xref: /linux/fs/udf/super.c (revision 7255fcc80d4b525cc10cfaaf7f485830d4ed2000)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * super.c
4  *
5  * PURPOSE
6  *  Super block routines for the OSTA-UDF(tm) filesystem.
7  *
8  * DESCRIPTION
9  *  OSTA-UDF(tm) = Optical Storage Technology Association
10  *  Universal Disk Format.
11  *
12  *  This code is based on version 2.00 of the UDF specification,
13  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14  *    http://www.osta.org/
15  *    https://www.ecma.ch/
16  *    https://www.iso.org/
17  *
18  * COPYRIGHT
19  *  (C) 1998 Dave Boynton
20  *  (C) 1998-2004 Ben Fennema
21  *  (C) 2000 Stelias Computing Inc
22  *
23  * HISTORY
24  *
25  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
26  *                added some debugging.
27  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
28  *  10/16/98      attempting some multi-session support
29  *  10/17/98      added freespace count for "df"
30  *  11/11/98 gr   added novrs option
31  *  11/26/98 dgb  added fileset,anchor mount options
32  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
33  *                vol descs. rewrote option handling based on isofs
34  *  12/20/98      find the free space bitmap (if it exists)
35  */
36 
37 #include "udfdecl.h"
38 
39 #include <linux/blkdev.h>
40 #include <linux/slab.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/stat.h>
44 #include <linux/cdrom.h>
45 #include <linux/nls.h>
46 #include <linux/vfs.h>
47 #include <linux/vmalloc.h>
48 #include <linux/errno.h>
49 #include <linux/seq_file.h>
50 #include <linux/bitmap.h>
51 #include <linux/crc-itu-t.h>
52 #include <linux/log2.h>
53 #include <asm/byteorder.h>
54 #include <linux/iversion.h>
55 #include <linux/fs_context.h>
56 #include <linux/fs_parser.h>
57 
58 #include "udf_sb.h"
59 #include "udf_i.h"
60 
61 #include <linux/init.h>
62 #include <linux/uaccess.h>
63 
64 enum {
65 	VDS_POS_PRIMARY_VOL_DESC,
66 	VDS_POS_UNALLOC_SPACE_DESC,
67 	VDS_POS_LOGICAL_VOL_DESC,
68 	VDS_POS_IMP_USE_VOL_DESC,
69 	VDS_POS_LENGTH
70 };
71 
72 #define VSD_FIRST_SECTOR_OFFSET		32768
73 #define VSD_MAX_SECTOR_OFFSET		0x800000
74 
75 /*
76  * Maximum number of Terminating Descriptor / Logical Volume Integrity
77  * Descriptor redirections. The chosen numbers are arbitrary - just that we
78  * hopefully don't limit any real use of rewritten inode on write-once media
79  * but avoid looping for too long on corrupted media.
80  */
81 #define UDF_MAX_TD_NESTING 64
82 #define UDF_MAX_LVID_NESTING 1000
83 
84 enum { UDF_MAX_LINKS = 0xffff };
85 /*
86  * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87  * more but because the file space is described by a linked list of extents,
88  * each of which can have at most 1GB, the creation and handling of extents
89  * gets unusably slow beyond certain point...
90  */
91 #define UDF_MAX_FILESIZE (1ULL << 42)
92 
93 /* These are the "meat" - everything else is stuffing */
94 static int udf_fill_super(struct super_block *sb, struct fs_context *fc);
95 static void udf_put_super(struct super_block *);
96 static int udf_sync_fs(struct super_block *, int);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static void udf_open_lvid(struct super_block *);
99 static void udf_close_lvid(struct super_block *);
100 static unsigned int udf_count_free(struct super_block *);
101 static int udf_statfs(struct dentry *, struct kstatfs *);
102 static int udf_show_options(struct seq_file *, struct dentry *);
103 static int udf_init_fs_context(struct fs_context *fc);
104 static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param);
105 static int udf_reconfigure(struct fs_context *fc);
106 static void udf_free_fc(struct fs_context *fc);
107 static const struct fs_parameter_spec udf_param_spec[];
108 
109 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110 {
111 	struct logicalVolIntegrityDesc *lvid;
112 	unsigned int partnum;
113 	unsigned int offset;
114 
115 	if (!UDF_SB(sb)->s_lvid_bh)
116 		return NULL;
117 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118 	partnum = le32_to_cpu(lvid->numOfPartitions);
119 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
120 	offset = partnum * 2 * sizeof(uint32_t);
121 	return (struct logicalVolIntegrityDescImpUse *)
122 					(((uint8_t *)(lvid + 1)) + offset);
123 }
124 
125 /* UDF filesystem type */
126 static int udf_get_tree(struct fs_context *fc)
127 {
128 	return get_tree_bdev(fc, udf_fill_super);
129 }
130 
131 static const struct fs_context_operations udf_context_ops = {
132 	.parse_param	= udf_parse_param,
133 	.get_tree	= udf_get_tree,
134 	.reconfigure	= udf_reconfigure,
135 	.free		= udf_free_fc,
136 };
137 
138 static struct file_system_type udf_fstype = {
139 	.owner		= THIS_MODULE,
140 	.name		= "udf",
141 	.kill_sb	= kill_block_super,
142 	.fs_flags	= FS_REQUIRES_DEV,
143 	.init_fs_context = udf_init_fs_context,
144 	.parameters	= udf_param_spec,
145 };
146 MODULE_ALIAS_FS("udf");
147 
148 static struct kmem_cache *udf_inode_cachep;
149 
150 static struct inode *udf_alloc_inode(struct super_block *sb)
151 {
152 	struct udf_inode_info *ei;
153 	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
154 	if (!ei)
155 		return NULL;
156 
157 	ei->i_unique = 0;
158 	ei->i_lenExtents = 0;
159 	ei->i_lenStreams = 0;
160 	ei->i_next_alloc_block = 0;
161 	ei->i_next_alloc_goal = 0;
162 	ei->i_strat4096 = 0;
163 	ei->i_streamdir = 0;
164 	ei->i_hidden = 0;
165 	init_rwsem(&ei->i_data_sem);
166 	ei->cached_extent.lstart = -1;
167 	spin_lock_init(&ei->i_extent_cache_lock);
168 	inode_set_iversion(&ei->vfs_inode, 1);
169 
170 	return &ei->vfs_inode;
171 }
172 
173 static void udf_free_in_core_inode(struct inode *inode)
174 {
175 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
176 }
177 
178 static void init_once(void *foo)
179 {
180 	struct udf_inode_info *ei = foo;
181 
182 	ei->i_data = NULL;
183 	inode_init_once(&ei->vfs_inode);
184 }
185 
186 static int __init init_inodecache(void)
187 {
188 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 					     sizeof(struct udf_inode_info),
190 					     0, (SLAB_RECLAIM_ACCOUNT |
191 						 SLAB_ACCOUNT),
192 					     init_once);
193 	if (!udf_inode_cachep)
194 		return -ENOMEM;
195 	return 0;
196 }
197 
198 static void destroy_inodecache(void)
199 {
200 	/*
201 	 * Make sure all delayed rcu free inodes are flushed before we
202 	 * destroy cache.
203 	 */
204 	rcu_barrier();
205 	kmem_cache_destroy(udf_inode_cachep);
206 }
207 
208 /* Superblock operations */
209 static const struct super_operations udf_sb_ops = {
210 	.alloc_inode	= udf_alloc_inode,
211 	.free_inode	= udf_free_in_core_inode,
212 	.write_inode	= udf_write_inode,
213 	.evict_inode	= udf_evict_inode,
214 	.put_super	= udf_put_super,
215 	.sync_fs	= udf_sync_fs,
216 	.statfs		= udf_statfs,
217 	.show_options	= udf_show_options,
218 };
219 
220 struct udf_options {
221 	unsigned int blocksize;
222 	unsigned int session;
223 	unsigned int lastblock;
224 	unsigned int anchor;
225 	unsigned int flags;
226 	umode_t umask;
227 	kgid_t gid;
228 	kuid_t uid;
229 	umode_t fmode;
230 	umode_t dmode;
231 	struct nls_table *nls_map;
232 };
233 
234 /*
235  * UDF has historically preserved prior mount options across
236  * a remount, so copy those here if remounting, otherwise set
237  * initial mount defaults.
