xref: /linux/fs/udf/super.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 			    struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 			     struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104 
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 	struct logicalVolIntegrityDesc *lvid;
108 	unsigned int partnum;
109 	unsigned int offset;
110 
111 	if (!UDF_SB(sb)->s_lvid_bh)
112 		return NULL;
113 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 	partnum = le32_to_cpu(lvid->numOfPartitions);
115 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 	     (2 * sizeof(uint32_t)) < partnum) {
118 		udf_err(sb, "Logical volume integrity descriptor corrupted "
119 			"(numOfPartitions = %u)!\n", partnum);
120 		return NULL;
121 	}
122 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
123 	offset = partnum * 2 * sizeof(uint32_t);
124 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126 
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 		      int flags, const char *dev_name, void *data)
130 {
131 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133 
134 static struct file_system_type udf_fstype = {
135 	.owner		= THIS_MODULE,
136 	.name		= "udf",
137 	.mount		= udf_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142 
143 static struct kmem_cache *udf_inode_cachep;
144 
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147 	struct udf_inode_info *ei;
148 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 	if (!ei)
150 		return NULL;
151 
152 	ei->i_unique = 0;
153 	ei->i_lenExtents = 0;
154 	ei->i_next_alloc_block = 0;
155 	ei->i_next_alloc_goal = 0;
156 	ei->i_strat4096 = 0;
157 	init_rwsem(&ei->i_data_sem);
158 	ei->cached_extent.lstart = -1;
159 	spin_lock_init(&ei->i_extent_cache_lock);
160 
161 	return &ei->vfs_inode;
162 }
163 
164 static void udf_i_callback(struct rcu_head *head)
165 {
166 	struct inode *inode = container_of(head, struct inode, i_rcu);
167 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169 
170 static void udf_destroy_inode(struct inode *inode)
171 {
172 	call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174 
175 static void init_once(void *foo)
176 {
177 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178 
179 	ei->i_ext.i_data = NULL;
180 	inode_init_once(&ei->vfs_inode);
181 }
182 
183 static int __init init_inodecache(void)
184 {
185 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 					     sizeof(struct udf_inode_info),
187 					     0, (SLAB_RECLAIM_ACCOUNT |
188 						 SLAB_MEM_SPREAD |
189 						 SLAB_ACCOUNT),
190 					     init_once);
191 	if (!udf_inode_cachep)
192 		return -ENOMEM;
193 	return 0;
194 }
195 
196 static void destroy_inodecache(void)
197 {
198 	/*
199 	 * Make sure all delayed rcu free inodes are flushed before we
200 	 * destroy cache.
201 	 */
202 	rcu_barrier();
203 	kmem_cache_destroy(udf_inode_cachep);
204 }
205 
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 	.alloc_inode	= udf_alloc_inode,
209 	.destroy_inode	= udf_destroy_inode,
210 	.write_inode	= udf_write_inode,
211 	.evict_inode	= udf_evict_inode,
212 	.put_super	= udf_put_super,
213 	.sync_fs	= udf_sync_fs,
214 	.statfs		= udf_statfs,
215 	.remount_fs	= udf_remount_fs,
216 	.show_options	= udf_show_options,
217 };
218 
219 struct udf_options {
220 	unsigned char novrs;
221 	unsigned int blocksize;
222 	unsigned int session;
223 	unsigned int lastblock;
224 	unsigned int anchor;
225 	unsigned int flags;
226 	umode_t umask;
227 	kgid_t gid;
228 	kuid_t uid;
229 	umode_t fmode;
230 	umode_t dmode;
231 	struct nls_table *nls_map;
232 };
233 
234 static int __init init_udf_fs(void)
235 {
236 	int err;
237 
238 	err = init_inodecache();
239 	if (err)
240 		goto out1;
241 	err = register_filesystem(&udf_fstype);
242 	if (err)
243 		goto out;
244 
245 	return 0;
246 
247 out:
248 	destroy_inodecache();
249 
250 out1:
251 	return err;
252 }
253 
254 static void __exit exit_udf_fs(void)
255 {
256 	unregister_filesystem(&udf_fstype);
257 	destroy_inodecache();
258 }
259 
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 	struct udf_sb_info *sbi = UDF_SB(sb);
263 
264 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 	if (!sbi->s_partmaps) {
266 		sbi->s_partitions = 0;
267 		return -ENOMEM;
268 	}
269 
270 	sbi->s_partitions = count;
271 	return 0;
272 }
273 
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276 	int i;
277 	int nr_groups = bitmap->s_nr_groups;
278 
279 	for (i = 0; i < nr_groups; i++)
280 		if (bitmap->s_block_bitmap[i])
281 			brelse(bitmap->s_block_bitmap[i]);
282 
283 	kvfree(bitmap);
284 }
285 
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288 	int i;
289 	struct udf_meta_data *mdata;
290 
291 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 		iput(map->s_uspace.s_table);
293 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 		iput(map->s_fspace.s_table);
295 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 		for (i = 0; i < 4; i++)
301 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 		mdata = &map->s_type_specific.s_metadata;
304 		iput(mdata->s_metadata_fe);
305 		mdata->s_metadata_fe = NULL;
306 
307 		iput(mdata->s_mirror_fe);
308 		mdata->s_mirror_fe = NULL;
309 
310 		iput(mdata->s_bitmap_fe);
311 		mdata->s_bitmap_fe = NULL;
312 	}
313 }
314 
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317 	struct udf_sb_info *sbi = UDF_SB(sb);
318 	int i;
319 
320 	if (!sbi->s_partmaps)
321 		return;
322 	for (i = 0; i < sbi->s_partitions; i++)
323 		udf_free_partition(&sbi->s_partmaps[i]);
324 	kfree(sbi->s_partmaps);
325 	sbi->s_partmaps = NULL;
326 }
327 
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330 	struct super_block *sb = root->d_sb;
331 	struct udf_sb_info *sbi = UDF_SB(sb);
332 
333 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 		seq_puts(seq, ",nostrict");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 		seq_puts(seq, ",unhide");
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 		seq_puts(seq, ",undelete");
341 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 		seq_puts(seq, ",noadinicb");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 		seq_puts(seq, ",shortad");
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 		seq_puts(seq, ",uid=forget");
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 		seq_puts(seq, ",gid=forget");
349 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 	if (sbi->s_umask != 0)
354 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 	if (sbi->s_fmode != UDF_INVALID_MODE)
356 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 	if (sbi->s_dmode != UDF_INVALID_MODE)
358 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 		seq_printf(seq, ",session=%d", sbi->s_session);
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 	if (sbi->s_anchor != 0)
364 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 		seq_puts(seq, ",utf8");
367 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369 
370 	return 0;
371 }
372 
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *	Parse mount options.
378  *
379  * DESCRIPTION
380  *	The following mount options are supported:
381  *
382  *	gid=		Set the default group.
383  *	umask=		Set the default umask.
384  *	mode=		Set the default file permissions.
385  *	dmode=		Set the default directory permissions.
386  *	uid=		Set the default user.
387  *	bs=		Set the block size.
388  *	unhide		Show otherwise hidden files.
389  *	undelete	Show deleted files in lists.
390  *	adinicb		Embed data in the inode (default)
391  *	noadinicb	Don't embed data in the inode
392  *	shortad		Use short ad's
393  *	longad		Use long ad's (default)
394  *	nostrict	Unset strict conformance
395  *	iocharset=	Set the NLS character set
396  *
397  *	The remaining are for debugging and disaster recovery:
398  *
399  *	novrs		Skip volume sequence recognition
400  *
401  *	The following expect a offset from 0.
402  *
403  *	session=	Set the CDROM session (default= last session)
404  *	anchor=		Override standard anchor location. (default= 256)
405  *	volume=		Override the VolumeDesc location. (unused)
406  *	partition=	Override the PartitionDesc location. (unused)
407  *	lastblock=	Set the last block of the filesystem/
408  *
409  *	The following expect a offset from the partition root.
410  *
411  *	fileset=	Override the fileset block location. (unused)
412  *	rootdir=	Override the root directory location. (unused)
413  *		WARNING: overriding the rootdir to a non-directory may
414  *		yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *	options		Pointer to mount options string.
418  *	uopts		Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *	<return>	1	Mount options parsed okay.
422  *	<return>	0	Error parsing mount options.
423  *
424  * HISTORY
425  *	July 1, 1997 - Andrew E. Mileski
426  *	Written, tested, and released.
