1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/smp_lock.h> 52 #include <linux/buffer_head.h> 53 #include <linux/vfs.h> 54 #include <linux/vmalloc.h> 55 #include <linux/errno.h> 56 #include <linux/mount.h> 57 #include <linux/seq_file.h> 58 #include <linux/bitmap.h> 59 #include <linux/crc-itu-t.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 static char error_buf[1024]; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static void udf_write_super(struct super_block *); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static int udf_check_valid(struct super_block *, int, int); 87 static int udf_vrs(struct super_block *sb, int silent); 88 static void udf_load_logicalvolint(struct super_block *, kernel_extent_ad); 89 static void udf_find_anchor(struct super_block *); 90 static int udf_find_fileset(struct super_block *, kernel_lb_addr *, 91 kernel_lb_addr *); 92 static void udf_load_fileset(struct super_block *, struct buffer_head *, 93 kernel_lb_addr *); 94 static void udf_open_lvid(struct super_block *); 95 static void udf_close_lvid(struct super_block *); 96 static unsigned int udf_count_free(struct super_block *); 97 static int udf_statfs(struct dentry *, struct kstatfs *); 98 static int udf_show_options(struct seq_file *, struct vfsmount *); 99 static void udf_error(struct super_block *sb, const char *function, 100 const char *fmt, ...); 101 102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 103 { 104 struct logicalVolIntegrityDesc *lvid = 105 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 106 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 107 __u32 offset = number_of_partitions * 2 * 108 sizeof(uint32_t)/sizeof(uint8_t); 109 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 110 } 111 112 /* UDF filesystem type */ 113 static int udf_get_sb(struct file_system_type *fs_type, 114 int flags, const char *dev_name, void *data, 115 struct vfsmount *mnt) 116 { 117 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt); 118 } 119 120 static struct file_system_type udf_fstype = { 121 .owner = THIS_MODULE, 122 .name = "udf", 123 .get_sb = udf_get_sb, 124 .kill_sb = kill_block_super, 125 .fs_flags = FS_REQUIRES_DEV, 126 }; 127 128 static struct kmem_cache *udf_inode_cachep; 129 130 static struct inode *udf_alloc_inode(struct super_block *sb) 131 { 132 struct udf_inode_info *ei; 133 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 134 if (!ei) 135 return NULL; 136 137 ei->i_unique = 0; 138 ei->i_lenExtents = 0; 139 ei->i_next_alloc_block = 0; 140 ei->i_next_alloc_goal = 0; 141 ei->i_strat4096 = 0; 142 143 return &ei->vfs_inode; 144 } 145 146 static void udf_destroy_inode(struct inode *inode) 147 { 148 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 149 } 150 151 static void init_once(struct kmem_cache *cachep, void *foo) 152 { 153 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 154 155 ei->i_ext.i_data = NULL; 156 inode_init_once(&ei->vfs_inode); 157 } 158 159 static int init_inodecache(void) 160 { 161 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 162 sizeof(struct udf_inode_info), 163 0, (SLAB_RECLAIM_ACCOUNT | 164 SLAB_MEM_SPREAD), 165 init_once); 166 if (!udf_inode_cachep) 167 return -ENOMEM; 168 return 0; 169 } 170 171 static void destroy_inodecache(void) 172 { 173 kmem_cache_destroy(udf_inode_cachep); 174 } 175 176 /* Superblock operations */ 177 static const struct super_operations udf_sb_ops = { 178 .alloc_inode = udf_alloc_inode, 179 .destroy_inode = udf_destroy_inode, 180 .write_inode = udf_write_inode, 181 .delete_inode = udf_delete_inode, 182 .clear_inode = udf_clear_inode, 183 .put_super = udf_put_super, 184 .write_super = udf_write_super, 185 .statfs = udf_statfs, 186 .remount_fs = udf_remount_fs, 187 .show_options = udf_show_options, 188 }; 189 190 struct udf_options { 191 unsigned char novrs; 192 unsigned int blocksize; 193 unsigned int session; 194 unsigned int lastblock; 195 unsigned int anchor; 196 unsigned int volume; 197 unsigned short partition; 198 unsigned int fileset; 199 unsigned int rootdir; 200 unsigned int flags; 201 mode_t umask; 202 gid_t gid; 203 uid_t uid; 204 struct nls_table *nls_map; 205 }; 206 207 static int __init init_udf_fs(void) 208 { 209 int err; 210 211 err = init_inodecache(); 212 if (err) 213 goto out1; 214 err = register_filesystem(&udf_fstype); 215 if (err) 216 goto out; 217 218 return 0; 219 220 out: 221 destroy_inodecache(); 222 223 out1: 224 return err; 225 } 226 227 static void __exit exit_udf_fs(void) 228 { 229 unregister_filesystem(&udf_fstype); 230 destroy_inodecache(); 231 } 232 233 module_init(init_udf_fs) 234 module_exit(exit_udf_fs) 235 236 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 237 { 238 struct udf_sb_info *sbi = UDF_SB(sb); 239 240 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 241 GFP_KERNEL); 242 if (!sbi->s_partmaps) { 243 udf_error(sb, __func__, 244 "Unable to allocate space for %d partition maps", 245 count); 246 sbi->s_partitions = 0; 247 return -ENOMEM; 248 } 249 250 sbi->s_partitions = count; 251 return 0; 252 } 253 254 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt) 255 { 256 struct super_block *sb = mnt->mnt_sb; 257 struct udf_sb_info *sbi = UDF_SB(sb); 258 259 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 260 seq_puts(seq, ",nostrict"); 261 if (sb->s_blocksize != UDF_DEFAULT_BLOCKSIZE) 262 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 263 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 264 seq_puts(seq, ",unhide"); 265 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 266 seq_puts(seq, ",undelete"); 267 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 268 seq_puts(seq, ",noadinicb"); 269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 270 seq_puts(seq, ",shortad"); 271 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 272 seq_puts(seq, ",uid=forget"); 273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 274 seq_puts(seq, ",uid=ignore"); 275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 276 seq_puts(seq, ",gid=forget"); 277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 278 seq_puts(seq, ",gid=ignore"); 279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 280 seq_printf(seq, ",uid=%u", sbi->s_uid); 281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 282 seq_printf(seq, ",gid=%u", sbi->s_gid); 283 if (sbi->s_umask != 0) 284 seq_printf(seq, ",umask=%o", sbi->s_umask); 285 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 286 seq_printf(seq, ",session=%u", sbi->s_session); 287 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 288 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 289 /* 290 * s_anchor[2] could be zeroed out in case there is no anchor 291 * in the specified block, but then the "anchor=N" option 292 * originally given by the user wasn't effective, so it's OK 293 * if we don't show it. 294 */ 295 if (sbi->s_anchor[2] != 0) 296 seq_printf(seq, ",anchor=%u", sbi->s_anchor[2]); 297 /* 298 * volume, partition, fileset and rootdir seem to be ignored 299 * currently 300 */ 301 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 302 seq_puts(seq, ",utf8"); 303 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 304 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 305 306 return 0; 307 } 308 309 /* 310 * udf_parse_options 311 * 312 * PURPOSE 313 * Parse mount options. 314 * 315 * DESCRIPTION 316 * The following mount options are supported: 317 * 318 * gid= Set the default group. 319 * umask= Set the default umask. 320 * uid= Set the default user. 321 * bs= Set the block size. 322 * unhide Show otherwise hidden files. 323 * undelete Show deleted files in lists. 324 * adinicb Embed data in the inode (default) 325 * noadinicb Don't embed data in the inode 326 * shortad Use short ad's 327 * longad Use long ad's (default) 328 * nostrict Unset strict conformance 329 * iocharset= Set the NLS character set 330 * 331 * The remaining are for debugging and disaster recovery: 332 * 333 * novrs Skip volume sequence recognition 334 * 335 * The following expect a offset from 0. 