xref: /linux/fs/udf/super.c (revision 6c363eafc4d637ac4bd83d4a7dd06dd3cfbe7c5f)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100 
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 	struct logicalVolIntegrityDesc *lvid;
104 	unsigned int partnum;
105 	unsigned int offset;
106 
107 	if (!UDF_SB(sb)->s_lvid_bh)
108 		return NULL;
109 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 	partnum = le32_to_cpu(lvid->numOfPartitions);
111 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
113 	     (2 * sizeof(uint32_t)) < partnum) {
114 		udf_err(sb, "Logical volume integrity descriptor corrupted "
115 			"(numOfPartitions = %u)!\n", partnum);
116 		return NULL;
117 	}
118 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
119 	offset = partnum * 2 * sizeof(uint32_t);
120 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
121 }
122 
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125 		      int flags, const char *dev_name, void *data)
126 {
127 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
128 }
129 
130 static struct file_system_type udf_fstype = {
131 	.owner		= THIS_MODULE,
132 	.name		= "udf",
133 	.mount		= udf_mount,
134 	.kill_sb	= kill_block_super,
135 	.fs_flags	= FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("udf");
138 
139 static struct kmem_cache *udf_inode_cachep;
140 
141 static struct inode *udf_alloc_inode(struct super_block *sb)
142 {
143 	struct udf_inode_info *ei;
144 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145 	if (!ei)
146 		return NULL;
147 
148 	ei->i_unique = 0;
149 	ei->i_lenExtents = 0;
150 	ei->i_lenStreams = 0;
151 	ei->i_next_alloc_block = 0;
152 	ei->i_next_alloc_goal = 0;
153 	ei->i_strat4096 = 0;
154 	ei->i_streamdir = 0;
155 	init_rwsem(&ei->i_data_sem);
156 	ei->cached_extent.lstart = -1;
157 	spin_lock_init(&ei->i_extent_cache_lock);
158 
159 	return &ei->vfs_inode;
160 }
161 
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166 
167 static void init_once(void *foo)
168 {
169 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170 
171 	ei->i_data = NULL;
172 	inode_init_once(&ei->vfs_inode);
173 }
174 
175 static int __init init_inodecache(void)
176 {
177 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178 					     sizeof(struct udf_inode_info),
179 					     0, (SLAB_RECLAIM_ACCOUNT |
180 						 SLAB_MEM_SPREAD |
181 						 SLAB_ACCOUNT),
182 					     init_once);
183 	if (!udf_inode_cachep)
184 		return -ENOMEM;
185 	return 0;
186 }
187 
188 static void destroy_inodecache(void)
189 {
190 	/*
191 	 * Make sure all delayed rcu free inodes are flushed before we
192 	 * destroy cache.
193 	 */
194 	rcu_barrier();
195 	kmem_cache_destroy(udf_inode_cachep);
196 }
197 
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200 	.alloc_inode	= udf_alloc_inode,
201 	.free_inode	= udf_free_in_core_inode,
202 	.write_inode	= udf_write_inode,
203 	.evict_inode	= udf_evict_inode,
204 	.put_super	= udf_put_super,
205 	.sync_fs	= udf_sync_fs,
206 	.statfs		= udf_statfs,
207 	.remount_fs	= udf_remount_fs,
208 	.show_options	= udf_show_options,
209 };
210 
211 struct udf_options {
212 	unsigned char novrs;
213 	unsigned int blocksize;
214 	unsigned int session;
215 	unsigned int lastblock;
216 	unsigned int anchor;
217 	unsigned int flags;
218 	umode_t umask;
219 	kgid_t gid;
220 	kuid_t uid;
221 	umode_t fmode;
222 	umode_t dmode;
223 	struct nls_table *nls_map;
224 };
225 
226 static int __init init_udf_fs(void)
227 {
228 	int err;
229 
230 	err = init_inodecache();
231 	if (err)
232 		goto out1;
233 	err = register_filesystem(&udf_fstype);
234 	if (err)
235 		goto out;
236 
237 	return 0;
238 
239 out:
240 	destroy_inodecache();
241 
242 out1:
243 	return err;
244 }
245 
246 static void __exit exit_udf_fs(void)
247 {
248 	unregister_filesystem(&udf_fstype);
249 	destroy_inodecache();
