_exit; 938 } 939 } 940 941 /* 942 * bitmap file entry 943 * Note: 944 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 945 */ 946 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 947 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 948 addr.partitionReferenceNum = map->s_partition_num; 949 950 udf_debug("Bitmap file location: block = %d part = %d\n", 951 addr.logicalBlockNum, addr.partitionReferenceNum); 952 953 mdata->s_bitmap_fe = udf_iget(sb, &addr); 954 955 if (mdata->s_bitmap_fe == NULL) { 956 if (sb->s_flags & MS_RDONLY) 957 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 958 else { 959 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 960 goto error_exit; 961 } 962 } 963 } 964 965 udf_debug("udf_load_metadata_files Ok\n"); 966 967 return 0; 968 969 error_exit: 970 return 1; 971 } 972 973 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 974 struct kernel_lb_addr *root) 975 { 976 struct fileSetDesc *fset; 977 978 fset = (struct fileSetDesc *)bh->b_data; 979 980 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 981 982 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 983 984 udf_debug("Rootdir at block=%d, partition=%d\n", 985 root->logicalBlockNum, root->partitionReferenceNum); 986 } 987 988 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 989 { 990 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 991 return DIV_ROUND_UP(map->s_partition_len + 992 (sizeof(struct spaceBitmapDesc) << 3), 993 sb->s_blocksize * 8); 994 } 995 996 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 997 { 998 struct udf_bitmap *bitmap; 999 int nr_groups; 1000 int size; 1001 1002 nr_groups = udf_compute_nr_groups(sb, index); 1003 size = sizeof(struct udf_bitmap) + 1004 (sizeof(struct buffer_head *) * nr_groups); 1005 1006 if (size <= PAGE_SIZE) 1007 bitmap = kzalloc(size, GFP_KERNEL); 1008 else 1009 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1010 1011 if (bitmap == NULL) 1012 return NULL; 1013 1014 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 1015 bitmap->s_nr_groups = nr_groups; 1016 return bitmap; 1017 } 1018 1019 static int udf_fill_partdesc_info(struct super_block *sb, 1020 struct partitionDesc *p, int p_index) 1021 { 1022 struct udf_part_map *map; 1023 struct udf_sb_info *sbi = UDF_SB(sb); 1024 struct partitionHeaderDesc *phd; 1025 1026 map = &sbi->s_partmaps[p_index]; 1027 1028 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1029 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1030 1031 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1032 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1033 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1034 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1035 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1036 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1037 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1038 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1039 1040 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1041 p_index, map->s_partition_type, 1042 map->s_partition_root, map->s_partition_len); 1043 1044 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1045 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1046 return 0; 1047 1048 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1049 if (phd->unallocSpaceTable.extLength) { 1050 struct kernel_lb_addr loc = { 1051 .logicalBlockNum = le32_to_cpu( 1052 phd->unallocSpaceTable.extPosition), 1053 .partitionReferenceNum = p_index, 1054 }; 1055 1056 map->s_uspace.s_table = udf_iget(sb, &loc); 1057 if (!map->s_uspace.s_table) { 1058 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1059 p_index); 1060 return 1; 1061 } 1062 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1063 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1064 p_index, map->s_uspace.s_table->i_ino); 1065 } 1066 1067 if (phd->unallocSpaceBitmap.extLength) { 1068 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1069 if (!bitmap) 1070 return 1; 1071 map->s_uspace.s_bitmap = bitmap; 1072 bitmap->s_extLength = le32_to_cpu( 1073 phd->unallocSpaceBitmap.extLength); 1074 bitmap->s_extPosition = le32_to_cpu( 1075 phd->unallocSpaceBitmap.extPosition); 1076 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1077 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1078 p_index, bitmap->s_extPosition); 1079 } 1080 1081 if (phd->partitionIntegrityTable.extLength) 1082 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1083 1084 if (phd->freedSpaceTable.extLength) { 1085 struct kernel_lb_addr loc = { 1086 .logicalBlockNum = le32_to_cpu( 1087 phd->freedSpaceTable.extPosition), 1088 .partitionReferenceNum = p_index, 1089 }; 1090 1091 map->s_fspace.s_table = udf_iget(sb, &loc); 1092 if (!map->s_fspace.s_table) { 1093 udf_debug("cannot load freedSpaceTable (part %d)\n", 1094 p_index); 1095 return 1; 1096 } 1097 1098 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1099 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1100 p_index, map->s_fspace.s_table->i_ino); 1101 } 1102 1103 if (phd->freedSpaceBitmap.extLength) { 1104 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1105 if (!bitmap) 1106 return 1; 1107 map->s_fspace.s_bitmap = bitmap; 1108 bitmap->s_extLength = le32_to_cpu( 1109 phd->freedSpaceBitmap.extLength); 1110 bitmap->s_extPosition = le32_to_cpu( 1111 phd->freedSpaceBitmap.extPosition); 1112 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1113 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1114 p_index, bitmap->s_extPosition); 1115 } 1116 return 0; 1117 } 1118 1119 static void udf_find_vat_block(struct super_block *sb, int p_index, 1120 int type1_index, sector_t start_block) 1121 { 1122 struct udf_sb_info *sbi = UDF_SB(sb); 1123 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1124 sector_t vat_block; 1125 struct kernel_lb_addr ino; 1126 1127 /* 1128 * VAT file entry is in the last recorded block. Some broken disks have 1129 * it a few blocks before so try a bit harder... 