427  */
428 
429 enum {
430 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 	Opt_rootdir, Opt_utf8, Opt_iocharset,
435 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 	Opt_fmode, Opt_dmode
437 };
438 
439 static const match_table_t tokens = {
440 	{Opt_novrs,	"novrs"},
441 	{Opt_nostrict,	"nostrict"},
442 	{Opt_bs,	"bs=%u"},
443 	{Opt_unhide,	"unhide"},
444 	{Opt_undelete,	"undelete"},
445 	{Opt_noadinicb,	"noadinicb"},
446 	{Opt_adinicb,	"adinicb"},
447 	{Opt_shortad,	"shortad"},
448 	{Opt_longad,	"longad"},
449 	{Opt_uforget,	"uid=forget"},
450 	{Opt_uignore,	"uid=ignore"},
451 	{Opt_gforget,	"gid=forget"},
452 	{Opt_gignore,	"gid=ignore"},
453 	{Opt_gid,	"gid=%u"},
454 	{Opt_uid,	"uid=%u"},
455 	{Opt_umask,	"umask=%o"},
456 	{Opt_session,	"session=%u"},
457 	{Opt_lastblock,	"lastblock=%u"},
458 	{Opt_anchor,	"anchor=%u"},
459 	{Opt_volume,	"volume=%u"},
460 	{Opt_partition,	"partition=%u"},
461 	{Opt_fileset,	"fileset=%u"},
462 	{Opt_rootdir,	"rootdir=%u"},
463 	{Opt_utf8,	"utf8"},
464 	{Opt_iocharset,	"iocharset=%s"},
465 	{Opt_fmode,     "mode=%o"},
466 	{Opt_dmode,     "dmode=%o"},
467 	{Opt_err,	NULL}
468 };
469 
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471 			     bool remount)
472 {
473 	char *p;
474 	int option;
475 
476 	uopt->novrs = 0;
477 	uopt->session = 0xFFFFFFFF;
478 	uopt->lastblock = 0;
479 	uopt->anchor = 0;
480 
481 	if (!options)
482 		return 1;
483 
484 	while ((p = strsep(&options, ",")) != NULL) {
485 		substring_t args[MAX_OPT_ARGS];
486 		int token;
487 		unsigned n;
488 		if (!*p)
489 			continue;
490 
491 		token = match_token(p, tokens, args);
492 		switch (token) {
493 		case Opt_novrs:
494 			uopt->novrs = 1;
495 			break;
496 		case Opt_bs:
497 			if (match_int(&args[0], &option))
498 				return 0;
499 			n = option;
500 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501 				return 0;
502 			uopt->blocksize = n;
503 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504 			break;
505 		case Opt_unhide:
506 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507 			break;
508 		case Opt_undelete:
509 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510 			break;
511 		case Opt_noadinicb:
512 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513 			break;
514 		case Opt_adinicb:
515 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516 			break;
517 		case Opt_shortad:
518 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519 			break;
520 		case Opt_longad:
521 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522 			break;
523 		case Opt_gid:
524 			if (match_int(args, &option))
525 				return 0;
526 			uopt->gid = make_kgid(current_user_ns(), option);
527 			if (!gid_valid(uopt->gid))
528 				return 0;
529 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
530 			break;
531 		case Opt_uid:
532 			if (match_int(args, &option))
533 				return 0;
534 			uopt->uid = make_kuid(current_user_ns(), option);
535 			if (!uid_valid(uopt->uid))
536 				return 0;
537 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
538 			break;
539 		case Opt_umask:
540 			if (match_octal(args, &option))
541 				return 0;
542 			uopt->umask = option;
543 			break;
544 		case Opt_nostrict:
545 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546 			break;
547 		case Opt_session:
548 			if (match_int(args, &option))
549 				return 0;
550 			uopt->session = option;
551 			if (!remount)
552 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553 			break;
554 		case Opt_lastblock:
555 			if (match_int(args, &option))
556 				return 0;
557 			uopt->lastblock = option;
558 			if (!remount)
559 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560 			break;
561 		case Opt_anchor:
562 			if (match_int(args, &option))
563 				return 0;
564 			uopt->anchor = option;
565 			break;
566 		case Opt_volume:
567 		case Opt_partition:
568 		case Opt_fileset:
569 		case Opt_rootdir:
570 			/* Ignored (never implemented properly) */
571 			break;
572 		case Opt_utf8:
573 			uopt->flags |= (1 << UDF_FLAG_UTF8);
574 			break;
575 		case Opt_iocharset:
576 			if (!remount) {
577 				if (uopt->nls_map)
578 					unload_nls(uopt->nls_map);
579 				uopt->nls_map = load_nls(args[0].from);
580 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
581 			}
582 			break;
583 		case Opt_uforget:
584 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 			break;
586 		case Opt_uignore:
587 		case Opt_gignore:
588 			/* These options are superseeded by uid=<number> */
589 			break;
590 		case Opt_gforget:
591 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
592 			break;
593 		case Opt_fmode:
594 			if (match_octal(args, &option))
595 				return 0;
596 			uopt->fmode = option & 0777;
597 			break;
598 		case Opt_dmode:
599 			if (match_octal(args, &option))
600 				return 0;
601 			uopt->dmode = option & 0777;
602 			break;
603 		default:
604 			pr_err("bad mount option \"%s\" or missing value\n", p);
605 			return 0;
606 		}
607 	}
608 	return 1;
609 }
610 
611 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
612 {
613 	struct udf_options uopt;
614 	struct udf_sb_info *sbi = UDF_SB(sb);
615 	int error = 0;
616 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
617 
618 	sync_filesystem(sb);
619 	if (lvidiu) {
620 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
621 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
622 			return -EACCES;
623 	}
624 
625 	uopt.flags = sbi->s_flags;
626 	uopt.uid   = sbi->s_uid;
627 	uopt.gid   = sbi->s_gid;
628 	uopt.umask = sbi->s_umask;
629 	uopt.fmode = sbi->s_fmode;
630 	uopt.dmode = sbi->s_dmode;
631 	uopt.nls_map = NULL;
632 
633 	if (!udf_parse_options(options, &uopt, true))
634 		return -EINVAL;
635 
636 	write_lock(&sbi->s_cred_lock);
637 	sbi->s_flags = uopt.flags;
638 	sbi->s_uid   = uopt.uid;
639 	sbi->s_gid   = uopt.gid;
640 	sbi->s_umask = uopt.umask;
641 	sbi->s_fmode = uopt.fmode;
642 	sbi->s_dmode = uopt.dmode;
643 	write_unlock(&sbi->s_cred_lock);
644 
645 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
646 		goto out_unlock;
647 
648 	if (*flags & SB_RDONLY)
649 		udf_close_lvid(sb);
650 	else
651 		udf_open_lvid(sb);
652 
653 out_unlock:
654 	return error;
655 }
656 
657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659 static loff_t udf_check_vsd(struct super_block *sb)
660 {
661 	struct volStructDesc *vsd = NULL;
662 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
663 	int sectorsize;
664 	struct buffer_head *bh = NULL;
665 	int nsr02 = 0;
666 	int nsr03 = 0;
667 	struct udf_sb_info *sbi;
668 
669 	sbi = UDF_SB(sb);
670 	if (sb->s_blocksize < sizeof(struct volStructDesc))
671 		sectorsize = sizeof(struct volStructDesc);
672 	else
673 		sectorsize = sb->s_blocksize;
674 
675 	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
676 
677 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
678 		  (unsigned int)(sector >> sb->s_blocksize_bits),
679 		  sb->s_blocksize);
680 	/* Process the sequence (if applicable). The hard limit on the sector
681 	 * offset is arbitrary, hopefully large enough so that all valid UDF
682 	 * filesystems will be recognised. There is no mention of an upper
683 	 * bound to the size of the volume recognition area in the standard.