238  */
239 static void udf_init_options(struct fs_context *fc, struct udf_options *uopt)
240 {
241 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
242 		struct super_block *sb = fc->root->d_sb;
243 		struct udf_sb_info *sbi = UDF_SB(sb);
244 
245 		uopt->flags = sbi->s_flags;
246 		uopt->uid   = sbi->s_uid;
247 		uopt->gid   = sbi->s_gid;
248 		uopt->umask = sbi->s_umask;
249 		uopt->fmode = sbi->s_fmode;
250 		uopt->dmode = sbi->s_dmode;
251 		uopt->nls_map = NULL;
252 	} else {
253 		uopt->flags = (1 << UDF_FLAG_USE_AD_IN_ICB) |
254 			      (1 << UDF_FLAG_STRICT);
255 		/*
256 		 * By default we'll use overflow[ug]id when UDF
257 		 * inode [ug]id == -1
258 		 */
259 		uopt->uid = make_kuid(current_user_ns(), overflowuid);
260 		uopt->gid = make_kgid(current_user_ns(), overflowgid);
261 		uopt->umask = 0;
262 		uopt->fmode = UDF_INVALID_MODE;
263 		uopt->dmode = UDF_INVALID_MODE;
264 		uopt->nls_map = NULL;
265 		uopt->session = 0xFFFFFFFF;
266 	}
267 }
268 
269 static int udf_init_fs_context(struct fs_context *fc)
270 {
271 	struct udf_options *uopt;
272 
273 	uopt = kzalloc(sizeof(*uopt), GFP_KERNEL);
274 	if (!uopt)
275 		return -ENOMEM;
276 
277 	udf_init_options(fc, uopt);
278 
279 	fc->fs_private = uopt;
280 	fc->ops = &udf_context_ops;
281 
282 	return 0;
283 }
284 
285 static void udf_free_fc(struct fs_context *fc)
286 {
287 	struct udf_options *uopt = fc->fs_private;
288 
289 	unload_nls(uopt->nls_map);
290 	kfree(fc->fs_private);
291 }
292 
293 static int __init init_udf_fs(void)
294 {
295 	int err;
296 
297 	err = init_inodecache();
298 	if (err)
299 		goto out1;
300 	err = register_filesystem(&udf_fstype);
301 	if (err)
302 		goto out;
303 
304 	return 0;
305 
306 out:
307 	destroy_inodecache();
308 
309 out1:
310 	return err;
311 }
312 
313 static void __exit exit_udf_fs(void)
314 {
315 	unregister_filesystem(&udf_fstype);
316 	destroy_inodecache();
317 }
318 
319 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
320 {
321 	struct udf_sb_info *sbi = UDF_SB(sb);
322 
323 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
324 	if (!sbi->s_partmaps) {
325 		sbi->s_partitions = 0;
326 		return -ENOMEM;
327 	}
328 
329 	sbi->s_partitions = count;
330 	return 0;
331 }
332 
333 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
334 {
335 	int i;
336 	int nr_groups = bitmap->s_nr_groups;
337 
338 	for (i = 0; i < nr_groups; i++)
339 		brelse(bitmap->s_block_bitmap[i]);
340 
341 	kvfree(bitmap);
342 }
343 
344 static void udf_free_partition(struct udf_part_map *map)
345 {
346 	int i;
347 	struct udf_meta_data *mdata;
348 
349 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
350 		iput(map->s_uspace.s_table);
351 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
352 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
353 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
354 		for (i = 0; i < 4; i++)
355 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
356 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
357 		mdata = &map->s_type_specific.s_metadata;
358 		iput(mdata->s_metadata_fe);
359 		mdata->s_metadata_fe = NULL;
360 
361 		iput(mdata->s_mirror_fe);
362 		mdata->s_mirror_fe = NULL;
363 
364 		iput(mdata->s_bitmap_fe);
365 		mdata->s_bitmap_fe = NULL;
366 	}
367 }
368 
369 static void udf_sb_free_partitions(struct super_block *sb)
370 {
371 	struct udf_sb_info *sbi = UDF_SB(sb);
372 	int i;
373 
374 	if (!sbi->s_partmaps)
375 		return;
376 	for (i = 0; i < sbi->s_partitions; i++)
377 		udf_free_partition(&sbi->s_partmaps[i]);
378 	kfree(sbi->s_partmaps);
379 	sbi->s_partmaps = NULL;
380 }
381 
382 static int udf_show_options(struct seq_file *seq, struct dentry *root)
383 {
384 	struct super_block *sb = root->d_sb;
385 	struct udf_sb_info *sbi = UDF_SB(sb);
386 
387 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
388 		seq_puts(seq, ",nostrict");
389 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
390 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
391 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
392 		seq_puts(seq, ",unhide");
393 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
394 		seq_puts(seq, ",undelete");
395 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
396 		seq_puts(seq, ",noadinicb");
397 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
398 		seq_puts(seq, ",shortad");
399 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
400 		seq_puts(seq, ",uid=forget");
401 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
402 		seq_puts(seq, ",gid=forget");
403 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
404 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
405 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
406 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
407 	if (sbi->s_umask != 0)
408 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
409 	if (sbi->s_fmode != UDF_INVALID_MODE)
410 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
411 	if (sbi->s_dmode != UDF_INVALID_MODE)
412 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
413 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
414 		seq_printf(seq, ",session=%d", sbi->s_session);
415 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
416 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
417 	if (sbi->s_anchor != 0)
418 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
419 	if (sbi->s_nls_map)
420 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
421 	else
422 		seq_puts(seq, ",iocharset=utf8");
423 
424 	return 0;
425 }
426 
427 /*
428  * udf_parse_param
429  *
430  * PURPOSE
431  *	Parse mount options.
432  *
433  * DESCRIPTION
434  *	The following mount options are supported:
435  *
436  *	gid=		Set the default group.
437  *	umask=		Set the default umask.
438  *	mode=		Set the default file permissions.
439  *	dmode=		Set the default directory permissions.
440  *	uid=		Set the default user.
441  *	bs=		Set the block size.
442  *	unhide		Show otherwise hidden files.
443  *	undelete	Show deleted files in lists.
444  *	adinicb		Embed data in the inode (default)
445  *	noadinicb	Don't embed data in the inode
446  *	shortad		Use short ad's
447  *	longad		Use long ad's (default)
448  *	nostrict	Unset strict conformance
449  *	iocharset=	Set the NLS character set
450  *
451  *	The remaining are for debugging and disaster recovery:
452  *
453  *	novrs		Skip volume sequence recognition
454  *
455  *	The following expect a offset from 0.
456  *
457  *	session=	Set the CDROM session (default= last session)
458  *	anchor=		Override standard anchor location. (default= 256)
459  *	volume=		Override the VolumeDesc location. (unused)
460  *	partition=	Override the PartitionDesc location. (unused)
461  *	lastblock=	Set the last block of the filesystem/
462  *
463  *	The following expect a offset from the partition root.
464  *
465  *	fileset=	Override the fileset block location. (unused)
466  *	rootdir=	Override the root directory location. (unused)
467  *		WARNING: overriding the rootdir to a non-directory may
468  *		yield highly unpredictable results.
469  *
470  * PRE-CONDITIONS
471  *	fc		fs_context with pointer to mount options variable.
472  *	param		Pointer to fs_parameter being parsed.
473  *
474  * POST-CONDITIONS
475  *	<return>	0	Mount options parsed okay.
476  *	<return>	errno	Error parsing mount options.
477  *
478  * HISTORY
479  *	July 1, 1997 - Andrew E. Mileski
480  *	Written, tested, and released.
481  */
482 
483 enum {
484 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
485 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
486 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
487 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
488 	Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_fmode, Opt_dmode
489 };
490 
491 static const struct fs_parameter_spec udf_param_spec[] = {
492 	fsparam_flag	("novrs",		Opt_novrs),
493 	fsparam_flag	("nostrict",		Opt_nostrict),
494 	fsparam_u32	("bs",			Opt_bs),
495 	fsparam_flag	("unhide",		Opt_unhide),
496 	fsparam_flag	("undelete",		Opt_undelete),
497 	fsparam_flag_no	("adinicb",		Opt_adinicb),
498 	fsparam_flag	("shortad",		Opt_shortad),
499 	fsparam_flag	("longad",		Opt_longad),
500 	fsparam_string	("gid",			Opt_gid),
501 	fsparam_string	("uid",			Opt_uid),
502 	fsparam_u32	("umask",		Opt_umask),
503 	fsparam_u32	("session",		Opt_session),
504 	fsparam_u32	("lastblock",		Opt_lastblock),
505 	fsparam_u32	("anchor",		Opt_anchor),
506 	fsparam_u32	("volume",		Opt_volume),
507 	fsparam_u32	("partition",		Opt_partition),
508 	fsparam_u32	("fileset",		Opt_fileset),
509 	fsparam_u32	("rootdir",		Opt_rootdir),
510 	fsparam_flag	("utf8",		Opt_utf8),
511 	fsparam_string	("iocharset",		Opt_iocharset),
512 	fsparam_u32	("mode",		Opt_fmode),
513 	fsparam_u32	("dmode",		Opt_dmode),
514 	{}
515  };
516 
517 static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param)
518 {
519 	unsigned int uv;
520 	unsigned int n;
521 	struct udf_options *uopt = fc->fs_private;
522 	struct fs_parse_result result;
523 	int token;
524 	bool remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE);
525 
526 	token = fs_parse(fc, udf_param_spec, param, &result);
527 	if (token < 0)
528 		return token;
529 
530 	switch (token) {
531 	case Opt_novrs:
532 		uopt->flags |= (1 << UDF_FLAG_NOVRS);
533 		break;
534 	case Opt_bs:
535 		n = result.uint_32;
536 		if (n != 512 && n != 1024 && n != 2048 && n != 4096)
537 			return -EINVAL;
538 		uopt->blocksize = n;
539 		uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
540 		break;
541 	case Opt_unhide:
542 		uopt->flags |= (1 << UDF_FLAG_UNHIDE);
543 		break;
544 	case Opt_undelete:
545 		uopt->flags |= (1 << UDF_FLAG_UNDELETE);
546 		break;
547 	case Opt_adinicb:
548 		if (result.negated)
549 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
550 		else
551 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
552 		break;
553 	case Opt_shortad:
554 		uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
555 		break;
556 	case Opt_longad:
557 		uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
558 		break;
559 	case Opt_gid:
560 		if (kstrtoint(param->string, 10, &uv) == 0) {
561 			kgid_t gid = make_kgid(current_user_ns(), uv);
562 			if (!gid_valid(gid))
563 				return -EINVAL;
564 			uopt->gid = gid;
565 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
566 		} else if (!strcmp(param->string, "forget")) {
567 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
568 		} else if (!strcmp(param->string, "ignore")) {
569 			/* this option is superseded by gid=<number> */
570 			;
571 		} else {
572 			return -EINVAL;
573 		}
574 		break;
575 	case Opt_uid:
576 		if (kstrtoint(param->string, 10, &uv) == 0) {
577 			kuid_t uid = make_kuid(current_user_ns(), uv);
578 			if (!uid_valid(uid))
579 				return -EINVAL;
580 			uopt->uid = uid;
581 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
582 		} else if (!strcmp(param->string, "forget")) {
583 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
584 		} else if (!strcmp(param->string, "ignore")) {
585 			/* this option is superseded by uid=<number> */
586 			;
587 		} else {
588 			return -EINVAL;
589 		}
590 		break;
591 	case Opt_umask:
592 		uopt->umask = result.uint_32;
593 		break;
594 	case Opt_nostrict:
595 		uopt->flags &= ~(1 << UDF_FLAG_STRICT);
596 		break;
597 	case Opt_session:
598 		uopt->session = result.uint_32;
599 		if (!remount)
600 			uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
601 		break;
602 	case Opt_lastblock:
603 		uopt->lastblock = result.uint_32;
604 		if (!remount)
605 			uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
606 		break;
607 	case Opt_anchor:
608 		uopt->anchor = result.uint_32;
609 		break;
610 	case Opt_volume:
611 	case Opt_partition:
612 	case Opt_fileset:
613 	case Opt_rootdir:
614 		/* Ignored (never implemented properly) */
615 		break;
616 	case Opt_utf8:
617 		if (!remount) {
618 			unload_nls(uopt->nls_map);
619 			uopt->nls_map = NULL;
620 		}
621 		break;
622 	case Opt_iocharset:
623 		if (!remount) {
624 			unload_nls(uopt->nls_map);
625 			uopt->nls_map = NULL;
626 		}
627 		/* When nls_map is not loaded then UTF-8 is used */
628 		if (!remount && strcmp(param->string, "utf8") != 0) {
629 			uopt->nls_map = load_nls(param->string);
630 			if (!uopt->nls_map) {
631 				errorf(fc, "iocharset %s not found",
632 					param->string);
633 				return -EINVAL;;
634 			}
635 		}
636 		break;
637 	case Opt_fmode:
638 		uopt->fmode = result.uint_32 & 0777;
639 		break;
640 	case Opt_dmode:
641 		uopt->dmode = result.uint_32 & 0777;
642 		break;
643 	default:
644 		return -EINVAL;
645 	}
646 	return 0;
647 }
648 
649 static int udf_reconfigure(struct fs_context *fc)
650 {
651 	struct udf_options *uopt = fc->fs_private;
652 	struct super_block *sb = fc->root->d_sb;
653 	struct udf_sb_info *sbi = UDF_SB(sb);
654 	int readonly = fc->sb_flags & SB_RDONLY;
655 	int error = 0;
656 
657 	if (!readonly && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
658 		return -EACCES;
659 
660 	sync_filesystem(sb);
661 
662 	write_lock(&sbi->s_cred_lock);
663 	sbi->s_flags = uopt->flags;
664 	sbi->s_uid   = uopt->uid;
665 	sbi->s_gid   = uopt->gid;
666 	sbi->s_umask = uopt->umask;
667 	sbi->s_fmode = uopt->fmode;
668 	sbi->s_dmode = uopt->dmode;
669 	write_unlock(&sbi->s_cred_lock);
670 
671 	if (readonly == sb_rdonly(sb))
672 		goto out_unlock;
673 
674 	if (readonly)
675 		udf_close_lvid(sb);
676 	else
677 		udf_open_lvid(sb);
678 
679 out_unlock:
680 	return error;
681 }
682 
683 /*
684  * Check VSD descriptor. Returns -1 in case we are at the end of volume
685  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
686  * we found one of NSR descriptors we are looking for.