1130 */ 1131 ino.partitionReferenceNum = type1_index; 1132 for (vat_block = start_block; 1133 vat_block >= map->s_partition_root && 1134 vat_block >= start_block - 3 && 1135 !sbi->s_vat_inode; vat_block--) { 1136 ino.logicalBlockNum = vat_block - map->s_partition_root; 1137 sbi->s_vat_inode = udf_iget(sb, &ino); 1138 } 1139 } 1140 1141 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1142 { 1143 struct udf_sb_info *sbi = UDF_SB(sb); 1144 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1145 struct buffer_head *bh = NULL; 1146 struct udf_inode_info *vati; 1147 uint32_t pos; 1148 struct virtualAllocationTable20 *vat20; 1149 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1150 1151 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1152 if (!sbi->s_vat_inode && 1153 sbi->s_last_block != blocks - 1) { 1154 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1155 (unsigned long)sbi->s_last_block, 1156 (unsigned long)blocks - 1); 1157 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1158 } 1159 if (!sbi->s_vat_inode) 1160 return 1; 1161 1162 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1163 map->s_type_specific.s_virtual.s_start_offset = 0; 1164 map->s_type_specific.s_virtual.s_num_entries = 1165 (sbi->s_vat_inode->i_size - 36) >> 2; 1166 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1167 vati = UDF_I(sbi->s_vat_inode); 1168 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1169 pos = udf_block_map(sbi->s_vat_inode, 0); 1170 bh = sb_bread(sb, pos); 1171 if (!bh) 1172 return 1; 1173 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1174 } else { 1175 vat20 = (struct virtualAllocationTable20 *) 1176 vati->i_ext.i_data; 1177 } 1178 1179 map->s_type_specific.s_virtual.s_start_offset = 1180 le16_to_cpu(vat20->lengthHeader); 1181 map->s_type_specific.s_virtual.s_num_entries = 1182 (sbi->s_vat_inode->i_size - 1183 map->s_type_specific.s_virtual. 1184 s_start_offset) >> 2; 1185 brelse(bh); 1186 } 1187 return 0; 1188 } 1189 1190 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1191 { 1192 struct buffer_head *bh; 1193 struct partitionDesc *p; 1194 struct udf_part_map *map; 1195 struct udf_sb_info *sbi = UDF_SB(sb); 1196 int i, type1_idx; 1197 uint16_t partitionNumber; 1198 uint16_t ident; 1199 int ret = 0; 1200 1201 bh = udf_read_tagged(sb, block, block, &ident); 1202 if (!bh) 1203 return 1; 1204 if (ident != TAG_IDENT_PD) 1205 goto out_bh; 1206 1207 p = (struct partitionDesc *)bh->b_data; 1208 partitionNumber = le16_to_cpu(p->partitionNumber); 1209 1210 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1211 for (i = 0; i < sbi->s_partitions; i++) { 1212 map = &sbi->s_partmaps[i]; 1213 udf_debug("Searching map: (%d == %d)\n", 1214 map->s_partition_num, partitionNumber); 1215 if (map->s_partition_num == partitionNumber && 1216 (map->s_partition_type == UDF_TYPE1_MAP15 || 1217 map->s_partition_type == UDF_SPARABLE_MAP15)) 1218 break; 1219 } 1220 1221 if (i >= sbi->s_partitions) { 1222 udf_debug("Partition (%d) not found in partition map\n", 1223 partitionNumber); 1224 goto out_bh; 1225 } 1226 1227 ret = udf_fill_partdesc_info(sb, p, i); 1228 1229 /* 1230 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1231 * PHYSICAL partitions are already set up 1232 */ 1233 type1_idx = i; 1234 for (i = 0; i < sbi->s_partitions; i++) { 1235 map = &sbi->s_partmaps[i]; 1236 1237 if (map->s_partition_num == partitionNumber && 1238 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1239 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1240 map->s_partition_type == UDF_METADATA_MAP25)) 1241 break; 1242 } 1243 1244 if (i >= sbi->s_partitions) 1245 goto out_bh; 1246 1247 ret = udf_fill_partdesc_info(sb, p, i); 1248 if (ret) 1249 goto out_bh; 1250 1251 if (map->s_partition_type == UDF_METADATA_MAP25) { 1252 ret = udf_load_metadata_files(sb, i); 1253 if (ret) { 1254 udf_err(sb, "error loading MetaData partition map %d\n", 1255 i); 1256 goto out_bh; 1257 } 1258 } else { 1259 ret = udf_load_vat(sb, i, type1_idx); 1260 if (ret) 1261 goto out_bh; 1262 /* 1263 * Mark filesystem read-only if we have a partition with 1264 * virtual map since we don't handle writing to it (we 1265 * overwrite blocks instead of relocating them). 