336 * 337 * session= Set the CDROM session (default= last session) 338 * anchor= Override standard anchor location. (default= 256) 339 * volume= Override the VolumeDesc location. (unused) 340 * partition= Override the PartitionDesc location. (unused) 341 * lastblock= Set the last block of the filesystem/ 342 * 343 * The following expect a offset from the partition root. 344 * 345 * fileset= Override the fileset block location. (unused) 346 * rootdir= Override the root directory location. (unused) 347 * WARNING: overriding the rootdir to a non-directory may 348 * yield highly unpredictable results. 349 * 350 * PRE-CONDITIONS 351 * options Pointer to mount options string. 352 * uopts Pointer to mount options variable. 353 * 354 * POST-CONDITIONS 355 * <return> 1 Mount options parsed okay. 356 * <return> 0 Error parsing mount options. 357 * 358 * HISTORY 359 * July 1, 1997 - Andrew E. Mileski 360 * Written, tested, and released. 361 */ 362 363 enum { 364 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 365 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 366 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 367 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 368 Opt_rootdir, Opt_utf8, Opt_iocharset, 369 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore 370 }; 371 372 static match_table_t tokens = { 373 {Opt_novrs, "novrs"}, 374 {Opt_nostrict, "nostrict"}, 375 {Opt_bs, "bs=%u"}, 376 {Opt_unhide, "unhide"}, 377 {Opt_undelete, "undelete"}, 378 {Opt_noadinicb, "noadinicb"}, 379 {Opt_adinicb, "adinicb"}, 380 {Opt_shortad, "shortad"}, 381 {Opt_longad, "longad"}, 382 {Opt_uforget, "uid=forget"}, 383 {Opt_uignore, "uid=ignore"}, 384 {Opt_gforget, "gid=forget"}, 385 {Opt_gignore, "gid=ignore"}, 386 {Opt_gid, "gid=%u"}, 387 {Opt_uid, "uid=%u"}, 388 {Opt_umask, "umask=%o"}, 389 {Opt_session, "session=%u"}, 390 {Opt_lastblock, "lastblock=%u"}, 391 {Opt_anchor, "anchor=%u"}, 392 {Opt_volume, "volume=%u"}, 393 {Opt_partition, "partition=%u"}, 394 {Opt_fileset, "fileset=%u"}, 395 {Opt_rootdir, "rootdir=%u"}, 396 {Opt_utf8, "utf8"}, 397 {Opt_iocharset, "iocharset=%s"}, 398 {Opt_err, NULL} 399 }; 400 401 static int udf_parse_options(char *options, struct udf_options *uopt, 402 bool remount) 403 { 404 char *p; 405 int option; 406 407 uopt->novrs = 0; 408 uopt->blocksize = UDF_DEFAULT_BLOCKSIZE; 409 uopt->partition = 0xFFFF; 410 uopt->session = 0xFFFFFFFF; 411 uopt->lastblock = 0; 412 uopt->anchor = 0; 413 uopt->volume = 0xFFFFFFFF; 414 uopt->rootdir = 0xFFFFFFFF; 415 uopt->fileset = 0xFFFFFFFF; 416 uopt->nls_map = NULL; 417 418 if (!options) 419 return 1; 420 421 while ((p = strsep(&options, ",")) != NULL) { 422 substring_t args[MAX_OPT_ARGS]; 423 int token; 424 if (!*p) 425 continue; 426 427 token = match_token(p, tokens, args); 428 switch (token) { 429 case Opt_novrs: 430 uopt->novrs = 1; 431 case Opt_bs: 432 if (match_int(&args[0], &option)) 433 return 0; 434 uopt->blocksize = option; 435 break; 436 case Opt_unhide: 437 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 438 break; 439 case Opt_undelete: 440 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 441 break; 442 case Opt_noadinicb: 443 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 444 break; 445 case Opt_adinicb: 446 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 447 break; 448 case Opt_shortad: 449 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 450 break; 451 case Opt_longad: 452 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 453 break; 454 case Opt_gid: 455 if (match_int(args, &option)) 456 return 0; 457 uopt->gid = option; 458 uopt->flags |= (1 << UDF_FLAG_GID_SET); 459 break; 460 case Opt_uid: 461 if (match_int(args, &option)) 462 return 0; 463 uopt->uid = option; 464 uopt->flags |= (1 << UDF_FLAG_UID_SET); 465 break; 466 case Opt_umask: 467 if (match_octal(args, &option)) 468 return 0; 469 uopt->umask = option; 470 break; 471 case Opt_nostrict: 472 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 473 break; 474 case Opt_session: 475 if (match_int(args, &option)) 476 return 0; 477 uopt->session = option; 478 if (!remount) 479 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 480 break; 481 case Opt_lastblock: 482 if (match_int(args, &option)) 483 return 0; 484 uopt->lastblock = option; 485 if (!remount) 486 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 487 break; 488 case Opt_anchor: 489 if (match_int(args, &option)) 490 return 0; 491 uopt->anchor = option; 492 break; 493 case Opt_volume: 494 if (match_int(args, &option)) 495 return 0; 496 uopt->volume = option; 497 break; 498 case Opt_partition: 499 if (match_int(args, &option)) 500 return 0; 501 uopt->partition = option; 502 break; 503 case Opt_fileset: 504 if (match_int(args, &option)) 505 return 0; 506 uopt->fileset = option; 507 break; 508 case Opt_rootdir: 509 if (match_int(args, &option)) 510 return 0; 511 uopt->rootdir = option; 512 break; 513 case Opt_utf8: 514 uopt->flags |= (1 << UDF_FLAG_UTF8); 515 break; 516 #ifdef CONFIG_UDF_NLS 517 case Opt_iocharset: 518 uopt->nls_map = load_nls(args[0].from); 519 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 520 break; 521 #endif 522 case Opt_uignore: 523 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 524 break; 525 case Opt_uforget: 526 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 527 break; 528 case Opt_gignore: 529 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 530 break; 531 case Opt_gforget: 532 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 533 break; 534 default: 535 printk(KERN_ERR "udf: bad mount option \"%s\" " 536 "or missing value\n", p); 537 return 0; 538 } 539 } 540 return 1; 541 } 542 543 static void udf_write_super(struct super_block *sb) 544 { 545 lock_kernel(); 546 547 if (!(sb->s_flags & MS_RDONLY)) 548 udf_open_lvid(sb); 549 sb->s_dirt = 0; 550 551 unlock_kernel(); 552 } 553 554 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 555 { 556 struct udf_options uopt; 557 struct udf_sb_info *sbi = UDF_SB(sb); 558 559 uopt.flags = sbi->s_flags; 560 uopt.uid = sbi->s_uid; 561 uopt.gid = sbi->s_gid; 562 uopt.umask = sbi->s_umask; 563 564 if (!udf_parse_options(options, &uopt, true)) 565 return -EINVAL; 566 567 sbi->s_flags = uopt.flags; 568 sbi->s_uid = uopt.uid; 569 sbi->s_gid = uopt.gid; 570 sbi->s_umask = uopt.umask; 571 572 if (sbi->s_lvid_bh) { 573 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 574 if (write_rev > UDF_MAX_WRITE_VERSION) 575 *flags |= MS_RDONLY; 576 } 577 578 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 579 return 0; 580 if (*flags & MS_RDONLY) 581 udf_close_lvid(sb); 582 else 583 udf_open_lvid(sb); 584 585 return 0; 586 } 587 588 static int udf_vrs(struct super_block *sb, int silent) 589 { 590 struct volStructDesc *vsd = NULL; 591 loff_t sector = 32768; 592 int sectorsize; 593 struct buffer_head *bh = NULL; 594 int iso9660 = 0; 595 int nsr02 = 0; 596 int nsr03 = 0; 597 struct udf_sb_info *sbi; 598 599 /* Block size must be a multiple of 512 */ 600 if (sb->s_blocksize & 511) 601 return 0; 602 sbi = UDF_SB(sb); 603 604 if (sb->s_blocksize < sizeof(struct volStructDesc)) 605 sectorsize = sizeof(struct volStructDesc); 606 else 607 sectorsize = sb->s_blocksize; 608 609 sector += (sbi->s_session << sb->s_blocksize_bits); 610 611 udf_debug("Starting at sector %u (%ld byte sectors)\n", 612 (unsigned int)(sector >> sb->s_blocksize_bits), 613 sb->s_blocksize); 614 /* Process the sequence (if applicable) */ 615 for (; !nsr02 && !nsr03; sector += sectorsize) { 616 /* Read a block */ 617 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 618 if (!bh) 619 break; 620 621 /* Look for ISO descriptors */ 622 vsd = (struct volStructDesc *)(bh->b_data + 623 (sector & (sb->s_blocksize - 1))); 624 625 if (vsd->stdIdent[0] == 0) { 