687  */
688 static int identify_vsd(const struct volStructDesc *vsd)
689 {
690 	int ret = 0;
691 
692 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
693 		switch (vsd->structType) {
694 		case 0:
695 			udf_debug("ISO9660 Boot Record found\n");
696 			break;
697 		case 1:
698 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
699 			break;
700 		case 2:
701 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
702 			break;
703 		case 3:
704 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
705 			break;
706 		case 255:
707 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
708 			break;
709 		default:
710 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
711 			break;
712 		}
713 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
714 		; /* ret = 0 */
715 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
716 		ret = 1;
717 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
718 		ret = 1;
719 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
720 		; /* ret = 0 */
721 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
722 		; /* ret = 0 */
723 	else {
724 		/* TEA01 or invalid id : end of volume recognition area */
725 		ret = -1;
726 	}
727 
728 	return ret;
729 }
730 
731 /*
732  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
733  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
734  * @return   1 if NSR02 or NSR03 found,
735  *	    -1 if first sector read error, 0 otherwise
736  */
737 static int udf_check_vsd(struct super_block *sb)
738 {
739 	struct volStructDesc *vsd = NULL;
740 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
741 	int sectorsize;
742 	struct buffer_head *bh = NULL;
743 	int nsr = 0;
744 	struct udf_sb_info *sbi;
745 	loff_t session_offset;
746 
747 	sbi = UDF_SB(sb);
748 	if (sb->s_blocksize < sizeof(struct volStructDesc))
749 		sectorsize = sizeof(struct volStructDesc);
750 	else
751 		sectorsize = sb->s_blocksize;
752 
753 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
754 	sector += session_offset;
755 
756 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
757 		  (unsigned int)(sector >> sb->s_blocksize_bits),
758 		  sb->s_blocksize);
759 	/* Process the sequence (if applicable). The hard limit on the sector
760 	 * offset is arbitrary, hopefully large enough so that all valid UDF
761 	 * filesystems will be recognised. There is no mention of an upper
762 	 * bound to the size of the volume recognition area in the standard.
763 	 *  The limit will prevent the code to read all the sectors of a
764 	 * specially crafted image (like a bluray disc full of CD001 sectors),
765 	 * potentially causing minutes or even hours of uninterruptible I/O
766 	 * activity. This actually happened with uninitialised SSD partitions
767 	 * (all 0xFF) before the check for the limit and all valid IDs were
768 	 * added */
769 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
770 		/* Read a block */
771 		bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
772 		if (!bh)
773 			break;
774 
775 		vsd = (struct volStructDesc *)(bh->b_data +
776 					      (sector & (sb->s_blocksize - 1)));
777 		nsr = identify_vsd(vsd);
778 		/* Found NSR or end? */
779 		if (nsr) {
780 			brelse(bh);
781 			break;
782 		}
783 		/*
784 		 * Special handling for improperly formatted VRS (e.g., Win10)
785 		 * where components are separated by 2048 bytes even though
786 		 * sectors are 4K
787 		 */
788 		if (sb->s_blocksize == 4096) {
789 			nsr = identify_vsd(vsd + 1);
790 			/* Ignore unknown IDs... */
791 			if (nsr < 0)
792 				nsr = 0;
793 		}
794 		brelse(bh);
795 	}
796 
797 	if (nsr > 0)
798 		return 1;
799 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
800 		return -1;
801 	else
802 		return 0;
803 }
804 
805 static int udf_verify_domain_identifier(struct super_block *sb,
806 					struct regid *ident, char *dname)
807 {
808 	struct domainIdentSuffix *suffix;
809 
810 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
811 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
812 		goto force_ro;
813 	}
814 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
815 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
816 			 dname);
817 		goto force_ro;
818 	}
819 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
820 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
821 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
822 		if (!sb_rdonly(sb)) {
823 			udf_warn(sb, "Descriptor for %s marked write protected."
824 				 " Forcing read only mount.\n", dname);
825 		}
826 		goto force_ro;
827 	}
828 	return 0;
829 
830 force_ro:
831 	if (!sb_rdonly(sb))
832 		return -EACCES;
833 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
834 	return 0;
835 }
836 
837 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
838 			    struct kernel_lb_addr *root)
839 {
840 	int ret;
841 
842 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
843 	if (ret < 0)
844 		return ret;
845 
846 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
847 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
848 
849 	udf_debug("Rootdir at block=%u, partition=%u\n",
850 		  root->logicalBlockNum, root->partitionReferenceNum);
851 	return 0;
852 }
853 
854 static int udf_find_fileset(struct super_block *sb,
855 			    struct kernel_lb_addr *fileset,
856 			    struct kernel_lb_addr *root)
857 {
858 	struct buffer_head *bh;
859 	uint16_t ident;
860 	int ret;
861 
862 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
863 	    fileset->partitionReferenceNum == 0xFFFF)
864 		return -EINVAL;
865 
866 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
867 	if (!bh)
868 		return -EIO;
869 	if (ident != TAG_IDENT_FSD) {
870 		brelse(bh);
871 		return -EINVAL;
872 	}
873 
874 	udf_debug("Fileset at block=%u, partition=%u\n",
875 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
876 
877 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
878 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
879 	brelse(bh);
880 	return ret;
881 }
882 
883 /*
884  * Load primary Volume Descriptor Sequence
885  *
886  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
887  * should be tried.