1266 */ 1267 sb->s_flags |= MS_RDONLY; 1268 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); 1269 } 1270 out_bh: 1271 /* In case loading failed, we handle cleanup in udf_fill_super */ 1272 brelse(bh); 1273 return ret; 1274 } 1275 1276 static int udf_load_sparable_map(struct super_block *sb, 1277 struct udf_part_map *map, 1278 struct sparablePartitionMap *spm) 1279 { 1280 uint32_t loc; 1281 uint16_t ident; 1282 struct sparingTable *st; 1283 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1284 int i; 1285 struct buffer_head *bh; 1286 1287 map->s_partition_type = UDF_SPARABLE_MAP15; 1288 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1289 if (!is_power_of_2(sdata->s_packet_len)) { 1290 udf_err(sb, "error loading logical volume descriptor: " 1291 "Invalid packet length %u\n", 1292 (unsigned)sdata->s_packet_len); 1293 return -EIO; 1294 } 1295 if (spm->numSparingTables > 4) { 1296 udf_err(sb, "error loading logical volume descriptor: " 1297 "Too many sparing tables (%d)\n", 1298 (int)spm->numSparingTables); 1299 return -EIO; 1300 } 1301 1302 for (i = 0; i < spm->numSparingTables; i++) { 1303 loc = le32_to_cpu(spm->locSparingTable[i]); 1304 bh = udf_read_tagged(sb, loc, loc, &ident); 1305 if (!bh) 1306 continue; 1307 1308 st = (struct sparingTable *)bh->b_data; 1309 if (ident != 0 || 1310 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1311 strlen(UDF_ID_SPARING)) || 1312 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1313 sb->s_blocksize) { 1314 brelse(bh); 1315 continue; 1316 } 1317 1318 sdata->s_spar_map[i] = bh; 1319 } 1320 map->s_partition_func = udf_get_pblock_spar15; 1321 return 0; 1322 } 1323 1324 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1325 struct kernel_lb_addr *fileset) 1326 { 1327 struct logicalVolDesc *lvd; 1328 int i, offset; 1329 uint8_t type; 1330 struct udf_sb_info *sbi = UDF_SB(sb); 1331 struct genericPartitionMap *gpm; 1332 uint16_t ident; 1333 struct buffer_head *bh; 1334 unsigned int table_len; 1335 int ret = 0; 1336 1337 bh = udf_read_tagged(sb, block, block, &ident); 1338 if (!bh) 1339 return 1; 1340 BUG_ON(ident != TAG_IDENT_LVD); 1341 lvd = (struct logicalVolDesc *)bh->b_data; 1342 table_len = le32_to_cpu(lvd->mapTableLength); 1343 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1344 udf_err(sb, "error loading logical volume descriptor: " 1345 "Partition table too long (%u > %lu)\n", table_len, 1346 sb->s_blocksize - sizeof(*lvd)); 1347 ret = 1; 1348 goto out_bh; 1349 } 1350 1351 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1352 if (ret) 1353 goto out_bh; 1354 1355 for (i = 0, offset = 0; 1356 i < sbi->s_partitions && offset < table_len; 1357 i++, offset += gpm->partitionMapLength) { 1358 struct udf_part_map *map = &sbi->s_partmaps[i]; 1359 gpm = (struct genericPartitionMap *) 1360 &(lvd->partitionMaps[offset]); 1361 type = gpm->partitionMapType; 1362 if (type == 1) { 1363 struct genericPartitionMap1 *gpm1 = 1364 (struct genericPartitionMap1 *)gpm; 1365 map->s_partition_type = UDF_TYPE1_MAP15; 1366 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1367 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1368 map->s_partition_func = NULL; 1369 } else if (type == 2) { 1370 struct udfPartitionMap2 *upm2 = 1371 (struct udfPartitionMap2 *)gpm; 1372 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1373 strlen(UDF_ID_VIRTUAL))) { 1374 u16 suf = 1375 le16_to_cpu(((__le16 *)upm2->partIdent. 1376 identSuffix)[0]); 1377 if (suf < 0x0200) { 1378 map->s_partition_type = 1379 UDF_VIRTUAL_MAP15; 1380 map->s_partition_func = 1381 udf_get_pblock_virt15; 1382 } else { 1383 map->s_partition_type = 1384 UDF_VIRTUAL_MAP20; 1385 map->s_partition_func = 1386 udf_get_pblock_virt20; 1387 } 1388 } else if (!strncmp(upm2->partIdent.ident, 1389 UDF_ID_SPARABLE, 1390 strlen(UDF_ID_SPARABLE))) { 1391 if (udf_load_sparable_map(sb, map, 1392 (struct sparablePartitionMap *)gpm) < 0) { 1393 ret = 1; 1394 goto out_bh; 1395 } 1396 } else if (!strncmp(upm2->partIdent.ident, 1397 UDF_ID_METADATA, 1398 strlen(UDF_ID_METADATA))) { 1399 struct udf_meta_data *mdata = 1400 &map->s_type_specific.s_metadata; 1401 struct metadataPartitionMap *mdm = 1402 (struct metadataPartitionMap *) 1403 &(lvd->partitionMaps[offset]); 1404 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1405 i, type, UDF_ID_METADATA); 1406 1407 map->s_partition_type = UDF_METADATA_MAP25; 1408 map->s_partition_func = udf_get_pblock_meta25; 1409 1410 mdata->s_meta_file_loc = 1411 le32_to_cpu(mdm->metadataFileLoc); 1412 mdata->s_mirror_file_loc = 1413 le32_to_cpu(mdm->metadataMirrorFileLoc); 1414 mdata->s_bitmap_file_loc = 1415 le32_to_cpu(mdm->metadataBitmapFileLoc); 1416 mdata->s_alloc_unit_size = 1417 le32_to_cpu(mdm->allocUnitSize); 1418 mdata->s_align_unit_size = 1419 le16_to_cpu(mdm->alignUnitSize); 1420 if (mdm->flags & 0x01) 1421 mdata->s_flags |= MF_DUPLICATE_MD; 1422 1423 udf_debug("Metadata Ident suffix=0x%x\n", 1424 le16_to_cpu(*(__le16 *) 1425 mdm->partIdent.identSuffix)); 1426 udf_debug("Metadata part num=%d\n", 1427 le16_to_cpu(mdm->partitionNum)); 1428 udf_debug("Metadata part alloc unit size=%d\n", 1429 le32_to_cpu(mdm->allocUnitSize)); 1430 udf_debug("Metadata file loc=%d\n", 1431 le32_to_cpu(mdm->metadataFileLoc)); 1432 udf_debug("Mirror file loc=%d\n", 1433 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1434 udf_debug("Bitmap file loc=%d\n", 1435 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1436 udf_debug("Flags: %d %d\n", 