626 brelse(bh); 627 break; 628 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 629 VSD_STD_ID_LEN)) { 630 iso9660 = sector; 631 switch (vsd->structType) { 632 case 0: 633 udf_debug("ISO9660 Boot Record found\n"); 634 break; 635 case 1: 636 udf_debug("ISO9660 Primary Volume Descriptor " 637 "found\n"); 638 break; 639 case 2: 640 udf_debug("ISO9660 Supplementary Volume " 641 "Descriptor found\n"); 642 break; 643 case 3: 644 udf_debug("ISO9660 Volume Partition Descriptor " 645 "found\n"); 646 break; 647 case 255: 648 udf_debug("ISO9660 Volume Descriptor Set " 649 "Terminator found\n"); 650 break; 651 default: 652 udf_debug("ISO9660 VRS (%u) found\n", 653 vsd->structType); 654 break; 655 } 656 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 657 VSD_STD_ID_LEN)) 658 ; /* nothing */ 659 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 660 VSD_STD_ID_LEN)) { 661 brelse(bh); 662 break; 663 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 664 VSD_STD_ID_LEN)) 665 nsr02 = sector; 666 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 667 VSD_STD_ID_LEN)) 668 nsr03 = sector; 669 brelse(bh); 670 } 671 672 if (nsr03) 673 return nsr03; 674 else if (nsr02) 675 return nsr02; 676 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 677 return -1; 678 else 679 return 0; 680 } 681 682 /* 683 * Check whether there is an anchor block in the given block 684 */ 685 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 686 bool varconv) 687 { 688 struct buffer_head *bh = NULL; 689 tag *t; 690 uint16_t ident; 691 uint32_t location; 692 693 if (varconv) { 694 if (udf_fixed_to_variable(block) >= 695 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 696 return 0; 697 bh = sb_bread(sb, udf_fixed_to_variable(block)); 698 } 699 else 700 bh = sb_bread(sb, block); 701 702 if (!bh) 703 return 0; 704 705 t = (tag *)bh->b_data; 706 ident = le16_to_cpu(t->tagIdent); 707 location = le32_to_cpu(t->tagLocation); 708 brelse(bh); 709 if (ident != TAG_IDENT_AVDP) 710 return 0; 711 return location == block; 712 } 713 714 /* Search for an anchor volume descriptor pointer */ 715 static sector_t udf_scan_anchors(struct super_block *sb, bool varconv, 716 sector_t lastblock) 717 { 718 sector_t last[6]; 719 int i; 720 struct udf_sb_info *sbi = UDF_SB(sb); 721 722 last[0] = lastblock; 723 last[1] = last[0] - 1; 724 last[2] = last[0] + 1; 725 last[3] = last[0] - 2; 726 last[4] = last[0] - 150; 727 last[5] = last[0] - 152; 728 729 /* according to spec, anchor is in either: 730 * block 256 731 * lastblock-256 732 * lastblock 733 * however, if the disc isn't closed, it could be 512 */ 734 735 for (i = 0; i < ARRAY_SIZE(last); i++) { 736 if (last[i] < 0) 737 continue; 738 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 739 sb->s_blocksize_bits) 740 continue; 741 742 if (udf_check_anchor_block(sb, last[i], varconv)) { 743 sbi->s_anchor[0] = last[i]; 744 sbi->s_anchor[1] = last[i] - 256; 745 return last[i]; 746 } 747 748 if (last[i] < 256) 749 continue; 750 751 if (udf_check_anchor_block(sb, last[i] - 256, varconv)) { 752 sbi->s_anchor[1] = last[i] - 256; 753 return last[i]; 754 } 755 } 756 757 if (udf_check_anchor_block(sb, sbi->s_session + 256, varconv)) { 758 sbi->s_anchor[0] = sbi->s_session + 256; 759 return last[0]; 760 } 761 if (udf_check_anchor_block(sb, sbi->s_session + 512, varconv)) { 762 sbi->s_anchor[0] = sbi->s_session + 512; 763 return last[0]; 764 } 765 return 0; 766 } 767 768 /* 769 * Find an anchor volume descriptor. The function expects sbi->s_lastblock to 770 * be the last block on the media. 771 * 772 * Return 1 if not found, 0 if ok 773 * 774 */ 775 static void udf_find_anchor(struct super_block *sb) 776 { 777 sector_t lastblock; 778 struct buffer_head *bh = NULL; 779 uint16_t ident; 780 int i; 781 struct udf_sb_info *sbi = UDF_SB(sb); 782 783 lastblock = udf_scan_anchors(sb, 0, sbi->s_last_block); 784 if (lastblock) 785 goto check_anchor; 786 787 /* No anchor found? Try VARCONV conversion of block numbers */ 788 /* Firstly, we try to not convert number of the last block */ 789 lastblock = udf_scan_anchors(sb, 1, 790 udf_variable_to_fixed(sbi->s_last_block)); 791 if (lastblock) { 792 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 793 goto check_anchor; 794 } 795 796 /* Secondly, we try with converted number of the last block */ 797 lastblock = udf_scan_anchors(sb, 1, sbi->s_last_block); 798 if (lastblock) 799 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 800 801 check_anchor: 802 /* 803 * Check located anchors and the anchor block supplied via 804 * mount options 805 */ 806 for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) { 807 if (!sbi->s_anchor[i]) 808 continue; 809 bh = udf_read_tagged(sb, sbi->s_anchor[i], 810 sbi->s_anchor[i], &ident); 811 if (!bh) 812 sbi->s_anchor[i] = 0; 813 else { 814 brelse(bh); 815 if (ident != TAG_IDENT_AVDP) 816 sbi->s_anchor[i] = 0; 817 } 818 } 819 820 sbi->s_last_block = lastblock; 821 } 822 823 static int udf_find_fileset(struct super_block *sb, 824 kernel_lb_addr *fileset, 825 kernel_lb_addr *root) 826 { 827 struct buffer_head *bh = NULL; 828 long lastblock; 829 uint16_t ident; 830 struct udf_sb_info *sbi; 831 832 if (fileset->logicalBlockNum != 0xFFFFFFFF || 833 fileset->partitionReferenceNum != 0xFFFF) { 834 bh = udf_read_ptagged(sb, *fileset, 0, &ident); 835 836 if (!bh) { 837 return 1; 838 } else if (ident != TAG_IDENT_FSD) { 839 brelse(bh); 840 return 1; 841 } 842 843 } 844 845 sbi = UDF_SB(sb); 846 if (!bh) { 847 /* Search backwards through the partitions */ 848 kernel_lb_addr newfileset; 849 850 /* --> cvg: FIXME - is it reasonable? */ 851 return 1; 852 853 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 854 (newfileset.partitionReferenceNum != 0xFFFF && 855 fileset->logicalBlockNum == 0xFFFFFFFF && 856 fileset->partitionReferenceNum == 0xFFFF); 857 newfileset.partitionReferenceNum--) { 858 lastblock = sbi->s_partmaps 859 [newfileset.partitionReferenceNum] 860 .s_partition_len; 861 newfileset.logicalBlockNum = 0; 862 863 do { 864 bh = udf_read_ptagged(sb, newfileset, 0, 865 &ident); 866 if (!bh) { 867 newfileset.logicalBlockNum++; 868 continue; 869 } 870 871 switch (ident) { 872 case TAG_IDENT_SBD: 873 { 874 struct spaceBitmapDesc *sp; 875 sp = (struct spaceBitmapDesc *) 876 bh->b_data; 877 newfileset.logicalBlockNum += 1 + 878 ((le32_to_cpu(sp->numOfBytes) + 879 sizeof(struct spaceBitmapDesc) 880 - 1) >> sb->s_blocksize_bits); 881 brelse(bh); 882 break; 883 } 884 case TAG_IDENT_FSD: 885 *fileset = newfileset; 886 break; 887 default: 888 newfileset.logicalBlockNum++; 889 brelse(bh); 890 bh = NULL; 891 break; 892 } 893 } while (newfileset.logicalBlockNum < lastblock && 894 fileset->logicalBlockNum == 0xFFFFFFFF && 895 fileset->partitionReferenceNum == 0xFFFF); 896 } 897 } 898 899 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 900 fileset->partitionReferenceNum != 0xFFFF) && bh) { 901 udf_debug("Fileset at block=%d, partition=%d\n", 902 fileset->logicalBlockNum, 903 fileset->partitionReferenceNum); 904 905 sbi->s_partition = fileset->partitionReferenceNum; 906 udf_load_fileset(sb, bh, root); 907 brelse(bh); 908 return 0; 909 } 910 return 1; 911 } 912 913 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 914 { 915 struct primaryVolDesc *pvoldesc; 916 struct ustr instr; 917 struct ustr outstr; 918 struct buffer_head *bh; 919 uint16_t ident; 920 921 bh = udf_read_tagged(sb, block, block, &ident); 922 if (!bh) 923 return 1; 924 BUG_ON(ident != TAG_IDENT_PVD); 925 926 pvoldesc = (struct primaryVolDesc *)bh->b_data; 927 928 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 929 pvoldesc->recordingDateAndTime)) { 930 #ifdef UDFFS_DEBUG 931 timestamp *ts = &pvoldesc->recordingDateAndTime; 932 udf_debug("recording time %04u/%02u/%02u" 933 " %02u:%02u (%x)\n", 934 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 935 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 936 #endif 937 } 938 939 if (!udf_build_ustr(&instr, pvoldesc->volIdent, 32)) 940 if (udf_CS0toUTF8(&outstr, &instr)) { 941 strncpy(UDF_SB(sb)->s_volume_ident, outstr.u_name, 942 outstr.u_len > 31 ? 