888  */
889 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
890 {
891 	struct primaryVolDesc *pvoldesc;
892 	uint8_t *outstr;
893 	struct buffer_head *bh;
894 	uint16_t ident;
895 	int ret;
896 	struct timestamp *ts;
897 
898 	outstr = kmalloc(128, GFP_KERNEL);
899 	if (!outstr)
900 		return -ENOMEM;
901 
902 	bh = udf_read_tagged(sb, block, block, &ident);
903 	if (!bh) {
904 		ret = -EAGAIN;
905 		goto out2;
906 	}
907 
908 	if (ident != TAG_IDENT_PVD) {
909 		ret = -EIO;
910 		goto out_bh;
911 	}
912 
913 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
914 
915 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
916 			      pvoldesc->recordingDateAndTime);
917 	ts = &pvoldesc->recordingDateAndTime;
918 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
919 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
920 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
921 
922 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
923 	if (ret < 0) {
924 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
925 		pr_warn("incorrect volume identification, setting to "
926 			"'InvalidName'\n");
927 	} else {
928 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
929 	}
930 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
931 
932 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
933 	if (ret < 0) {
934 		ret = 0;
935 		goto out_bh;
936 	}
937 	outstr[ret] = 0;
938 	udf_debug("volSetIdent[] = '%s'\n", outstr);
939 
940 	ret = 0;
941 out_bh:
942 	brelse(bh);
943 out2:
944 	kfree(outstr);
945 	return ret;
946 }
947 
948 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
949 					u32 meta_file_loc, u32 partition_ref)
950 {
951 	struct kernel_lb_addr addr;
952 	struct inode *metadata_fe;
953 
954 	addr.logicalBlockNum = meta_file_loc;
955 	addr.partitionReferenceNum = partition_ref;
956 
957 	metadata_fe = udf_iget_special(sb, &addr);
958 
959 	if (IS_ERR(metadata_fe)) {
960 		udf_warn(sb, "metadata inode efe not found\n");
961 		return metadata_fe;
962 	}
963 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
964 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
965 		iput(metadata_fe);
966 		return ERR_PTR(-EIO);
967 	}
968 
969 	return metadata_fe;
970 }
971 
972 static int udf_load_metadata_files(struct super_block *sb, int partition,
973 				   int type1_index)
974 {
975 	struct udf_sb_info *sbi = UDF_SB(sb);
976 	struct udf_part_map *map;
977 	struct udf_meta_data *mdata;
978 	struct kernel_lb_addr addr;
979 	struct inode *fe;
980 
981 	map = &sbi->s_partmaps[partition];
982 	mdata = &map->s_type_specific.s_metadata;
983 	mdata->s_phys_partition_ref = type1_index;
984 
985 	/* metadata address */
986 	udf_debug("Metadata file location: block = %u part = %u\n",
987 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
988 
989 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
990 					 mdata->s_phys_partition_ref);
991 	if (IS_ERR(fe)) {
992 		/* mirror file entry */
993 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
994 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
995 
996 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
997 						 mdata->s_phys_partition_ref);
998 
999 		if (IS_ERR(fe)) {
1000 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1001 			return PTR_ERR(fe);
1002 		}
1003 		mdata->s_mirror_fe = fe;
1004 	} else
1005 		mdata->s_metadata_fe = fe;
1006 
1007 
1008 	/*
1009 	 * bitmap file entry
1010 	 * Note:
1011 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1012 	*/
1013 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1014 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1015 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1016 
1017 		udf_debug("Bitmap file location: block = %u part = %u\n",
1018 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1019 
1020 		fe = udf_iget_special(sb, &addr);
1021 		if (IS_ERR(fe)) {
1022 			if (sb_rdonly(sb))
1023 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1024 			else {
1025 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1026 				return PTR_ERR(fe);
1027 			}
1028 		} else
1029 			mdata->s_bitmap_fe = fe;
1030 	}
1031 
1032 	udf_debug("udf_load_metadata_files Ok\n");
1033 	return 0;
1034 }
1035 
1036 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1037 {
1038 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1039 	return DIV_ROUND_UP(map->s_partition_len +
1040 			    (sizeof(struct spaceBitmapDesc) << 3),
1041 			    sb->s_blocksize * 8);
1042 }
1043 
1044 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1045 {
1046 	struct udf_bitmap *bitmap;
1047 	int nr_groups = udf_compute_nr_groups(sb, index);
1048 
1049 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1050 			  GFP_KERNEL);
1051 	if (!bitmap)
1052 		return NULL;
1053 
1054 	bitmap->s_nr_groups = nr_groups;
1055 	return bitmap;
1056 }
1057 
1058 static int check_partition_desc(struct super_block *sb,
1059 				struct partitionDesc *p,
1060 				struct udf_part_map *map)
1061 {
1062 	bool umap, utable, fmap, ftable;
1063 	struct partitionHeaderDesc *phd;
1064 
1065 	switch (le32_to_cpu(p->accessType)) {
1066 	case PD_ACCESS_TYPE_READ_ONLY:
1067 	case PD_ACCESS_TYPE_WRITE_ONCE:
1068 	case PD_ACCESS_TYPE_NONE:
1069 		goto force_ro;
1070 	}
1071 
1072 	/* No Partition Header Descriptor? */
1073 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1074 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1075 		goto force_ro;
1076 
1077 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1078 	utable = phd->unallocSpaceTable.extLength;
1079 	umap = phd->unallocSpaceBitmap.extLength;
1080 	ftable = phd->freedSpaceTable.extLength;
1081 	fmap = phd->freedSpaceBitmap.extLength;
1082 
1083 	/* No allocation info? */
1084 	if (!utable && !umap && !ftable && !fmap)
1085 		goto force_ro;
1086 
1087 	/* We don't support blocks that require erasing before overwrite */
1088 	if (ftable || fmap)
1089 		goto force_ro;
1090 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1091 	if (utable && umap)
1092 		goto force_ro;
1093 
1094 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1095 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1096 	    map->s_partition_type == UDF_METADATA_MAP25)
1097 		goto force_ro;
1098 
1099 	return 0;
1100 force_ro:
1101 	if (!sb_rdonly(sb))
1102 		return -EACCES;
1103 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1104 	return 0;
1105 }
1106 
1107 static int udf_fill_partdesc_info(struct super_block *sb,
1108 		struct partitionDesc *p, int p_index)
1109 {
1110 	struct udf_part_map *map;
1111 	struct udf_sb_info *sbi = UDF_SB(sb);
1112 	struct partitionHeaderDesc *phd;
1113 	int err;
1114 
1115 	map = &sbi->s_partmaps[p_index];
1116 
1117 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1118 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1119 
1120 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1121 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1122 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1123 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1124 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1125 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1126 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1127 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1128 
1129 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1130 		  p_index, map->s_partition_type,
1131 		  map->s_partition_root, map->s_partition_len);
1132 
1133 	err = check_partition_desc(sb, p, map);
1134 	if (err)
1135 		return err;
1136 
1137 	/*
1138 	 * Skip loading allocation info it we cannot ever write to the fs.
1139 	 * This is a correctness thing as we may have decided to force ro mount
1140 	 * to avoid allocation info we don't support.
1141 	 */
1142 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1143 		return 0;
1144 
1145 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1146 	if (phd->unallocSpaceTable.extLength) {
1147 		struct kernel_lb_addr loc = {
1148 			.logicalBlockNum = le32_to_cpu(
1149 				phd->unallocSpaceTable.extPosition),
1150 			.partitionReferenceNum = p_index,
1151 		};
1152 		struct inode *inode;
1153 
1154 		inode = udf_iget_special(sb, &loc);
1155 		if (IS_ERR(inode)) {
1156 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1157 				  p_index);
1158 			return PTR_ERR(inode);
1159 		}
1160 		map->s_uspace.s_table = inode;
1161 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1162 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1163 			  p_index, map->s_uspace.s_table->i_ino);
1164 	}
1165 
1166 	if (phd->unallocSpaceBitmap.extLength) {
1167 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1168 		if (!bitmap)
1169 			return -ENOMEM;
1170 		map->s_uspace.s_bitmap = bitmap;
1171 		bitmap->s_extPosition = le32_to_cpu(
1172 				phd->unallocSpaceBitmap.extPosition);
1173 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1174 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1175 			  p_index, bitmap->s_extPosition);
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static void udf_find_vat_block(struct super_block *sb, int p_index,
1182 			       int type1_index, sector_t start_block)
1183 {
1184 	struct udf_sb_info *sbi = UDF_SB(sb);
1185 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1186 	sector_t vat_block;
1187 	struct kernel_lb_addr ino;
1188 	struct inode *inode;
1189 
1190 	/*
1191 	 * VAT file entry is in the last recorded block. Some broken disks have
1192 	 * it a few blocks before so try a bit harder...
1193 	 */
1194 	ino.partitionReferenceNum = type1_index;
1195 	for (vat_block = start_block;
1196 	     vat_block >= map->s_partition_root &&
1197 	     vat_block >= start_block - 3; vat_block--) {
1198 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1199 		inode = udf_iget_special(sb, &ino);
1200 		if (!IS_ERR(inode)) {
1201 			sbi->s_vat_inode = inode;
1202 			break;
1203 		}
1204 	}
1205 }
1206 
1207 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1208 {
1209 	struct udf_sb_info *sbi = UDF_SB(sb);
1210 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1211 	struct buffer_head *bh = NULL;
1212 	struct udf_inode_info *vati;
1213 	struct virtualAllocationTable20 *vat20;
1214 	sector_t blocks = sb_bdev_nr_blocks(sb);
1215 
1216 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1217 	if (!sbi->s_vat_inode &&
1218 	    sbi->s_last_block != blocks - 1) {
1219 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1220 			  (unsigned long)sbi->s_last_block,
1221 			  (unsigned long)blocks - 1);
1222 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1223 	}
1224 	if (!sbi->s_vat_inode)
1225 		return -EIO;
1226 
1227 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1228 		map->s_type_specific.s_virtual.s_start_offset = 0;
1229 		map->s_type_specific.s_virtual.s_num_entries =
1230 			(sbi->s_vat_inode->i_size - 36) >> 2;
1231 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1232 		vati = UDF_I(sbi->s_vat_inode);
1233 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1234 			int err = 0;
1235 
1236 			bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1237 			if (!bh) {
1238 				if (!err)
1239 					err = -EFSCORRUPTED;
1240 				return err;
1241 			}
1242 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1243 		} else {
1244 			vat20 = (struct virtualAllocationTable20 *)
1245 							vati->i_data;
1246 		}
1247 
1248 		map->s_type_specific.s_virtual.s_start_offset =
1249 			le16_to_cpu(vat20->lengthHeader);
1250 		map->s_type_specific.s_virtual.s_num_entries =
1251 			(sbi->s_vat_inode->i_size -
1252 				map->s_type_specific.s_virtual.
1253 					s_start_offset) >> 2;
1254 		brelse(bh);
1255 	}
1256 	return 0;
1257 }
1258 
1259 /*
1260  * Load partition descriptor block
1261  *
1262  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1263  * sequence.
1264  */
1265 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1266 {
1267 	struct buffer_head *bh;
1268 	struct partitionDesc *p;
1269 	struct udf_part_map *map;
1270 	struct udf_sb_info *sbi = UDF_SB(sb);
1271 	int i, type1_idx;
1272 	uint16_t partitionNumber;
1273 	uint16_t ident;
1274 	int ret;
1275 
1276 	bh = udf_read_tagged(sb, block, block, &ident);
1277 	if (!bh)
1278 		return -EAGAIN;
1279 	if (ident != TAG_IDENT_PD) {
1280 		ret = 0;
1281 		goto out_bh;
1282 	}
1283 
1284 	p = (struct partitionDesc *)bh->b_data;
1285 	partitionNumber = le16_to_cpu(p->partitionNumber);
1286 
1287 	/* First scan for TYPE1 and SPARABLE partitions */
1288 	for (i = 0; i < sbi->s_partitions; i++) {
1289 		map = &sbi->s_partmaps[i];
1290 		udf_debug("Searching map: (%u == %u)\n",
1291 			  map->s_partition_num, partitionNumber);
1292 		if (map->s_partition_num == partitionNumber &&
1293 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1294 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1295 			break;
1296 	}
1297 
1298 	if (i >= sbi->s_partitions) {
1299 		udf_debug("Partition (%u) not found in partition map\n",
1300 			  partitionNumber);
1301 		ret = 0;
1302 		goto out_bh;
1303 	}
1304 
1305 	ret = udf_fill_partdesc_info(sb, p, i);
1306 	if (ret < 0)
1307 		goto out_bh;
1308 
1309 	/*
1310 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1311 	 * PHYSICAL partitions are already set up
1312 	 */
1313 	type1_idx = i;
1314 	map = NULL; /* supress 'maybe used uninitialized' warning */
1315 	for (i = 0; i < sbi->s_partitions; i++) {
1316 		map = &sbi->s_partmaps[i];
1317 
1318 		if (map->s_partition_num == partitionNumber &&
1319 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1320 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1321 		     map->s_partition_type == UDF_METADATA_MAP25))
1322 			break;
1323 	}
1324 
1325 	if (i >= sbi->s_partitions) {
1326 		ret = 0;
1327 		goto out_bh;
1328 	}
1329 
1330 	ret = udf_fill_partdesc_info(sb, p, i);
1331 	if (ret < 0)
1332 		goto out_bh;
1333 
1334 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1335 		ret = udf_load_metadata_files(sb, i, type1_idx);
1336 		if (ret < 0) {
1337 			udf_err(sb, "error loading MetaData partition map %d\n",
1338 				i);
1339 			goto out_bh;
1340 		}
1341 	} else {
1342 		/*
1343 		 * If we have a partition with virtual map, we don't handle
1344 		 * writing to it (we overwrite blocks instead of relocating
1345 		 * them).