1437 mdata->s_flags, mdm->flags); 1438 } else { 1439 udf_debug("Unknown ident: %s\n", 1440 upm2->partIdent.ident); 1441 continue; 1442 } 1443 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1444 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1445 } 1446 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1447 i, map->s_partition_num, type, map->s_volumeseqnum); 1448 } 1449 1450 if (fileset) { 1451 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1452 1453 *fileset = lelb_to_cpu(la->extLocation); 1454 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1455 fileset->logicalBlockNum, 1456 fileset->partitionReferenceNum); 1457 } 1458 if (lvd->integritySeqExt.extLength) 1459 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1460 1461 out_bh: 1462 brelse(bh); 1463 return ret; 1464 } 1465 1466 /* 1467 * udf_load_logicalvolint 1468 * 1469 */ 1470 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1471 { 1472 struct buffer_head *bh = NULL; 1473 uint16_t ident; 1474 struct udf_sb_info *sbi = UDF_SB(sb); 1475 struct logicalVolIntegrityDesc *lvid; 1476 1477 while (loc.extLength > 0 && 1478 (bh = udf_read_tagged(sb, loc.extLocation, 1479 loc.extLocation, &ident)) && 1480 ident == TAG_IDENT_LVID) { 1481 sbi->s_lvid_bh = bh; 1482 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1483 1484 if (lvid->nextIntegrityExt.extLength) 1485 udf_load_logicalvolint(sb, 1486 leea_to_cpu(lvid->nextIntegrityExt)); 1487 1488 if (sbi->s_lvid_bh != bh) 1489 brelse(bh); 1490 loc.extLength -= sb->s_blocksize; 1491 loc.extLocation++; 1492 } 1493 if (sbi->s_lvid_bh != bh) 1494 brelse(bh); 1495 } 1496 1497 /* 1498 * udf_process_sequence 1499 * 1500 * PURPOSE 1501 * Process a main/reserve volume descriptor sequence. 1502 * 1503 * PRE-CONDITIONS 1504 * sb Pointer to _locked_ superblock. 1505 * block First block of first extent of the sequence. 1506 * lastblock Lastblock of first extent of the sequence. 1507 * 1508 * HISTORY 1509 * July 1, 1997 - Andrew E. Mileski 1510 * Written, tested, and released. 1511 */ 1512 static noinline int udf_process_sequence(struct super_block *sb, long block, 1513 long lastblock, struct kernel_lb_addr *fileset) 1514 { 1515 struct buffer_head *bh = NULL; 1516 struct udf_vds_record vds[VDS_POS_LENGTH]; 1517 struct udf_vds_record *curr; 1518 struct generic_desc *gd; 1519 struct volDescPtr *vdp; 1520 int done = 0; 1521 uint32_t vdsn; 1522 uint16_t ident; 1523 long next_s = 0, next_e = 0; 1524 1525 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1526 1527 /* 1528 * Read the main descriptor sequence and find which descriptors 1529 * are in it. 1530 */ 1531 for (; (!done && block <= lastblock); block++) { 1532 1533 bh = udf_read_tagged(sb, block, block, &ident); 1534 if (!bh) { 1535 udf_err(sb, 1536 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1537 (unsigned long long)block); 1538 return 1; 1539 } 1540 1541 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1542 gd = (struct generic_desc *)bh->b_data; 1543 vdsn = le32_to_cpu(gd->volDescSeqNum); 1544 switch (ident) { 1545 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1546 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1547 if (vdsn >= curr->volDescSeqNum) { 1548 curr->volDescSeqNum = vdsn; 1549 curr->block = block; 1550 } 1551 break; 1552 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1553 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1554 if (vdsn >= curr->volDescSeqNum) { 1555 curr->volDescSeqNum = vdsn; 1556 curr->block = block; 1557 1558 vdp = (struct volDescPtr *)bh->b_data; 1559 next_s = le32_to_cpu( 1560 vdp->nextVolDescSeqExt.extLocation); 1561 next_e = le32_to_cpu( 1562 vdp->nextVolDescSeqExt.extLength); 1563 next_e = next_e >> sb->s_blocksize_bits; 1564 next_e += next_s; 1565 } 1566 break; 1567 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1568 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1569 if (vdsn >= curr->volDescSeqNum) { 1570 curr->volDescSeqNum = vdsn; 1571 curr->block = block; 1572 } 1573 break; 1574 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1575 curr = &vds[VDS_POS_PARTITION_DESC]; 1576 if (!curr->block) 1577 curr->block = block; 1578 break; 1579 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1580 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1581 if (vdsn >= curr->volDescSeqNum) { 1582 curr->volDescSeqNum = vdsn; 1583 curr->block = block; 1584 } 1585 break; 1586 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1587 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1588 if (vdsn >= curr->volDescSeqNum) { 1589 curr->volDescSeqNum = vdsn; 1590 curr->block = block; 1591 } 1592 break; 1593 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1594 vds[VDS_POS_TERMINATING_DESC].block = block; 1595 if (next_e) { 1596 block = next_s; 1597 lastblock = next_e; 1598 next_s = next_e = 0; 1599 } else 1600 done = 1; 1601 break; 1602 } 1603 brelse(bh); 1604 } 1605 /* 1606 * Now read interesting descriptors again and process them 1607 * in a suitable order 1608 */ 1609 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1610 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1611 return 1; 1612 } 1613 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1614 return 1; 1615 