xref: /linux/fs/udf/super.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 	struct logicalVolIntegrityDesc *lvid =
100 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 	__u32 offset = number_of_partitions * 2 *
103 				sizeof(uint32_t)/sizeof(uint8_t);
104 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 		      int flags, const char *dev_name, void *data)
110 {
111 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115 	.owner		= THIS_MODULE,
116 	.name		= "udf",
117 	.mount		= udf_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 
122 static struct kmem_cache *udf_inode_cachep;
123 
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 	struct udf_inode_info *ei;
127 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 	if (!ei)
129 		return NULL;
130 
131 	ei->i_unique = 0;
132 	ei->i_lenExtents = 0;
133 	ei->i_next_alloc_block = 0;
134 	ei->i_next_alloc_goal = 0;
135 	ei->i_strat4096 = 0;
136 	init_rwsem(&ei->i_data_sem);
137 
138 	return &ei->vfs_inode;
139 }
140 
141 static void udf_i_callback(struct rcu_head *head)
142 {
143 	struct inode *inode = container_of(head, struct inode, i_rcu);
144 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146 
147 static void udf_destroy_inode(struct inode *inode)
148 {
149 	call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151 
152 static void init_once(void *foo)
153 {
154 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155 
156 	ei->i_ext.i_data = NULL;
157 	inode_init_once(&ei->vfs_inode);
158 }
159 
160 static int init_inodecache(void)
161 {
162 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 					     sizeof(struct udf_inode_info),
164 					     0, (SLAB_RECLAIM_ACCOUNT |
165 						 SLAB_MEM_SPREAD),
166 					     init_once);
167 	if (!udf_inode_cachep)
168 		return -ENOMEM;
169 	return 0;
170 }
171 
172 static void destroy_inodecache(void)
173 {
174 	kmem_cache_destroy(udf_inode_cachep);
175 }
176 
177 /* Superblock operations */
178 static const struct super_operations udf_sb_ops = {
179 	.alloc_inode	= udf_alloc_inode,
180 	.destroy_inode	= udf_destroy_inode,
181 	.write_inode	= udf_write_inode,
182 	.evict_inode	= udf_evict_inode,
183 	.put_super	= udf_put_super,
184 	.sync_fs	= udf_sync_fs,
185 	.statfs		= udf_statfs,
186 	.remount_fs	= udf_remount_fs,
187 	.show_options	= udf_show_options,
188 };
189 
190 struct udf_options {
191 	unsigned char novrs;
192 	unsigned int blocksize;
193 	unsigned int session;
194 	unsigned int lastblock;
195 	unsigned int anchor;
196 	unsigned int volume;
197 	unsigned short partition;
198 	unsigned int fileset;
199 	unsigned int rootdir;
200 	unsigned int flags;
201 	umode_t umask;
202 	gid_t gid;
203 	uid_t uid;
204 	umode_t fmode;
205 	umode_t dmode;
206 	struct nls_table *nls_map;
207 };
208 
209 static int __init init_udf_fs(void)
210 {
211 	int err;
212 
213 	err = init_inodecache();
214 	if (err)
215 		goto out1;
216 	err = register_filesystem(&udf_fstype);
217 	if (err)
218 		goto out;
219 
220 	return 0;
221 
222 out:
223 	destroy_inodecache();
224 
225 out1:
226 	return err;
227 }
228 
229 static void __exit exit_udf_fs(void)
230 {
231 	unregister_filesystem(&udf_fstype);
232 	destroy_inodecache();
233 }
234 
235 module_init(init_udf_fs)
236 module_exit(exit_udf_fs)
237 
238 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239 {
240 	struct udf_sb_info *sbi = UDF_SB(sb);
241 
242 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
243 				  GFP_KERNEL);
244 	if (!sbi->s_partmaps) {
245 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
246 			count);
247 		sbi->s_partitions = 0;
248 		return -ENOMEM;
249 	}
250 
251 	sbi->s_partitions = count;
252 	return 0;
253 }
254 
255 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
256 {
257 	int i;
258 	int nr_groups = bitmap->s_nr_groups;
259 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
260 						nr_groups);
261 
262 	for (i = 0; i < nr_groups; i++)
263 		if (bitmap->s_block_bitmap[i])
264 			brelse(bitmap->s_block_bitmap[i]);
265 
266 	if (size <= PAGE_SIZE)
267 		kfree(bitmap);
268 	else
269 		vfree(bitmap);
270 }
271 
272 static void udf_free_partition(struct udf_part_map *map)
273 {
274 	int i;
275 	struct udf_meta_data *mdata;
276 
277 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
278 		iput(map->s_uspace.s_table);
279 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
280 		iput(map->s_fspace.s_table);
281 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
282 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
283 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
284 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
285 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
286 		for (i = 0; i < 4; i++)
287 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
288 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
289 		mdata = &map->s_type_specific.s_metadata;
290 		iput(mdata->s_metadata_fe);
291 		mdata->s_metadata_fe = NULL;
292 
293 		iput(mdata->s_mirror_fe);
294 		mdata->s_mirror_fe = NULL;
295 
296 		iput(mdata->s_bitmap_fe);
297 		mdata->s_bitmap_fe = NULL;
298 	}
299 }
300 
301 static void udf_sb_free_partitions(struct super_block *sb)
302 {
303 	struct udf_sb_info *sbi = UDF_SB(sb);
304 	int i;
305 
306 	for (i = 0; i < sbi->s_partitions; i++)
307 		udf_free_partition(&sbi->s_partmaps[i]);
308 	kfree(sbi->s_partmaps);
309 	sbi->s_partmaps = NULL;
310 }
311 
312 static int udf_show_options(struct seq_file *seq, struct dentry *root)
313 {
314 	struct super_block *sb = root->d_sb;
315 	struct udf_sb_info *sbi = UDF_SB(sb);
316 
317 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
318 		seq_puts(seq, ",nostrict");
319 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
320 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
321 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
322 		seq_puts(seq, ",unhide");
323 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
324 		seq_puts(seq, ",undelete");
325 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
326 		seq_puts(seq, ",noadinicb");
327 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
328 		seq_puts(seq, ",shortad");
329 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
330 		seq_puts(seq, ",uid=forget");
331 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
332 		seq_puts(seq, ",uid=ignore");
333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
334 		seq_puts(seq, ",gid=forget");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
336 		seq_puts(seq, ",gid=ignore");
337 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
338 		seq_printf(seq, ",uid=%u", sbi->s_uid);
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
340 		seq_printf(seq, ",gid=%u", sbi->s_gid);
341 	if (sbi->s_umask != 0)
342 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
343 	if (sbi->s_fmode != UDF_INVALID_MODE)
344 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
345 	if (sbi->s_dmode != UDF_INVALID_MODE)
346 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
348 		seq_printf(seq, ",session=%u", sbi->s_session);
349 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
350 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
351 	if (sbi->s_anchor != 0)
352 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
353 	/*
354 	 * volume, partition, fileset and rootdir seem to be ignored
355 	 * currently
356 	 */
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
358 		seq_puts(seq, ",utf8");
359 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
360 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
361 
362 	return 0;
363 }
364 
365 /*
366  * udf_parse_options
367  *
368  * PURPOSE
369  *	Parse mount options.
370  *
371  * DESCRIPTION
372  *	The following mount options are supported:
373  *
374  *	gid=		Set the default group.
375  *	umask=		Set the default umask.
376  *	mode=		Set the default file permissions.
377  *	dmode=		Set the default directory permissions.
378  *	uid=		Set the default user.
379  *	bs=		Set the block size.
380  *	unhide		Show otherwise hidden files.
381  *	undelete	Show deleted files in lists.
382  *	adinicb		Embed data in the inode (default)
383  *	noadinicb	Don't embed data in the inode
384  *	shortad		Use short ad's
385  *	longad		Use long ad's (default)
386  *	nostrict	Unset strict conformance
387  *	iocharset=	Set the NLS character set
388  *
389  *	The remaining are for debugging and disaster recovery:
390  *
391  *	novrs		Skip volume sequence recognition
392  *
393  *	The following expect a offset from 0.
394  *
395  *	session=	Set the CDROM session (default= last session)
396  *	anchor=		Override standard anchor location. (default= 256)
397  *	volume=		Override the VolumeDesc location. (unused)
398  *	partition=	Override the PartitionDesc location. (unused)
399  *	lastblock=	Set the last block of the filesystem/
400  *
401  *	The following expect a offset from the partition root.
402  *
403  *	fileset=	Override the fileset block location. (unused)
404  *	rootdir=	Override the root directory location. (unused)
405  *		WARNING: overriding the rootdir to a non-directory may
406  *		yield highly unpredictable results.
407  *
408  * PRE-CONDITIONS
409  *	options		Pointer to mount options string.