1346 		 */
1347 		if (!sb_rdonly(sb)) {
1348 			ret = -EACCES;
1349 			goto out_bh;
1350 		}
1351 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1352 		ret = udf_load_vat(sb, i, type1_idx);
1353 		if (ret < 0)
1354 			goto out_bh;
1355 	}
1356 	ret = 0;
1357 out_bh:
1358 	/* In case loading failed, we handle cleanup in udf_fill_super */
1359 	brelse(bh);
1360 	return ret;
1361 }
1362 
1363 static int udf_load_sparable_map(struct super_block *sb,
1364 				 struct udf_part_map *map,
1365 				 struct sparablePartitionMap *spm)
1366 {
1367 	uint32_t loc;
1368 	uint16_t ident;
1369 	struct sparingTable *st;
1370 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371 	int i;
1372 	struct buffer_head *bh;
1373 
1374 	map->s_partition_type = UDF_SPARABLE_MAP15;
1375 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376 	if (!is_power_of_2(sdata->s_packet_len)) {
1377 		udf_err(sb, "error loading logical volume descriptor: "
1378 			"Invalid packet length %u\n",
1379 			(unsigned)sdata->s_packet_len);
1380 		return -EIO;
1381 	}
1382 	if (spm->numSparingTables > 4) {
1383 		udf_err(sb, "error loading logical volume descriptor: "
1384 			"Too many sparing tables (%d)\n",
1385 			(int)spm->numSparingTables);
1386 		return -EIO;
1387 	}
1388 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1389 		udf_err(sb, "error loading logical volume descriptor: "
1390 			"Too big sparing table size (%u)\n",
1391 			le32_to_cpu(spm->sizeSparingTable));
1392 		return -EIO;
1393 	}
1394 
1395 	for (i = 0; i < spm->numSparingTables; i++) {
1396 		loc = le32_to_cpu(spm->locSparingTable[i]);
1397 		bh = udf_read_tagged(sb, loc, loc, &ident);
1398 		if (!bh)
1399 			continue;
1400 
1401 		st = (struct sparingTable *)bh->b_data;
1402 		if (ident != 0 ||
1403 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1404 			    strlen(UDF_ID_SPARING)) ||
1405 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1406 							sb->s_blocksize) {
1407 			brelse(bh);
1408 			continue;
1409 		}
1410 
1411 		sdata->s_spar_map[i] = bh;
1412 	}
1413 	map->s_partition_func = udf_get_pblock_spar15;
1414 	return 0;
1415 }
1416 
1417 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1418 			       struct kernel_lb_addr *fileset)
1419 {
1420 	struct logicalVolDesc *lvd;
1421 	int i, offset;
1422 	uint8_t type;
1423 	struct udf_sb_info *sbi = UDF_SB(sb);
1424 	struct genericPartitionMap *gpm;
1425 	uint16_t ident;
1426 	struct buffer_head *bh;
1427 	unsigned int table_len;
1428 	int ret;
1429 
1430 	bh = udf_read_tagged(sb, block, block, &ident);
1431 	if (!bh)
1432 		return -EAGAIN;
1433 	BUG_ON(ident != TAG_IDENT_LVD);
1434 	lvd = (struct logicalVolDesc *)bh->b_data;
1435 	table_len = le32_to_cpu(lvd->mapTableLength);
1436 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1437 		udf_err(sb, "error loading logical volume descriptor: "
1438 			"Partition table too long (%u > %lu)\n", table_len,
1439 			sb->s_blocksize - sizeof(*lvd));
1440 		ret = -EIO;
1441 		goto out_bh;
1442 	}
1443 
1444 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1445 					   "logical volume");
1446 	if (ret)
1447 		goto out_bh;
1448 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1449 	if (ret)
1450 		goto out_bh;
1451 
1452 	for (i = 0, offset = 0;
1453 	     i < sbi->s_partitions && offset < table_len;
1454 	     i++, offset += gpm->partitionMapLength) {
1455 		struct udf_part_map *map = &sbi->s_partmaps[i];
1456 		gpm = (struct genericPartitionMap *)
1457 				&(lvd->partitionMaps[offset]);
1458 		type = gpm->partitionMapType;
1459 		if (type == 1) {
1460 			struct genericPartitionMap1 *gpm1 =
1461 				(struct genericPartitionMap1 *)gpm;
1462 			map->s_partition_type = UDF_TYPE1_MAP15;
1463 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1464 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1465 			map->s_partition_func = NULL;
1466 		} else if (type == 2) {
1467 			struct udfPartitionMap2 *upm2 =
1468 						(struct udfPartitionMap2 *)gpm;
1469 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1470 						strlen(UDF_ID_VIRTUAL))) {
1471 				u16 suf =
1472 					le16_to_cpu(((__le16 *)upm2->partIdent.
1473 							identSuffix)[0]);
1474 				if (suf < 0x0200) {
1475 					map->s_partition_type =
1476 							UDF_VIRTUAL_MAP15;
1477 					map->s_partition_func =
1478 							udf_get_pblock_virt15;
1479 				} else {
1480 					map->s_partition_type =
1481 							UDF_VIRTUAL_MAP20;
1482 					map->s_partition_func =
1483 							udf_get_pblock_virt20;
1484 				}
1485 			} else if (!strncmp(upm2->partIdent.ident,
1486 						UDF_ID_SPARABLE,
1487 						strlen(UDF_ID_SPARABLE))) {
1488 				ret = udf_load_sparable_map(sb, map,
1489 					(struct sparablePartitionMap *)gpm);
1490 				if (ret < 0)
1491 					goto out_bh;
1492 			} else if (!strncmp(upm2->partIdent.ident,
1493 						UDF_ID_METADATA,
1494 						strlen(UDF_ID_METADATA))) {
1495 				struct udf_meta_data *mdata =
1496 					&map->s_type_specific.s_metadata;
1497 				struct metadataPartitionMap *mdm =
1498 						(struct metadataPartitionMap *)
1499 						&(lvd->partitionMaps[offset]);
1500 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1501 					  i, type, UDF_ID_METADATA);
1502 
1503 				map->s_partition_type = UDF_METADATA_MAP25;
1504 				map->s_partition_func = udf_get_pblock_meta25;
1505 
1506 				mdata->s_meta_file_loc   =
1507 					le32_to_cpu(mdm->metadataFileLoc);
1508 				mdata->s_mirror_file_loc =
1509 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1510 				mdata->s_bitmap_file_loc =
1511 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1512 				mdata->s_alloc_unit_size =
1513 					le32_to_cpu(mdm->allocUnitSize);
1514 				mdata->s_align_unit_size =
1515 					le16_to_cpu(mdm->alignUnitSize);
1516 				if (mdm->flags & 0x01)
1517 					mdata->s_flags |= MF_DUPLICATE_MD;
1518 
1519 				udf_debug("Metadata Ident suffix=0x%x\n",
1520 					  le16_to_cpu(*(__le16 *)
1521 						      mdm->partIdent.identSuffix));
1522 				udf_debug("Metadata part num=%u\n",
1523 					  le16_to_cpu(mdm->partitionNum));
1524 				udf_debug("Metadata part alloc unit size=%u\n",
1525 					  le32_to_cpu(mdm->allocUnitSize));
1526 				udf_debug("Metadata file loc=%u\n",
1527 					  le32_to_cpu(mdm->metadataFileLoc));
1528 				udf_debug("Mirror file loc=%u\n",
1529 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1530 				udf_debug("Bitmap file loc=%u\n",
1531 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1532 				udf_debug("Flags: %d %u\n",
1533 					  mdata->s_flags, mdm->flags);
1534 			} else {
1535 				udf_debug("Unknown ident: %s\n",
1536 					  upm2->partIdent.ident);
1537 				continue;
1538 			}
1539 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1540 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1541 		}
1542 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1543 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1544 	}
1545 
1546 	if (fileset) {
1547 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1548 
1549 		*fileset = lelb_to_cpu(la->extLocation);
1550 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1551 			  fileset->logicalBlockNum,
1552 			  fileset->partitionReferenceNum);
1553 	}
1554 	if (lvd->integritySeqExt.extLength)
1555 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1556 	ret = 0;
1557 
1558 	if (!sbi->s_lvid_bh) {
1559 		/* We can't generate unique IDs without a valid LVID */
1560 		if (sb_rdonly(sb)) {
1561 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1562 		} else {
1563 			udf_warn(sb, "Damaged or missing LVID, forcing "
1564 				     "readonly mount\n");
1565 			ret = -EACCES;
1566 		}
1567 	}
1568 out_bh:
1569 	brelse(bh);
1570 	return ret;
1571 }
1572 
1573 static bool udf_lvid_valid(struct super_block *sb,
1574 			   struct logicalVolIntegrityDesc *lvid)
1575 {
1576 	u32 parts, impuselen;
1577 
1578 	parts = le32_to_cpu(lvid->numOfPartitions);
1579 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1580 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1581 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1582 	    2 * parts * sizeof(u32) > sb->s_blocksize)
1583 		return false;
1584 	return true;
1585 }
1586 
1587 /*
1588  * Find the prevailing Logical Volume Integrity Descriptor.