684 	 *  The limit will prevent the code to read all the sectors of a
685 	 * specially crafted image (like a bluray disc full of CD001 sectors),
686 	 * potentially causing minutes or even hours of uninterruptible I/O
687 	 * activity. This actually happened with uninitialised SSD partitions
688 	 * (all 0xFF) before the check for the limit and all valid IDs were
689 	 * added */
690 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
691 	     sector += sectorsize) {
692 		/* Read a block */
693 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694 		if (!bh)
695 			break;
696 
697 		/* Look for ISO  descriptors */
698 		vsd = (struct volStructDesc *)(bh->b_data +
699 					      (sector & (sb->s_blocksize - 1)));
700 
701 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
702 				    VSD_STD_ID_LEN)) {
703 			switch (vsd->structType) {
704 			case 0:
705 				udf_debug("ISO9660 Boot Record found\n");
706 				break;
707 			case 1:
708 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
709 				break;
710 			case 2:
711 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
712 				break;
713 			case 3:
714 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
715 				break;
716 			case 255:
717 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
718 				break;
719 			default:
720 				udf_debug("ISO9660 VRS (%u) found\n",
721 					  vsd->structType);
722 				break;
723 			}
724 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
725 				    VSD_STD_ID_LEN))
726 			; /* nothing */
727 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
728 				    VSD_STD_ID_LEN)) {
729 			brelse(bh);
730 			break;
731 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
732 				    VSD_STD_ID_LEN))
733 			nsr02 = sector;
734 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
735 				    VSD_STD_ID_LEN))
736 			nsr03 = sector;
737 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
738 				    VSD_STD_ID_LEN))
739 			; /* nothing */
740 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
741 				    VSD_STD_ID_LEN))
742 			; /* nothing */
743 		else {
744 			/* invalid id : end of volume recognition area */
745 			brelse(bh);
746 			break;
747 		}
748 		brelse(bh);
749 	}
750 
751 	if (nsr03)
752 		return nsr03;
753 	else if (nsr02)
754 		return nsr02;
755 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
756 			VSD_FIRST_SECTOR_OFFSET)
757 		return -1;
758 	else
759 		return 0;
760 }
761 
762 static int udf_find_fileset(struct super_block *sb,
763 			    struct kernel_lb_addr *fileset,
764 			    struct kernel_lb_addr *root)
765 {
766 	struct buffer_head *bh = NULL;
767 	long lastblock;
768 	uint16_t ident;
769 	struct udf_sb_info *sbi;
770 
771 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
772 	    fileset->partitionReferenceNum != 0xFFFF) {
773 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
774 
775 		if (!bh) {
776 			return 1;
777 		} else if (ident != TAG_IDENT_FSD) {
778 			brelse(bh);
779 			return 1;
780 		}
781 
782 	}
783 
784 	sbi = UDF_SB(sb);
785 	if (!bh) {
786 		/* Search backwards through the partitions */
787 		struct kernel_lb_addr newfileset;
788 
789 /* --> cvg: FIXME - is it reasonable? */
790 		return 1;
791 
792 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
793 		     (newfileset.partitionReferenceNum != 0xFFFF &&
794 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
795 		      fileset->partitionReferenceNum == 0xFFFF);
796 		     newfileset.partitionReferenceNum--) {
797 			lastblock = sbi->s_partmaps
798 					[newfileset.partitionReferenceNum]
799 						.s_partition_len;
800 			newfileset.logicalBlockNum = 0;
801 
802 			do {
803 				bh = udf_read_ptagged(sb, &newfileset, 0,
804 						      &ident);
805 				if (!bh) {
806 					newfileset.logicalBlockNum++;
807 					continue;
808 				}
809 
810 				switch (ident) {
811 				case TAG_IDENT_SBD:
812 				{
813 					struct spaceBitmapDesc *sp;
814 					sp = (struct spaceBitmapDesc *)
815 								bh->b_data;
816 					newfileset.logicalBlockNum += 1 +
817 						((le32_to_cpu(sp->numOfBytes) +
818 						  sizeof(struct spaceBitmapDesc)
819 						  - 1) >> sb->s_blocksize_bits);
820 					brelse(bh);
821 					break;
822 				}
823 				case TAG_IDENT_FSD:
824 					*fileset = newfileset;
825 					break;
826 				default:
827 					newfileset.logicalBlockNum++;
828 					brelse(bh);
829 					bh = NULL;
830 					break;
831 				}
832 			} while (newfileset.logicalBlockNum < lastblock &&
833 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
834 				 fileset->partitionReferenceNum == 0xFFFF);
835 		}
836 	}
837 
838 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
839 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
840 		udf_debug("Fileset at block=%u, partition=%u\n",
841 			  fileset->logicalBlockNum,
842 			  fileset->partitionReferenceNum);
843 
844 		sbi->s_partition = fileset->partitionReferenceNum;
845 		udf_load_fileset(sb, bh, root);
846 		brelse(bh);
847 		return 0;
848 	}
849 	return 1;
850 }
851 
852 /*
853  * Load primary Volume Descriptor Sequence
854  *
855  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856  * should be tried.
857  */
858 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859 {
860 	struct primaryVolDesc *pvoldesc;
861 	uint8_t *outstr;
862 	struct buffer_head *bh;
863 	uint16_t ident;
864 	int ret = -ENOMEM;
865 #ifdef UDFFS_DEBUG
866 	struct timestamp *ts;
867 #endif
868 
869 	outstr = kmalloc(128, GFP_NOFS);
870 	if (!outstr)
871 		return -ENOMEM;
872 
873 	bh = udf_read_tagged(sb, block, block, &ident);
874 	if (!bh) {
875 		ret = -EAGAIN;
876 		goto out2;
877 	}
878 
879 	if (ident != TAG_IDENT_PVD) {
880 		ret = -EIO;
881 		goto out_bh;
882 	}
883 
884 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
885 
886 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
887 			      pvoldesc->recordingDateAndTime);
888 #ifdef UDFFS_DEBUG
889 	ts = &pvoldesc->recordingDateAndTime;
890 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
891 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
892 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
893 #endif
894 
895 
896 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
897 	if (ret < 0)
898 		goto out_bh;
899 
900 	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
901 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
902 
903 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
904 	if (ret < 0)
905 		goto out_bh;
906 
907 	outstr[ret] = 0;
908 	udf_debug("volSetIdent[] = '%s'\n", outstr);
909 
910 	ret = 0;
911 out_bh:
912 	brelse(bh);
913 out2:
914 	kfree(outstr);
915 	return ret;
916 }
917 
918 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
919 					u32 meta_file_loc, u32 partition_ref)
920 {
921 	struct kernel_lb_addr addr;
922 	struct inode *metadata_fe;
923 
924 	addr.logicalBlockNum = meta_file_loc;
925 	addr.partitionReferenceNum = partition_ref;
926 
927 	metadata_fe = udf_iget_special(sb, &addr);
928 
929 	if (IS_ERR(metadata_fe)) {
930 		udf_warn(sb, "metadata inode efe not found\n");
931 		return metadata_fe;
932 	}
933 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
934 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
935 		iput(metadata_fe);
936 		return ERR_PTR(-EIO);
937 	}
938 
939 	return metadata_fe;
940 }
941 
942 static int udf_load_metadata_files(struct super_block *sb, int partition,
943 				   int type1_index)
944 {
945 	struct udf_sb_info *sbi = UDF_SB(sb);
946 	struct udf_part_map *map;
947 	struct udf_meta_data *mdata;
948 	struct kernel_lb_addr addr;
949 	struct inode *fe;
950 
951 	map = &sbi->s_partmaps[partition];
952 	mdata = &map->s_type_specific.s_metadata;
953 	mdata->s_phys_partition_ref = type1_index;
954 
955 	/* metadata address */
956 	udf_debug("Metadata file location: block = %u part = %u\n",
957 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
958 
959 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
960 					 mdata->s_phys_partition_ref);
961 	if (IS_ERR(fe)) {
962 		/* mirror file entry */
963 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
964 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
965 
966 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
967 						 mdata->s_phys_partition_ref);
968 
969 		if (IS_ERR(fe)) {
970 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
971 			return PTR_ERR(fe);
972 		}
973 		mdata->s_mirror_fe = fe;
974 	} else
975 		mdata->s_metadata_fe = fe;
976 
977 
978 	/*
979 	 * bitmap file entry
980 	 * Note:
981 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
982 	*/
983 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
984 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
985 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
986 
987 		udf_debug("Bitmap file location: block = %u part = %u\n",
988 			  addr.logicalBlockNum, addr.partitionReferenceNum);
989 
990 		fe = udf_iget_special(sb, &addr);
991 		if (IS_ERR(fe)) {
992 			if (sb_rdonly(sb))
993 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
994 			else {
995 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
996 				return PTR_ERR(fe);
997 			}
998 		} else
999 			mdata->s_bitmap_fe = fe;
1000 	}
1001 
1002 	udf_debug("udf_load_metadata_files Ok\n");
1003 	return 0;
1004 }
1005 
1006 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1007 			     struct kernel_lb_addr *root)
1008 {
1009 	struct fileSetDesc *fset;
1010 
1011 	fset = (struct fileSetDesc *)bh->b_data;
1012 
1013 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1014 
1015 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1016 
1017 	udf_debug("Rootdir at block=%u, partition=%u\n",
1018 		  root->logicalBlockNum, root->partitionReferenceNum);
1019 }
1020 
1021 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1022 {
1023 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1024 	return DIV_ROUND_UP(map->s_partition_len +
1025 			    (sizeof(struct spaceBitmapDesc) << 3),
1026 			    sb->s_blocksize * 8);
1027 }
1028 
1029 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1030 {
1031 	struct udf_bitmap *bitmap;
1032 	int nr_groups;
1033 	int size;
1034 
1035 	nr_groups = udf_compute_nr_groups(sb, index);
1036 	size = sizeof(struct udf_bitmap) +
1037 		(sizeof(struct buffer_head *) * nr_groups);
1038 
1039 	if (size <= PAGE_SIZE)
1040 		bitmap = kzalloc(size, GFP_KERNEL);
1041 	else
1042 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1043 
1044 	if (!bitmap)
1045 		return NULL;
1046 
1047 	bitmap->s_nr_groups = nr_groups;
1048 	return bitmap;
1049 }
1050 
1051 static int udf_fill_partdesc_info(struct super_block *sb,
1052 		struct partitionDesc *p, int p_index)
1053 {
1054 	struct udf_part_map *map;
1055 	struct udf_sb_info *sbi = UDF_SB(sb);
1056 	struct partitionHeaderDesc *phd;
1057 
1058 	map = &sbi->s_partmaps[p_index];
1059 
1060 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1061 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1062 
1063 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1064 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1065 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1066 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1067 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1068 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1069 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1070 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1071 
1072 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1073 		  p_index, map->s_partition_type,
1074 		  map->s_partition_root, map->s_partition_len);
1075 
1076 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1077 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1078 		return 0;
1079 
1080 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1081 	if (phd->unallocSpaceTable.extLength) {
1082 		struct kernel_lb_addr loc = {
1083 			.logicalBlockNum = le32_to_cpu(
1084 				phd->unallocSpaceTable.extPosition),
1085 			.partitionReferenceNum = p_index,
1086 		};
1087 		struct inode *inode;
1088 
1089 		inode = udf_iget_special(sb, &loc);
1090 		if (IS_ERR(inode)) {
1091 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1092 				  p_index);
1093 			return PTR_ERR(inode);
1094 		}
1095 		map->s_uspace.s_table = inode;
1096 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1097 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1098 			  p_index, map->s_uspace.s_table->i_ino);
1099 	}
1100 
1101 	if (phd->unallocSpaceBitmap.extLength) {
1102 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1103 		if (!bitmap)
1104 			return -ENOMEM;
1105 		map->s_uspace.s_bitmap = bitmap;
1106 		bitmap->s_extPosition = le32_to_cpu(
1107 				phd->unallocSpaceBitmap.extPosition);
1108 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1109 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1110 			  p_index, bitmap->s_extPosition);
1111 	}
1112 
1113 	if (phd->partitionIntegrityTable.extLength)
1114 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1115 
1116 	if (phd->freedSpaceTable.extLength) {
1117 		struct kernel_lb_addr loc = {
1118 			.logicalBlockNum = le32_to_cpu(
1119 				phd->freedSpaceTable.extPosition),
1120 			.partitionReferenceNum = p_index,
1121 		};
1122 		struct inode *inode;
1123 
1124 		inode = udf_iget_special(sb, &loc);
1125 		if (IS_ERR(inode)) {
1126 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1127 				  p_index);
1128 			return PTR_ERR(inode);
1129 		}
1130 		map->s_fspace.s_table = inode;
1131 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1132 		udf_debug("freedSpaceTable (part %d) @ %lu\n",
1133 			  p_index, map->s_fspace.s_table->i_ino);
1134 	}
1135 
1136 	if (phd->freedSpaceBitmap.extLength) {
1137 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138 		if (!bitmap)
1139 			return -ENOMEM;
1140 		map->s_fspace.s_bitmap = bitmap;
1141 		bitmap->s_extPosition = le32_to_cpu(
1142 				phd->freedSpaceBitmap.extPosition);
1143 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1144 		udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1145 			  p_index, bitmap->s_extPosition);
1146 	}
1147 	return 0;
1148 }
1149 
1150 static void udf_find_vat_block(struct super_block *sb, int p_index,
1151 			       int type1_index, sector_t start_block)
1152 {
1153 	struct udf_sb_info *sbi = UDF_SB(sb);
1154 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155 	sector_t vat_block;
1156 	struct kernel_lb_addr ino;
1157 	struct inode *inode;
1158 
1159 	/*
1160 	 * VAT file entry is in the last recorded block. Some broken disks have
1161 	 * it a few blocks before so try a bit harder...