410  *	uopts		Pointer to mount options variable.
411  *
412  * POST-CONDITIONS
413  *	<return>	1	Mount options parsed okay.
414  *	<return>	0	Error parsing mount options.
415  *
416  * HISTORY
417  *	July 1, 1997 - Andrew E. Mileski
418  *	Written, tested, and released.
419  */
420 
421 enum {
422 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
423 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
424 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
425 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
426 	Opt_rootdir, Opt_utf8, Opt_iocharset,
427 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
428 	Opt_fmode, Opt_dmode
429 };
430 
431 static const match_table_t tokens = {
432 	{Opt_novrs,	"novrs"},
433 	{Opt_nostrict,	"nostrict"},
434 	{Opt_bs,	"bs=%u"},
435 	{Opt_unhide,	"unhide"},
436 	{Opt_undelete,	"undelete"},
437 	{Opt_noadinicb,	"noadinicb"},
438 	{Opt_adinicb,	"adinicb"},
439 	{Opt_shortad,	"shortad"},
440 	{Opt_longad,	"longad"},
441 	{Opt_uforget,	"uid=forget"},
442 	{Opt_uignore,	"uid=ignore"},
443 	{Opt_gforget,	"gid=forget"},
444 	{Opt_gignore,	"gid=ignore"},
445 	{Opt_gid,	"gid=%u"},
446 	{Opt_uid,	"uid=%u"},
447 	{Opt_umask,	"umask=%o"},
448 	{Opt_session,	"session=%u"},
449 	{Opt_lastblock,	"lastblock=%u"},
450 	{Opt_anchor,	"anchor=%u"},
451 	{Opt_volume,	"volume=%u"},
452 	{Opt_partition,	"partition=%u"},
453 	{Opt_fileset,	"fileset=%u"},
454 	{Opt_rootdir,	"rootdir=%u"},
455 	{Opt_utf8,	"utf8"},
456 	{Opt_iocharset,	"iocharset=%s"},
457 	{Opt_fmode,     "mode=%o"},
458 	{Opt_dmode,     "dmode=%o"},
459 	{Opt_err,	NULL}
460 };
461 
462 static int udf_parse_options(char *options, struct udf_options *uopt,
463 			     bool remount)
464 {
465 	char *p;
466 	int option;
467 
468 	uopt->novrs = 0;
469 	uopt->partition = 0xFFFF;
470 	uopt->session = 0xFFFFFFFF;
471 	uopt->lastblock = 0;
472 	uopt->anchor = 0;
473 	uopt->volume = 0xFFFFFFFF;
474 	uopt->rootdir = 0xFFFFFFFF;
475 	uopt->fileset = 0xFFFFFFFF;
476 	uopt->nls_map = NULL;
477 
478 	if (!options)
479 		return 1;
480 
481 	while ((p = strsep(&options, ",")) != NULL) {
482 		substring_t args[MAX_OPT_ARGS];
483 		int token;
484 		if (!*p)
485 			continue;
486 
487 		token = match_token(p, tokens, args);
488 		switch (token) {
489 		case Opt_novrs:
490 			uopt->novrs = 1;
491 			break;
492 		case Opt_bs:
493 			if (match_int(&args[0], &option))
494 				return 0;
495 			uopt->blocksize = option;
496 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
497 			break;
498 		case Opt_unhide:
499 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
500 			break;
501 		case Opt_undelete:
502 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
503 			break;
504 		case Opt_noadinicb:
505 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
506 			break;
507 		case Opt_adinicb:
508 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
509 			break;
510 		case Opt_shortad:
511 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
512 			break;
513 		case Opt_longad:
514 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
515 			break;
516 		case Opt_gid:
517 			if (match_int(args, &option))
518 				return 0;
519 			uopt->gid = option;
520 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
521 			break;
522 		case Opt_uid:
523 			if (match_int(args, &option))
524 				return 0;
525 			uopt->uid = option;
526 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
527 			break;
528 		case Opt_umask:
529 			if (match_octal(args, &option))
530 				return 0;
531 			uopt->umask = option;
532 			break;
533 		case Opt_nostrict:
534 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
535 			break;
536 		case Opt_session:
537 			if (match_int(args, &option))
538 				return 0;
539 			uopt->session = option;
540 			if (!remount)
541 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
542 			break;
543 		case Opt_lastblock:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->lastblock = option;
547 			if (!remount)
548 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
549 			break;
550 		case Opt_anchor:
551 			if (match_int(args, &option))
552 				return 0;
553 			uopt->anchor = option;
554 			break;
555 		case Opt_volume:
556 			if (match_int(args, &option))
557 				return 0;
558 			uopt->volume = option;
559 			break;
560 		case Opt_partition:
561 			if (match_int(args, &option))
562 				return 0;
563 			uopt->partition = option;
564 			break;
565 		case Opt_fileset:
566 			if (match_int(args, &option))
567 				return 0;
568 			uopt->fileset = option;
569 			break;
570 		case Opt_rootdir:
571 			if (match_int(args, &option))
572 				return 0;
573 			uopt->rootdir = option;
574 			break;
575 		case Opt_utf8:
576 			uopt->flags |= (1 << UDF_FLAG_UTF8);
577 			break;
578 #ifdef CONFIG_UDF_NLS
579 		case Opt_iocharset:
580 			uopt->nls_map = load_nls(args[0].from);
581 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
582 			break;
583 #endif
584 		case Opt_uignore:
585 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
586 			break;
587 		case Opt_uforget:
588 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
589 			break;
590 		case Opt_gignore:
591 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
592 			break;
593 		case Opt_gforget:
594 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
595 			break;
596 		case Opt_fmode:
597 			if (match_octal(args, &option))
598 				return 0;
599 			uopt->fmode = option & 0777;
600 			break;
601 		case Opt_dmode:
602 			if (match_octal(args, &option))
603 				return 0;
604 			uopt->dmode = option & 0777;
605 			break;
606 		default:
607 			pr_err("bad mount option \"%s\" or missing value\n", p);
608 			return 0;
609 		}
610 	}
611 	return 1;
612 }
613 
614 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
615 {
616 	struct udf_options uopt;
617 	struct udf_sb_info *sbi = UDF_SB(sb);
618 	int error = 0;
619 
620 	uopt.flags = sbi->s_flags;
621 	uopt.uid   = sbi->s_uid;
622 	uopt.gid   = sbi->s_gid;
623 	uopt.umask = sbi->s_umask;
624 	uopt.fmode = sbi->s_fmode;
625 	uopt.dmode = sbi->s_dmode;
626 
627 	if (!udf_parse_options(options, &uopt, true))
628 		return -EINVAL;
629 
630 	write_lock(&sbi->s_cred_lock);
631 	sbi->s_flags = uopt.flags;
632 	sbi->s_uid   = uopt.uid;
633 	sbi->s_gid   = uopt.gid;
634 	sbi->s_umask = uopt.umask;
635 	sbi->s_fmode = uopt.fmode;
636 	sbi->s_dmode = uopt.dmode;
637 	write_unlock(&sbi->s_cred_lock);
638 
639 	if (sbi->s_lvid_bh) {
640 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
641 		if (write_rev > UDF_MAX_WRITE_VERSION)
642 			*flags |= MS_RDONLY;
643 	}
644 
645 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
646 		goto out_unlock;
647 
648 	if (*flags & MS_RDONLY)
649 		udf_close_lvid(sb);
650 	else
651 		udf_open_lvid(sb);
652 
653 out_unlock:
654 	return error;
655 }
656 
657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659 static loff_t udf_check_vsd(struct super_block *sb)
660 {
661 	struct volStructDesc *vsd = NULL;
662 	loff_t sector = 32768;
663 	int sectorsize;
664 	struct buffer_head *bh = NULL;
665 	int nsr02 = 0;
666 	int nsr03 = 0;
667 	struct udf_sb_info *sbi;
668 
669 	sbi = UDF_SB(sb);
670 	if (sb->s_blocksize < sizeof(struct volStructDesc))
671 		sectorsize = sizeof(struct volStructDesc);
672 	else
673 		sectorsize = sb->s_blocksize;
674 
675 	sector += (sbi->s_session << sb->s_blocksize_bits);
676 
677 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
678 		  (unsigned int)(sector >> sb->s_blocksize_bits),
679 		  sb->s_blocksize);
680 	/* Process the sequence (if applicable) */
681 	for (; !nsr02 && !nsr03; sector += sectorsize) {
682 		/* Read a block */
683 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
684 		if (!bh)
685 			break;
686 
687 		/* Look for ISO  descriptors */
688 		vsd = (struct volStructDesc *)(bh->b_data +
689 					      (sector & (sb->s_blocksize - 1)));
690 
691 		if (vsd->stdIdent[0] == 0) {
692 			brelse(bh);
693 			break;
694 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695 				    VSD_STD_ID_LEN)) {
696 			switch (vsd->structType) {
697 			case 0:
698 				udf_debug("ISO9660 Boot Record found\n");
699 				break;
700 			case 1:
701 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
702 				break;
703 			case 2:
704 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705 				break;
706 			case 3:
707 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
708 				break;
709 			case 255:
710 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711 				break;
712 			default:
713 				udf_debug("ISO9660 VRS (%u) found\n",
714 					  vsd->structType);
715 				break;