31 : outstr.u_len); 943 udf_debug("volIdent[] = '%s'\n", 944 UDF_SB(sb)->s_volume_ident); 945 } 946 947 if (!udf_build_ustr(&instr, pvoldesc->volSetIdent, 128)) 948 if (udf_CS0toUTF8(&outstr, &instr)) 949 udf_debug("volSetIdent[] = '%s'\n", outstr.u_name); 950 951 brelse(bh); 952 return 0; 953 } 954 955 static int udf_load_metadata_files(struct super_block *sb, int partition) 956 { 957 struct udf_sb_info *sbi = UDF_SB(sb); 958 struct udf_part_map *map; 959 struct udf_meta_data *mdata; 960 kernel_lb_addr addr; 961 int fe_error = 0; 962 963 map = &sbi->s_partmaps[partition]; 964 mdata = &map->s_type_specific.s_metadata; 965 966 /* metadata address */ 967 addr.logicalBlockNum = mdata->s_meta_file_loc; 968 addr.partitionReferenceNum = map->s_partition_num; 969 970 udf_debug("Metadata file location: block = %d part = %d\n", 971 addr.logicalBlockNum, addr.partitionReferenceNum); 972 973 mdata->s_metadata_fe = udf_iget(sb, addr); 974 975 if (mdata->s_metadata_fe == NULL) { 976 udf_warning(sb, __func__, "metadata inode efe not found, " 977 "will try mirror inode."); 978 fe_error = 1; 979 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type != 980 ICBTAG_FLAG_AD_SHORT) { 981 udf_warning(sb, __func__, "metadata inode efe does not have " 982 "short allocation descriptors!"); 983 fe_error = 1; 984 iput(mdata->s_metadata_fe); 985 mdata->s_metadata_fe = NULL; 986 } 987 988 /* mirror file entry */ 989 addr.logicalBlockNum = mdata->s_mirror_file_loc; 990 addr.partitionReferenceNum = map->s_partition_num; 991 992 udf_debug("Mirror metadata file location: block = %d part = %d\n", 993 addr.logicalBlockNum, addr.partitionReferenceNum); 994 995 mdata->s_mirror_fe = udf_iget(sb, addr); 996 997 if (mdata->s_mirror_fe == NULL) { 998 if (fe_error) { 999 udf_error(sb, __func__, "mirror inode efe not found " 1000 "and metadata inode is missing too, exiting..."); 1001 goto error_exit; 1002 } else 1003 udf_warning(sb, __func__, "mirror inode efe not found," 1004 " but metadata inode is OK"); 1005 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type != 1006 ICBTAG_FLAG_AD_SHORT) { 1007 udf_warning(sb, __func__, "mirror inode efe does not have " 1008 "short allocation descriptors!"); 1009 iput(mdata->s_mirror_fe); 1010 mdata->s_mirror_fe = NULL; 1011 if (fe_error) 1012 goto error_exit; 1013 } 1014 1015 /* 1016 * bitmap file entry 1017 * Note: 1018 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1019 */ 1020 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1021 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1022 addr.partitionReferenceNum = map->s_partition_num; 1023 1024 udf_debug("Bitmap file location: block = %d part = %d\n", 1025 addr.logicalBlockNum, addr.partitionReferenceNum); 1026 1027 mdata->s_bitmap_fe = udf_iget(sb, addr); 1028 1029 if (mdata->s_bitmap_fe == NULL) { 1030 if (sb->s_flags & MS_RDONLY) 1031 udf_warning(sb, __func__, "bitmap inode efe " 1032 "not found but it's ok since the disc" 1033 " is mounted read-only"); 1034 else { 1035 udf_error(sb, __func__, "bitmap inode efe not " 1036 "found and attempted read-write mount"); 1037 goto error_exit; 1038 } 1039 } 1040 } 1041 1042 udf_debug("udf_load_metadata_files Ok\n"); 1043 1044 return 0; 1045 1046 error_exit: 1047 return 1; 1048 } 1049 1050 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1051 kernel_lb_addr *root) 1052 { 1053 struct fileSetDesc *fset; 1054 1055 fset = (struct fileSetDesc *)bh->b_data; 1056 1057 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1058 1059 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1060 1061 udf_debug("Rootdir at block=%d, partition=%d\n", 1062 root->logicalBlockNum, root->partitionReferenceNum); 1063 } 1064 1065 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1066 { 1067 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1068 return DIV_ROUND_UP(map->s_partition_len + 1069 (sizeof(struct spaceBitmapDesc) << 3), 1070 sb->s_blocksize * 8); 1071 } 1072 1073 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1074 { 1075 struct udf_bitmap *bitmap; 1076 int nr_groups; 1077 int size; 1078 1079 nr_groups = udf_compute_nr_groups(sb, index); 1080 size = sizeof(struct udf_bitmap) + 1081 (sizeof(struct buffer_head *) * nr_groups); 1082 1083 if (size <= PAGE_SIZE) 1084 bitmap = kmalloc(size, GFP_KERNEL); 1085 else 1086 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */ 1087 1088 if (bitmap == NULL) { 1089 udf_error(sb, __func__, 1090 "Unable to allocate space for bitmap " 1091 "and %d buffer_head pointers", nr_groups); 1092 return NULL; 1093 } 1094 1095 memset(bitmap, 0x00, size); 1096 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 1097 bitmap->s_nr_groups = nr_groups; 1098 return bitmap; 1099 } 1100 1101 static int udf_fill_partdesc_info(struct super_block *sb, 1102 struct partitionDesc *p, int p_index) 1103 { 1104 struct udf_part_map *map; 1105 struct udf_sb_info *sbi = UDF_SB(sb); 1106 struct partitionHeaderDesc *phd; 1107 1108 map = &sbi->s_partmaps[p_index]; 1109 1110 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1111 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1112 1113 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1114 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1115 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1116 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1117 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1118 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1119 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1120 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1121 1122 udf_debug("Partition (%d type %x) starts at physical %d, " 1123 "block length %d\n", p_index, 1124 map->s_partition_type, map->s_partition_root, 1125 map->s_partition_len); 1126 1127 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1128 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1129 return 0; 1130 1131 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1132 if (phd->unallocSpaceTable.extLength) { 1133 kernel_lb_addr loc = { 1134 .logicalBlockNum = le32_to_cpu( 1135 phd->unallocSpaceTable.extPosition), 1136 .partitionReferenceNum = p_index, 1137 }; 1138 1139 map->s_uspace.s_table = udf_iget(sb, loc); 1140 if (!map->s_uspace.s_table) { 1141 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1142 p_index); 1143 return 1; 1144 } 1145 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1146 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1147 p_index, map->s_uspace.s_table->i_ino); 1148 } 1149 1150 if (phd->unallocSpaceBitmap.extLength) { 1151 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1152 if (!bitmap) 1153 return 1; 1154 map->s_uspace.s_bitmap = bitmap; 1155 bitmap->s_extLength = le32_to_cpu( 1156 phd->unallocSpaceBitmap.extLength); 1157 bitmap->s_extPosition = le32_to_cpu( 1158 phd->unallocSpaceBitmap.extPosition); 1159 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1160 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index, 1161 bitmap->s_extPosition); 1162 } 1163 1164 if (phd->partitionIntegrityTable.extLength) 1165 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1166 1167 if (phd->freedSpaceTable.extLength) { 1168 kernel_lb_addr loc = { 1169 .logicalBlockNum = le32_to_cpu( 1170 phd->freedSpaceTable.extPosition), 1171 .partitionReferenceNum = p_index, 1172 }; 1173 1174 map->s_fspace.s_table = udf_iget(sb, loc); 1175 if (!map->s_fspace.s_table) { 1176 udf_debug("cannot load freedSpaceTable (part %d)\n", 1177 p_index); 1178 return 1; 1179 } 1180 1181 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1182 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1183 p_index, map->s_fspace.s_table->i_ino); 1184 } 1185 1186 if (phd->freedSpaceBitmap.extLength) { 1187 