250 }
251 
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254 	struct udf_sb_info *sbi = UDF_SB(sb);
255 
256 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257 	if (!sbi->s_partmaps) {
258 		sbi->s_partitions = 0;
259 		return -ENOMEM;
260 	}
261 
262 	sbi->s_partitions = count;
263 	return 0;
264 }
265 
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268 	int i;
269 	int nr_groups = bitmap->s_nr_groups;
270 
271 	for (i = 0; i < nr_groups; i++)
272 		brelse(bitmap->s_block_bitmap[i]);
273 
274 	kvfree(bitmap);
275 }
276 
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279 	int i;
280 	struct udf_meta_data *mdata;
281 
282 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 		iput(map->s_uspace.s_table);
284 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
287 		for (i = 0; i < 4; i++)
288 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
290 		mdata = &map->s_type_specific.s_metadata;
291 		iput(mdata->s_metadata_fe);
292 		mdata->s_metadata_fe = NULL;
293 
294 		iput(mdata->s_mirror_fe);
295 		mdata->s_mirror_fe = NULL;
296 
297 		iput(mdata->s_bitmap_fe);
298 		mdata->s_bitmap_fe = NULL;
299 	}
300 }
301 
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304 	struct udf_sb_info *sbi = UDF_SB(sb);
305 	int i;
306 
307 	if (!sbi->s_partmaps)
308 		return;
309 	for (i = 0; i < sbi->s_partitions; i++)
310 		udf_free_partition(&sbi->s_partmaps[i]);
311 	kfree(sbi->s_partmaps);
312 	sbi->s_partmaps = NULL;
313 }
314 
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317 	struct super_block *sb = root->d_sb;
318 	struct udf_sb_info *sbi = UDF_SB(sb);
319 
320 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321 		seq_puts(seq, ",nostrict");
322 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325 		seq_puts(seq, ",unhide");
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327 		seq_puts(seq, ",undelete");
328 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329 		seq_puts(seq, ",noadinicb");
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331 		seq_puts(seq, ",shortad");
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333 		seq_puts(seq, ",uid=forget");
334 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335 		seq_puts(seq, ",gid=forget");
336 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340 	if (sbi->s_umask != 0)
341 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
342 	if (sbi->s_fmode != UDF_INVALID_MODE)
343 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344 	if (sbi->s_dmode != UDF_INVALID_MODE)
345 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347 		seq_printf(seq, ",session=%d", sbi->s_session);
348 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350 	if (sbi->s_anchor != 0)
351 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353 		seq_puts(seq, ",utf8");
354 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
356 
357 	return 0;
358 }
359 
360 /*
361  * udf_parse_options
362  *
363  * PURPOSE
364  *	Parse mount options.
365  *
366  * DESCRIPTION
367  *	The following mount options are supported:
368  *
369  *	gid=		Set the default group.
370  *	umask=		Set the default umask.
371  *	mode=		Set the default file permissions.
372  *	dmode=		Set the default directory permissions.
373  *	uid=		Set the default user.
374  *	bs=		Set the block size.
375  *	unhide		Show otherwise hidden files.
376  *	undelete	Show deleted files in lists.
377  *	adinicb		Embed data in the inode (default)
378  *	noadinicb	Don't embed data in the inode
379  *	shortad		Use short ad's
380  *	longad		Use long ad's (default)
381  *	nostrict	Unset strict conformance
382  *	iocharset=	Set the NLS character set
383  *
384  *	The remaining are for debugging and disaster recovery:
385  *
386  *	novrs		Skip volume sequence recognition
387  *
388  *	The following expect a offset from 0.