716 			}
717 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718 				    VSD_STD_ID_LEN))
719 			; /* nothing */
720 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721 				    VSD_STD_ID_LEN)) {
722 			brelse(bh);
723 			break;
724 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725 				    VSD_STD_ID_LEN))
726 			nsr02 = sector;
727 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728 				    VSD_STD_ID_LEN))
729 			nsr03 = sector;
730 		brelse(bh);
731 	}
732 
733 	if (nsr03)
734 		return nsr03;
735 	else if (nsr02)
736 		return nsr02;
737 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
738 		return -1;
739 	else
740 		return 0;
741 }
742 
743 static int udf_find_fileset(struct super_block *sb,
744 			    struct kernel_lb_addr *fileset,
745 			    struct kernel_lb_addr *root)
746 {
747 	struct buffer_head *bh = NULL;
748 	long lastblock;
749 	uint16_t ident;
750 	struct udf_sb_info *sbi;
751 
752 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
753 	    fileset->partitionReferenceNum != 0xFFFF) {
754 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
755 
756 		if (!bh) {
757 			return 1;
758 		} else if (ident != TAG_IDENT_FSD) {
759 			brelse(bh);
760 			return 1;
761 		}
762 
763 	}
764 
765 	sbi = UDF_SB(sb);
766 	if (!bh) {
767 		/* Search backwards through the partitions */
768 		struct kernel_lb_addr newfileset;
769 
770 /* --> cvg: FIXME - is it reasonable? */
771 		return 1;
772 
773 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
774 		     (newfileset.partitionReferenceNum != 0xFFFF &&
775 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
776 		      fileset->partitionReferenceNum == 0xFFFF);
777 		     newfileset.partitionReferenceNum--) {
778 			lastblock = sbi->s_partmaps
779 					[newfileset.partitionReferenceNum]
780 						.s_partition_len;
781 			newfileset.logicalBlockNum = 0;
782 
783 			do {
784 				bh = udf_read_ptagged(sb, &newfileset, 0,
785 						      &ident);
786 				if (!bh) {
787 					newfileset.logicalBlockNum++;
788 					continue;
789 				}
790 
791 				switch (ident) {
792 				case TAG_IDENT_SBD:
793 				{
794 					struct spaceBitmapDesc *sp;
795 					sp = (struct spaceBitmapDesc *)
796 								bh->b_data;
797 					newfileset.logicalBlockNum += 1 +
798 						((le32_to_cpu(sp->numOfBytes) +
799 						  sizeof(struct spaceBitmapDesc)
800 						  - 1) >> sb->s_blocksize_bits);
801 					brelse(bh);
802 					break;
803 				}
804 				case TAG_IDENT_FSD:
805 					*fileset = newfileset;
806 					break;
807 				default:
808 					newfileset.logicalBlockNum++;
809 					brelse(bh);
810 					bh = NULL;
811 					break;
812 				}
813 			} while (newfileset.logicalBlockNum < lastblock &&
814 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
815 				 fileset->partitionReferenceNum == 0xFFFF);
816 		}
817 	}
818 
819 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
820 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
821 		udf_debug("Fileset at block=%d, partition=%d\n",
822 			  fileset->logicalBlockNum,
823 			  fileset->partitionReferenceNum);
824 
825 		sbi->s_partition = fileset->partitionReferenceNum;
826 		udf_load_fileset(sb, bh, root);
827 		brelse(bh);
828 		return 0;
829 	}
830 	return 1;
831 }
832 
833 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
834 {
835 	struct primaryVolDesc *pvoldesc;
836 	struct ustr *instr, *outstr;
837 	struct buffer_head *bh;
838 	uint16_t ident;
839 	int ret = 1;
840 
841 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
842 	if (!instr)
843 		return 1;
844 
845 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
846 	if (!outstr)
847 		goto out1;
848 
849 	bh = udf_read_tagged(sb, block, block, &ident);
850 	if (!bh)
851 		goto out2;
852 
853 	BUG_ON(ident != TAG_IDENT_PVD);
854 
855 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
856 
857 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
858 			      pvoldesc->recordingDateAndTime)) {
859 #ifdef UDFFS_DEBUG
860 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
861 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
862 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
863 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
864 #endif
865 	}
866 
867 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
868 		if (udf_CS0toUTF8(outstr, instr)) {
869 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
870 				outstr->u_len > 31 ? 31 : outstr->u_len);
871 			udf_debug("volIdent[] = '%s'\n",
872 				  UDF_SB(sb)->s_volume_ident);
873 		}
874 
875 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
876 		if (udf_CS0toUTF8(outstr, instr))
877 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
878 
879 	brelse(bh);
880 	ret = 0;
881 out2:
882 	kfree(outstr);
883 out1:
884 	kfree(instr);
885 	return ret;
886 }
887 
888 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
889 					u32 meta_file_loc, u32 partition_num)
890 {
891 	struct kernel_lb_addr addr;
892 	struct inode *metadata_fe;
893 
894 	addr.logicalBlockNum = meta_file_loc;
895 	addr.partitionReferenceNum = partition_num;
896 
897 	metadata_fe = udf_iget(sb, &addr);
898 
899 	if (metadata_fe == NULL)
900 		udf_warn(sb, "metadata inode efe not found\n");
901 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
902 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
903 		iput(metadata_fe);
904 		metadata_fe = NULL;
905 	}
906 
907 	return metadata_fe;
908 }
909 
910 static int udf_load_metadata_files(struct super_block *sb, int partition)
911 {
912 	struct udf_sb_info *sbi = UDF_SB(sb);
913 	struct udf_part_map *map;
914 	struct udf_meta_data *mdata;
915 	struct kernel_lb_addr addr;
916 
917 	map = &sbi->s_partmaps[partition];
918 	mdata = &map->s_type_specific.s_metadata;
919 
920 	/* metadata address */
921 	udf_debug("Metadata file location: block = %d part = %d\n",
922 		  mdata->s_meta_file_loc, map->s_partition_num);
923 
924 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
925 		mdata->s_meta_file_loc, map->s_partition_num);
926 
927 	if (mdata->s_metadata_fe == NULL) {
928 		/* mirror file entry */
929 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
930 			  mdata->s_mirror_file_loc, map->s_partition_num);
931 
932 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
933 			mdata->s_mirror_file_loc, map->s_partition_num);
934 
935 		if (mdata->s_mirror_fe == NULL) {
936 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
937 			goto error_exit;
938 		}
939 	}
940 
941 	/*
942 	 * bitmap file entry
943 	 * Note:
944 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
945 	*/
946 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
947 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
948 		addr.partitionReferenceNum = map->s_partition_num;
949 
950 		udf_debug("Bitmap file location: block = %d part = %d\n",
951 			  addr.logicalBlockNum, addr.partitionReferenceNum);
952 
953 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
954 
955 		if (mdata->s_bitmap_fe == NULL) {
956 			if (sb->s_flags & MS_RDONLY)
957 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
958 			else {
959 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
960 				goto error_exit;
961 			}
962 		}
963 	}
964 
965 	udf_debug("udf_load_metadata_files Ok\n");
966 
967 	return 0;
968 
969 error_exit:
970 	return 1;
971 }
972 
973 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
974 			     struct kernel_lb_addr *root)
975 {
976 	struct fileSetDesc *fset;
977 
978 	fset = (struct fileSetDesc *)bh->b_data;
979 
980 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
981 
982 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
983 
984 	udf_debug("Rootdir at block=%d, partition=%d\n",
985 		  root->logicalBlockNum, root->partitionReferenceNum);
986 }
987 
988 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
989 {
990 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
991 	return DIV_ROUND_UP(map->s_partition_len +
992 			    (sizeof(struct spaceBitmapDesc) << 3),
993 			    sb->s_blocksize * 8);
994 }
995 
996 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
997 {
998 	struct udf_bitmap *bitmap;
999 	int nr_groups;
1000 	int size;
1001 
1002 	nr_groups = udf_compute_nr_groups(sb, index);
1003 	size = sizeof(struct udf_bitmap) +
1004 		(sizeof(struct buffer_head *) * nr_groups);
1005 
1006 	if (size <= PAGE_SIZE)
1007 		bitmap = kzalloc(size, GFP_KERNEL);
1008 	else
1009 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1010 
1011 	if (bitmap == NULL)
1012 		return NULL;
1013 
1014 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1015 	bitmap->s_nr_groups = nr_groups;