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1188 if (!bitmap) 1189 return 1; 1190 map->s_fspace.s_bitmap = bitmap; 1191 bitmap->s_extLength = le32_to_cpu( 1192 phd->freedSpaceBitmap.extLength); 1193 bitmap->s_extPosition = le32_to_cpu( 1194 phd->freedSpaceBitmap.extPosition); 1195 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1196 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index, 1197 bitmap->s_extPosition); 1198 } 1199 return 0; 1200 } 1201 1202 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1203 { 1204 struct udf_sb_info *sbi = UDF_SB(sb); 1205 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1206 kernel_lb_addr ino; 1207 struct buffer_head *bh = NULL; 1208 struct udf_inode_info *vati; 1209 uint32_t pos; 1210 struct virtualAllocationTable20 *vat20; 1211 1212 /* VAT file entry is in the last recorded block */ 1213 ino.partitionReferenceNum = type1_index; 1214 ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root; 1215 sbi->s_vat_inode = udf_iget(sb, ino); 1216 if (!sbi->s_vat_inode) 1217 return 1; 1218 1219 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1220 map->s_type_specific.s_virtual.s_start_offset = 0; 1221 map->s_type_specific.s_virtual.s_num_entries = 1222 (sbi->s_vat_inode->i_size - 36) >> 2; 1223 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1224 vati = UDF_I(sbi->s_vat_inode); 1225 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1226 pos = udf_block_map(sbi->s_vat_inode, 0); 1227 bh = sb_bread(sb, pos); 1228 if (!bh) 1229 return 1; 1230 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1231 } else { 1232 vat20 = (struct virtualAllocationTable20 *) 1233 vati->i_ext.i_data; 1234 } 1235 1236 map->s_type_specific.s_virtual.s_start_offset = 1237 le16_to_cpu(vat20->lengthHeader); 1238 map->s_type_specific.s_virtual.s_num_entries = 1239 (sbi->s_vat_inode->i_size - 1240 map->s_type_specific.s_virtual. 1241 s_start_offset) >> 2; 1242 brelse(bh); 1243 } 1244 return 0; 1245 } 1246 1247 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1248 { 1249 struct buffer_head *bh; 1250 struct partitionDesc *p; 1251 struct udf_part_map *map; 1252 struct udf_sb_info *sbi = UDF_SB(sb); 1253 int i, type1_idx; 1254 uint16_t partitionNumber; 1255 uint16_t ident; 1256 int ret = 0; 1257 1258 bh = udf_read_tagged(sb, block, block, &ident); 1259 if (!bh) 1260 return 1; 1261 if (ident != TAG_IDENT_PD) 1262 goto out_bh; 1263 1264 p = (struct partitionDesc *)bh->b_data; 1265 partitionNumber = le16_to_cpu(p->partitionNumber); 1266 1267 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1268 for (i = 0; i < sbi->s_partitions; i++) { 1269 map = &sbi->s_partmaps[i]; 1270 udf_debug("Searching map: (%d == %d)\n", 1271 map->s_partition_num, partitionNumber); 1272 if (map->s_partition_num == partitionNumber && 1273 (map->s_partition_type == UDF_TYPE1_MAP15 || 1274 map->s_partition_type == UDF_SPARABLE_MAP15)) 1275 break; 1276 } 1277 1278 if (i >= sbi->s_partitions) { 1279 udf_debug("Partition (%d) not found in partition map\n", 1280 partitionNumber); 1281 goto out_bh; 1282 } 1283 1284 ret = udf_fill_partdesc_info(sb, p, i); 1285 1286 /* 1287 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1288 * PHYSICAL partitions are already set up 1289 */ 1290 type1_idx = i; 1291 for (i = 0; i < sbi->s_partitions; i++) { 1292 map = &sbi->s_partmaps[i]; 1293 1294 if (map->s_partition_num == partitionNumber && 1295 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1296 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1297 map->s_partition_type == UDF_METADATA_MAP25)) 1298 break; 1299 } 1300 1301 if (i >= sbi->s_partitions) 1302 goto out_bh; 1303 1304 ret = udf_fill_partdesc_info(sb, p, i); 1305 if (ret) 1306 goto out_bh; 1307 1308 if (map->s_partition_type == UDF_METADATA_MAP25) { 1309 ret = udf_load_metadata_files(sb, i); 1310 if (ret) { 1311 printk(KERN_ERR "UDF-fs: error loading MetaData " 1312 "partition map %d\n", i); 1313 goto out_bh; 1314 } 1315 } else { 1316 ret = udf_load_vat(sb, i, type1_idx); 1317 if (ret) 1318 goto out_bh; 1319 /* 1320 * Mark filesystem read-only if we have a partition with 1321 * virtual map since we don't handle writing to it (we 1322 * overwrite blocks instead of relocating them). 1323 */ 1324 sb->s_flags |= MS_RDONLY; 1325 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only " 1326 "because writing to pseudooverwrite partition is " 1327 "not implemented.\n"); 1328 } 1329 out_bh: 1330 /* In case loading failed, we handle cleanup in udf_fill_super */ 1331 brelse(bh); 1332 return ret; 1333 } 1334 1335 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1336 kernel_lb_addr *fileset) 1337 { 1338 struct logicalVolDesc *lvd; 1339 int i, j, offset; 1340 uint8_t type; 1341 struct udf_sb_info *sbi = UDF_SB(sb); 1342 struct genericPartitionMap *gpm; 1343 uint16_t ident; 1344 struct buffer_head *bh; 1345 int ret = 0; 1346 1347 bh = udf_read_tagged(sb, block, block, &ident); 1348 if (!bh) 1349 return 1; 1350 BUG_ON(ident != TAG_IDENT_LVD); 1351 lvd = (struct logicalVolDesc *)bh->b_data; 1352 1353 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1354 if (i != 0) { 1355 ret = i; 1356 goto out_bh; 1357 } 1358 1359 for (i = 0, offset = 0; 1360 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1361 i++, offset += gpm->partitionMapLength) { 1362 struct udf_part_map *map = &sbi->s_partmaps[i]; 1363 gpm = (struct genericPartitionMap *) 1364 &(lvd->partitionMaps[offset]); 1365 type = gpm->partitionMapType; 1366 if (type == 1) { 1367 struct genericPartitionMap1 *gpm1 = 1368 (struct genericPartitionMap1 *)gpm; 1369 map->s_partition_type = UDF_TYPE1_MAP15; 1370 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1371 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1372 map->s_partition_func = NULL; 1373 } else if (type == 2) { 1374 struct udfPartitionMap2 *upm2 = 1375 (struct udfPartitionMap2 *)gpm; 1376 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1377 strlen(UDF_ID_VIRTUAL))) { 1378 u16 suf = 1379 le16_to_cpu(((__le16 *)upm2->partIdent. 1380 identSuffix)[0]); 1381 if (suf < 0x0200) { 1382 map->s_partition_type = 1383 UDF_VIRTUAL_MAP15; 1384 map->s_partition_func = 1385 udf_get_pblock_virt15; 1386 } else { 1387 map->s_partition_type = 1388 UDF_VIRTUAL_MAP20; 1389 map->s_partition_func = 1390 udf_get_pblock_virt20; 1391 } 1392 } else if (!strncmp(upm2->partIdent.ident, 1393 UDF_ID_SPARABLE, 1394 strlen(UDF_ID_SPARABLE))) { 1395 uint32_t loc; 1396 struct sparingTable *st; 1397 struct sparablePartitionMap *spm = 1398 (struct sparablePartitionMap *)gpm; 1399 1400 map->s_partition_type = UDF_SPARABLE_MAP15; 1401 map->s_type_specific.s_sparing.s_packet_len = 1402 le16_to_cpu(spm->packetLength); 1403 for (j = 0; j < spm->numSparingTables; j++) { 1404 struct buffer_head *bh2; 1405 1406 loc = le32_to_cpu( 1407 spm->locSparingTable[j]); 1408 bh2 = udf_read_tagged(sb, loc, loc, 1409 &ident); 1410 map->s_type_specific.s_sparing. 1411 s_spar_map[j] = bh2; 1412 1413 if (bh2 == NULL) 1414 continue; 1415 1416 st = (struct sparingTable *)bh2->b_data; 1417 if (ident != 0 || strncmp( 1418 st->sparingIdent.ident, 1419 UDF_ID_SPARING, 1420 strlen(UDF_ID_SPARING))) { 1421 brelse(bh2); 1422 map->s_type_specific.s_sparing. 