389  *
390  *	session=	Set the CDROM session (default= last session)
391  *	anchor=		Override standard anchor location. (default= 256)
392  *	volume=		Override the VolumeDesc location. (unused)
393  *	partition=	Override the PartitionDesc location. (unused)
394  *	lastblock=	Set the last block of the filesystem/
395  *
396  *	The following expect a offset from the partition root.
397  *
398  *	fileset=	Override the fileset block location. (unused)
399  *	rootdir=	Override the root directory location. (unused)
400  *		WARNING: overriding the rootdir to a non-directory may
401  *		yield highly unpredictable results.
402  *
403  * PRE-CONDITIONS
404  *	options		Pointer to mount options string.
405  *	uopts		Pointer to mount options variable.
406  *
407  * POST-CONDITIONS
408  *	<return>	1	Mount options parsed okay.
409  *	<return>	0	Error parsing mount options.
410  *
411  * HISTORY
412  *	July 1, 1997 - Andrew E. Mileski
413  *	Written, tested, and released.
414  */
415 
416 enum {
417 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421 	Opt_rootdir, Opt_utf8, Opt_iocharset,
422 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423 	Opt_fmode, Opt_dmode
424 };
425 
426 static const match_table_t tokens = {
427 	{Opt_novrs,	"novrs"},
428 	{Opt_nostrict,	"nostrict"},
429 	{Opt_bs,	"bs=%u"},
430 	{Opt_unhide,	"unhide"},
431 	{Opt_undelete,	"undelete"},
432 	{Opt_noadinicb,	"noadinicb"},
433 	{Opt_adinicb,	"adinicb"},
434 	{Opt_shortad,	"shortad"},
435 	{Opt_longad,	"longad"},
436 	{Opt_uforget,	"uid=forget"},
437 	{Opt_uignore,	"uid=ignore"},
438 	{Opt_gforget,	"gid=forget"},
439 	{Opt_gignore,	"gid=ignore"},
440 	{Opt_gid,	"gid=%u"},
441 	{Opt_uid,	"uid=%u"},
442 	{Opt_umask,	"umask=%o"},
443 	{Opt_session,	"session=%u"},
444 	{Opt_lastblock,	"lastblock=%u"},
445 	{Opt_anchor,	"anchor=%u"},
446 	{Opt_volume,	"volume=%u"},
447 	{Opt_partition,	"partition=%u"},
448 	{Opt_fileset,	"fileset=%u"},
449 	{Opt_rootdir,	"rootdir=%u"},
450 	{Opt_utf8,	"utf8"},
451 	{Opt_iocharset,	"iocharset=%s"},
452 	{Opt_fmode,     "mode=%o"},
453 	{Opt_dmode,     "dmode=%o"},
454 	{Opt_err,	NULL}
455 };
456 
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458 			     bool remount)
459 {
460 	char *p;
461 	int option;
462 	unsigned int uv;
463 
464 	uopt->novrs = 0;
465 	uopt->session = 0xFFFFFFFF;
466 	uopt->lastblock = 0;
467 	uopt->anchor = 0;
468 
469 	if (!options)
470 		return 1;
471 
472 	while ((p = strsep(&options, ",")) != NULL) {
473 		substring_t args[MAX_OPT_ARGS];
474 		int token;
475 		unsigned n;
476 		if (!*p)
477 			continue;
478 
479 		token = match_token(p, tokens, args);
480 		switch (token) {
481 		case Opt_novrs:
482 			uopt->novrs = 1;
483 			break;
484 		case Opt_bs:
485 			if (match_int(&args[0], &option))
486 				return 0;
487 			n = option;
488 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
489 				return 0;
490 			uopt->blocksize = n;
491 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
492 			break;
493 		case Opt_unhide:
494 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
495 			break;
496 		case Opt_undelete:
497 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
498 			break;
499 		case Opt_noadinicb:
500 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
501 			break;
502 		case Opt_adinicb:
503 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
504 			break;
505 		case Opt_shortad:
506 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
507 			break;
508 		case Opt_longad:
509 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
510 			break;
511 		case Opt_gid:
512 			if (match_uint(args, &uv))
513 				return 0;
514 			uopt->gid = make_kgid(current_user_ns(), uv);
515 			if (!gid_valid(uopt->gid))