1016 	return bitmap;
1017 }
1018 
1019 static int udf_fill_partdesc_info(struct super_block *sb,
1020 		struct partitionDesc *p, int p_index)
1021 {
1022 	struct udf_part_map *map;
1023 	struct udf_sb_info *sbi = UDF_SB(sb);
1024 	struct partitionHeaderDesc *phd;
1025 
1026 	map = &sbi->s_partmaps[p_index];
1027 
1028 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1029 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1030 
1031 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1032 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1033 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1034 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1035 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1036 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1037 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1038 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1039 
1040 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1041 		  p_index, map->s_partition_type,
1042 		  map->s_partition_root, map->s_partition_len);
1043 
1044 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1045 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1046 		return 0;
1047 
1048 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1049 	if (phd->unallocSpaceTable.extLength) {
1050 		struct kernel_lb_addr loc = {
1051 			.logicalBlockNum = le32_to_cpu(
1052 				phd->unallocSpaceTable.extPosition),
1053 			.partitionReferenceNum = p_index,
1054 		};
1055 
1056 		map->s_uspace.s_table = udf_iget(sb, &loc);
1057 		if (!map->s_uspace.s_table) {
1058 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1059 				  p_index);
1060 			return 1;
1061 		}
1062 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1063 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1064 			  p_index, map->s_uspace.s_table->i_ino);
1065 	}
1066 
1067 	if (phd->unallocSpaceBitmap.extLength) {
1068 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1069 		if (!bitmap)
1070 			return 1;
1071 		map->s_uspace.s_bitmap = bitmap;
1072 		bitmap->s_extLength = le32_to_cpu(
1073 				phd->unallocSpaceBitmap.extLength);
1074 		bitmap->s_extPosition = le32_to_cpu(
1075 				phd->unallocSpaceBitmap.extPosition);
1076 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1077 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1078 			  p_index, bitmap->s_extPosition);
1079 	}
1080 
1081 	if (phd->partitionIntegrityTable.extLength)
1082 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1083 
1084 	if (phd->freedSpaceTable.extLength) {
1085 		struct kernel_lb_addr loc = {
1086 			.logicalBlockNum = le32_to_cpu(
1087 				phd->freedSpaceTable.extPosition),
1088 			.partitionReferenceNum = p_index,
1089 		};
1090 
1091 		map->s_fspace.s_table = udf_iget(sb, &loc);
1092 		if (!map->s_fspace.s_table) {
1093 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1094 				  p_index);
1095 			return 1;
1096 		}
1097 
1098 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1099 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1100 			  p_index, map->s_fspace.s_table->i_ino);
1101 	}
1102 
1103 	if (phd->freedSpaceBitmap.extLength) {
1104 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1105 		if (!bitmap)
1106 			return 1;
1107 		map->s_fspace.s_bitmap = bitmap;
1108 		bitmap->s_extLength = le32_to_cpu(
1109 				phd->freedSpaceBitmap.extLength);
1110 		bitmap->s_extPosition = le32_to_cpu(
1111 				phd->freedSpaceBitmap.extPosition);
1112 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1113 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1114 			  p_index, bitmap->s_extPosition);
1115 	}
1116 	return 0;
1117 }
1118 
1119 static void udf_find_vat_block(struct super_block *sb, int p_index,
1120 			       int type1_index, sector_t start_block)
1121 {
1122 	struct udf_sb_info *sbi = UDF_SB(sb);
1123 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1124 	sector_t vat_block;
1125 	struct kernel_lb_addr ino;
1126 
1127 	/*
1128 	 * VAT file entry is in the last recorded block. Some broken disks have
1129 	 * it a few blocks before so try a bit harder...
1130 	 */
1131 	ino.partitionReferenceNum = type1_index;
1132 	for (vat_block = start_block;
1133 	     vat_block >= map->s_partition_root &&
1134 	     vat_block >= start_block - 3 &&
1135 	     !sbi->s_vat_inode; vat_block--) {
1136 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1137 		sbi->s_vat_inode = udf_iget(sb, &ino);
1138 	}
1139 }
1140 
1141 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1142 {
1143 	struct udf_sb_info *sbi = UDF_SB(sb);
1144 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1145 	struct buffer_head *bh = NULL;
1146 	struct udf_inode_info *vati;
1147 	uint32_t pos;
1148 	struct virtualAllocationTable20 *vat20;
1149 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1150 
1151 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1152 	if (!sbi->s_vat_inode &&
1153 	    sbi->s_last_block != blocks - 1) {
1154 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1155 			  (unsigned long)sbi->s_last_block,
1156 			  (unsigned long)blocks - 1);
1157 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1158 	}
1159 	if (!sbi->s_vat_inode)
1160 		return 1;
1161 
1162 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1163 		map->s_type_specific.s_virtual.s_start_offset = 0;
1164 		map->s_type_specific.s_virtual.s_num_entries =
1165 			(sbi->s_vat_inode->i_size - 36) >> 2;
1166 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1167 		vati = UDF_I(sbi->s_vat_inode);
1168 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1169 			pos = udf_block_map(sbi->s_vat_inode, 0);
1170 			bh = sb_bread(sb, pos);
1171 			if (!bh)
1172 				return 1;
1173 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1174 		} else {
1175 			vat20 = (struct virtualAllocationTable20 *)
1176 							vati->i_ext.i_data;
1177 		}
1178 
1179 		map->s_type_specific.s_virtual.s_start_offset =
1180 			le16_to_cpu(vat20->lengthHeader);
1181 		map->s_type_specific.s_virtual.s_num_entries =
1182 			(sbi->s_vat_inode->i_size -
1183 				map->s_type_specific.s_virtual.
1184 					s_start_offset) >> 2;
1185 		brelse(bh);
1186 	}
1187 	return 0;
1188 }
1189 
1190 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1191 {
1192 	struct buffer_head *bh;
1193 	struct partitionDesc *p;
1194 	struct udf_part_map *map;
1195 	struct udf_sb_info *sbi = UDF_SB(sb);
1196 	int i, type1_idx;
1197 	uint16_t partitionNumber;
1198 	uint16_t ident;
1199 	int ret = 0;
1200 
1201 	bh = udf_read_tagged(sb, block, block, &ident);
1202 	if (!bh)
1203 		return 1;
1204 	if (ident != TAG_IDENT_PD)
1205 		goto out_bh;
1206 
1207 	p = (struct partitionDesc *)bh->b_data;
1208 	partitionNumber = le16_to_cpu(p->partitionNumber);
1209 
1210 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1211 	for (i = 0; i < sbi->s_partitions; i++) {
1212 		map = &sbi->s_partmaps[i];
1213 		udf_debug("Searching map: (%d == %d)\n",
1214 			  map->s_partition_num, partitionNumber);
1215 		if (map->s_partition_num == partitionNumber &&
1216 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1217 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1218 			break;
1219 	}
1220 
1221 	if (i >= sbi->s_partitions) {
1222 		udf_debug("Partition (%d) not found in partition map\n",
1223 			  partitionNumber);
1224 		goto out_bh;
1225 	}
1226 
1227 	ret = udf_fill_partdesc_info(sb, p, i);
1228 
1229 	/*
1230 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1231 	 * PHYSICAL partitions are already set up
1232 	 */
1233 	type1_idx = i;
1234 	for (i = 0; i < sbi->s_partitions; i++) {
1235 		map = &sbi->s_partmaps[i];
1236 
1237 		if (map->s_partition_num == partitionNumber &&
1238 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1239 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1240 		     map->s_partition_type == UDF_METADATA_MAP25))
1241 			break;
1242 	}
1243 
1244 	if (i >= sbi->s_partitions)
1245 		goto out_bh;
1246 
1247 	ret = udf_fill_partdesc_info(sb, p, i);
1248 	if (ret)
1249 		goto out_bh;
1250 
1251 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1252 		ret = udf_load_metadata_files(sb, i);
1253 		if (ret) {
1254 			udf_err(sb, "error loading MetaData partition map %d\n",
1255 				i);
1256 			goto out_bh;
1257 		}
1258 	} else {
1259 		ret = udf_load_vat(sb, i, type1_idx);
1260 		if (ret)
1261 			goto out_bh;
1262 		/*
1263 		 * Mark filesystem read-only if we have a partition with
1264 		 * virtual map since we don't handle writing to it (we
1265 		 * overwrite blocks instead of relocating them).