1616 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1617 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1618 return 1; 1619 1620 if (vds[VDS_POS_PARTITION_DESC].block) { 1621 /* 1622 * We rescan the whole descriptor sequence to find 1623 * partition descriptor blocks and process them. 1624 */ 1625 for (block = vds[VDS_POS_PARTITION_DESC].block; 1626 block < vds[VDS_POS_TERMINATING_DESC].block; 1627 block++) 1628 if (udf_load_partdesc(sb, block)) 1629 return 1; 1630 } 1631 1632 return 0; 1633 } 1634 1635 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1636 struct kernel_lb_addr *fileset) 1637 { 1638 struct anchorVolDescPtr *anchor; 1639 long main_s, main_e, reserve_s, reserve_e; 1640 1641 anchor = (struct anchorVolDescPtr *)bh->b_data; 1642 1643 /* Locate the main sequence */ 1644 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1645 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1646 main_e = main_e >> sb->s_blocksize_bits; 1647 main_e += main_s; 1648 1649 /* Locate the reserve sequence */ 1650 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1651 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1652 reserve_e = reserve_e >> sb->s_blocksize_bits; 1653 reserve_e += reserve_s; 1654 1655 /* Process the main & reserve sequences */ 1656 /* responsible for finding the PartitionDesc(s) */ 1657 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1658 return 1; 1659 udf_sb_free_partitions(sb); 1660 if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset)) 1661 return 1; 1662 udf_sb_free_partitions(sb); 1663 return 0; 1664 } 1665 1666 /* 1667 * Check whether there is an anchor block in the given block and 1668 * load Volume Descriptor Sequence if so. 1669 */ 1670 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1671 struct kernel_lb_addr *fileset) 1672 { 1673 struct buffer_head *bh; 1674 uint16_t ident; 1675 int ret; 1676 1677 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1678 udf_fixed_to_variable(block) >= 1679 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1680 return 0; 1681 1682 bh = udf_read_tagged(sb, block, block, &ident); 1683 if (!bh) 1684 return 0; 1685 if (ident != TAG_IDENT_AVDP) { 1686 brelse(bh); 1687 return 0; 1688 } 1689 ret = udf_load_sequence(sb, bh, fileset); 1690 brelse(bh); 1691 return ret; 1692 } 1693 1694 /* Search for an anchor volume descriptor pointer */ 1695 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1696 struct kernel_lb_addr *fileset) 1697 { 1698 sector_t last[6]; 1699 int i; 1700 struct udf_sb_info *sbi = UDF_SB(sb); 1701 int last_count = 0; 1702 1703 /* First try user provided anchor */ 1704 if (sbi->s_anchor) { 1705 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1706 return lastblock; 1707 } 1708 /* 1709 * according to spec, anchor is in either: 1710 * block 256 1711 * lastblock-256 1712 * lastblock 1713 * however, if the disc isn't closed, it could be 512. 1714 */ 1715 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1716 return lastblock; 1717 /* 1718 * The trouble is which block is the last one. Drives often misreport 1719 * this so we try various possibilities. 1720 */ 1721 last[last_count++] = lastblock; 1722 if (lastblock >= 1) 1723 last[last_count++] = lastblock - 1; 1724 last[last_count++] = lastblock + 1; 1725 if (lastblock >= 2) 1726 last[last_count++] = lastblock - 2; 1727 if (lastblock >= 150) 1728 last[last_count++] = lastblock - 150; 1729 if (lastblock >= 152) 1730 last[last_count++] = lastblock - 152; 1731 1732 for (i = 0; i < last_count; i++) { 1733 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1734 sb->s_blocksize_bits) 1735 continue; 1736 if (udf_check_anchor_block(sb, last[i], fileset)) 1737 return last[i]; 1738 if (last[i] < 256) 1739 continue; 1740 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1741 return last[i]; 1742 } 1743 1744 /* Finally try block 512 in case media is open */ 1745 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1746 return last[0]; 1747 return 0; 1748 } 1749 1750 /* 1751 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1752 * area specified by it. The function expects sbi->s_lastblock to be the last 1753 * block on the media. 1754 * 1755 * Return 1 if ok, 0 if not found. 1756 * 1757 */ 1758 static int udf_find_anchor(struct super_block *sb, 1759 struct kernel_lb_addr *fileset) 1760 { 1761 sector_t lastblock; 1762 struct udf_sb_info *sbi = UDF_SB(sb); 1763 1764 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1765 if (lastblock) 1766 goto out; 1767 1768 /* No anchor found? Try VARCONV conversion of block numbers */ 1769 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1770 /* Firstly, we try to not convert number of the last block */ 1771 lastblock = udf_scan_anchors(sb, 1772 udf_variable_to_fixed(sbi->s_last_block), 1773 fileset); 1774 if (lastblock) 1775 goto out; 1776 1777 /* Secondly, we try with converted number of the last block */ 1778 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1779 if (!lastblock) { 1780 /* VARCONV didn't help. Clear it. */ 1781 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1782 return 0; 1783 } 1784 out: 1785 sbi->s_last_block = lastblock; 1786 return 1; 1787 } 1788 1789 /* 1790 * Check Volume Structure Descriptor, find