516 				return 0;
517 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
518 			break;
519 		case Opt_uid:
520 			if (match_uint(args, &uv))
521 				return 0;
522 			uopt->uid = make_kuid(current_user_ns(), uv);
523 			if (!uid_valid(uopt->uid))
524 				return 0;
525 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
526 			break;
527 		case Opt_umask:
528 			if (match_octal(args, &option))
529 				return 0;
530 			uopt->umask = option;
531 			break;
532 		case Opt_nostrict:
533 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
534 			break;
535 		case Opt_session:
536 			if (match_int(args, &option))
537 				return 0;
538 			uopt->session = option;
539 			if (!remount)
540 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
541 			break;
542 		case Opt_lastblock:
543 			if (match_int(args, &option))
544 				return 0;
545 			uopt->lastblock = option;
546 			if (!remount)
547 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
548 			break;
549 		case Opt_anchor:
550 			if (match_int(args, &option))
551 				return 0;
552 			uopt->anchor = option;
553 			break;
554 		case Opt_volume:
555 		case Opt_partition:
556 		case Opt_fileset:
557 		case Opt_rootdir:
558 			/* Ignored (never implemented properly) */
559 			break;
560 		case Opt_utf8:
561 			uopt->flags |= (1 << UDF_FLAG_UTF8);
562 			break;
563 		case Opt_iocharset:
564 			if (!remount) {
565 				if (uopt->nls_map)
566 					unload_nls(uopt->nls_map);
567 				/*
568 				 * load_nls() failure is handled later in
569 				 * udf_fill_super() after all options are
570 				 * parsed.
571 				 */
572 				uopt->nls_map = load_nls(args[0].from);
573 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
574 			}
575 			break;
576 		case Opt_uforget:
577 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
578 			break;
579 		case Opt_uignore:
580 		case Opt_gignore:
581 			/* These options are superseeded by uid=<number> */
582 			break;
583 		case Opt_gforget:
584 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
585 			break;
586 		case Opt_fmode:
587 			if (match_octal(args, &option))
588 				return 0;
589 			uopt->fmode = option & 0777;
590 			break;
591 		case Opt_dmode:
592 			if (match_octal(args, &option))
593 				return 0;
594 			uopt->dmode = option & 0777;
595 			break;
596 		default:
597 			pr_err("bad mount option \"%s\" or missing value\n", p);
598 			return 0;
599 		}
600 	}
601 	return 1;
602 }
603 
604 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
605 {
606 	struct udf_options uopt;
607 	struct udf_sb_info *sbi = UDF_SB(sb);
608 	int error = 0;
609 
610 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
611 		return -EACCES;
612 
613 	sync_filesystem(sb);
614 
615 	uopt.flags = sbi->s_flags;
616 	uopt.uid   = sbi->s_uid;
617 	uopt.gid   = sbi->s_gid;
618 	uopt.umask = sbi->s_umask;
619 	uopt.fmode = sbi->s_fmode;
620 	uopt.dmode = sbi->s_dmode;
621 	uopt.nls_map = NULL;
622 
623 	if (!udf_parse_options(options, &uopt, true))
624 		return -EINVAL;
625 
626 	write_lock(&sbi->s_cred_lock);
627 	sbi->s_flags = uopt.flags;
628 	sbi->s_uid   = uopt.uid;
629 	sbi->s_gid   = uopt.gid;
630 	sbi->s_umask = uopt.umask;
631 	sbi->s_fmode = uopt.fmode;
632 	sbi->s_dmode = uopt.dmode;
633 	write_unlock(&sbi->s_cred_lock);
634 
635 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
636 		goto out_unlock;
637 
638 	if (*flags & SB_RDONLY)
639 		udf_close_lvid(sb);
640 	else
641 		udf_open_lvid(sb);
642 
643 out_unlock:
644 	return error;
645 }
646 
647 /*
648  * Check VSD descriptor. Returns -1 in case we are at the end of volume
649  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
650  * we found one of NSR descriptors we are looking for.