1162 	 */
1163 	ino.partitionReferenceNum = type1_index;
1164 	for (vat_block = start_block;
1165 	     vat_block >= map->s_partition_root &&
1166 	     vat_block >= start_block - 3; vat_block--) {
1167 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1168 		inode = udf_iget_special(sb, &ino);
1169 		if (!IS_ERR(inode)) {
1170 			sbi->s_vat_inode = inode;
1171 			break;
1172 		}
1173 	}
1174 }
1175 
1176 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1177 {
1178 	struct udf_sb_info *sbi = UDF_SB(sb);
1179 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180 	struct buffer_head *bh = NULL;
1181 	struct udf_inode_info *vati;
1182 	uint32_t pos;
1183 	struct virtualAllocationTable20 *vat20;
1184 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1185 			  sb->s_blocksize_bits;
1186 
1187 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1188 	if (!sbi->s_vat_inode &&
1189 	    sbi->s_last_block != blocks - 1) {
1190 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1191 			  (unsigned long)sbi->s_last_block,
1192 			  (unsigned long)blocks - 1);
1193 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1194 	}
1195 	if (!sbi->s_vat_inode)
1196 		return -EIO;
1197 
1198 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1199 		map->s_type_specific.s_virtual.s_start_offset = 0;
1200 		map->s_type_specific.s_virtual.s_num_entries =
1201 			(sbi->s_vat_inode->i_size - 36) >> 2;
1202 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1203 		vati = UDF_I(sbi->s_vat_inode);
1204 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1205 			pos = udf_block_map(sbi->s_vat_inode, 0);
1206 			bh = sb_bread(sb, pos);
1207 			if (!bh)
1208 				return -EIO;
1209 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1210 		} else {
1211 			vat20 = (struct virtualAllocationTable20 *)
1212 							vati->i_ext.i_data;
1213 		}
1214 
1215 		map->s_type_specific.s_virtual.s_start_offset =
1216 			le16_to_cpu(vat20->lengthHeader);
1217 		map->s_type_specific.s_virtual.s_num_entries =
1218 			(sbi->s_vat_inode->i_size -
1219 				map->s_type_specific.s_virtual.
1220 					s_start_offset) >> 2;
1221 		brelse(bh);
1222 	}
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Load partition descriptor block
1228  *
1229  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1230  * sequence.
1231  */
1232 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1233 {
1234 	struct buffer_head *bh;
1235 	struct partitionDesc *p;
1236 	struct udf_part_map *map;
1237 	struct udf_sb_info *sbi = UDF_SB(sb);
1238 	int i, type1_idx;
1239 	uint16_t partitionNumber;
1240 	uint16_t ident;
1241 	int ret;
1242 
1243 	bh = udf_read_tagged(sb, block, block, &ident);
1244 	if (!bh)
1245 		return -EAGAIN;
1246 	if (ident != TAG_IDENT_PD) {
1247 		ret = 0;
1248 		goto out_bh;
1249 	}
1250 
1251 	p = (struct partitionDesc *)bh->b_data;
1252 	partitionNumber = le16_to_cpu(p->partitionNumber);
1253 
1254 	/* First scan for TYPE1 and SPARABLE partitions */
1255 	for (i = 0; i < sbi->s_partitions; i++) {
1256 		map = &sbi->s_partmaps[i];
1257 		udf_debug("Searching map: (%u == %u)\n",
1258 			  map->s_partition_num, partitionNumber);
1259 		if (map->s_partition_num == partitionNumber &&
1260 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1261 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1262 			break;
1263 	}
1264 
1265 	if (i >= sbi->s_partitions) {
1266 		udf_debug("Partition (%u) not found in partition map\n",
1267 			  partitionNumber);
1268 		ret = 0;
1269 		goto out_bh;
1270 	}
1271 
1272 	ret = udf_fill_partdesc_info(sb, p, i);
1273 	if (ret < 0)
1274 		goto out_bh;
1275 
1276 	/*
1277 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1278 	 * PHYSICAL partitions are already set up
1279 	 */
1280 	type1_idx = i;
1281 #ifdef UDFFS_DEBUG
1282 	map = NULL; /* supress 'maybe used uninitialized' warning */
1283 #endif
1284 	for (i = 0; i < sbi->s_partitions; i++) {
1285 		map = &sbi->s_partmaps[i];
1286 
1287 		if (map->s_partition_num == partitionNumber &&
1288 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1289 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1290 		     map->s_partition_type == UDF_METADATA_MAP25))
1291 			break;
1292 	}
1293 
1294 	if (i >= sbi->s_partitions) {
1295 		ret = 0;
1296 		goto out_bh;
1297 	}
1298 
1299 	ret = udf_fill_partdesc_info(sb, p, i);
1300 	if (ret < 0)
1301 		goto out_bh;
1302 
1303 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1304 		ret = udf_load_metadata_files(sb, i, type1_idx);
1305 		if (ret < 0) {
1306 			udf_err(sb, "error loading MetaData partition map %d\n",
1307 				i);
1308 			goto out_bh;
1309 		}
1310 	} else {
1311 		/*
1312 		 * If we have a partition with virtual map, we don't handle
1313 		 * writing to it (we overwrite blocks instead of relocating
1314 		 * them).