1423 s_spar_map[j] = NULL; 1424 } 1425 } 1426 map->s_partition_func = udf_get_pblock_spar15; 1427 } else if (!strncmp(upm2->partIdent.ident, 1428 UDF_ID_METADATA, 1429 strlen(UDF_ID_METADATA))) { 1430 struct udf_meta_data *mdata = 1431 &map->s_type_specific.s_metadata; 1432 struct metadataPartitionMap *mdm = 1433 (struct metadataPartitionMap *) 1434 &(lvd->partitionMaps[offset]); 1435 udf_debug("Parsing Logical vol part %d " 1436 "type %d id=%s\n", i, type, 1437 UDF_ID_METADATA); 1438 1439 map->s_partition_type = UDF_METADATA_MAP25; 1440 map->s_partition_func = udf_get_pblock_meta25; 1441 1442 mdata->s_meta_file_loc = 1443 le32_to_cpu(mdm->metadataFileLoc); 1444 mdata->s_mirror_file_loc = 1445 le32_to_cpu(mdm->metadataMirrorFileLoc); 1446 mdata->s_bitmap_file_loc = 1447 le32_to_cpu(mdm->metadataBitmapFileLoc); 1448 mdata->s_alloc_unit_size = 1449 le32_to_cpu(mdm->allocUnitSize); 1450 mdata->s_align_unit_size = 1451 le16_to_cpu(mdm->alignUnitSize); 1452 mdata->s_dup_md_flag = 1453 mdm->flags & 0x01; 1454 1455 udf_debug("Metadata Ident suffix=0x%x\n", 1456 (le16_to_cpu( 1457 ((__le16 *) 1458 mdm->partIdent.identSuffix)[0]))); 1459 udf_debug("Metadata part num=%d\n", 1460 le16_to_cpu(mdm->partitionNum)); 1461 udf_debug("Metadata part alloc unit size=%d\n", 1462 le32_to_cpu(mdm->allocUnitSize)); 1463 udf_debug("Metadata file loc=%d\n", 1464 le32_to_cpu(mdm->metadataFileLoc)); 1465 udf_debug("Mirror file loc=%d\n", 1466 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1467 udf_debug("Bitmap file loc=%d\n", 1468 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1469 udf_debug("Duplicate Flag: %d %d\n", 1470 mdata->s_dup_md_flag, mdm->flags); 1471 } else { 1472 udf_debug("Unknown ident: %s\n", 1473 upm2->partIdent.ident); 1474 continue; 1475 } 1476 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1477 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1478 } 1479 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1480 i, map->s_partition_num, type, 1481 map->s_volumeseqnum); 1482 } 1483 1484 if (fileset) { 1485 long_ad *la = (long_ad *)&(lvd->logicalVolContentsUse[0]); 1486 1487 *fileset = lelb_to_cpu(la->extLocation); 1488 udf_debug("FileSet found in LogicalVolDesc at block=%d, " 1489 "partition=%d\n", fileset->logicalBlockNum, 1490 fileset->partitionReferenceNum); 1491 } 1492 if (lvd->integritySeqExt.extLength) 1493 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1494 1495 out_bh: 1496 brelse(bh); 1497 return ret; 1498 } 1499 1500 /* 1501 * udf_load_logicalvolint 1502 * 1503 */ 1504 static void udf_load_logicalvolint(struct super_block *sb, kernel_extent_ad loc) 1505 { 1506 struct buffer_head *bh = NULL; 1507 uint16_t ident; 1508 struct udf_sb_info *sbi = UDF_SB(sb); 1509 struct logicalVolIntegrityDesc *lvid; 1510 1511 while (loc.extLength > 0 && 1512 (bh = udf_read_tagged(sb, loc.extLocation, 1513 loc.extLocation, &ident)) && 1514 ident == TAG_IDENT_LVID) { 1515 sbi->s_lvid_bh = bh; 1516 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1517 1518 if (lvid->nextIntegrityExt.extLength) 1519 udf_load_logicalvolint(sb, 1520 leea_to_cpu(lvid->nextIntegrityExt)); 1521 1522 if (sbi->s_lvid_bh != bh) 1523 brelse(bh); 1524 loc.extLength -= sb->s_blocksize; 1525 loc.extLocation++; 1526 } 1527 if (sbi->s_lvid_bh != bh) 1528 brelse(bh); 1529 } 1530 1531 /* 1532 * udf_process_sequence 1533 * 1534 * PURPOSE 1535 * Process a main/reserve volume descriptor sequence. 1536 * 1537 * PRE-CONDITIONS 1538 * sb Pointer to _locked_ superblock. 1539 * block First block of first extent of the sequence. 1540 * lastblock Lastblock of first extent of the sequence. 1541 * 1542 * HISTORY 1543 * July 1, 1997 - Andrew E. Mileski 1544 * Written, tested, and released. 1545 */ 1546 static noinline int udf_process_sequence(struct super_block *sb, long block, 1547 long lastblock, kernel_lb_addr *fileset) 1548 { 1549 struct buffer_head *bh = NULL; 1550 struct udf_vds_record vds[VDS_POS_LENGTH]; 1551 struct udf_vds_record *curr; 1552 struct generic_desc *gd; 1553 struct volDescPtr *vdp; 1554 int done = 0; 1555 uint32_t vdsn; 1556 uint16_t ident; 1557 long next_s = 0, next_e = 0; 1558 1559 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1560 1561 /* 1562 * Read the main descriptor sequence and find which descriptors 1563 * are in it. 1564 */ 1565 for (; (!done && block <= lastblock); block++) { 1566 1567 bh = udf_read_tagged(sb, block, block, &ident); 1568 if (!bh) { 1569 printk(KERN_ERR "udf: Block %Lu of volume descriptor " 1570 "sequence is corrupted or we could not read " 1571 "it.\n", (unsigned long long)block); 1572 return 1; 1573 } 1574 1575 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1576 gd = (struct generic_desc *)bh->b_data; 1577 vdsn = le32_to_cpu(gd->volDescSeqNum); 1578 switch (ident) { 1579 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1580 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1581 if (vdsn >= curr->volDescSeqNum) { 1582 curr->volDescSeqNum = vdsn; 1583 curr->block = block; 1584 } 1585 break; 1586 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1587 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1588 if (vdsn >= curr->volDescSeqNum) { 1589 curr->volDescSeqNum = vdsn; 1590 curr->block = block; 1591 1592 vdp = (struct volDescPtr *)bh->b_data; 1593 next_s = le32_to_cpu( 1594 vdp->nextVolDescSeqExt.extLocation); 1595 next_e = le32_to_cpu( 1596 vdp->nextVolDescSeqExt.extLength); 1597 next_e = next_e >> sb->s_blocksize_bits; 1598 next_e += next_s; 1599 } 1600 break; 1601 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1602 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1603 if (vdsn >= curr->volDescSeqNum) { 1604 curr->volDescSeqNum = vdsn; 1605 curr->block = block; 1606 } 1607 break; 1608 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1609 curr = &vds[VDS_POS_PARTITION_DESC]; 1610 if (!curr->block) 1611 curr->block = block; 1612 break; 1613 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1614 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1615 if (vdsn >= curr->volDescSeqNum) { 1616 curr->volDescSeqNum = vdsn; 1617 curr->block = block; 1618 } 1619 break; 1620 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1621 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1622 if (vdsn >= curr->volDescSeqNum) { 1623 curr->volDescSeqNum = vdsn; 1624 curr->block = block; 1625 } 1626 break; 1627 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1628 vds[VDS_POS_TERMINATING_DESC].block = block; 1629 if (next_e) { 1630 block = next_s; 1631 lastblock = next_e; 1632 next_s = next_e = 0; 1633 } else 1634 done = 1; 1635 break; 1636 } 1637 brelse(bh); 1638 } 1639 /* 1640 * Now read interesting descriptors again and process them 1641 * in a suitable order 1642 */ 1643 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1644 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n"); 1645 return 1; 1646 } 1647 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1648 return 1; 1649 1650 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1651 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1652 return 1; 1653 1654 if (vds[VDS_POS_PARTITION_DESC].block) { 1655 /* 1656 * We rescan the whole descriptor sequence to find 1657 * partition descriptor blocks and process them. 1658 */ 1659 for (block = vds[VDS_POS_PARTITION_DESC].block; 1660 block < vds[VDS_POS_TERMINATING_DESC].block; 1661 block++) 1662 if (udf_load_partdesc(sb, block)) 1663 return 1; 1664 } 1665 1666 return 0; 1667 } 1668 1669 /* 1670 * udf_check_valid() 1671 */ 1672 static int udf_check_valid(struct super_block *sb, int novrs, int silent) 1673 { 1674 long block; 1675 struct udf_sb_info *sbi = UDF_SB(sb); 1676 1677 if (novrs) { 1678 udf_debug("Validity check skipped because of novrs option\n"); 1679 return 0; 1680 } 1681 /* Check that it is NSR02 compliant */ 1682 /* Process any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 1683 block = udf_vrs(sb, silent); 1684 if (block == -1) 1685 udf_debug("Failed to read byte 32768. Assuming open " 1686 "disc. Skipping validity check\n"); 1687 if (block && !sbi->s_last_block) 1688 sbi->s_last_block = udf_get_last_block(sb); 1689 return !block; 1690 } 1691 1692 static int udf_load_sequence(struct super_block *sb, kernel_lb_addr *fileset) 1693 { 1694 struct anchorVolDescPtr *anchor; 1695 uint16_t ident; 1696 struct buffer_head *bh; 1697 long main_s, main_e, reserve_s, reserve_e; 1698 int i; 1699 struct udf_sb_info *sbi; 1700 1701 if (!sb) 1702 return 1; 1703 sbi = UDF_SB(sb); 1704 1705 for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) { 1706 if (!sbi->s_anchor[i]) 1707 continue; 1708 1709 bh = udf_read_tagged(sb, sbi->s_anchor[i], sbi->s_anchor[i], 1710 &ident); 1711 if (!bh) 1712 continue; 1713 1714 anchor = (struct anchorVolDescPtr *)bh->b_data; 1715 1716 /* Locate the main sequence */ 1717 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1718 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1719 main_e = main_e >> sb->s_blocksize_bits; 1720 main_e += main_s; 1721 1722 /* Locate the reserve sequence */ 1723 reserve_s = le32_to_cpu( 1724 anchor->reserveVolDescSeqExt.extLocation); 1725 reserve_e = le32_to_cpu( 1726 anchor->reserveVolDescSeqExt.extLength); 1727 reserve_e = reserve_e >> sb->s_blocksize_bits; 1728 reserve_e += reserve_s; 1729 1730 brelse(bh); 1731 1732 /* Process the main & reserve sequences */ 1733 /* responsible for finding the PartitionDesc(s) */ 1734 if (!