651  */
652 static int identify_vsd(const struct volStructDesc *vsd)
653 {
654 	int ret = 0;
655 
656 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
657 		switch (vsd->structType) {
658 		case 0:
659 			udf_debug("ISO9660 Boot Record found\n");
660 			break;
661 		case 1:
662 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
663 			break;
664 		case 2:
665 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
666 			break;
667 		case 3:
668 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
669 			break;
670 		case 255:
671 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
672 			break;
673 		default:
674 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
675 			break;
676 		}
677 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
678 		; /* ret = 0 */
679 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
680 		ret = 1;
681 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
682 		ret = 1;
683 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
684 		; /* ret = 0 */
685 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
686 		; /* ret = 0 */
687 	else {
688 		/* TEA01 or invalid id : end of volume recognition area */
689 		ret = -1;
690 	}
691 
692 	return ret;
693 }
694 
695 /*
696  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
697  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
698  * @return   1 if NSR02 or NSR03 found,
699  *	    -1 if first sector read error, 0 otherwise
700  */
701 static int udf_check_vsd(struct super_block *sb)
702 {
703 	struct volStructDesc *vsd = NULL;
704 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
705 	int sectorsize;
706 	struct buffer_head *bh = NULL;
707 	int nsr = 0;
708 	struct udf_sb_info *sbi;
709 	loff_t session_offset;
710 
711 	sbi = UDF_SB(sb);
712 	if (sb->s_blocksize < sizeof(struct volStructDesc))
713 		sectorsize = sizeof(struct volStructDesc);
714 	else
715 		sectorsize = sb->s_blocksize;
716 
717 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
718 	sector += session_offset;
719 
720 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
721 		  (unsigned int)(sector >> sb->s_blocksize_bits),
722 		  sb->s_blocksize);
723 	/* Process the sequence (if applicable). The hard limit on the sector
724 	 * offset is arbitrary, hopefully large enough so that all valid UDF
725 	 * filesystems will be recognised. There is no mention of an upper
726 	 * bound to the size of the volume recognition area in the standard.
727 	 *  The limit will prevent the code to read all the sectors of a
728 	 * specially crafted image (like a bluray disc full of CD001 sectors),
729 	 * potentially causing minutes or even hours of uninterruptible I/O
730 	 * activity. This actually happened with uninitialised SSD partitions
731 	 * (all 0xFF) before the check for the limit and all valid IDs were
732 	 * added */
733 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
734 		/* Read a block */
735 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
736 		if (!bh)
737 			break;
738 
739 		vsd = (struct volStructDesc *)(bh->b_data +
740 					      (sector & (sb->s_blocksize - 1)));
741 		nsr = identify_vsd(vsd);
742 		/* Found NSR or end? */
743 		if (nsr) {
744 			brelse(bh);
745 			break;
746 		}
747 		/*
748 		 * Special handling for improperly formatted VRS (e.g., Win10)
749 		 * where components are separated by 2048 bytes even though
750 		 * sectors are 4K
751 		 */
752 		if (sb->s_blocksize == 4096) {
753 			nsr = identify_vsd(vsd + 1);
754 			/* Ignore unknown IDs... */
755 			if (nsr < 0)
756 				nsr = 0;
757 		}
758 		brelse(bh);
759 	}
760 
761 	if (nsr > 0)
762 		return 1;
763 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
764 		return -1;
765 	else
766 		return 0;
767 }
768 
769 static int udf_verify_domain_identifier(struct super_block *sb,
770 					struct regid *ident, char *dname)
771 {
772 	struct domainIdentSuffix *suffix;
773 
774 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
775 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
776 		goto force_ro;
777 	}
778 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
779 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
780 			 dname);
781 		goto force_ro;
782 	}
783 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
784 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
785 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
786 		if (!sb_rdonly(sb)) {
787 			udf_warn(sb, "Descriptor for %s marked write protected."