1315 		 */
1316 		if (!sb_rdonly(sb)) {
1317 			ret = -EACCES;
1318 			goto out_bh;
1319 		}
1320 		ret = udf_load_vat(sb, i, type1_idx);
1321 		if (ret < 0)
1322 			goto out_bh;
1323 	}
1324 	ret = 0;
1325 out_bh:
1326 	/* In case loading failed, we handle cleanup in udf_fill_super */
1327 	brelse(bh);
1328 	return ret;
1329 }
1330 
1331 static int udf_load_sparable_map(struct super_block *sb,
1332 				 struct udf_part_map *map,
1333 				 struct sparablePartitionMap *spm)
1334 {
1335 	uint32_t loc;
1336 	uint16_t ident;
1337 	struct sparingTable *st;
1338 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1339 	int i;
1340 	struct buffer_head *bh;
1341 
1342 	map->s_partition_type = UDF_SPARABLE_MAP15;
1343 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1344 	if (!is_power_of_2(sdata->s_packet_len)) {
1345 		udf_err(sb, "error loading logical volume descriptor: "
1346 			"Invalid packet length %u\n",
1347 			(unsigned)sdata->s_packet_len);
1348 		return -EIO;
1349 	}
1350 	if (spm->numSparingTables > 4) {
1351 		udf_err(sb, "error loading logical volume descriptor: "
1352 			"Too many sparing tables (%d)\n",
1353 			(int)spm->numSparingTables);
1354 		return -EIO;
1355 	}
1356 
1357 	for (i = 0; i < spm->numSparingTables; i++) {
1358 		loc = le32_to_cpu(spm->locSparingTable[i]);
1359 		bh = udf_read_tagged(sb, loc, loc, &ident);
1360 		if (!bh)
1361 			continue;
1362 
1363 		st = (struct sparingTable *)bh->b_data;
1364 		if (ident != 0 ||
1365 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366 			    strlen(UDF_ID_SPARING)) ||
1367 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368 							sb->s_blocksize) {
1369 			brelse(bh);
1370 			continue;
1371 		}
1372 
1373 		sdata->s_spar_map[i] = bh;
1374 	}
1375 	map->s_partition_func = udf_get_pblock_spar15;
1376 	return 0;
1377 }
1378 
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380 			       struct kernel_lb_addr *fileset)
1381 {
1382 	struct logicalVolDesc *lvd;
1383 	int i, offset;
1384 	uint8_t type;
1385 	struct udf_sb_info *sbi = UDF_SB(sb);
1386 	struct genericPartitionMap *gpm;
1387 	uint16_t ident;
1388 	struct buffer_head *bh;
1389 	unsigned int table_len;
1390 	int ret;
1391 
1392 	bh = udf_read_tagged(sb, block, block, &ident);
1393 	if (!bh)
1394 		return -EAGAIN;
1395 	BUG_ON(ident != TAG_IDENT_LVD);
1396 	lvd = (struct logicalVolDesc *)bh->b_data;
1397 	table_len = le32_to_cpu(lvd->mapTableLength);
1398 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399 		udf_err(sb, "error loading logical volume descriptor: "
1400 			"Partition table too long (%u > %lu)\n", table_len,
1401 			sb->s_blocksize - sizeof(*lvd));
1402 		ret = -EIO;
1403 		goto out_bh;
1404 	}
1405 
1406 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1407 	if (ret)
1408 		goto out_bh;
1409 
1410 	for (i = 0, offset = 0;
1411 	     i < sbi->s_partitions && offset < table_len;
1412 	     i++, offset += gpm->partitionMapLength) {
1413 		struct udf_part_map *map = &sbi->s_partmaps[i];
1414 		gpm = (struct genericPartitionMap *)
1415 				&(lvd->partitionMaps[offset]);
1416 		type = gpm->partitionMapType;
1417 		if (type == 1) {
1418 			struct genericPartitionMap1 *gpm1 =
1419 				(struct genericPartitionMap1 *)gpm;
1420 			map->s_partition_type = UDF_TYPE1_MAP15;
1421 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1422 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1423 			map->s_partition_func = NULL;
1424 		} else if (type == 2) {
1425 			struct udfPartitionMap2 *upm2 =
1426 						(struct udfPartitionMap2 *)gpm;
1427 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1428 						strlen(UDF_ID_VIRTUAL))) {
1429 				u16 suf =
1430 					le16_to_cpu(((__le16 *)upm2->partIdent.
1431 							identSuffix)[0]);
1432 				if (suf < 0x0200) {
1433 					map->s_partition_type =
1434 							UDF_VIRTUAL_MAP15;
1435 					map->s_partition_func =
1436 							udf_get_pblock_virt15;
1437 				} else {
1438 					map->s_partition_type =
1439 							UDF_VIRTUAL_MAP20;
1440 					map->s_partition_func =
1441 							udf_get_pblock_virt20;
1442 				}
1443 			} else if (!strncmp(upm2->partIdent.ident,
1444 						UDF_ID_SPARABLE,
1445 						strlen(UDF_ID_SPARABLE))) {
1446 				ret = udf_load_sparable_map(sb, map,
1447 					(struct sparablePartitionMap *)gpm);
1448 				if (ret < 0)
1449 					goto out_bh;
1450 			} else if (!strncmp(upm2->partIdent.ident,
1451 						UDF_ID_METADATA,
1452 						strlen(UDF_ID_METADATA))) {
1453 				struct udf_meta_data *mdata =
1454 					&map->s_type_specific.s_metadata;
1455 				struct metadataPartitionMap *mdm =
1456 						(struct metadataPartitionMap *)
1457 						&(lvd->partitionMaps[offset]);
1458 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1459 					  i, type, UDF_ID_METADATA);
1460 
1461 				map->s_partition_type = UDF_METADATA_MAP25;
1462 				map->s_partition_func = udf_get_pblock_meta25;
1463 
1464 				mdata->s_meta_file_loc   =
1465 					le32_to_cpu(mdm->metadataFileLoc);
1466 				mdata->s_mirror_file_loc =
1467 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1468 				mdata->s_bitmap_file_loc =
1469 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1470 				mdata->s_alloc_unit_size =
1471 					le32_to_cpu(mdm->allocUnitSize);
1472 				mdata->s_align_unit_size =
1473 					le16_to_cpu(mdm->alignUnitSize);
1474 				if (mdm->flags & 0x01)
1475 					mdata->s_flags |= MF_DUPLICATE_MD;
1476 
1477 				udf_debug("Metadata Ident suffix=0x%x\n",
1478 					  le16_to_cpu(*(__le16 *)
1479 						      mdm->partIdent.identSuffix));
1480 				udf_debug("Metadata part num=%u\n",
1481 					  le16_to_cpu(mdm->partitionNum));
1482 				udf_debug("Metadata part alloc unit size=%u\n",
1483 					  le32_to_cpu(mdm->allocUnitSize));
1484 				udf_debug("Metadata file loc=%u\n",
1485 					  le32_to_cpu(mdm->metadataFileLoc));
1486 				udf_debug("Mirror file loc=%u\n",
1487 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1488 				udf_debug("Bitmap file loc=%u\n",
1489 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1490 				udf_debug("Flags: %d %u\n",
1491 					  mdata->s_flags, mdm->flags);
1492 			} else {
1493 				udf_debug("Unknown ident: %s\n",
1494 					  upm2->partIdent.ident);
1495 				continue;
1496 			}
1497 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1498 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1499 		}
1500 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1501 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1502 	}
1503 
1504 	if (fileset) {
1505 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1506 
1507 		*fileset = lelb_to_cpu(la->extLocation);
1508 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1509 			  fileset->logicalBlockNum,
1510 			  fileset->partitionReferenceNum);
1511 	}
1512 	if (lvd->integritySeqExt.extLength)
1513 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1514 	ret = 0;
1515 out_bh:
1516 	brelse(bh);
1517 	return ret;
1518 }
1519 
1520 /*
1521  * Find the prevailing Logical Volume Integrity Descriptor.
1522  */
1523 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1524 {
1525 	struct buffer_head *bh, *final_bh;
1526 	uint16_t ident;
1527 	struct udf_sb_info *sbi = UDF_SB(sb);
1528 	struct logicalVolIntegrityDesc *lvid;
1529 	int indirections = 0;
1530 
1531 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1532 		final_bh = NULL;
1533 		while (loc.extLength > 0 &&
1534 			(bh = udf_read_tagged(sb, loc.extLocation,
1535 					loc.extLocation, &ident))) {
1536 			if (ident != TAG_IDENT_LVID) {
1537 				brelse(bh);
1538 				break;
1539 			}
1540 
1541 			brelse(final_bh);
1542 			final_bh = bh;
1543 
1544 			loc.extLength -= sb->s_blocksize;
1545 			loc.extLocation++;
1546 		}
1547 
1548 		if (!final_bh)
1549 			return;
1550 
1551 		brelse(sbi->s_lvid_bh);
1552 		sbi->s_lvid_bh = final_bh;
1553 
1554 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1555 		if (lvid->nextIntegrityExt.extLength == 0)
1556 			return;
1557 
1558 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1559 	}
1560 
1561 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1562 		UDF_MAX_LVID_NESTING);
1563 	brelse(sbi->s_lvid_bh);
1564 	sbi->s_lvid_bh = NULL;
1565 }
1566 
1567 /*
1568  * Step for reallocation of table of partition descriptor sequence numbers.
1569  * Must be power of 2.
1570  */
1571 #define PART_DESC_ALLOC_STEP 32
1572 
1573 struct desc_seq_scan_data {
1574 	struct udf_vds_record vds[VDS_POS_LENGTH];
1575 	unsigned int size_part_descs;
1576 	struct udf_vds_record *part_descs_loc;
1577 };
1578 
1579 static struct udf_vds_record *handle_partition_descriptor(
1580 				struct buffer_head *bh,
1581 				struct desc_seq_scan_data *data)
1582 {
1583 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1584 	int partnum;
1585 
1586 	partnum = le16_to_cpu(desc->partitionNumber);
1587 	if (partnum >= data->size_part_descs) {
1588 		struct udf_vds_record *new_loc;
1589 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1590 
1591 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1592 		if (!new_loc)
1593 			return ERR_PTR(-ENOMEM);
1594 		memcpy(new_loc, data->part_descs_loc,
1595 		       data->size_part_descs * sizeof(*new_loc));
1596 		kfree(data->part_descs_loc);
1597 		data->part_descs_loc = new_loc;
1598 		data->size_part_descs = new_size;
1599 	}
1600 	return &(data->part_descs_loc[partnum]);
1601 }
1602 
1603 
1604 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1605 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1606 {
1607 	switch (ident) {
1608 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1609 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1610 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1611 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1612 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1613 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1614 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1615 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1616 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1617 		return handle_partition_descriptor(bh, data);
1618 	}
1619 	return NULL;
1620 }
1621 
1622 /*
1623  * Process a main/reserve volume descriptor sequence.
1624  *   @block		First block of first extent of the sequence.