Anchor block and load Volume 1791 * Descriptor Sequence 1792 */ 1793 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1794 int silent, struct kernel_lb_addr *fileset) 1795 { 1796 struct udf_sb_info *sbi = UDF_SB(sb); 1797 loff_t nsr_off; 1798 1799 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1800 if (!silent) 1801 udf_warn(sb, "Bad block size\n"); 1802 return 0; 1803 } 1804 sbi->s_last_block = uopt->lastblock; 1805 if (!uopt->novrs) { 1806 /* Check that it is NSR02 compliant */ 1807 nsr_off = udf_check_vsd(sb); 1808 if (!nsr_off) { 1809 if (!silent) 1810 udf_warn(sb, "No VRS found\n"); 1811 return 0; 1812 } 1813 if (nsr_off == -1) 1814 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1815 if (!sbi->s_last_block) 1816 sbi->s_last_block = udf_get_last_block(sb); 1817 } else { 1818 udf_debug("Validity check skipped because of novrs option\n"); 1819 } 1820 1821 /* Look for anchor block and load Volume Descriptor Sequence */ 1822 sbi->s_anchor = uopt->anchor; 1823 if (!udf_find_anchor(sb, fileset)) { 1824 if (!silent) 1825 udf_warn(sb, "No anchor found\n"); 1826 return 0; 1827 } 1828 return 1; 1829 } 1830 1831 static void udf_open_lvid(struct super_block *sb) 1832 { 1833 struct udf_sb_info *sbi = UDF_SB(sb); 1834 struct buffer_head *bh = sbi->s_lvid_bh; 1835 struct logicalVolIntegrityDesc *lvid; 1836 struct logicalVolIntegrityDescImpUse *lvidiu; 1837 1838 if (!bh) 1839 return; 1840 1841 mutex_lock(&sbi->s_alloc_mutex); 1842 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1843 lvidiu = udf_sb_lvidiu(sbi); 1844 1845 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1846 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1847 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1848 CURRENT_TIME); 1849 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1850 1851 lvid->descTag.descCRC = cpu_to_le16( 1852 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1853 le16_to_cpu(lvid->descTag.descCRCLength))); 1854 1855 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1856 mark_buffer_dirty(bh); 1857 sbi->s_lvid_dirty = 0; 1858 mutex_unlock(&sbi->s_alloc_mutex); 1859 } 1860 1861 static void udf_close_lvid(struct super_block *sb) 1862 { 1863 struct udf_sb_info *sbi = UDF_SB(sb); 1864 struct buffer_head *bh = sbi->s_lvid_bh; 1865 struct logicalVolIntegrityDesc *lvid; 1866 struct logicalVolIntegrityDescImpUse *lvidiu; 1867 1868 if (!bh) 1869 return; 1870 1871 mutex_lock(&sbi->s_alloc_mutex); 1872 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1873 lvidiu = udf_sb_lvidiu(sbi); 1874 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1875 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1876 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1877 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1878 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1879 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1880 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1881 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1882 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1883 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1884 1885 lvid->descTag.descCRC = cpu_to_le16( 1886 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1887 le16_to_cpu(lvid->descTag.descCRCLength))); 1888 1889 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1890 /* 1891 * We set buffer uptodate unconditionally here to avoid spurious 1892 * warnings from mark_buffer_dirty() when previous EIO has marked 1893 * the buffer as !uptodate 1894 */ 1895 set_buffer_uptodate(bh); 1896 mark_buffer_dirty(bh); 1897 sbi->s_lvid_dirty = 0; 1898 mutex_unlock(&sbi->s_alloc_mutex); 1899 } 1900 1901 u64 lvid_get_unique_id(struct super_block *sb) 1902 { 1903 struct buffer_head *bh; 1904 struct udf_sb_info *sbi = UDF_SB(sb); 1905 struct logicalVolIntegrityDesc *lvid; 1906 struct logicalVolHeaderDesc *lvhd; 1907 u64 uniqueID; 1908 u64 ret; 1909 1910 bh = sbi->s_lvid_bh; 1911 if (!bh) 1912 return 0; 1913 1914 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1915 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1916 1917 mutex_lock(&sbi->s_alloc_mutex); 1918 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1919 if (!(++uniqueID & 0xFFFFFFFF)) 1920 uniqueID += 16; 1921 lvhd->uniqueID = cpu_to_le64(uniqueID); 1922 mutex_unlock(&sbi->s_alloc_mutex); 1923 mark_buffer_dirty(bh); 1924 1925 return ret; 1926 } 1927 1928 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1929 { 1930 int ret; 1931 struct inode *inode = NULL; 1932 struct udf_options uopt; 1933 struct kernel_lb_addr rootdir, fileset; 1934 struct udf_sb_info *sbi; 1935 1936 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1937 uopt.uid = -1; 1938 uopt.gid = -1; 1939 uopt.umask = 0; 1940 uopt.fmode = UDF_INVALID_MODE; 1941 uopt.dmode = UDF_INVALID_MODE; 1942 1943 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1944 if (!sbi) 1945 return -ENOMEM; 1946 1947 sb->s_fs_info = sbi; 1948 1949 mutex_init(&sbi->s_alloc_mutex); 1950 1951 if (!udf_parse_options((char *)options, &uopt, false)) 1952 goto error_out; 1953 1954 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1955 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1956 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 