788 				 " Forcing read only mount.\n", dname);
789 		}
790 		goto force_ro;
791 	}
792 	return 0;
793 
794 force_ro:
795 	if (!sb_rdonly(sb))
796 		return -EACCES;
797 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
798 	return 0;
799 }
800 
801 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
802 			    struct kernel_lb_addr *root)
803 {
804 	int ret;
805 
806 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
807 	if (ret < 0)
808 		return ret;
809 
810 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
811 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
812 
813 	udf_debug("Rootdir at block=%u, partition=%u\n",
814 		  root->logicalBlockNum, root->partitionReferenceNum);
815 	return 0;
816 }
817 
818 static int udf_find_fileset(struct super_block *sb,
819 			    struct kernel_lb_addr *fileset,
820 			    struct kernel_lb_addr *root)
821 {
822 	struct buffer_head *bh = NULL;
823 	uint16_t ident;
824 	int ret;
825 
826 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
827 	    fileset->partitionReferenceNum == 0xFFFF)
828 		return -EINVAL;
829 
830 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
831 	if (!bh)
832 		return -EIO;
833 	if (ident != TAG_IDENT_FSD) {
834 		brelse(bh);
835 		return -EINVAL;
836 	}
837 
838 	udf_debug("Fileset at block=%u, partition=%u\n",
839 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
840 
841 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
842 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
843 	brelse(bh);
844 	return ret;
845 }
846 
847 /*
848  * Load primary Volume Descriptor Sequence
849  *
850  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
851  * should be tried.
852  */
853 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
854 {
855 	struct primaryVolDesc *pvoldesc;
856 	uint8_t *outstr;
857 	struct buffer_head *bh;
858 	uint16_t ident;
859 	int ret;
860 	struct timestamp *ts;
861 
862 	outstr = kmalloc(128, GFP_NOFS);
863 	if (!outstr)
864 		return -ENOMEM;
865 
866 	bh = udf_read_tagged(sb, block, block, &ident);
867 	if (!bh) {
868 		ret = -EAGAIN;
869 		goto out2;
870 	}
871 
872 	if (ident != TAG_IDENT_PVD) {
873 		ret = -EIO;
874 		goto out_bh;
875 	}
876 
877 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
878 
879 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
880 			      pvoldesc->recordingDateAndTime);
881 	ts = &pvoldesc->recordingDateAndTime;
882 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
883 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
884 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
885 
886 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
887 	if (ret < 0) {
888 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
889 		pr_warn("incorrect volume identification, setting to "
890 			"'InvalidName'\n");
891 	} else {
892 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
893 	}
894 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
895 
896 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
897 	if (ret < 0) {
898 		ret = 0;
899 		goto out_bh;
900 	}
901 	outstr[ret] = 0;
902 	udf_debug("volSetIdent[] = '%s'\n", outstr);
903 
904 	ret = 0;
905 out_bh:
906 	brelse(bh);
907 out2:
908 	kfree(outstr);
909 	return ret;
910 }
911 
912 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
913 					u32 meta_file_loc, u32 partition_ref)
914 {
915 	struct kernel_lb_addr addr;
916 	struct inode *metadata_fe;
917 
918 	addr.logicalBlockNum = meta_file_loc;
919 	addr.partitionReferenceNum = partition_ref;
920 
921 	metadata_fe = udf_iget_special(sb, &addr);
922 
923 	if (IS_ERR(metadata_fe)) {
924 		udf_warn(sb, "metadata inode efe not found\n");
925 		return metadata_fe;
926 	}
927 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
928 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
929 		iput(metadata_fe);
930 		return ERR_PTR(-EIO);
931 	}
932 
933 	return metadata_fe;
934 }
935 
936 static int udf_load_metadata_files(struct super_block *sb, int partition,
937 				   int type1_index)
938 {
939 	struct udf_sb_info *sbi = UDF_SB(sb);
940 	struct udf_part_map *map;
941 	struct udf_meta_data *mdata;
942 	struct kernel_lb_addr addr;
943 	struct inode *fe;
944 
945 	map = &sbi->s_partmaps[partition];
946 	mdata = &map->s_type_specific.s_metadata;
947 	mdata->s_phys_partition_ref = type1_index;
948 
949 	/* metadata address */
950 	udf_debug("Metadata file location: block = %u part = %u\n",
951 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
952 
953 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
954 					 mdata->s_phys_partition_ref);
955 	if (IS_ERR(fe)) {
956 		/* mirror file entry */