1625  *   @lastblock		Lastblock of first extent of the sequence.
1626  *   @fileset		There we store extent containing root fileset
1627  *
1628  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1629  * sequence
1630  */
1631 static noinline int udf_process_sequence(
1632 		struct super_block *sb,
1633 		sector_t block, sector_t lastblock,
1634 		struct kernel_lb_addr *fileset)
1635 {
1636 	struct buffer_head *bh = NULL;
1637 	struct udf_vds_record *curr;
1638 	struct generic_desc *gd;
1639 	struct volDescPtr *vdp;
1640 	bool done = false;
1641 	uint32_t vdsn;
1642 	uint16_t ident;
1643 	int ret;
1644 	unsigned int indirections = 0;
1645 	struct desc_seq_scan_data data;
1646 	unsigned int i;
1647 
1648 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1649 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1650 	data.part_descs_loc = kcalloc(data.size_part_descs,
1651 				      sizeof(*data.part_descs_loc),
1652 				      GFP_KERNEL);
1653 	if (!data.part_descs_loc)
1654 		return -ENOMEM;
1655 
1656 	/*
1657 	 * Read the main descriptor sequence and find which descriptors
1658 	 * are in it.
1659 	 */
1660 	for (; (!done && block <= lastblock); block++) {
1661 
1662 		bh = udf_read_tagged(sb, block, block, &ident);
1663 		if (!bh)
1664 			break;
1665 
1666 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1667 		gd = (struct generic_desc *)bh->b_data;
1668 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1669 		switch (ident) {
1670 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1671 			if (++indirections > UDF_MAX_TD_NESTING) {
1672 				udf_err(sb, "too many Volume Descriptor "
1673 					"Pointers (max %u supported)\n",
1674 					UDF_MAX_TD_NESTING);
1675 				brelse(bh);
1676 				return -EIO;
1677 			}
1678 
1679 			vdp = (struct volDescPtr *)bh->b_data;
1680 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1681 			lastblock = le32_to_cpu(
1682 				vdp->nextVolDescSeqExt.extLength) >>
1683 				sb->s_blocksize_bits;
1684 			lastblock += block - 1;
1685 			/* For loop is going to increment 'block' again */
1686 			block--;
1687 			break;
1688 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1689 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1690 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1691 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1692 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1693 			curr = get_volume_descriptor_record(ident, bh, &data);
1694 			if (IS_ERR(curr)) {
1695 				brelse(bh);
1696 				return PTR_ERR(curr);
1697 			}
1698 			/* Descriptor we don't care about? */
1699 			if (!curr)
1700 				break;
1701 			if (vdsn >= curr->volDescSeqNum) {
1702 				curr->volDescSeqNum = vdsn;
1703 				curr->block = block;
1704 			}
1705 			break;
1706 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1707 			done = true;
1708 			break;
1709 		}
1710 		brelse(bh);
1711 	}
1712 	/*
1713 	 * Now read interesting descriptors again and process them
1714 	 * in a suitable order
1715 	 */
1716 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1718 		return -EAGAIN;
1719 	}
1720 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721 	if (ret < 0)
1722 		return ret;
1723 
1724 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725 		ret = udf_load_logicalvol(sb,
1726 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727 				fileset);
1728 		if (ret < 0)
1729 			return ret;
1730 	}
1731 
1732 	/* Now handle prevailing Partition Descriptors */
1733 	for (i = 0; i < data.size_part_descs; i++) {
1734 		if (data.part_descs_loc[i].block) {
1735 			ret = udf_load_partdesc(sb,
1736 						data.part_descs_loc[i].block);
1737 			if (ret < 0)
1738 				return ret;
1739 		}
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Load Volume Descriptor Sequence described by anchor in bh
1747  *
1748  * Returns <0 on error, 0 on success
1749  */
1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1751 			     struct kernel_lb_addr *fileset)
1752 {
1753 	struct anchorVolDescPtr *anchor;
1754 	sector_t main_s, main_e, reserve_s, reserve_e;
1755 	int ret;
1756 
1757 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1758 
1759 	/* Locate the main sequence */
1760 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1761 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1762 	main_e = main_e >> sb->s_blocksize_bits;
1763 	main_e += main_s - 1;
1764 
1765 	/* Locate the reserve sequence */
1766 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1767 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1768 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1769 	reserve_e += reserve_s - 1;
1770 
1771 	/* Process the main & reserve sequences */
1772 	/* responsible for finding the PartitionDesc(s) */
1773 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1774 	if (ret != -EAGAIN)
1775 		return ret;
1776 	udf_sb_free_partitions(sb);
1777 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1778 	if (ret < 0) {
1779 		udf_sb_free_partitions(sb);
1780 		/* No sequence was OK, return -EIO */
1781 		if (ret == -EAGAIN)
1782 			ret = -EIO;
1783 	}
1784 	return ret;
1785 }
1786 
1787 /*
1788  * Check whether there is an anchor block in the given block and
1789  * load Volume Descriptor Sequence if so.
1790  *
1791  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1792  * block
1793  */
1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1795 				  struct kernel_lb_addr *fileset)
1796 {
1797 	struct buffer_head *bh;
1798 	uint16_t ident;
1799 	int ret;
1800 
1801 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1802 	    udf_fixed_to_variable(block) >=
1803 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1804 		return -EAGAIN;
1805 
1806 	bh = udf_read_tagged(sb, block, block, &ident);
1807 	if (!bh)
1808 		return -EAGAIN;
1809 	if (ident != TAG_IDENT_AVDP) {
1810 		brelse(bh);
1811 		return -EAGAIN;
1812 	}
1813 	ret = udf_load_sequence(sb, bh, fileset);
1814 	brelse(bh);
1815 	return ret;
1816 }
1817 
1818 /*
1819  * Search for an anchor volume descriptor pointer.
1820  *
1821  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1822  * of anchors.
1823  */
1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1825 			    struct kernel_lb_addr *fileset)
1826 {
1827 	sector_t last[6];
1828 	int i;
1829 	struct udf_sb_info *sbi = UDF_SB(sb);
1830 	int last_count = 0;
1831 	int ret;
1832 
1833 	/* First try user provided anchor */
1834 	if (sbi->s_anchor) {
1835 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1836 		if (ret != -EAGAIN)
1837 			return ret;
1838 	}
1839 	/*
1840 	 * according to spec, anchor is in either:
1841 	 *     block 256
1842 	 *     lastblock-256
1843 	 *     lastblock
1844 	 *  however, if the disc isn't closed, it could be 512.
1845 	 */
1846 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1847 	if (ret != -EAGAIN)
1848 		return ret;
1849 	/*
1850 	 * The trouble is which block is the last one. Drives often misreport
1851 	 * this so we try various possibilities.
1852 	 */
1853 	last[last_count++] = *lastblock;
1854 	if (*lastblock >= 1)
1855 		last[last_count++] = *lastblock - 1;
1856 	last[last_count++] = *lastblock + 1;
1857 	if (*lastblock >= 2)
1858 		last[last_count++] = *lastblock - 2;
1859 	if (*lastblock >= 150)
1860 		last[last_count++] = *lastblock - 150;
1861 	if (*lastblock >= 152)
1862 		last[last_count++] = *lastblock - 152;
1863 
1864 	for (i = 0; i < last_count; i++) {
1865 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1866 				sb->s_blocksize_bits)
1867 			continue;
1868 		ret = udf_check_anchor_block(sb, last[i], fileset);
1869 		if (ret != -EAGAIN) {
1870 			if (!ret)
1871 				*lastblock = last[i];
1872 			return ret;
1873 		}
1874 		if (last[i] < 256)
1875 			continue;
1876 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1877 		if (ret != -EAGAIN) {
1878 			if (!ret)
1879 				*lastblock = last[i];
1880 			return ret;
1881 		}
1882 	}
1883 
1884 	/* Finally try block 512 in case media is open */
1885 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1886 }
1887 
1888 /*
1889  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1890  * area specified by it. The function expects sbi->s_lastblock to be the last
1891  * block on the media.
1892  *
1893  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1894  * was not found.
1895  */
1896 static int udf_find_anchor(struct super_block *sb,
1897 			   struct kernel_lb_addr *fileset)
1898 {
1899 	struct udf_sb_info *sbi = UDF_SB(sb);
1900 	sector_t lastblock = sbi->s_last_block;
1901 	int ret;
1902 
1903 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1904 	if (ret != -EAGAIN)
1905 		goto out;
1906 
1907 	/* No anchor found? Try VARCONV conversion of block numbers */
1908 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1909 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1910 	/* Firstly, we try to not convert number of the last block */
1911 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1912 	if (ret != -EAGAIN)
1913 		goto out;
1914 
1915 	lastblock = sbi->s_last_block;
1916 	/* Secondly, we try with converted number of the last block */
1917 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 	if (ret < 0) {
1919 		/* VARCONV didn't help. Clear it. */
1920 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1921 	}
1922 out:
1923 	if (ret == 0)
1924 		sbi->s_last_block = lastblock;
1925 	return ret;
1926 }
1927 
1928 /*
1929  * Check Volume Structure Descriptor, find Anchor block and load Volume
1930  * Descriptor Sequence.
1931  *
1932  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1933  * block was not found.