1266 		 */
1267 		sb->s_flags |= MS_RDONLY;
1268 		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1269 	}
1270 out_bh:
1271 	/* In case loading failed, we handle cleanup in udf_fill_super */
1272 	brelse(bh);
1273 	return ret;
1274 }
1275 
1276 static int udf_load_sparable_map(struct super_block *sb,
1277 				 struct udf_part_map *map,
1278 				 struct sparablePartitionMap *spm)
1279 {
1280 	uint32_t loc;
1281 	uint16_t ident;
1282 	struct sparingTable *st;
1283 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1284 	int i;
1285 	struct buffer_head *bh;
1286 
1287 	map->s_partition_type = UDF_SPARABLE_MAP15;
1288 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1289 	if (!is_power_of_2(sdata->s_packet_len)) {
1290 		udf_err(sb, "error loading logical volume descriptor: "
1291 			"Invalid packet length %u\n",
1292 			(unsigned)sdata->s_packet_len);
1293 		return -EIO;
1294 	}
1295 	if (spm->numSparingTables > 4) {
1296 		udf_err(sb, "error loading logical volume descriptor: "
1297 			"Too many sparing tables (%d)\n",
1298 			(int)spm->numSparingTables);
1299 		return -EIO;
1300 	}
1301 
1302 	for (i = 0; i < spm->numSparingTables; i++) {
1303 		loc = le32_to_cpu(spm->locSparingTable[i]);
1304 		bh = udf_read_tagged(sb, loc, loc, &ident);
1305 		if (!bh)
1306 			continue;
1307 
1308 		st = (struct sparingTable *)bh->b_data;
1309 		if (ident != 0 ||
1310 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1311 			    strlen(UDF_ID_SPARING)) ||
1312 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1313 							sb->s_blocksize) {
1314 			brelse(bh);
1315 			continue;
1316 		}
1317 
1318 		sdata->s_spar_map[i] = bh;
1319 	}
1320 	map->s_partition_func = udf_get_pblock_spar15;
1321 	return 0;
1322 }
1323 
1324 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1325 			       struct kernel_lb_addr *fileset)
1326 {
1327 	struct logicalVolDesc *lvd;
1328 	int i, offset;
1329 	uint8_t type;
1330 	struct udf_sb_info *sbi = UDF_SB(sb);
1331 	struct genericPartitionMap *gpm;
1332 	uint16_t ident;
1333 	struct buffer_head *bh;
1334 	unsigned int table_len;
1335 	int ret = 0;
1336 
1337 	bh = udf_read_tagged(sb, block, block, &ident);
1338 	if (!bh)
1339 		return 1;
1340 	BUG_ON(ident != TAG_IDENT_LVD);
1341 	lvd = (struct logicalVolDesc *)bh->b_data;
1342 	table_len = le32_to_cpu(lvd->mapTableLength);
1343 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1344 		udf_err(sb, "error loading logical volume descriptor: "
1345 			"Partition table too long (%u > %lu)\n", table_len,
1346 			sb->s_blocksize - sizeof(*lvd));
1347 		ret = 1;
1348 		goto out_bh;
1349 	}
1350 
1351 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1352 	if (ret)
1353 		goto out_bh;
1354 
1355 	for (i = 0, offset = 0;
1356 	     i < sbi->s_partitions && offset < table_len;
1357 	     i++, offset += gpm->partitionMapLength) {
1358 		struct udf_part_map *map = &sbi->s_partmaps[i];
1359 		gpm = (struct genericPartitionMap *)
1360 				&(lvd->partitionMaps[offset]);
1361 		type = gpm->partitionMapType;
1362 		if (type == 1) {
1363 			struct genericPartitionMap1 *gpm1 =
1364 				(struct genericPartitionMap1 *)gpm;
1365 			map->s_partition_type = UDF_TYPE1_MAP15;
1366 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1367 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1368 			map->s_partition_func = NULL;
1369 		} else if (type == 2) {
1370 			struct udfPartitionMap2 *upm2 =
1371 						(struct udfPartitionMap2 *)gpm;
1372 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1373 						strlen(UDF_ID_VIRTUAL))) {
1374 				u16 suf =
1375 					le16_to_cpu(((__le16 *)upm2->partIdent.
1376 							identSuffix)[0]);
1377 				if (suf < 0x0200) {
1378 					map->s_partition_type =
1379 							UDF_VIRTUAL_MAP15;
1380 					map->s_partition_func =
1381 							udf_get_pblock_virt15;
1382 				} else {
1383 					map->s_partition_type =
1384 							UDF_VIRTUAL_MAP20;
1385 					map->s_partition_func =
1386 							udf_get_pblock_virt20;
1387 				}
1388 			} else if (!strncmp(upm2->partIdent.ident,
1389 						UDF_ID_SPARABLE,
1390 						strlen(UDF_ID_SPARABLE))) {
1391 				if (udf_load_sparable_map(sb, map,
1392 				    (struct sparablePartitionMap *)gpm) < 0) {
1393 					ret = 1;
1394 					goto out_bh;
1395 				}
1396 			} else if (!strncmp(upm2->partIdent.ident,
1397 						UDF_ID_METADATA,
1398 						strlen(UDF_ID_METADATA))) {
1399 				struct udf_meta_data *mdata =
1400 					&map->s_type_specific.s_metadata;
1401 				struct metadataPartitionMap *mdm =
1402 						(struct metadataPartitionMap *)
1403 						&(lvd->partitionMaps[offset]);
1404 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1405 					  i, type, UDF_ID_METADATA);
1406 
1407 				map->s_partition_type = UDF_METADATA_MAP25;
1408 				map->s_partition_func = udf_get_pblock_meta25;
1409 
1410 				mdata->s_meta_file_loc   =
1411 					le32_to_cpu(mdm->metadataFileLoc);
1412 				mdata->s_mirror_file_loc =
1413 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1414 				mdata->s_bitmap_file_loc =
1415 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1416 				mdata->s_alloc_unit_size =
1417 					le32_to_cpu(mdm->allocUnitSize);
1418 				mdata->s_align_unit_size =
1419 					le16_to_cpu(mdm->alignUnitSize);
1420 				if (mdm->flags & 0x01)
1421 					mdata->s_flags |= MF_DUPLICATE_MD;
1422 
1423 				udf_debug("Metadata Ident suffix=0x%x\n",
1424 					  le16_to_cpu(*(__le16 *)
1425 						      mdm->partIdent.identSuffix));
1426 				udf_debug("Metadata part num=%d\n",
1427 					  le16_to_cpu(mdm->partitionNum));
1428 				udf_debug("Metadata part alloc unit size=%d\n",
1429 					  le32_to_cpu(mdm->allocUnitSize));
1430 				udf_debug("Metadata file loc=%d\n",
1431 					  le32_to_cpu(mdm->metadataFileLoc));
1432 				udf_debug("Mirror file loc=%d\n",
1433 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1434 				udf_debug("Bitmap file loc=%d\n",
1435 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1436 				udf_debug("Flags: %d %d\n",
1437 					  mdata->s_flags, mdm->flags);
1438 			} else {
1439 				udf_debug("Unknown ident: %s\n",
1440 					  upm2->partIdent.ident);
1441 				continue;
1442 			}
1443 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1444 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1445 		}
1446 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1447 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1448 	}
1449 
1450 	if (fileset) {
1451 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1452 
1453 		*fileset = lelb_to_cpu(la->extLocation);
1454 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1455 			  fileset->logicalBlockNum,
1456 			  fileset->partitionReferenceNum);
1457 	}
1458 	if (lvd->integritySeqExt.extLength)
1459 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1460 
1461 out_bh:
1462 	brelse(bh);
1463 	return ret;
1464 }
1465 
1466 /*
1467  * udf_load_logicalvolint
1468  *
1469  */
1470 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1471 {
1472 	struct buffer_head *bh = NULL;
1473 	uint16_t ident;
1474 	struct udf_sb_info *sbi = UDF_SB(sb);
1475 	struct logicalVolIntegrityDesc *lvid;
1476 
1477 	while (loc.extLength > 0 &&
1478 	       (bh = udf_read_tagged(sb, loc.extLocation,
1479 				     loc.extLocation, &ident)) &&
1480 	       ident == TAG_IDENT_LVID) {
1481 		sbi->s_lvid_bh = bh;
1482 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1483 
1484 		if (lvid->nextIntegrityExt.extLength)
1485 			udf_load_logicalvolint(sb,
1486 				leea_to_cpu(lvid->nextIntegrityExt));
1487 
1488 		if (sbi->s_lvid_bh != bh)
1489 			brelse(bh);
1490 		loc.extLength -= sb->s_blocksize;
1491 		loc.extLocation++;
1492 	}
1493 	if (sbi->s_lvid_bh != bh)
1494 		brelse(bh);
1495 }
1496 
1497 /*
1498  * udf_process_sequence
1499  *
1500  * PURPOSE
1501  *	Process a main/reserve volume descriptor sequence.