957 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
958 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
959 
960 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
961 						 mdata->s_phys_partition_ref);
962 
963 		if (IS_ERR(fe)) {
964 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
965 			return PTR_ERR(fe);
966 		}
967 		mdata->s_mirror_fe = fe;
968 	} else
969 		mdata->s_metadata_fe = fe;
970 
971 
972 	/*
973 	 * bitmap file entry
974 	 * Note:
975 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
976 	*/
977 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
978 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
979 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
980 
981 		udf_debug("Bitmap file location: block = %u part = %u\n",
982 			  addr.logicalBlockNum, addr.partitionReferenceNum);
983 
984 		fe = udf_iget_special(sb, &addr);
985 		if (IS_ERR(fe)) {
986 			if (sb_rdonly(sb))
987 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
988 			else {
989 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
990 				return PTR_ERR(fe);
991 			}
992 		} else
993 			mdata->s_bitmap_fe = fe;
994 	}
995 
996 	udf_debug("udf_load_metadata_files Ok\n");
997 	return 0;
998 }
999 
1000 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1001 {
1002 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1003 	return DIV_ROUND_UP(map->s_partition_len +
1004 			    (sizeof(struct spaceBitmapDesc) << 3),
1005 			    sb->s_blocksize * 8);
1006 }
1007 
1008 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1009 {
1010 	struct udf_bitmap *bitmap;
1011 	int nr_groups = udf_compute_nr_groups(sb, index);
1012 
1013 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1014 			  GFP_KERNEL);
1015 	if (!bitmap)
1016 		return NULL;
1017 
1018 	bitmap->s_nr_groups = nr_groups;
1019 	return bitmap;
1020 }
1021 
1022 static int check_partition_desc(struct super_block *sb,
1023 				struct partitionDesc *p,
1024 				struct udf_part_map *map)
1025 {
1026 	bool umap, utable, fmap, ftable;
1027 	struct partitionHeaderDesc *phd;
1028 
1029 	switch (le32_to_cpu(p->accessType)) {
1030 	case PD_ACCESS_TYPE_READ_ONLY:
1031 	case PD_ACCESS_TYPE_WRITE_ONCE:
1032 	case PD_ACCESS_TYPE_NONE:
1033 		goto force_ro;
1034 	}
1035 
1036 	/* No Partition Header Descriptor? */
1037 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1038 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1039 		goto force_ro;
1040 
1041 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1042 	utable = phd->unallocSpaceTable.extLength;
1043 	umap = phd->unallocSpaceBitmap.extLength;
1044 	ftable = phd->freedSpaceTable.extLength;
1045 	fmap = phd->freedSpaceBitmap.extLength;
1046 
1047 	/* No allocation info? */
1048 	if (!utable && !umap && !ftable && !fmap)
1049 		goto force_ro;
1050 
1051 	/* We don't support blocks that require erasing before overwrite */
1052 	if (ftable || fmap)
1053 		goto force_ro;
1054 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1055 	if (utable && umap)
1056 		goto force_ro;
1057 
1058 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1059 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1060 	    map->s_partition_type == UDF_METADATA_MAP25)
1061 		goto force_ro;
1062 
1063 	return 0;
1064 force_ro:
1065 	if (!sb_rdonly(sb))
1066 		return -EACCES;
1067 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1068 	return 0;
1069 }
1070 
1071 static int udf_fill_partdesc_info(struct super_block *sb,
1072 		struct partitionDesc *p, int p_index)
1073 {
1074 	struct udf_part_map *map;
1075 	struct udf_sb_info *sbi = UDF_SB(sb);
1076 	struct partitionHeaderDesc *phd;
1077 	int err;
1078 
1079 	map = &sbi->s_partmaps[p_index];
1080 
1081 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1082 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1083 
1084 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1085 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1086 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1087 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1088 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1089 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1090 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1091 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1092 
1093 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1094 		  p_index, map->s_partition_type,
1095 		  map->s_partition_root, map->s_partition_len);
1096 
1097 	err = check_partition_desc(sb, p, map);
1098 	if (err)
1099 		return err;
1100 
1101 	/*
1102 	 * Skip loading allocation info it we cannot ever write to the fs.