1934  */
1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1936 			int silent, struct kernel_lb_addr *fileset)
1937 {
1938 	struct udf_sb_info *sbi = UDF_SB(sb);
1939 	loff_t nsr_off;
1940 	int ret;
1941 
1942 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1943 		if (!silent)
1944 			udf_warn(sb, "Bad block size\n");
1945 		return -EINVAL;
1946 	}
1947 	sbi->s_last_block = uopt->lastblock;
1948 	if (!uopt->novrs) {
1949 		/* Check that it is NSR02 compliant */
1950 		nsr_off = udf_check_vsd(sb);
1951 		if (!nsr_off) {
1952 			if (!silent)
1953 				udf_warn(sb, "No VRS found\n");
1954 			return -EINVAL;
1955 		}
1956 		if (nsr_off == -1)
1957 			udf_debug("Failed to read sector at offset %d. "
1958 				  "Assuming open disc. Skipping validity "
1959 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1960 		if (!sbi->s_last_block)
1961 			sbi->s_last_block = udf_get_last_block(sb);
1962 	} else {
1963 		udf_debug("Validity check skipped because of novrs option\n");
1964 	}
1965 
1966 	/* Look for anchor block and load Volume Descriptor Sequence */
1967 	sbi->s_anchor = uopt->anchor;
1968 	ret = udf_find_anchor(sb, fileset);
1969 	if (ret < 0) {
1970 		if (!silent && ret == -EAGAIN)
1971 			udf_warn(sb, "No anchor found\n");
1972 		return ret;
1973 	}
1974 	return 0;
1975 }
1976 
1977 static void udf_open_lvid(struct super_block *sb)
1978 {
1979 	struct udf_sb_info *sbi = UDF_SB(sb);
1980 	struct buffer_head *bh = sbi->s_lvid_bh;
1981 	struct logicalVolIntegrityDesc *lvid;
1982 	struct logicalVolIntegrityDescImpUse *lvidiu;
1983 	struct timespec ts;
1984 
1985 	if (!bh)
1986 		return;
1987 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1988 	lvidiu = udf_sb_lvidiu(sb);
1989 	if (!lvidiu)
1990 		return;
1991 
1992 	mutex_lock(&sbi->s_alloc_mutex);
1993 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1994 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1995 	ktime_get_real_ts(&ts);
1996 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1997 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1998 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1999 	else
2000 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2001 
2002 	lvid->descTag.descCRC = cpu_to_le16(
2003 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2004 			le16_to_cpu(lvid->descTag.descCRCLength)));
2005 
2006 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2007 	mark_buffer_dirty(bh);
2008 	sbi->s_lvid_dirty = 0;
2009 	mutex_unlock(&sbi->s_alloc_mutex);
2010 	/* Make opening of filesystem visible on the media immediately */
2011 	sync_dirty_buffer(bh);
2012 }
2013 
2014 static void udf_close_lvid(struct super_block *sb)
2015 {
2016 	struct udf_sb_info *sbi = UDF_SB(sb);
2017 	struct buffer_head *bh = sbi->s_lvid_bh;
2018 	struct logicalVolIntegrityDesc *lvid;
2019 	struct logicalVolIntegrityDescImpUse *lvidiu;
2020 	struct timespec ts;
2021 
2022 	if (!bh)
2023 		return;
2024 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2025 	lvidiu = udf_sb_lvidiu(sb);
2026 	if (!lvidiu)
2027 		return;
2028 
2029 	mutex_lock(&sbi->s_alloc_mutex);
2030 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2031 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2032 	ktime_get_real_ts(&ts);
2033 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2034 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2041 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2042 
2043 	lvid->descTag.descCRC = cpu_to_le16(
2044 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2045 				le16_to_cpu(lvid->descTag.descCRCLength)));
2046 
2047 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2048 	/*
2049 	 * We set buffer uptodate unconditionally here to avoid spurious
2050 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2051 	 * the buffer as !uptodate
2052 	 */
2053 	set_buffer_uptodate(bh);
2054 	mark_buffer_dirty(bh);
2055 	sbi->s_lvid_dirty = 0;
2056 	mutex_unlock(&sbi->s_alloc_mutex);
2057 	/* Make closing of filesystem visible on the media immediately */
2058 	sync_dirty_buffer(bh);
2059 }
2060 
2061 u64 lvid_get_unique_id(struct super_block *sb)
2062 {
2063 	struct buffer_head *bh;
2064 	struct udf_sb_info *sbi = UDF_SB(sb);
2065 	struct logicalVolIntegrityDesc *lvid;
2066 	struct logicalVolHeaderDesc *lvhd;
2067 	u64 uniqueID;
2068 	u64 ret;
2069 
2070 	bh = sbi->s_lvid_bh;
2071 	if (!bh)
2072 		return 0;
2073 
2074 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2075 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2076 
2077 	mutex_lock(&sbi->s_alloc_mutex);
2078 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2079 	if (!(++uniqueID & 0xFFFFFFFF))
2080 		uniqueID += 16;
2081 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2082 	mutex_unlock(&sbi->s_alloc_mutex);
2083 	mark_buffer_dirty(bh);
2084 
2085 	return ret;
2086 }
2087 
2088 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2089 {
2090 	int ret = -EINVAL;
2091 	struct inode *inode = NULL;
2092 	struct udf_options uopt;
2093 	struct kernel_lb_addr rootdir, fileset;
2094 	struct udf_sb_info *sbi;
2095 	bool lvid_open = false;
2096 
2097 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2098 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2099 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2100 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2101 	uopt.umask = 0;
2102 	uopt.fmode = UDF_INVALID_MODE;
2103 	uopt.dmode = UDF_INVALID_MODE;
2104 	uopt.nls_map = NULL;
2105 
2106 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2107 	if (!sbi)
2108 		return -ENOMEM;
2109 
2110 	sb->s_fs_info = sbi;
2111 
2112 	mutex_init(&sbi->s_alloc_mutex);
2113 
2114 	if (!udf_parse_options((char *)options, &uopt, false))
2115 		goto parse_options_failure;
2116 
2117 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2118 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2119 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2120 		goto parse_options_failure;
2121 	}
2122 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2123 		uopt.nls_map = load_nls_default();
2124 		if (!uopt.nls_map)
2125 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2126 		else
2127 			udf_debug("Using default NLS map\n");
2128 	}
2129 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2131 
2132 	fileset.logicalBlockNum = 0xFFFFFFFF;
2133 	fileset.partitionReferenceNum = 0xFFFF;
2134 
2135 	sbi->s_flags = uopt.flags;
2136 	sbi->s_uid = uopt.uid;
2137 	sbi->s_gid = uopt.gid;
2138 	sbi->s_umask = uopt.umask;
2139 	sbi->s_fmode = uopt.fmode;
2140 	sbi->s_dmode = uopt.dmode;
2141 	sbi->s_nls_map = uopt.nls_map;
2142 	rwlock_init(&sbi->s_cred_lock);
2143 
2144 	if (uopt.session == 0xFFFFFFFF)
2145 		sbi->s_session = udf_get_last_session(sb);
2146 	else
2147 		sbi->s_session = uopt.session;
2148 
2149 	udf_debug("Multi-session=%d\n", sbi->s_session);
2150 
2151 	/* Fill in the rest of the superblock */
2152 	sb->s_op = &udf_sb_ops;
2153 	sb->s_export_op = &udf_export_ops;
2154 
2155 	sb->s_magic = UDF_SUPER_MAGIC;
2156 	sb->s_time_gran = 1000;
2157 
2158 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 	} else {
2161 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162 		while (uopt.blocksize <= 4096) {
2163 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 			if (ret < 0) {
2165 				if (!silent && ret != -EACCES) {
2166 					pr_notice("Scanning with blocksize %u failed\n",
2167 						  uopt.blocksize);
2168 				}
2169 				brelse(sbi->s_lvid_bh);
2170 				sbi->s_lvid_bh = NULL;
2171 				/*
2172 				 * EACCES is special - we want to propagate to
2173 				 * upper layers that we cannot handle RW mount.