(udf_process_sequence(sb, main_s, main_e, 1735 fileset) && 1736 udf_process_sequence(sb, reserve_s, reserve_e, 1737 fileset))) 1738 break; 1739 } 1740 1741 if (i == ARRAY_SIZE(sbi->s_anchor)) { 1742 udf_debug("No Anchor block found\n"); 1743 return 1; 1744 } 1745 udf_debug("Using anchor in block %d\n", sbi->s_anchor[i]); 1746 1747 return 0; 1748 } 1749 1750 static void udf_open_lvid(struct super_block *sb) 1751 { 1752 struct udf_sb_info *sbi = UDF_SB(sb); 1753 struct buffer_head *bh = sbi->s_lvid_bh; 1754 struct logicalVolIntegrityDesc *lvid; 1755 struct logicalVolIntegrityDescImpUse *lvidiu; 1756 if (!bh) 1757 return; 1758 1759 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1760 lvidiu = udf_sb_lvidiu(sbi); 1761 1762 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1763 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1764 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1765 CURRENT_TIME); 1766 lvid->integrityType = LVID_INTEGRITY_TYPE_OPEN; 1767 1768 lvid->descTag.descCRC = cpu_to_le16( 1769 crc_itu_t(0, (char *)lvid + sizeof(tag), 1770 le16_to_cpu(lvid->descTag.descCRCLength))); 1771 1772 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1773 mark_buffer_dirty(bh); 1774 } 1775 1776 static void udf_close_lvid(struct super_block *sb) 1777 { 1778 struct udf_sb_info *sbi = UDF_SB(sb); 1779 struct buffer_head *bh = sbi->s_lvid_bh; 1780 struct logicalVolIntegrityDesc *lvid; 1781 struct logicalVolIntegrityDescImpUse *lvidiu; 1782 1783 if (!bh) 1784 return; 1785 1786 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1787 1788 if (lvid->integrityType != LVID_INTEGRITY_TYPE_OPEN) 1789 return; 1790 1791 lvidiu = udf_sb_lvidiu(sbi); 1792 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1793 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1794 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1795 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1796 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1797 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1798 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1799 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1800 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1801 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1802 1803 lvid->descTag.descCRC = cpu_to_le16( 1804 crc_itu_t(0, (char *)lvid + sizeof(tag), 1805 le16_to_cpu(lvid->descTag.descCRCLength))); 1806 1807 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1808 mark_buffer_dirty(bh); 1809 } 1810 1811 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1812 { 1813 int i; 1814 int nr_groups = bitmap->s_nr_groups; 1815 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1816 nr_groups); 1817 1818 for (i = 0; i < nr_groups; i++) 1819 if (bitmap->s_block_bitmap[i]) 1820 brelse(bitmap->s_block_bitmap[i]); 1821 1822 if (size <= PAGE_SIZE) 1823 kfree(bitmap); 1824 else 1825 vfree(bitmap); 1826 } 1827 1828 static void udf_free_partition(struct udf_part_map *map) 1829 { 1830 int i; 1831 struct udf_meta_data *mdata; 1832 1833 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1834 iput(map->s_uspace.s_table); 1835 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1836 iput(map->s_fspace.s_table); 1837 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1838 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1839 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1840 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1841 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1842 for (i = 0; i < 4; i++) 1843 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1844 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1845 mdata = &map->s_type_specific.s_metadata; 1846 iput(mdata->s_metadata_fe); 1847 mdata->s_metadata_fe = NULL; 1848 1849 iput(mdata->s_mirror_fe); 1850 mdata->s_mirror_fe = NULL; 1851 1852 iput(mdata->s_bitmap_fe); 1853 mdata->s_bitmap_fe = NULL; 1854 } 1855 } 1856 1857 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1858 { 1859 int i; 1860 struct inode *inode = NULL; 1861 struct udf_options uopt; 1862 kernel_lb_addr rootdir, fileset; 1863 struct udf_sb_info *sbi; 1864 1865 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1866 uopt.uid = -1; 1867 uopt.gid = -1; 1868 uopt.umask = 0; 1869 1870 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1871 if (!sbi) 1872 return -ENOMEM; 1873 1874 sb->s_fs_info = sbi; 1875 1876 mutex_init(&sbi->s_alloc_mutex); 1877 1878 if (!udf_parse_options((char *)options, &uopt, false)) 1879 goto error_out; 1880 1881 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1882 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1883 udf_error(sb, "udf_read_super", 1884 "utf8 cannot be combined with iocharset\n"); 1885 goto error_out; 1886 } 1887 #ifdef CONFIG_UDF_NLS 1888 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1889 uopt.nls_map = load_nls_default(); 1890 if (!uopt.nls_map) 1891 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1892 else 1893 udf_debug("Using default NLS map\n"); 1894 } 1895 #endif 1896 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1897 uopt.flags |= (1 << UDF_FLAG_UTF8); 1898 1899 fileset.logicalBlockNum = 0xFFFFFFFF; 1900 fileset.partitionReferenceNum = 0xFFFF; 1901 1902 sbi->s_flags = uopt.flags; 1903 sbi->s_uid = uopt.uid; 1904 sbi->s_gid = uopt.gid; 1905 sbi->s_umask = uopt.umask; 1906 sbi->s_nls_map = uopt.nls_map; 1907 1908 /* Set the block size for all transfers */ 1909 if (!sb_min_blocksize(sb, uopt.blocksize)) { 1910 udf_debug("Bad block size (%d)\n", uopt.blocksize); 1911 printk(KERN_ERR "udf: bad block size (%d)\n", uopt.blocksize); 1912 goto error_out; 1913 } 1914 1915 if (uopt.session == 0xFFFFFFFF) 1916 sbi->s_session = udf_get_last_session(sb); 1917 else 1918 sbi->s_session = uopt.session; 1919 1920 udf_debug("Multi-session=%d\n", sbi->s_session); 1921 1922 sbi->s_last_block = uopt.lastblock; 1923 sbi->s_anchor[0] = sbi->s_anchor[1] = 0; 1924 sbi->s_anchor[2] = uopt.anchor; 1925 1926 if (udf_check_valid(sb, uopt.novrs, silent)) { 1927 /* read volume recognition sequences */ 1928 printk(KERN_WARNING "UDF-fs: No VRS found\n"); 1929 goto error_out; 1930 } 1931 1932 udf_find_anchor(sb); 1933 1934 /* Fill in the rest of the superblock */ 1935 sb->s_op = &udf_sb_ops; 1936 sb->dq_op = NULL; 1937 sb->s_dirt = 0; 1938 sb->s_magic = UDF_SUPER_MAGIC; 1939 sb->s_time_gran = 1000; 1940 1941 if (udf_load_sequence(sb, &fileset)) { 1942 printk(KERN_WARNING "UDF-fs: No partition found (1)\n"); 1943 goto error_out; 1944 } 1945 1946 udf_debug("Lastblock=%d\n", sbi->s_last_block); 1947 1948 if (sbi->s_lvid_bh) { 1949 struct logicalVolIntegrityDescImpUse *lvidiu = 1950 udf_sb_lvidiu(sbi); 1951 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 1952 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 1953 /* uint16_t maxUDFWriteRev = 1954 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 1955 1956 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 1957 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x " 1958 "(max is %x)\n", 1959 le16_to_cpu(lvidiu->minUDFReadRev), 1960 UDF_MAX_READ_VERSION); 1961 goto error_out; 1962 