1589  */
1590 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1591 {
1592 	struct buffer_head *bh, *final_bh;
1593 	uint16_t ident;
1594 	struct udf_sb_info *sbi = UDF_SB(sb);
1595 	struct logicalVolIntegrityDesc *lvid;
1596 	int indirections = 0;
1597 
1598 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1599 		final_bh = NULL;
1600 		while (loc.extLength > 0 &&
1601 			(bh = udf_read_tagged(sb, loc.extLocation,
1602 					loc.extLocation, &ident))) {
1603 			if (ident != TAG_IDENT_LVID) {
1604 				brelse(bh);
1605 				break;
1606 			}
1607 
1608 			brelse(final_bh);
1609 			final_bh = bh;
1610 
1611 			loc.extLength -= sb->s_blocksize;
1612 			loc.extLocation++;
1613 		}
1614 
1615 		if (!final_bh)
1616 			return;
1617 
1618 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1619 		if (udf_lvid_valid(sb, lvid)) {
1620 			brelse(sbi->s_lvid_bh);
1621 			sbi->s_lvid_bh = final_bh;
1622 		} else {
1623 			udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1624 				 "ignoring.\n",
1625 				 le32_to_cpu(lvid->numOfPartitions),
1626 				 le32_to_cpu(lvid->lengthOfImpUse));
1627 		}
1628 
1629 		if (lvid->nextIntegrityExt.extLength == 0)
1630 			return;
1631 
1632 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1633 	}
1634 
1635 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1636 		UDF_MAX_LVID_NESTING);
1637 	brelse(sbi->s_lvid_bh);
1638 	sbi->s_lvid_bh = NULL;
1639 }
1640 
1641 /*
1642  * Step for reallocation of table of partition descriptor sequence numbers.
1643  * Must be power of 2.
1644  */
1645 #define PART_DESC_ALLOC_STEP 32
1646 
1647 struct part_desc_seq_scan_data {
1648 	struct udf_vds_record rec;
1649 	u32 partnum;
1650 };
1651 
1652 struct desc_seq_scan_data {
1653 	struct udf_vds_record vds[VDS_POS_LENGTH];
1654 	unsigned int size_part_descs;
1655 	unsigned int num_part_descs;
1656 	struct part_desc_seq_scan_data *part_descs_loc;
1657 };
1658 
1659 static struct udf_vds_record *handle_partition_descriptor(
1660 				struct buffer_head *bh,
1661 				struct desc_seq_scan_data *data)
1662 {
1663 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1664 	int partnum;
1665 	int i;
1666 
1667 	partnum = le16_to_cpu(desc->partitionNumber);
1668 	for (i = 0; i < data->num_part_descs; i++)
1669 		if (partnum == data->part_descs_loc[i].partnum)
1670 			return &(data->part_descs_loc[i].rec);
1671 	if (data->num_part_descs >= data->size_part_descs) {
1672 		struct part_desc_seq_scan_data *new_loc;
1673 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1674 
1675 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1676 		if (!new_loc)
1677 			return ERR_PTR(-ENOMEM);
1678 		memcpy(new_loc, data->part_descs_loc,
1679 		       data->size_part_descs * sizeof(*new_loc));
1680 		kfree(data->part_descs_loc);
1681 		data->part_descs_loc = new_loc;
1682 		data->size_part_descs = new_size;
1683 	}
1684 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1685 }
1686 
1687 
1688 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1689 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1690 {
1691 	switch (ident) {
1692 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1693 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1694 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1695 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1696 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1697 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1698 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1699 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1700 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1701 		return handle_partition_descriptor(bh, data);
1702 	}
1703 	return NULL;
1704 }
1705 
1706 /*
1707  * Process a main/reserve volume descriptor sequence.
1708  *   @block		First block of first extent of the sequence.
1709  *   @lastblock		Lastblock of first extent of the sequence.
1710  *   @fileset		There we store extent containing root fileset
1711  *
1712  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1713  * sequence
1714  */
1715 static noinline int udf_process_sequence(
1716 		struct super_block *sb,
1717 		sector_t block, sector_t lastblock,
1718 		struct kernel_lb_addr *fileset)
1719 {
1720 	struct buffer_head *bh = NULL;
1721 	struct udf_vds_record *curr;
1722 	struct generic_desc *gd;
1723 	struct volDescPtr *vdp;
1724 	bool done = false;
1725 	uint32_t vdsn;
1726 	uint16_t ident;
1727 	int ret;
1728 	unsigned int indirections = 0;
1729 	struct desc_seq_scan_data data;
1730 	unsigned int i;
1731 
1732 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1733 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1734 	data.num_part_descs = 0;
1735 	data.part_descs_loc = kcalloc(data.size_part_descs,
1736 				      sizeof(*data.part_descs_loc),
1737 				      GFP_KERNEL);
1738 	if (!data.part_descs_loc)
1739 		return -ENOMEM;
1740 
1741 	/*
1742 	 * Read the main descriptor sequence and find which descriptors
1743 	 * are in it.
1744 	 */
1745 	for (; (!done && block <= lastblock); block++) {
1746 		bh = udf_read_tagged(sb, block, block, &ident);
1747 		if (!bh)
1748 			break;
1749 
1750 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1751 		gd = (struct generic_desc *)bh->b_data;
1752 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1753 		switch (ident) {
1754 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1755 			if (++indirections > UDF_MAX_TD_NESTING) {
1756 				udf_err(sb, "too many Volume Descriptor "
1757 					"Pointers (max %u supported)\n",
1758 					UDF_MAX_TD_NESTING);
1759 				brelse(bh);
1760 				ret = -EIO;
1761 				goto out;
1762 			}
1763 
1764 			vdp = (struct volDescPtr *)bh->b_data;
1765 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1766 			lastblock = le32_to_cpu(
1767 				vdp->nextVolDescSeqExt.extLength) >>
1768 				sb->s_blocksize_bits;
1769 			lastblock += block - 1;
1770 			/* For loop is going to increment 'block' again */
1771 			block--;
1772 			break;
1773 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1774 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1775 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1776 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1777 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1778 			curr = get_volume_descriptor_record(ident, bh, &data);
1779 			if (IS_ERR(curr)) {
1780 				brelse(bh);
1781 				ret = PTR_ERR(curr);
1782 				goto out;
1783 			}
1784 			/* Descriptor we don't care about? */
1785 			if (!curr)
1786 				break;
1787 			if (vdsn >= curr->volDescSeqNum) {
1788 				curr->volDescSeqNum = vdsn;
1789 				curr->block = block;
1790 			}
1791 			break;
1792 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1793 			done = true;
1794 			break;
1795 		}
1796 		brelse(bh);
1797 	}
1798 	/*
1799 	 * Now read interesting descriptors again and process them
1800 	 * in a suitable order
1801 	 */
1802 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1803 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1804 		ret = -EAGAIN;
1805 		goto out;
1806 	}
1807 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1808 	if (ret < 0)
1809 		goto out;
1810 
1811 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1812 		ret = udf_load_logicalvol(sb,
1813 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1814 				fileset);
1815 		if (ret < 0)
1816 			goto out;
1817 	}
1818 
1819 	/* Now handle prevailing Partition Descriptors */
1820 	for (i = 0; i < data.num_part_descs; i++) {
1821 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1822 		if (ret < 0)
1823 			goto out;
1824 	}
1825 	ret = 0;
1826 out:
1827 	kfree(data.part_descs_loc);
1828 	return ret;
1829 }
1830 
1831 /*
1832  * Load Volume Descriptor Sequence described by anchor in bh
1833  *
1834  * Returns <0 on error, 0 on success
1835  */
1836 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1837 			     struct kernel_lb_addr *fileset)
1838 {
1839 	struct anchorVolDescPtr *anchor;
1840 	sector_t main_s, main_e, reserve_s, reserve_e;
1841 	int ret;
1842 
1843 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1844 
1845 	/* Locate the main sequence */
1846 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1847 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1848 	main_e = main_e >> sb->s_blocksize_bits;
1849 	main_e += main_s - 1;
1850 
1851 	/* Locate the reserve sequence */
1852 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1853 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1854 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1855 	reserve_e += reserve_s - 1;
1856 
1857 	/* Process the main & reserve sequences */
1858 	/* responsible for finding the PartitionDesc(s) */
1859 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1860 	if (ret != -EAGAIN)
1861 		return ret;
1862 	udf_sb_free_partitions(sb);
1863 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1864 	if (ret < 0) {
1865 		udf_sb_free_partitions(sb);
1866 		/* No sequence was OK, return -EIO */
1867 		if (ret == -EAGAIN)
1868 			ret = -EIO;
1869 	}
1870 	return ret;
1871 }
1872 
1873 /*
1874  * Check whether there is an anchor block in the given block and
1875  * load Volume Descriptor Sequence if so.
1876  *
1877  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1878  * block
1879  */
1880 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1881 				  struct kernel_lb_addr *fileset)
1882 {
1883 	struct buffer_head *bh;
1884 	uint16_t ident;
1885 	int ret;
1886 
1887 	bh = udf_read_tagged(sb, block, block, &ident);
1888 	if (!bh)
1889 		return -EAGAIN;
1890 	if (ident != TAG_IDENT_AVDP) {
1891 		brelse(bh);
1892 		return -EAGAIN;
1893 	}
1894 	ret = udf_load_sequence(sb, bh, fileset);
1895 	brelse(bh);
1896 	return ret;
1897 }
1898 
1899 /*
1900  * Search for an anchor volume descriptor pointer.
1901  *
1902  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1903  * of anchors.
1904  */
1905 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1906 			    struct kernel_lb_addr *fileset)
1907 {
1908 	udf_pblk_t last[6];
1909 	int i;
1910 	struct udf_sb_info *sbi = UDF_SB(sb);
1911 	int last_count = 0;
1912 	int ret;
1913 
1914 	/* First try user provided anchor */
1915 	if (sbi->s_anchor) {
1916 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1917 		if (ret != -EAGAIN)
1918 			return ret;
1919 	}
1920 	/*
1921 	 * according to spec, anchor is in either:
1922 	 *     block 256
1923 	 *     lastblock-256
1924 	 *     lastblock
1925 	 *  however, if the disc isn't closed, it could be 512.