1502  *
1503  * PRE-CONDITIONS
1504  *	sb			Pointer to _locked_ superblock.
1505  *	block			First block of first extent of the sequence.
1506  *	lastblock		Lastblock of first extent of the sequence.
1507  *
1508  * HISTORY
1509  *	July 1, 1997 - Andrew E. Mileski
1510  *	Written, tested, and released.
1511  */
1512 static noinline int udf_process_sequence(struct super_block *sb, long block,
1513 				long lastblock, struct kernel_lb_addr *fileset)
1514 {
1515 	struct buffer_head *bh = NULL;
1516 	struct udf_vds_record vds[VDS_POS_LENGTH];
1517 	struct udf_vds_record *curr;
1518 	struct generic_desc *gd;
1519 	struct volDescPtr *vdp;
1520 	int done = 0;
1521 	uint32_t vdsn;
1522 	uint16_t ident;
1523 	long next_s = 0, next_e = 0;
1524 
1525 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1526 
1527 	/*
1528 	 * Read the main descriptor sequence and find which descriptors
1529 	 * are in it.
1530 	 */
1531 	for (; (!done && block <= lastblock); block++) {
1532 
1533 		bh = udf_read_tagged(sb, block, block, &ident);
1534 		if (!bh) {
1535 			udf_err(sb,
1536 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1537 				(unsigned long long)block);
1538 			return 1;
1539 		}
1540 
1541 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1542 		gd = (struct generic_desc *)bh->b_data;
1543 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1544 		switch (ident) {
1545 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1546 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1547 			if (vdsn >= curr->volDescSeqNum) {
1548 				curr->volDescSeqNum = vdsn;
1549 				curr->block = block;
1550 			}
1551 			break;
1552 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1553 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1554 			if (vdsn >= curr->volDescSeqNum) {
1555 				curr->volDescSeqNum = vdsn;
1556 				curr->block = block;
1557 
1558 				vdp = (struct volDescPtr *)bh->b_data;
1559 				next_s = le32_to_cpu(
1560 					vdp->nextVolDescSeqExt.extLocation);
1561 				next_e = le32_to_cpu(
1562 					vdp->nextVolDescSeqExt.extLength);
1563 				next_e = next_e >> sb->s_blocksize_bits;
1564 				next_e += next_s;
1565 			}
1566 			break;
1567 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1568 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1569 			if (vdsn >= curr->volDescSeqNum) {
1570 				curr->volDescSeqNum = vdsn;
1571 				curr->block = block;
1572 			}
1573 			break;
1574 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1575 			curr = &vds[VDS_POS_PARTITION_DESC];
1576 			if (!curr->block)
1577 				curr->block = block;
1578 			break;
1579 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1580 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1581 			if (vdsn >= curr->volDescSeqNum) {
1582 				curr->volDescSeqNum = vdsn;
1583 				curr->block = block;
1584 			}
1585 			break;
1586 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1587 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1588 			if (vdsn >= curr->volDescSeqNum) {
1589 				curr->volDescSeqNum = vdsn;
1590 				curr->block = block;
1591 			}
1592 			break;
1593 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1594 			vds[VDS_POS_TERMINATING_DESC].block = block;
1595 			if (next_e) {
1596 				block = next_s;
1597 				lastblock = next_e;
1598 				next_s = next_e = 0;
1599 			} else
1600 				done = 1;
1601 			break;
1602 		}
1603 		brelse(bh);
1604 	}
1605 	/*
1606 	 * Now read interesting descriptors again and process them
1607 	 * in a suitable order
1608 	 */
1609 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1610 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1611 		return 1;
1612 	}
1613 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1614 		return 1;
1615 
1616 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1617 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1618 		return 1;
1619 
1620 	if (vds[VDS_POS_PARTITION_DESC].block) {
1621 		/*
1622 		 * We rescan the whole descriptor sequence to find
1623 		 * partition descriptor blocks and process them.
1624 		 */
1625 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1626 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1627 		     block++)
1628 			if (udf_load_partdesc(sb, block))
1629 				return 1;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
1635 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1636 			     struct kernel_lb_addr *fileset)
1637 {
1638 	struct anchorVolDescPtr *anchor;
1639 	long main_s, main_e, reserve_s, reserve_e;
1640 
1641 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1642 
1643 	/* Locate the main sequence */
1644 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1645 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1646 	main_e = main_e >> sb->s_blocksize_bits;
1647 	main_e += main_s;
1648 
1649 	/* Locate the reserve sequence */
1650 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1651 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1652 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1653 	reserve_e += reserve_s;
1654 
1655 	/* Process the main & reserve sequences */
1656 	/* responsible for finding the PartitionDesc(s) */
1657 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1658 		return 1;
1659 	udf_sb_free_partitions(sb);
1660 	if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1661 		return 1;
1662 	udf_sb_free_partitions(sb);
1663 	return 0;
1664 }
1665 
1666 /*
1667  * Check whether there is an anchor block in the given block and
1668  * load Volume Descriptor Sequence if so.
1669  */
1670 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1671 				  struct kernel_lb_addr *fileset)
1672 {
1673 	struct buffer_head *bh;
1674 	uint16_t ident;
1675 	int ret;
1676 
1677 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1678 	    udf_fixed_to_variable(block) >=
1679 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1680 		return 0;
1681 
1682 	bh = udf_read_tagged(sb, block, block, &ident);
1683 	if (!bh)
1684 		return 0;
1685 	if (ident != TAG_IDENT_AVDP) {
1686 		brelse(bh);
1687 		return 0;
1688 	}
1689 	ret = udf_load_sequence(sb, bh, fileset);
1690 	brelse(bh);
1691 	return ret;
1692 }
1693 
1694 /* Search for an anchor volume descriptor pointer */
1695 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1696 				 struct kernel_lb_addr *fileset)
1697 {
1698 	sector_t last[6];
1699 	int i;
1700 	struct udf_sb_info *sbi = UDF_SB(sb);
1701 	int last_count = 0;
1702 
1703 	/* First try user provided anchor */
1704 	if (sbi->s_anchor) {
1705 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1706 			return lastblock;
1707 	}
1708 	/*
1709 	 * according to spec, anchor is in either:
1710 	 *     block 256
1711 	 *     lastblock-256
1712 	 *     lastblock
1713 	 *  however, if the disc isn't closed, it could be 512.
1714 	 */
1715 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1716 		return lastblock;
1717 	/*
1718 	 * The trouble is which block is the last one. Drives often misreport
1719 	 * this so we try various possibilities.
1720 	 */
1721 	last[last_count++] = lastblock;
1722 	if (lastblock >= 1)
1723 		last[last_count++] = lastblock - 1;
1724 	last[last_count++] = lastblock + 1;
1725 	if (lastblock >= 2)
1726 		last[last_count++] = lastblock - 2;
1727 	if (lastblock >= 150)
1728 		last[last_count++] = lastblock - 150;
1729 	if (lastblock >= 152)
1730 		last[last_count++] = lastblock - 152;
1731 
1732 	for (i = 0; i < last_count; i++) {
1733 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1734 				sb->s_blocksize_bits)
1735 			continue;
1736 		if (udf_check_anchor_block(sb, last[i], fileset))
1737 			return last[i];
1738 		if (last[i] < 256)
1739 			continue;
1740 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1741 			return last[i];
1742 	}
1743 
1744 	/* Finally try block 512 in case media is open */
1745 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1746 		return last[0];
1747 	return 0;
1748 }
1749 
1750 /*
1751  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1752  * area specified by it. The function expects sbi->s_lastblock to be the last
1753  * block on the media.
1754  *
1755  * Return 1 if ok, 0 if not found.