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 1963 sb->s_flags |= MS_RDONLY; 1964 1965 sbi->s_udfrev = minUDFWriteRev; 1966 1967 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 1968 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 1969 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 1970 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 1971 } 1972 1973 if (!sbi->s_partitions) { 1974 printk(KERN_WARNING "UDF-fs: No partition found (2)\n"); 1975 goto error_out; 1976 } 1977 1978 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 1979 UDF_PART_FLAG_READ_ONLY) { 1980 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; " 1981 "forcing readonly mount\n"); 1982 sb->s_flags |= MS_RDONLY; 1983 } 1984 1985 if (udf_find_fileset(sb, &fileset, &rootdir)) { 1986 printk(KERN_WARNING "UDF-fs: No fileset found\n"); 1987 goto error_out; 1988 } 1989 1990 if (!silent) { 1991 timestamp ts; 1992 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 1993 udf_info("UDF: Mounting volume '%s', " 1994 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 1995 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day, 1996 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 1997 } 1998 if (!(sb->s_flags & MS_RDONLY)) 1999 udf_open_lvid(sb); 2000 2001 /* Assign the root inode */ 2002 /* assign inodes by physical block number */ 2003 /* perhaps it's not extensible enough, but for now ... */ 2004 inode = udf_iget(sb, rootdir); 2005 if (!inode) { 2006 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, " 2007 "partition=%d\n", 2008 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2009 goto error_out; 2010 } 2011 2012 /* Allocate a dentry for the root inode */ 2013 sb->s_root = d_alloc_root(inode); 2014 if (!sb->s_root) { 2015 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n"); 2016 iput(inode); 2017 goto error_out; 2018 } 2019 sb->s_maxbytes = MAX_LFS_FILESIZE; 2020 return 0; 2021 2022 error_out: 2023 if (sbi->s_vat_inode) 2024 iput(sbi->s_vat_inode); 2025 if (sbi->s_partitions) 2026 for (i = 0; i < sbi->s_partitions; i++) 2027 udf_free_partition(&sbi->s_partmaps[i]); 2028 #ifdef CONFIG_UDF_NLS 2029 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2030 unload_nls(sbi->s_nls_map); 2031 #endif 2032 if (!(sb->s_flags & MS_RDONLY)) 2033 udf_close_lvid(sb); 2034 brelse(sbi->s_lvid_bh); 2035 2036 kfree(sbi->s_partmaps); 2037 kfree(sbi); 2038 sb->s_fs_info = NULL; 2039 2040 return -EINVAL; 2041 } 2042 2043 static void udf_error(struct super_block *sb, const char *function, 2044 const char *fmt, ...) 2045 { 2046 va_list args; 2047 2048 if (!(sb->s_flags & MS_RDONLY)) { 2049 /* mark sb error */ 2050 sb->s_dirt = 1; 2051 } 2052 va_start(args, fmt); 2053 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2054 va_end(args); 2055 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n", 2056 sb->s_id, function, error_buf); 2057 } 2058 2059 void udf_warning(struct super_block *sb, const char *function, 2060 const char *fmt, ...) 2061 { 2062 va_list args; 2063 2064 va_start(args, fmt); 2065 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2066 va_end(args); 2067 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n", 2068 sb->s_id, function, error_buf); 2069 } 2070 2071 static void udf_put_super(struct super_block *sb) 2072 { 2073 int i; 2074 struct udf_sb_info *sbi; 2075 2076 sbi = UDF_SB(sb); 2077 if (sbi->s_vat_inode) 2078 iput(sbi->s_vat_inode); 2079 if (sbi->s_partitions) 2080 for (i = 0; i < sbi->s_partitions; i++) 2081 udf_free_partition(&sbi->s_partmaps[i]); 2082 #ifdef CONFIG_UDF_NLS 2083 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2084 unload_nls(sbi->s_nls_map); 2085 #endif 2086 if (!(sb->s_flags & MS_RDONLY)) 2087 udf_close_lvid(sb); 2088 brelse(sbi->s_lvid_bh); 2089 kfree(sbi->s_partmaps); 2090 kfree(sb->s_fs_info); 2091 sb->s_fs_info = NULL; 2092 } 2093 2094 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2095 { 2096 struct super_block *sb = dentry->d_sb; 2097 struct udf_sb_info *sbi = UDF_SB(sb); 2098 struct logicalVolIntegrityDescImpUse *lvidiu; 2099 2100 if (sbi->s_lvid_bh != NULL) 2101 lvidiu = udf_sb_lvidiu(sbi); 2102 else 2103 lvidiu = NULL; 2104 2105 buf->f_type = UDF_SUPER_MAGIC; 2106 buf->f_bsize = sb->s_blocksize; 2107 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2108 buf->f_bfree = udf_count_free(sb); 2109 buf->f_bavail = buf->f_bfree; 2110 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2111 le32_to_cpu(lvidiu->numDirs)) : 0) 2112 + buf->f_bfree; 2113 buf->f_ffree = buf->f_bfree; 2114 /* __kernel_fsid_t f_fsid */ 2115 buf->f_namelen = UDF_NAME_LEN - 2; 2116 2117 return 0; 2118 } 2119 2120 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2121 struct udf_bitmap *bitmap) 2122 { 2123 struct buffer_head *bh = NULL; 2124 unsigned int accum = 0; 2125 int index; 2126 int block = 0, newblock; 2127 kernel_lb_addr loc; 2128 uint32_t bytes; 2129 uint8_t *ptr; 2130 uint16_t ident; 2131 struct spaceBitmapDesc *bm; 2132 2133 lock_kernel(); 2134 2135 loc.logicalBlockNum = bitmap->s_extPosition; 2136 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2137 bh = udf_read_ptagged(sb, loc, 0, &ident); 2138 2139 if (!bh) { 2140 printk(KERN_ERR "udf: udf_count_free failed\n"); 2141 goto out; 2142 } else if (ident != TAG_IDENT_SBD) { 2143 brelse(bh); 2144 printk(KERN_ERR "udf: udf_count_free failed\n"); 2145 goto out; 2146 } 2147 2148 bm = (struct spaceBitmapDesc *)bh->b_data; 2149 bytes = le32_to_cpu(bm->numOfBytes); 2150 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2151 ptr = (uint8_t *)bh->b_data; 2152 2153 while (bytes > 0) { 2154 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2155 accum += bitmap_weight((const unsigned long *)(ptr + index), 2156 cur_bytes * 8); 2157 bytes -= cur_bytes; 2158 if (bytes) { 2159 brelse(bh); 2160 newblock = udf_get_lb_pblock(sb, loc, ++block); 2161 bh = udf_tread(sb, newblock); 2162 if (!bh) { 2163 udf_debug("read failed\n"); 2164 goto out; 2165 } 2166 index = 0; 2167 ptr = (uint8_t *)bh->b_data; 2168 } 2169 } 2170 brelse(bh); 2171 2172 out: 2173 unlock_kernel(); 2174 2175 return accum; 2176 } 2177 2178 static unsigned int udf_count_free_table(struct super_block *sb, 2179 struct inode *table) 2180 { 2181 unsigned int accum = 0; 2182 uint32_t elen; 2183 kernel_lb_addr eloc; 2184 int8_t etype; 2185 struct extent_position epos; 2186 2187 lock_kernel(); 2188 2189 epos.block = UDF_I(table)->i_location; 2190 epos.offset = sizeof(struct unallocSpaceEntry); 2191 epos.bh = NULL; 2192 2193 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2194 accum += (elen >> table->i_sb->s_blocksize_bits); 2195 2196 brelse(epos.bh); 2197 2198 unlock_kernel(); 2199 2200 return accum; 2201 } 2202 2203 static unsigned int udf_count_free(struct super_block *sb) 2204 { 2205 unsigned int accum = 0; 2206 struct udf_sb_info *sbi; 2207 struct udf_part_map *map; 2208 2209 sbi = UDF_SB(sb); 2210 if (sbi->s_lvid_bh) { 2211 struct logicalVolIntegrityDesc *lvid = 2212 (struct logicalVolIntegrityDesc *) 2213 sbi->s_lvid_bh->b_data; 2214 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2215 accum = le32_to_cpu( 2216 lvid->freeSpaceTable[sbi->s_partition]); 2217 if (accum == 0xFFFFFFFF) 2218 accum = 0; 2219 } 2220 } 2221 2222 if (accum) 2223 return accum; 2224 2225 map = &sbi->s_partmaps[sbi->s_partition]; 2226 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2227 accum += udf_count_free_bitmap(sb, 2228 map->s_uspace.s_bitmap); 2229 } 2230 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2231 accum += udf_count_free_bitmap(sb, 2232 map->s_fspace.s_bitmap); 2233 } 2234 if (accum) 2235 return accum; 2236 2237 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2238 accum += udf_count_free_table(sb, 2239 map->s_uspace.s_table); 2240 } 2241 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2242 accum += udf_count_free_table(sb, 2243 map->s_fspace.s_table); 2244 } 2245 2246 return accum; 2247 } 2248