1957 goto error_out; 1958 } 1959 #ifdef CONFIG_UDF_NLS 1960 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1961 uopt.nls_map = load_nls_default(); 1962 if (!uopt.nls_map) 1963 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1964 else 1965 udf_debug("Using default NLS map\n"); 1966 } 1967 #endif 1968 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1969 uopt.flags |= (1 << UDF_FLAG_UTF8); 1970 1971 fileset.logicalBlockNum = 0xFFFFFFFF; 1972 fileset.partitionReferenceNum = 0xFFFF; 1973 1974 sbi->s_flags = uopt.flags; 1975 sbi->s_uid = uopt.uid; 1976 sbi->s_gid = uopt.gid; 1977 sbi->s_umask = uopt.umask; 1978 sbi->s_fmode = uopt.fmode; 1979 sbi->s_dmode = uopt.dmode; 1980 sbi->s_nls_map = uopt.nls_map; 1981 rwlock_init(&sbi->s_cred_lock); 1982 1983 if (uopt.session == 0xFFFFFFFF) 1984 sbi->s_session = udf_get_last_session(sb); 1985 else 1986 sbi->s_session = uopt.session; 1987 1988 udf_debug("Multi-session=%d\n", sbi->s_session); 1989 1990 /* Fill in the rest of the superblock */ 1991 sb->s_op = &udf_sb_ops; 1992 sb->s_export_op = &udf_export_ops; 1993 1994 sb->s_magic = UDF_SUPER_MAGIC; 1995 sb->s_time_gran = 1000; 1996 1997 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1998 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1999 } else { 2000 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2001 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2002 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2003 if (!silent) 2004 pr_notice("Rescanning with blocksize %d\n", 2005 UDF_DEFAULT_BLOCKSIZE); 2006 brelse(sbi->s_lvid_bh); 2007 sbi->s_lvid_bh = NULL; 2008 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2009 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2010 } 2011 } 2012 if (!ret) { 2013 udf_warn(sb, "No partition found (1)\n"); 2014 goto error_out; 2015 } 2016 2017 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2018 2019 if (sbi->s_lvid_bh) { 2020 struct logicalVolIntegrityDescImpUse *lvidiu = 2021 udf_sb_lvidiu(sbi); 2022 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2023 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2024 /* uint16_t maxUDFWriteRev = 2025 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 2026 2027 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2028 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2029 le16_to_cpu(lvidiu->minUDFReadRev), 2030 UDF_MAX_READ_VERSION); 2031 goto error_out; 2032 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 2033 sb->s_flags |= MS_RDONLY; 2034 2035 sbi->s_udfrev = minUDFWriteRev; 2036 2037 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2038 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2039 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2040 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2041 } 2042 2043 if (!sbi->s_partitions) { 2044 udf_warn(sb, "No partition found (2)\n"); 2045 goto error_out; 2046 } 2047 2048 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2049 UDF_PART_FLAG_READ_ONLY) { 2050 pr_notice("Partition marked readonly; forcing readonly mount\n"); 2051 sb->s_flags |= MS_RDONLY; 2052 } 2053 2054 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2055 udf_warn(sb, "No fileset found\n"); 2056 goto error_out; 2057 } 2058 2059 if (!silent) { 2060 struct timestamp ts; 2061 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2062 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2063 sbi->s_volume_ident, 2064 le16_to_cpu(ts.year), ts.month, ts.day, 2065 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2066 } 2067 if (!(sb->s_flags & MS_RDONLY)) 2068 udf_open_lvid(sb); 2069 2070 /* Assign the root inode */ 2071 /* assign inodes by physical block number */ 2072 /* perhaps it's not extensible enough, but for now ... */ 2073 inode = udf_iget(sb, &rootdir); 2074 if (!inode) { 2075 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2076 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2077 goto error_out; 2078 } 2079 2080 /* Allocate a dentry for the root inode */ 2081 sb->s_root = d_make_root(inode); 2082 if (!sb->s_root) { 2083 udf_err(sb, "Couldn't allocate root dentry\n"); 2084 goto error_out; 2085 } 2086 sb->s_maxbytes = MAX_LFS_FILESIZE; 2087 sb->s_max_links = UDF_MAX_LINKS; 2088 return 0; 2089 2090 error_out: 2091 if (sbi->s_vat_inode) 2092 iput(sbi->s_vat_inode); 2093 #ifdef CONFIG_UDF_NLS 2094 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2095 unload_nls(sbi->s_nls_map); 2096 #endif 2097 if (!(sb->s_flags & MS_RDONLY)) 2098 udf_close_lvid(sb); 2099 brelse(sbi->s_lvid_bh); 2100 udf_sb_free_partitions(sb); 2101 kfree(sbi); 2102 sb->s_fs_info = NULL; 2103 2104 return -EINVAL; 2105 } 2106 2107 void _udf_err(struct super_block *sb, const char *function, 2108 const char *fmt, ...) 2109 { 2110 struct va_format vaf; 2111 va_list args; 2112 2113 va_start(args, fmt); 2114 2115 vaf.fmt = fmt; 2116 vaf.va = &args; 2117 2118 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2119 2120 va_end(args); 2121 } 2122 2123 void _udf_warn(struct super_block *sb, const char *function, 2124 const char *fmt, ...) 