1756  *
1757  */
1758 static int udf_find_anchor(struct super_block *sb,
1759 			   struct kernel_lb_addr *fileset)
1760 {
1761 	sector_t lastblock;
1762 	struct udf_sb_info *sbi = UDF_SB(sb);
1763 
1764 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1765 	if (lastblock)
1766 		goto out;
1767 
1768 	/* No anchor found? Try VARCONV conversion of block numbers */
1769 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1770 	/* Firstly, we try to not convert number of the last block */
1771 	lastblock = udf_scan_anchors(sb,
1772 				udf_variable_to_fixed(sbi->s_last_block),
1773 				fileset);
1774 	if (lastblock)
1775 		goto out;
1776 
1777 	/* Secondly, we try with converted number of the last block */
1778 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1779 	if (!lastblock) {
1780 		/* VARCONV didn't help. Clear it. */
1781 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1782 		return 0;
1783 	}
1784 out:
1785 	sbi->s_last_block = lastblock;
1786 	return 1;
1787 }
1788 
1789 /*
1790  * Check Volume Structure Descriptor, find Anchor block and load Volume
1791  * Descriptor Sequence
1792  */
1793 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1794 			int silent, struct kernel_lb_addr *fileset)
1795 {
1796 	struct udf_sb_info *sbi = UDF_SB(sb);
1797 	loff_t nsr_off;
1798 
1799 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1800 		if (!silent)
1801 			udf_warn(sb, "Bad block size\n");
1802 		return 0;
1803 	}
1804 	sbi->s_last_block = uopt->lastblock;
1805 	if (!uopt->novrs) {
1806 		/* Check that it is NSR02 compliant */
1807 		nsr_off = udf_check_vsd(sb);
1808 		if (!nsr_off) {
1809 			if (!silent)
1810 				udf_warn(sb, "No VRS found\n");
1811 			return 0;
1812 		}
1813 		if (nsr_off == -1)
1814 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1815 		if (!sbi->s_last_block)
1816 			sbi->s_last_block = udf_get_last_block(sb);
1817 	} else {
1818 		udf_debug("Validity check skipped because of novrs option\n");
1819 	}
1820 
1821 	/* Look for anchor block and load Volume Descriptor Sequence */
1822 	sbi->s_anchor = uopt->anchor;
1823 	if (!udf_find_anchor(sb, fileset)) {
1824 		if (!silent)
1825 			udf_warn(sb, "No anchor found\n");
1826 		return 0;
1827 	}
1828 	return 1;
1829 }
1830 
1831 static void udf_open_lvid(struct super_block *sb)
1832 {
1833 	struct udf_sb_info *sbi = UDF_SB(sb);
1834 	struct buffer_head *bh = sbi->s_lvid_bh;
1835 	struct logicalVolIntegrityDesc *lvid;
1836 	struct logicalVolIntegrityDescImpUse *lvidiu;
1837 
1838 	if (!bh)
1839 		return;
1840 
1841 	mutex_lock(&sbi->s_alloc_mutex);
1842 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1843 	lvidiu = udf_sb_lvidiu(sbi);
1844 
1845 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1846 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1847 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1848 				CURRENT_TIME);
1849 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1850 
1851 	lvid->descTag.descCRC = cpu_to_le16(
1852 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1853 			le16_to_cpu(lvid->descTag.descCRCLength)));
1854 
1855 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1856 	mark_buffer_dirty(bh);
1857 	sbi->s_lvid_dirty = 0;
1858 	mutex_unlock(&sbi->s_alloc_mutex);
1859 }
1860 
1861 static void udf_close_lvid(struct super_block *sb)
1862 {
1863 	struct udf_sb_info *sbi = UDF_SB(sb);
1864 	struct buffer_head *bh = sbi->s_lvid_bh;
1865 	struct logicalVolIntegrityDesc *lvid;
1866 	struct logicalVolIntegrityDescImpUse *lvidiu;
1867 
1868 	if (!bh)
1869 		return;
1870 
1871 	mutex_lock(&sbi->s_alloc_mutex);
1872 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1873 	lvidiu = udf_sb_lvidiu(sbi);
1874 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1875 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1876 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1877 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1878 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1879 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1880 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1881 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1882 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1883 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1884 
1885 	lvid->descTag.descCRC = cpu_to_le16(
1886 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1887 				le16_to_cpu(lvid->descTag.descCRCLength)));
1888 
1889 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1890 	/*
1891 	 * We set buffer uptodate unconditionally here to avoid spurious
1892 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1893 	 * the buffer as !uptodate
1894 	 */
1895 	set_buffer_uptodate(bh);
1896 	mark_buffer_dirty(bh);
1897 	sbi->s_lvid_dirty = 0;
1898 	mutex_unlock(&sbi->s_alloc_mutex);
1899 }
1900 
1901 u64 lvid_get_unique_id(struct super_block *sb)
1902 {
1903 	struct buffer_head *bh;
1904 	struct udf_sb_info *sbi = UDF_SB(sb);
1905 	struct logicalVolIntegrityDesc *lvid;
1906 	struct logicalVolHeaderDesc *lvhd;
1907 	u64 uniqueID;
1908 	u64 ret;
1909 
1910 	bh = sbi->s_lvid_bh;
1911 	if (!bh)
1912 		return 0;
1913 
1914 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1915 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1916 
1917 	mutex_lock(&sbi->s_alloc_mutex);
1918 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1919 	if (!(++uniqueID & 0xFFFFFFFF))
1920 		uniqueID += 16;
1921 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1922 	mutex_unlock(&sbi->s_alloc_mutex);
1923 	mark_buffer_dirty(bh);
1924 
1925 	return ret;
1926 }
1927 
1928 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1929 {
1930 	int ret;
1931 	struct inode *inode = NULL;
1932 	struct udf_options uopt;
1933 	struct kernel_lb_addr rootdir, fileset;
1934 	struct udf_sb_info *sbi;
1935 
1936 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1937 	uopt.uid = -1;
1938 	uopt.gid = -1;
1939 	uopt.umask = 0;
1940 	uopt.fmode = UDF_INVALID_MODE;
1941 	uopt.dmode = UDF_INVALID_MODE;
1942 
1943 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1944 	if (!sbi)
1945 		return -ENOMEM;
1946 
1947 	sb->s_fs_info = sbi;
1948 
1949 	mutex_init(&sbi->s_alloc_mutex);
1950 
1951 	if (!udf_parse_options((char *)options, &uopt, false))
1952 		goto error_out;
1953 
1954 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1955 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1956 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1957 		goto error_out;
1958 	}
1959 #ifdef CONFIG_UDF_NLS
1960 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1961 		uopt.nls_map = load_nls_default();
1962 		if (!uopt.nls_map)
1963 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1964 		else
1965 			udf_debug("Using default NLS map\n");
1966 	}
1967 #endif
1968 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1969 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1970 
1971 	fileset.logicalBlockNum = 0xFFFFFFFF;
1972 	fileset.partitionReferenceNum = 0xFFFF;
1973 
1974 	sbi->s_flags = uopt.flags;
1975 	sbi->s_uid = uopt.uid;
1976 	sbi->s_gid = uopt.gid;
1977 	sbi->s_umask = uopt.umask;
1978 	sbi->s_fmode = uopt.fmode;
1979 	sbi->s_dmode = uopt.dmode;
1980 	sbi->s_nls_map = uopt.nls_map;
1981 	rwlock_init(&sbi->s_cred_lock);
1982 
1983 	if (uopt.session == 0xFFFFFFFF)
1984 		sbi->s_session = udf_get_last_session(sb);
1985 	else
1986 		sbi->s_session = uopt.session;
1987 
1988 	udf_debug("Multi-session=%d\n", sbi->s_session);
1989 
1990 	/* Fill in the rest of the superblock */
1991 	sb->s_op = &udf_sb_ops;
1992 	sb->s_export_op = &udf_export_ops;
1993 
1994 	sb->s_magic = UDF_SUPER_MAGIC;
1995 	sb->s_time_gran = 1000;
1996 
1997 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1998 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1999 	} else {
2000 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2001 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2002 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2003 			if (!silent)
2004 				pr_notice("Rescanning with blocksize %d\n",
2005 					  UDF_DEFAULT_BLOCKSIZE);
2006 			brelse(sbi->s_lvid_bh);
2007 			sbi->s_lvid_bh = NULL;
2008 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2009 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2010 		}
2011 	}
2012 	if (!ret) {
2013 		udf_warn(sb, "No partition found (1)\n");
2014 		goto error_out;
2015 	}
2016 
2017 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2018 
2019 	if (sbi->s_lvid_bh) {
2020 		struct logicalVolIntegrityDescImpUse *lvidiu =
2021 							udf_sb_lvidiu(sbi);
2022 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2023 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2024 		/* uint16_t maxUDFWriteRev =
2025 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2026 
2027 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2028 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2029 				le16_to_cpu(lvidiu->minUDFReadRev),
2030 				UDF_MAX_READ_VERSION);
2031 			goto error_out;
2032 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2033 			sb->s_flags |= MS_RDONLY;
2034 
2035 		sbi->s_udfrev = minUDFWriteRev;
2036 
2037 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2038 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2039 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2040 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2041 	}
2042 
2043 	if (!sbi->s_partitions) {
2044 		udf_warn(sb, "No partition found (2)\n");
2045 		goto error_out;
2046 	}
2047 
2048 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2049 			UDF_PART_FLAG_READ_ONLY) {
2050 		pr_notice("Partition marked readonly; forcing readonly mount\n");
2051 		sb->s_flags |= MS_RDONLY;
2052 	}
2053 
2054 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2055 		udf_warn(sb, "No fileset found\n");
2056 		goto error_out;
2057 	}
2058 
2059 	if (!silent) {
2060 		struct timestamp ts;
2061 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2062 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2063 			 sbi->s_volume_ident,
2064 			 le16_to_cpu(ts.year), ts.month, ts.day,
2065 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2066 	}
2067 	if (!(sb->s_flags & MS_RDONLY))
2068 		udf_open_lvid(sb);
2069 
2070 	/* Assign the root inode */
2071 	/* assign inodes by physical block number */
2072 	/* perhaps it's not extensible enough, but for now ... */
2073 	inode = udf_iget(sb, &rootdir);
2074 	if (!inode) {
2075 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2076 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2077 		goto error_out;
2078 	}
2079 
2080 	/* Allocate a dentry for the root inode */
2081 	sb->s_root = d_make_root(inode);
2082 	if (!sb->s_root) {
2083 		udf_err(sb, "Couldn't allocate root dentry\n");
2084 		goto error_out;
2085 	}
2086 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2087 	sb->s_max_links = UDF_MAX_LINKS;
2088 	return 0;
2089 
2090 error_out:
2091 	if (sbi->s_vat_inode)
2092 		iput(sbi->s_vat_inode);
2093 #ifdef CONFIG_UDF_NLS
2094 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2095 		unload_nls(sbi->s_nls_map);
2096 #endif
2097 	if (!(sb->s_flags & MS_RDONLY))
2098 		udf_close_lvid(sb);
2099 	brelse(sbi->s_lvid_bh);
2100 	udf_sb_free_partitions(sb);
2101 	kfree(sbi);
2102 	sb->s_fs_info = NULL;
2103 
2104 	return -EINVAL;
2105 }
2106 
2107 void _udf_err(struct super_block *sb, const char *function,
2108 	      const char *fmt, ...)