1926 	 */
1927 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1928 	if (ret != -EAGAIN)
1929 		return ret;
1930 	/*
1931 	 * The trouble is which block is the last one. Drives often misreport
1932 	 * this so we try various possibilities.
1933 	 */
1934 	last[last_count++] = *lastblock;
1935 	if (*lastblock >= 1)
1936 		last[last_count++] = *lastblock - 1;
1937 	last[last_count++] = *lastblock + 1;
1938 	if (*lastblock >= 2)
1939 		last[last_count++] = *lastblock - 2;
1940 	if (*lastblock >= 150)
1941 		last[last_count++] = *lastblock - 150;
1942 	if (*lastblock >= 152)
1943 		last[last_count++] = *lastblock - 152;
1944 
1945 	for (i = 0; i < last_count; i++) {
1946 		if (last[i] >= sb_bdev_nr_blocks(sb))
1947 			continue;
1948 		ret = udf_check_anchor_block(sb, last[i], fileset);
1949 		if (ret != -EAGAIN) {
1950 			if (!ret)
1951 				*lastblock = last[i];
1952 			return ret;
1953 		}
1954 		if (last[i] < 256)
1955 			continue;
1956 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1957 		if (ret != -EAGAIN) {
1958 			if (!ret)
1959 				*lastblock = last[i];
1960 			return ret;
1961 		}
1962 	}
1963 
1964 	/* Finally try block 512 in case media is open */
1965 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1966 }
1967 
1968 /*
1969  * Check Volume Structure Descriptor, find Anchor block and load Volume
1970  * Descriptor Sequence.
1971  *
1972  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1973  * block was not found.
1974  */
1975 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1976 			int silent, struct kernel_lb_addr *fileset)
1977 {
1978 	struct udf_sb_info *sbi = UDF_SB(sb);
1979 	int nsr = 0;
1980 	int ret;
1981 
1982 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1983 		if (!silent)
1984 			udf_warn(sb, "Bad block size\n");
1985 		return -EINVAL;
1986 	}
1987 	sbi->s_last_block = uopt->lastblock;
1988 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_NOVRS)) {
1989 		/* Check that it is NSR02 compliant */
1990 		nsr = udf_check_vsd(sb);
1991 		if (!nsr) {
1992 			if (!silent)
1993 				udf_warn(sb, "No VRS found\n");
1994 			return -EINVAL;
1995 		}
1996 		if (nsr == -1)
1997 			udf_debug("Failed to read sector at offset %d. "
1998 				  "Assuming open disc. Skipping validity "
1999 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
2000 		if (!sbi->s_last_block)
2001 			sbi->s_last_block = udf_get_last_block(sb);
2002 	} else {
2003 		udf_debug("Validity check skipped because of novrs option\n");
2004 	}
2005 
2006 	/* Look for anchor block and load Volume Descriptor Sequence */
2007 	sbi->s_anchor = uopt->anchor;
2008 	ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
2009 	if (ret < 0) {
2010 		if (!silent && ret == -EAGAIN)
2011 			udf_warn(sb, "No anchor found\n");
2012 		return ret;
2013 	}
2014 	return 0;
2015 }
2016 
2017 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2018 {
2019 	struct timespec64 ts;
2020 
2021 	ktime_get_real_ts64(&ts);
2022 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2023 	lvid->descTag.descCRC = cpu_to_le16(
2024 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2025 			le16_to_cpu(lvid->descTag.descCRCLength)));
2026 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2027 }
2028 
2029 static void udf_open_lvid(struct super_block *sb)
2030 {
2031 	struct udf_sb_info *sbi = UDF_SB(sb);
2032 	struct buffer_head *bh = sbi->s_lvid_bh;
2033 	struct logicalVolIntegrityDesc *lvid;
2034 	struct logicalVolIntegrityDescImpUse *lvidiu;
2035 
2036 	if (!bh)
2037 		return;
2038 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2039 	lvidiu = udf_sb_lvidiu(sb);
2040 	if (!lvidiu)
2041 		return;
2042 
2043 	mutex_lock(&sbi->s_alloc_mutex);
2044 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2045 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2046 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2047 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2048 	else
2049 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2050 
2051 	udf_finalize_lvid(lvid);
2052 	mark_buffer_dirty(bh);
2053 	sbi->s_lvid_dirty = 0;
2054 	mutex_unlock(&sbi->s_alloc_mutex);
2055 	/* Make opening of filesystem visible on the media immediately */
2056 	sync_dirty_buffer(bh);
2057 }
2058 
2059 static void udf_close_lvid(struct super_block *sb)
2060 {
2061 	struct udf_sb_info *sbi = UDF_SB(sb);
2062 	struct buffer_head *bh = sbi->s_lvid_bh;
2063 	struct logicalVolIntegrityDesc *lvid;
2064 	struct logicalVolIntegrityDescImpUse *lvidiu;
2065 
2066 	if (!bh)
2067 		return;
2068 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2069 	lvidiu = udf_sb_lvidiu(sb);
2070 	if (!lvidiu)
2071 		return;
2072 
2073 	mutex_lock(&sbi->s_alloc_mutex);
2074 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2075 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2076 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2077 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2078 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2079 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2080 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2081 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2082 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2083 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2084 
2085 	/*
2086 	 * We set buffer uptodate unconditionally here to avoid spurious
2087 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2088 	 * the buffer as !uptodate
2089 	 */
2090 	set_buffer_uptodate(bh);
2091 	udf_finalize_lvid(lvid);
2092 	mark_buffer_dirty(bh);
2093 	sbi->s_lvid_dirty = 0;
2094 	mutex_unlock(&sbi->s_alloc_mutex);
2095 	/* Make closing of filesystem visible on the media immediately */
2096 	sync_dirty_buffer(bh);
2097 }
2098 
2099 u64 lvid_get_unique_id(struct super_block *sb)
2100 {
2101 	struct buffer_head *bh;
2102 	struct udf_sb_info *sbi = UDF_SB(sb);
2103 	struct logicalVolIntegrityDesc *lvid;
2104 	struct logicalVolHeaderDesc *lvhd;
2105 	u64 uniqueID;
2106 	u64 ret;
2107 
2108 	bh = sbi->s_lvid_bh;
2109 	if (!bh)
2110 		return 0;
2111 
2112 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2113 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2114 
2115 	mutex_lock(&sbi->s_alloc_mutex);
2116 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2117 	if (!(++uniqueID & 0xFFFFFFFF))
2118 		uniqueID += 16;
2119 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2120 	udf_updated_lvid(sb);
2121 	mutex_unlock(&sbi->s_alloc_mutex);
2122 
2123 	return ret;
2124 }
2125 
2126 static int udf_fill_super(struct super_block *sb, struct fs_context *fc)
2127 {
2128 	int ret = -EINVAL;
2129 	struct inode *inode = NULL;
2130 	struct udf_options *uopt = fc->fs_private;
2131 	struct kernel_lb_addr rootdir, fileset;
2132 	struct udf_sb_info *sbi;
2133 	bool lvid_open = false;
2134 	int silent = fc->sb_flags & SB_SILENT;
2135 
2136 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2137 	if (!sbi)
2138 		return -ENOMEM;
2139 
2140 	sb->s_fs_info = sbi;
2141 
2142 	mutex_init(&sbi->s_alloc_mutex);
2143 
2144 	fileset.logicalBlockNum = 0xFFFFFFFF;
2145 	fileset.partitionReferenceNum = 0xFFFF;
2146 
2147 	sbi->s_flags = uopt->flags;
2148 	sbi->s_uid = uopt->uid;
2149 	sbi->s_gid = uopt->gid;
2150 	sbi->s_umask = uopt->umask;
2151 	sbi->s_fmode = uopt->fmode;
2152 	sbi->s_dmode = uopt->dmode;
2153 	sbi->s_nls_map = uopt->nls_map;
2154 	uopt->nls_map = NULL;
2155 	rwlock_init(&sbi->s_cred_lock);
2156 
2157 	if (uopt->session == 0xFFFFFFFF)
2158 		sbi->s_session = udf_get_last_session(sb);
2159 	else
2160 		sbi->s_session = uopt->session;
2161 
2162 	udf_debug("Multi-session=%d\n", sbi->s_session);
2163 
2164 	/* Fill in the rest of the superblock */
2165 	sb->s_op = &udf_sb_ops;
2166 	sb->s_export_op = &udf_export_ops;
2167 
2168 	sb->s_magic = UDF_SUPER_MAGIC;
2169 	sb->s_time_gran = 1000;
2170 
2171 	if (uopt->flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2172 		ret = udf_load_vrs(sb, uopt, silent, &fileset);
2173 	} else {
2174 		uopt->blocksize = bdev_logical_block_size(sb->s_bdev);
2175 		while (uopt->blocksize <= 4096) {
2176 			ret = udf_load_vrs(sb, uopt, silent, &fileset);
2177 			if (ret < 0) {
2178 				if (!silent && ret != -EACCES) {
2179 					pr_notice("Scanning with blocksize %u failed\n",
2180 						  uopt->blocksize);
2181 				}
2182 				brelse(sbi->s_lvid_bh);
2183 				sbi->s_lvid_bh = NULL;
2184 				/*
2185 				 * EACCES is special - we want to propagate to
2186 				 * upper layers that we cannot handle RW mount.