2174 				 */
2175 				if (ret == -EACCES)
2176 					break;
2177 			} else
2178 				break;
2179 
2180 			uopt.blocksize <<= 1;
2181 		}
2182 	}
2183 	if (ret < 0) {
2184 		if (ret == -EAGAIN) {
2185 			udf_warn(sb, "No partition found (1)\n");
2186 			ret = -EINVAL;
2187 		}
2188 		goto error_out;
2189 	}
2190 
2191 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2192 
2193 	if (sbi->s_lvid_bh) {
2194 		struct logicalVolIntegrityDescImpUse *lvidiu =
2195 							udf_sb_lvidiu(sb);
2196 		uint16_t minUDFReadRev;
2197 		uint16_t minUDFWriteRev;
2198 
2199 		if (!lvidiu) {
2200 			ret = -EINVAL;
2201 			goto error_out;
2202 		}
2203 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207 				minUDFReadRev,
2208 				UDF_MAX_READ_VERSION);
2209 			ret = -EINVAL;
2210 			goto error_out;
2211 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212 			   !sb_rdonly(sb)) {
2213 			ret = -EACCES;
2214 			goto error_out;
2215 		}
2216 
2217 		sbi->s_udfrev = minUDFWriteRev;
2218 
2219 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223 	}
2224 
2225 	if (!sbi->s_partitions) {
2226 		udf_warn(sb, "No partition found (2)\n");
2227 		ret = -EINVAL;
2228 		goto error_out;
2229 	}
2230 
2231 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232 			UDF_PART_FLAG_READ_ONLY &&
2233 	    !sb_rdonly(sb)) {
2234 		ret = -EACCES;
2235 		goto error_out;
2236 	}
2237 
2238 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239 		udf_warn(sb, "No fileset found\n");
2240 		ret = -EINVAL;
2241 		goto error_out;
2242 	}
2243 
2244 	if (!silent) {
2245 		struct timestamp ts;
2246 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248 			 sbi->s_volume_ident,
2249 			 le16_to_cpu(ts.year), ts.month, ts.day,
2250 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251 	}
2252 	if (!sb_rdonly(sb)) {
2253 		udf_open_lvid(sb);
2254 		lvid_open = true;
2255 	}
2256 
2257 	/* Assign the root inode */
2258 	/* assign inodes by physical block number */
2259 	/* perhaps it's not extensible enough, but for now ... */
2260 	inode = udf_iget(sb, &rootdir);
2261 	if (IS_ERR(inode)) {
2262 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2263 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264 		ret = PTR_ERR(inode);
2265 		goto error_out;
2266 	}
2267 
2268 	/* Allocate a dentry for the root inode */
2269 	sb->s_root = d_make_root(inode);
2270 	if (!sb->s_root) {
2271 		udf_err(sb, "Couldn't allocate root dentry\n");
2272 		ret = -ENOMEM;
2273 		goto error_out;
2274 	}
2275 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2276 	sb->s_max_links = UDF_MAX_LINKS;
2277 	return 0;
2278 
2279 error_out:
2280 	iput(sbi->s_vat_inode);
2281 parse_options_failure:
2282 	if (uopt.nls_map)
2283 		unload_nls(uopt.nls_map);
2284 	if (lvid_open)
2285 		udf_close_lvid(sb);
2286 	brelse(sbi->s_lvid_bh);
2287 	udf_sb_free_partitions(sb);
2288 	kfree(sbi);
2289 	sb->s_fs_info = NULL;
2290 
2291 	return ret;
2292 }
2293 
2294 void _udf_err(struct super_block *sb, const char *function,
2295 	      const char *fmt, ...)
2296 {
2297 	struct va_format vaf;
2298 	va_list args;
2299 
2300 	va_start(args, fmt);
2301 
2302 	vaf.fmt = fmt;
2303 	vaf.va = &args;
2304 
2305 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2306 
2307 	va_end(args);
2308 }
2309 
2310 void _udf_warn(struct super_block *sb, const char *function,
2311 	       const char *fmt, ...)
2312 {
2313 	struct va_format vaf;
2314 	va_list args;
2315 
2316 	va_start(args, fmt);
2317 
2318 	vaf.fmt = fmt;
2319 	vaf.va = &args;
2320 
2321 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2322 
2323 	va_end(args);
2324 }
2325 
2326 static void udf_put_super(struct super_block *sb)
2327 {
2328 	struct udf_sb_info *sbi;
2329 
2330 	sbi = UDF_SB(sb);
2331 
2332 	iput(sbi->s_vat_inode);
2333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2334 		unload_nls(sbi->s_nls_map);
2335 	if (!sb_rdonly(sb))
2336 		udf_close_lvid(sb);
2337 	brelse(sbi->s_lvid_bh);
2338 	udf_sb_free_partitions(sb);
2339 	mutex_destroy(&sbi->s_alloc_mutex);
2340 	kfree(sb->s_fs_info);
2341 	sb->s_fs_info = NULL;
2342 }
2343 
2344 static int udf_sync_fs(struct super_block *sb, int wait)
2345 {
2346 	struct udf_sb_info *sbi = UDF_SB(sb);
2347 
2348 	mutex_lock(&sbi->s_alloc_mutex);
2349 	if (sbi->s_lvid_dirty) {
2350 		/*
2351 		 * Blockdevice will be synced later so we don't have to submit
2352 		 * the buffer for IO
2353 		 */
2354 		mark_buffer_dirty(sbi->s_lvid_bh);
2355 		sbi->s_lvid_dirty = 0;
2356 	}
2357 	mutex_unlock(&sbi->s_alloc_mutex);
2358 
2359 	return 0;
2360 }
2361 
2362 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2363 {
2364 	struct super_block *sb = dentry->d_sb;
2365 	struct udf_sb_info *sbi = UDF_SB(sb);
2366 	struct logicalVolIntegrityDescImpUse *lvidiu;
2367 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2368 
2369 	lvidiu = udf_sb_lvidiu(sb);
2370 	buf->f_type = UDF_SUPER_MAGIC;
2371 	buf->f_bsize = sb->s_blocksize;
2372 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2373 	buf->f_bfree = udf_count_free(sb);
2374 	buf->f_bavail = buf->f_bfree;
2375 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2377 			+ buf->f_bfree;
2378 	buf->f_ffree = buf->f_bfree;
2379 	buf->f_namelen = UDF_NAME_LEN;
2380 	buf->f_fsid.val[0] = (u32)id;
2381 	buf->f_fsid.val[1] = (u32)(id >> 32);
2382 
2383 	return 0;
2384 }
2385 
2386 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2387 					  struct udf_bitmap *bitmap)
2388 {
2389 	struct buffer_head *bh = NULL;
2390 	unsigned int accum = 0;
2391 	int index;
2392 	udf_pblk_t block = 0, newblock;
2393 	struct kernel_lb_addr loc;
2394 	uint32_t bytes;
2395 	uint8_t *ptr;
2396 	uint16_t ident;
2397 	struct spaceBitmapDesc *bm;
2398 
2399 	loc.logicalBlockNum = bitmap->s_extPosition;
2400 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2401 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2402 
2403 	if (!bh) {
2404 		udf_err(sb, "udf_count_free failed\n");
2405 		goto out;
2406 	} else if (ident != TAG_IDENT_SBD) {
2407 		brelse(bh);
2408 		udf_err(sb, "udf_count_free failed\n");
2409 		goto out;
2410 	}
2411 
2412 	bm = (struct spaceBitmapDesc *)bh->b_data;
2413 	bytes = le32_to_cpu(bm->numOfBytes);
2414 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2415 	ptr = (uint8_t *)bh->b_data;
2416 
2417 	while (bytes > 0) {
2418 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2419 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2420 					cur_bytes * 8);
2421 		bytes -= cur_bytes;
2422 		if (bytes) {
2423 			brelse(bh);
2424 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2425 			bh = udf_tread(sb, newblock);
2426 			if (!bh) {
2427 				udf_debug("read failed\n");
2428 				goto out;
2429 			}
2430 			index = 0;
2431 			ptr = (uint8_t *)bh->b_data;
2432 		}
2433 	}
2434 	brelse(bh);
2435 out:
2436 	return accum;
2437 }
2438 
2439 static unsigned int udf_count_free_table(struct super_block *sb,
2440 					 struct inode *table)
2441 {
2442 	unsigned int accum = 0;
2443 	uint32_t elen;
2444 	struct kernel_lb_addr eloc;
2445 	int8_t etype;
2446 	struct extent_position epos;
2447 
2448 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2449 	epos.block = UDF_I(table)->i_location;
2450 	epos.offset = sizeof(struct unallocSpaceEntry);
2451 	epos.bh = NULL;
2452 
2453 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2454 		accum += (elen >> table->i_sb->s_blocksize_bits);
2455 
2456 	brelse(epos.bh);
2457 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2458 
2459 	return accum;
2460 }
2461 
2462 static unsigned int udf_count_free(struct super_block *sb)
2463 {
2464 	unsigned int accum = 0;
2465 	struct udf_sb_info *sbi;
2466 	struct udf_part_map *map;
2467 
2468 	sbi = UDF_SB(sb);
2469 	if (sbi->s_lvid_bh) {
2470 		struct logicalVolIntegrityDesc *lvid =
2471 			(struct logicalVolIntegrityDesc *)
2472 			sbi->s_lvid_bh->b_data;
2473 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2474 			accum = le32_to_cpu(
2475 					lvid->freeSpaceTable[sbi->s_partition]);
2476 			if (accum == 0xFFFFFFFF)
2477 				accum = 0;
2478 		}
2479 	}
2480 
2481 	if (accum)
2482 		return accum;
2483 
2484 	map = &sbi->s_partmaps[sbi->s_partition];
2485 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2486 		accum += udf_count_free_bitmap(sb,
2487 					       map->s_uspace.s_bitmap);
2488 	}
2489 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2490 		accum += udf_count_free_bitmap(sb,
2491 					       map->s_fspace.s_bitmap);
2492 	}
2493 	if (accum)
2494 		return accum;
2495 
2496 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2497 		accum += udf_count_free_table(sb,
2498 					      map->s_uspace.s_table);
2499 	}
2500 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2501 		accum += udf_count_free_table(sb,
2502 					      map->s_fspace.s_table);
2503 	}
2504 
2505 	return accum;
2506 }
2507 
2508 MODULE_AUTHOR("Ben Fennema");
2509 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2510 MODULE_LICENSE("GPL");
2511 module_init(init_udf_fs)
2512 module_exit(exit_udf_fs)
2513