2125 { 2126 struct va_format vaf; 2127 va_list args; 2128 2129 va_start(args, fmt); 2130 2131 vaf.fmt = fmt; 2132 vaf.va = &args; 2133 2134 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2135 2136 va_end(args); 2137 } 2138 2139 static void udf_put_super(struct super_block *sb) 2140 { 2141 struct udf_sb_info *sbi; 2142 2143 sbi = UDF_SB(sb); 2144 2145 if (sbi->s_vat_inode) 2146 iput(sbi->s_vat_inode); 2147 #ifdef CONFIG_UDF_NLS 2148 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2149 unload_nls(sbi->s_nls_map); 2150 #endif 2151 if (!(sb->s_flags & MS_RDONLY)) 2152 udf_close_lvid(sb); 2153 brelse(sbi->s_lvid_bh); 2154 udf_sb_free_partitions(sb); 2155 kfree(sb->s_fs_info); 2156 sb->s_fs_info = NULL; 2157 } 2158 2159 static int udf_sync_fs(struct super_block *sb, int wait) 2160 { 2161 struct udf_sb_info *sbi = UDF_SB(sb); 2162 2163 mutex_lock(&sbi->s_alloc_mutex); 2164 if (sbi->s_lvid_dirty) { 2165 /* 2166 * Blockdevice will be synced later so we don't have to submit 2167 * the buffer for IO 2168 */ 2169 mark_buffer_dirty(sbi->s_lvid_bh); 2170 sbi->s_lvid_dirty = 0; 2171 } 2172 mutex_unlock(&sbi->s_alloc_mutex); 2173 2174 return 0; 2175 } 2176 2177 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2178 { 2179 struct super_block *sb = dentry->d_sb; 2180 struct udf_sb_info *sbi = UDF_SB(sb); 2181 struct logicalVolIntegrityDescImpUse *lvidiu; 2182 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2183 2184 if (sbi->s_lvid_bh != NULL) 2185 lvidiu = udf_sb_lvidiu(sbi); 2186 else 2187 lvidiu = NULL; 2188 2189 buf->f_type = UDF_SUPER_MAGIC; 2190 buf->f_bsize = sb->s_blocksize; 2191 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2192 buf->f_bfree = udf_count_free(sb); 2193 buf->f_bavail = buf->f_bfree; 2194 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2195 le32_to_cpu(lvidiu->numDirs)) : 0) 2196 + buf->f_bfree; 2197 buf->f_ffree = buf->f_bfree; 2198 buf->f_namelen = UDF_NAME_LEN - 2; 2199 buf->f_fsid.val[0] = (u32)id; 2200 buf->f_fsid.val[1] = (u32)(id >> 32); 2201 2202 return 0; 2203 } 2204 2205 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2206 struct udf_bitmap *bitmap) 2207 { 2208 struct buffer_head *bh = NULL; 2209 unsigned int accum = 0; 2210 int index; 2211 int block = 0, newblock; 2212 struct kernel_lb_addr loc; 2213 uint32_t bytes; 2214 uint8_t *ptr; 2215 uint16_t ident; 2216 struct spaceBitmapDesc *bm; 2217 2218 loc.logicalBlockNum = bitmap->s_extPosition; 2219 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2220 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2221 2222 if (!bh) { 2223 udf_err(sb, "udf_count_free failed\n"); 2224 goto out; 2225 } else if (ident != TAG_IDENT_SBD) { 2226 brelse(bh); 2227 udf_err(sb, "udf_count_free failed\n"); 2228 goto out; 2229 } 2230 2231 bm = (struct spaceBitmapDesc *)bh->b_data; 2232 bytes = le32_to_cpu(bm->numOfBytes); 2233 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2234 ptr = (uint8_t *)bh->b_data; 2235 2236 while (bytes > 0) { 2237 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2238 accum += bitmap_weight((const unsigned long *)(ptr + index), 2239 cur_bytes * 8); 2240 bytes -= cur_bytes; 2241 if (bytes) { 2242 brelse(bh); 2243 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2244 bh = udf_tread(sb, newblock); 2245 if (!bh) { 2246 udf_debug("read failed\n"); 2247 goto out; 2248 } 2249 index = 0; 2250 ptr = (uint8_t *)bh->b_data; 2251 } 2252 } 2253 brelse(bh); 2254 out: 2255 return accum; 2256 } 2257 2258 static unsigned int udf_count_free_table(struct super_block *sb, 2259 struct inode *table) 2260 { 2261 unsigned int accum = 0; 2262 uint32_t elen; 2263 struct kernel_lb_addr eloc; 2264 int8_t etype; 2265 struct extent_position epos; 2266 2267 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2268 epos.block = UDF_I(table)->i_location; 2269 epos.offset = sizeof(struct unallocSpaceEntry); 2270 epos.bh = NULL; 2271 2272 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2273 accum += (elen >> table->i_sb->s_blocksize_bits); 2274 2275 brelse(epos.bh); 2276 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2277 2278 return accum; 2279 } 2280 2281 static unsigned int udf_count_free(struct super_block *sb) 2282 { 2283 unsigned int accum = 0; 2284 struct udf_sb_info *sbi; 2285 struct udf_part_map *map; 2286 2287 sbi = UDF_SB(sb); 2288 if (sbi->s_lvid_bh) { 2289 struct logicalVolIntegrityDesc *lvid = 2290 (struct logicalVolIntegrityDesc *) 2291 sbi->s_lvid_bh->b_data; 2292 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2293 accum = le32_to_cpu( 2294 lvid->freeSpaceTable[sbi->s_partition]); 2295 if (accum == 0xFFFFFFFF) 2296 accum = 0; 2297 } 2298 } 2299 2300 if (accum) 2301 return accum; 2302 2303 map = &sbi->s_partmaps[sbi->s_partition]; 2304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2305 accum += udf_count_free_bitmap(sb, 2306 map->s_uspace.s_bitmap); 2307 } 2308 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2309 accum += udf_count_free_bitmap(sb, 2310 map->s_fspace.s_bitmap); 2311 } 2312 if (accum) 2313 return accum; 2314 2315 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2316 accum += udf_count_free_table(sb, 2317 map->s_uspace.s_table); 2318 } 2319 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2320 accum += udf_count_free_table(sb, 2321 map->s_fspace.s_table); 2322 } 2323 2324 return accum; 2325 } 2326