2187 				 */
2188 				if (ret == -EACCES)
2189 					break;
2190 			} else
2191 				break;
2192 
2193 			uopt->blocksize <<= 1;
2194 		}
2195 	}
2196 	if (ret < 0) {
2197 		if (ret == -EAGAIN) {
2198 			udf_warn(sb, "No partition found (1)\n");
2199 			ret = -EINVAL;
2200 		}
2201 		goto error_out;
2202 	}
2203 
2204 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2205 
2206 	if (sbi->s_lvid_bh) {
2207 		struct logicalVolIntegrityDescImpUse *lvidiu =
2208 							udf_sb_lvidiu(sb);
2209 		uint16_t minUDFReadRev;
2210 		uint16_t minUDFWriteRev;
2211 
2212 		if (!lvidiu) {
2213 			ret = -EINVAL;
2214 			goto error_out;
2215 		}
2216 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2217 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2218 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2219 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2220 				minUDFReadRev,
2221 				UDF_MAX_READ_VERSION);
2222 			ret = -EINVAL;
2223 			goto error_out;
2224 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2225 			if (!sb_rdonly(sb)) {
2226 				ret = -EACCES;
2227 				goto error_out;
2228 			}
2229 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2230 		}
2231 
2232 		sbi->s_udfrev = minUDFWriteRev;
2233 
2234 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2235 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2236 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2237 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2238 	}
2239 
2240 	if (!sbi->s_partitions) {
2241 		udf_warn(sb, "No partition found (2)\n");
2242 		ret = -EINVAL;
2243 		goto error_out;
2244 	}
2245 
2246 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2247 			UDF_PART_FLAG_READ_ONLY) {
2248 		if (!sb_rdonly(sb)) {
2249 			ret = -EACCES;
2250 			goto error_out;
2251 		}
2252 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2253 	}
2254 
2255 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2256 	if (ret < 0) {
2257 		udf_warn(sb, "No fileset found\n");
2258 		goto error_out;
2259 	}
2260 
2261 	if (!silent) {
2262 		struct timestamp ts;
2263 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2264 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2265 			 sbi->s_volume_ident,
2266 			 le16_to_cpu(ts.year), ts.month, ts.day,
2267 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2268 	}
2269 	if (!sb_rdonly(sb)) {
2270 		udf_open_lvid(sb);
2271 		lvid_open = true;
2272 	}
2273 
2274 	/* Assign the root inode */
2275 	/* assign inodes by physical block number */
2276 	/* perhaps it's not extensible enough, but for now ... */
2277 	inode = udf_iget(sb, &rootdir);
2278 	if (IS_ERR(inode)) {
2279 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2280 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2281 		ret = PTR_ERR(inode);
2282 		goto error_out;
2283 	}
2284 
2285 	/* Allocate a dentry for the root inode */
2286 	sb->s_root = d_make_root(inode);
2287 	if (!sb->s_root) {
2288 		udf_err(sb, "Couldn't allocate root dentry\n");
2289 		ret = -ENOMEM;
2290 		goto error_out;
2291 	}
2292 	sb->s_maxbytes = UDF_MAX_FILESIZE;
2293 	sb->s_max_links = UDF_MAX_LINKS;
2294 	return 0;
2295 
2296 error_out:
2297 	iput(sbi->s_vat_inode);
2298 	unload_nls(uopt->nls_map);
2299 	if (lvid_open)
2300 		udf_close_lvid(sb);
2301 	brelse(sbi->s_lvid_bh);
2302 	udf_sb_free_partitions(sb);
2303 	kfree(sbi);
2304 	sb->s_fs_info = NULL;
2305 
2306 	return ret;
2307 }
2308 
2309 void _udf_err(struct super_block *sb, const char *function,
2310 	      const char *fmt, ...)
2311 {
2312 	struct va_format vaf;
2313 	va_list args;
2314 
2315 	va_start(args, fmt);
2316 
2317 	vaf.fmt = fmt;
2318 	vaf.va = &args;
2319 
2320 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2321 
2322 	va_end(args);
2323 }
2324 
2325 void _udf_warn(struct super_block *sb, const char *function,
2326 	       const char *fmt, ...)
2327 {
2328 	struct va_format vaf;
2329 	va_list args;
2330 
2331 	va_start(args, fmt);
2332 
2333 	vaf.fmt = fmt;
2334 	vaf.va = &args;
2335 
2336 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2337 
2338 	va_end(args);
2339 }
2340 
2341 static void udf_put_super(struct super_block *sb)
2342 {
2343 	struct udf_sb_info *sbi;
2344 
2345 	sbi = UDF_SB(sb);
2346 
2347 	iput(sbi->s_vat_inode);
2348 	unload_nls(sbi->s_nls_map);
2349 	if (!sb_rdonly(sb))
2350 		udf_close_lvid(sb);
2351 	brelse(sbi->s_lvid_bh);
2352 	udf_sb_free_partitions(sb);
2353 	mutex_destroy(&sbi->s_alloc_mutex);
2354 	kfree(sb->s_fs_info);
2355 	sb->s_fs_info = NULL;
2356 }
2357 
2358 static int udf_sync_fs(struct super_block *sb, int wait)
2359 {
2360 	struct udf_sb_info *sbi = UDF_SB(sb);
2361 
2362 	mutex_lock(&sbi->s_alloc_mutex);
2363 	if (sbi->s_lvid_dirty) {
2364 		struct buffer_head *bh = sbi->s_lvid_bh;
2365 		struct logicalVolIntegrityDesc *lvid;
2366 
2367 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2368 		udf_finalize_lvid(lvid);
2369 
2370 		/*
2371 		 * Blockdevice will be synced later so we don't have to submit
2372 		 * the buffer for IO
2373 		 */
2374 		mark_buffer_dirty(bh);
2375 		sbi->s_lvid_dirty = 0;
2376 	}
2377 	mutex_unlock(&sbi->s_alloc_mutex);
2378 
2379 	return 0;
2380 }
2381 
2382 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2383 {
2384 	struct super_block *sb = dentry->d_sb;
2385 	struct udf_sb_info *sbi = UDF_SB(sb);
2386 	struct logicalVolIntegrityDescImpUse *lvidiu;
2387 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2388 
2389 	lvidiu = udf_sb_lvidiu(sb);
2390 	buf->f_type = UDF_SUPER_MAGIC;
2391 	buf->f_bsize = sb->s_blocksize;
2392 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2393 	buf->f_bfree = udf_count_free(sb);
2394 	buf->f_bavail = buf->f_bfree;
2395 	/*
2396 	 * Let's pretend each free block is also a free 'inode' since UDF does
2397 	 * not have separate preallocated table of inodes.
2398 	 */
2399 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2400 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2401 			+ buf->f_bfree;
2402 	buf->f_ffree = buf->f_bfree;
2403 	buf->f_namelen = UDF_NAME_LEN;
2404 	buf->f_fsid = u64_to_fsid(id);
2405 
2406 	return 0;
2407 }
2408 
2409 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2410 					  struct udf_bitmap *bitmap)
2411 {
2412 	struct buffer_head *bh = NULL;
2413 	unsigned int accum = 0;
2414 	int index;
2415 	udf_pblk_t block = 0, newblock;
2416 	struct kernel_lb_addr loc;
2417 	uint32_t bytes;
2418 	uint8_t *ptr;
2419 	uint16_t ident;
2420 	struct spaceBitmapDesc *bm;
2421 
2422 	loc.logicalBlockNum = bitmap->s_extPosition;
2423 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2424 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2425 
2426 	if (!bh) {
2427 		udf_err(sb, "udf_count_free failed\n");
2428 		goto out;
2429 	} else if (ident != TAG_IDENT_SBD) {
2430 		brelse(bh);
2431 		udf_err(sb, "udf_count_free failed\n");
2432 		goto out;
2433 	}
2434 
2435 	bm = (struct spaceBitmapDesc *)bh->b_data;
2436 	bytes = le32_to_cpu(bm->numOfBytes);
2437 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2438 	ptr = (uint8_t *)bh->b_data;
2439 
2440 	while (bytes > 0) {
2441 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2442 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2443 					cur_bytes * 8);
2444 		bytes -= cur_bytes;
2445 		if (bytes) {
2446 			brelse(bh);
2447 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2448 			bh = sb_bread(sb, newblock);
2449 			if (!bh) {
2450 				udf_debug("read failed\n");
2451 				goto out;
2452 			}
2453 			index = 0;
2454 			ptr = (uint8_t *)bh->b_data;
2455 		}
2456 	}
2457 	brelse(bh);
2458 out:
2459 	return accum;
2460 }
2461 
2462 static unsigned int udf_count_free_table(struct super_block *sb,
2463 					 struct inode *table)
2464 {
2465 	unsigned int accum = 0;
2466 	uint32_t elen;
2467 	struct kernel_lb_addr eloc;
2468 	struct extent_position epos;
2469 
2470 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2471 	epos.block = UDF_I(table)->i_location;
2472 	epos.offset = sizeof(struct unallocSpaceEntry);
2473 	epos.bh = NULL;
2474 
2475 	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2476 		accum += (elen >> table->i_sb->s_blocksize_bits);
2477 
2478 	brelse(epos.bh);
2479 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2480 
2481 	return accum;
2482 }
2483 
2484 static unsigned int udf_count_free(struct super_block *sb)
2485 {
2486 	unsigned int accum = 0;
2487 	struct udf_sb_info *sbi = UDF_SB(sb);
2488 	struct udf_part_map *map;
2489 	unsigned int part = sbi->s_partition;
2490 	int ptype = sbi->s_partmaps[part].s_partition_type;
2491 
2492 	if (ptype == UDF_METADATA_MAP25) {
2493 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2494 							s_phys_partition_ref;
2495 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2496 		/*
2497 		 * Filesystems with VAT are append-only and we cannot write to
2498  		 * them. Let's just report 0 here.
2499 		 */
2500 		return 0;
2501 	}
2502 
2503 	if (sbi->s_lvid_bh) {
2504 		struct logicalVolIntegrityDesc *lvid =
2505 			(struct logicalVolIntegrityDesc *)
2506 			sbi->s_lvid_bh->b_data;
2507 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2508 			accum = le32_to_cpu(
2509 					lvid->freeSpaceTable[part]);
2510 			if (accum == 0xFFFFFFFF)
2511 				accum = 0;
2512 		}
2513 	}
2514 
2515 	if (accum)
2516 		return accum;
2517 
2518 	map = &sbi->s_partmaps[part];
2519 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2520 		accum += udf_count_free_bitmap(sb,
2521 					       map->s_uspace.s_bitmap);
2522 	}
2523 	if (accum)
2524 		return accum;
2525 
2526 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2527 		accum += udf_count_free_table(sb,
2528 					      map->s_uspace.s_table);
2529 	}
2530 	return accum;
2531 }
2532 
2533 MODULE_AUTHOR("Ben Fennema");
2534 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2535 MODULE_LICENSE("GPL");
2536 module_init(init_udf_fs)
2537 module_exit(exit_udf_fs)
2538