2109 {
2110 	struct va_format vaf;
2111 	va_list args;
2112 
2113 	va_start(args, fmt);
2114 
2115 	vaf.fmt = fmt;
2116 	vaf.va = &args;
2117 
2118 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2119 
2120 	va_end(args);
2121 }
2122 
2123 void _udf_warn(struct super_block *sb, const char *function,
2124 	       const char *fmt, ...)
2125 {
2126 	struct va_format vaf;
2127 	va_list args;
2128 
2129 	va_start(args, fmt);
2130 
2131 	vaf.fmt = fmt;
2132 	vaf.va = &args;
2133 
2134 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2135 
2136 	va_end(args);
2137 }
2138 
2139 static void udf_put_super(struct super_block *sb)
2140 {
2141 	struct udf_sb_info *sbi;
2142 
2143 	sbi = UDF_SB(sb);
2144 
2145 	if (sbi->s_vat_inode)
2146 		iput(sbi->s_vat_inode);
2147 #ifdef CONFIG_UDF_NLS
2148 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2149 		unload_nls(sbi->s_nls_map);
2150 #endif
2151 	if (!(sb->s_flags & MS_RDONLY))
2152 		udf_close_lvid(sb);
2153 	brelse(sbi->s_lvid_bh);
2154 	udf_sb_free_partitions(sb);
2155 	kfree(sb->s_fs_info);
2156 	sb->s_fs_info = NULL;
2157 }
2158 
2159 static int udf_sync_fs(struct super_block *sb, int wait)
2160 {
2161 	struct udf_sb_info *sbi = UDF_SB(sb);
2162 
2163 	mutex_lock(&sbi->s_alloc_mutex);
2164 	if (sbi->s_lvid_dirty) {
2165 		/*
2166 		 * Blockdevice will be synced later so we don't have to submit
2167 		 * the buffer for IO
2168 		 */
2169 		mark_buffer_dirty(sbi->s_lvid_bh);
2170 		sbi->s_lvid_dirty = 0;
2171 	}
2172 	mutex_unlock(&sbi->s_alloc_mutex);
2173 
2174 	return 0;
2175 }
2176 
2177 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2178 {
2179 	struct super_block *sb = dentry->d_sb;
2180 	struct udf_sb_info *sbi = UDF_SB(sb);
2181 	struct logicalVolIntegrityDescImpUse *lvidiu;
2182 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2183 
2184 	if (sbi->s_lvid_bh != NULL)
2185 		lvidiu = udf_sb_lvidiu(sbi);
2186 	else
2187 		lvidiu = NULL;
2188 
2189 	buf->f_type = UDF_SUPER_MAGIC;
2190 	buf->f_bsize = sb->s_blocksize;
2191 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2192 	buf->f_bfree = udf_count_free(sb);
2193 	buf->f_bavail = buf->f_bfree;
2194 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2195 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2196 			+ buf->f_bfree;
2197 	buf->f_ffree = buf->f_bfree;
2198 	buf->f_namelen = UDF_NAME_LEN - 2;
2199 	buf->f_fsid.val[0] = (u32)id;
2200 	buf->f_fsid.val[1] = (u32)(id >> 32);
2201 
2202 	return 0;
2203 }
2204 
2205 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2206 					  struct udf_bitmap *bitmap)
2207 {
2208 	struct buffer_head *bh = NULL;
2209 	unsigned int accum = 0;
2210 	int index;
2211 	int block = 0, newblock;
2212 	struct kernel_lb_addr loc;
2213 	uint32_t bytes;
2214 	uint8_t *ptr;
2215 	uint16_t ident;
2216 	struct spaceBitmapDesc *bm;
2217 
2218 	loc.logicalBlockNum = bitmap->s_extPosition;
2219 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2220 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2221 
2222 	if (!bh) {
2223 		udf_err(sb, "udf_count_free failed\n");
2224 		goto out;
2225 	} else if (ident != TAG_IDENT_SBD) {
2226 		brelse(bh);
2227 		udf_err(sb, "udf_count_free failed\n");
2228 		goto out;
2229 	}
2230 
2231 	bm = (struct spaceBitmapDesc *)bh->b_data;
2232 	bytes = le32_to_cpu(bm->numOfBytes);
2233 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2234 	ptr = (uint8_t *)bh->b_data;
2235 
2236 	while (bytes > 0) {
2237 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2238 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2239 					cur_bytes * 8);
2240 		bytes -= cur_bytes;
2241 		if (bytes) {
2242 			brelse(bh);
2243 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2244 			bh = udf_tread(sb, newblock);
2245 			if (!bh) {
2246 				udf_debug("read failed\n");
2247 				goto out;
2248 			}
2249 			index = 0;
2250 			ptr = (uint8_t *)bh->b_data;
2251 		}
2252 	}
2253 	brelse(bh);
2254 out:
2255 	return accum;
2256 }
2257 
2258 static unsigned int udf_count_free_table(struct super_block *sb,
2259 					 struct inode *table)
2260 {
2261 	unsigned int accum = 0;
2262 	uint32_t elen;
2263 	struct kernel_lb_addr eloc;
2264 	int8_t etype;
2265 	struct extent_position epos;
2266 
2267 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2268 	epos.block = UDF_I(table)->i_location;
2269 	epos.offset = sizeof(struct unallocSpaceEntry);
2270 	epos.bh = NULL;
2271 
2272 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2273 		accum += (elen >> table->i_sb->s_blocksize_bits);
2274 
2275 	brelse(epos.bh);
2276 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2277 
2278 	return accum;
2279 }
2280 
2281 static unsigned int udf_count_free(struct super_block *sb)
2282 {
2283 	unsigned int accum = 0;
2284 	struct udf_sb_info *sbi;
2285 	struct udf_part_map *map;
2286 
2287 	sbi = UDF_SB(sb);
2288 	if (sbi->s_lvid_bh) {
2289 		struct logicalVolIntegrityDesc *lvid =
2290 			(struct logicalVolIntegrityDesc *)
2291 			sbi->s_lvid_bh->b_data;
2292 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2293 			accum = le32_to_cpu(
2294 					lvid->freeSpaceTable[sbi->s_partition]);
2295 			if (accum == 0xFFFFFFFF)
2296 				accum = 0;
2297 		}
2298 	}
2299 
2300 	if (accum)
2301 		return accum;
2302 
2303 	map = &sbi->s_partmaps[sbi->s_partition];
2304 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2305 		accum += udf_count_free_bitmap(sb,
2306 					       map->s_uspace.s_bitmap);
2307 	}
2308 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2309 		accum += udf_count_free_bitmap(sb,
2310 					       map->s_fspace.s_bitmap);
2311 	}
2312 	if (accum)
2313 		return accum;
2314 
2315 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2316 		accum += udf_count_free_table(sb,
2317 					      map->s_uspace.s_table);
2318 	}
2319 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2320 		accum += udf_count_free_table(sb,
2321 					      map->s_fspace.s_table);
2322 	}
2323 
2324 	return accum;
2325 }
2326