1103 	 * This is a correctness thing as we may have decided to force ro mount
1104 	 * to avoid allocation info we don't support.
1105 	 */
1106 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1107 		return 0;
1108 
1109 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1110 	if (phd->unallocSpaceTable.extLength) {
1111 		struct kernel_lb_addr loc = {
1112 			.logicalBlockNum = le32_to_cpu(
1113 				phd->unallocSpaceTable.extPosition),
1114 			.partitionReferenceNum = p_index,
1115 		};
1116 		struct inode *inode;
1117 
1118 		inode = udf_iget_special(sb, &loc);
1119 		if (IS_ERR(inode)) {
1120 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1121 				  p_index);
1122 			return PTR_ERR(inode);
1123 		}
1124 		map->s_uspace.s_table = inode;
1125 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1126 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1127 			  p_index, map->s_uspace.s_table->i_ino);
1128 	}
1129 
1130 	if (phd->unallocSpaceBitmap.extLength) {
1131 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1132 		if (!bitmap)
1133 			return -ENOMEM;
1134 		map->s_uspace.s_bitmap = bitmap;
1135 		bitmap->s_extPosition = le32_to_cpu(
1136 				phd->unallocSpaceBitmap.extPosition);
1137 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1138 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1139 			  p_index, bitmap->s_extPosition);
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 static void udf_find_vat_block(struct super_block *sb, int p_index,
1146 			       int type1_index, sector_t start_block)
1147 {
1148 	struct udf_sb_info *sbi = UDF_SB(sb);
1149 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1150 	sector_t vat_block;
1151 	struct kernel_lb_addr ino;
1152 	struct inode *inode;
1153 
1154 	/*
1155 	 * VAT file entry is in the last recorded block. Some broken disks have
1156 	 * it a few blocks before so try a bit harder...
1157 	 */
1158 	ino.partitionReferenceNum = type1_index;
1159 	for (vat_block = start_block;
1160 	     vat_block >= map->s_partition_root &&
1161 	     vat_block >= start_block - 3; vat_block--) {
1162 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1163 		inode = udf_iget_special(sb, &ino);
1164 		if (!IS_ERR(inode)) {
1165 			sbi->s_vat_inode = inode;
1166 			break;
1167 		}
1168 	}
1169 }
1170 
1171 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1172 {
1173 	struct udf_sb_info *sbi = UDF_SB(sb);
1174 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1175 	struct buffer_head *bh = NULL;
1176 	struct udf_inode_info *vati;
1177 	uint32_t pos;
1178 	struct virtualAllocationTable20 *vat20;
1179 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1180 			  sb->s_blocksize_bits;
1181 
1182 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183 	if (!sbi->s_vat_inode &&
1184 	    sbi->s_last_block != blocks - 1) {
1185 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186 			  (unsigned long)sbi->s_last_block,
1187 			  (unsigned long)blocks - 1);
1188 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189 	}
1190 	if (!sbi->s_vat_inode)
1191 		return -EIO;
1192 
1193 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194 		map->s_type_specific.s_virtual.s_start_offset = 0;
1195 		map->s_type_specific.s_virtual.s_num_entries =
1196 			(sbi->s_vat_inode->i_size - 36) >> 2;
1197 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198 		vati = UDF_I(sbi->s_vat_inode);
1199 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200 			pos = udf_block_map(sbi->s_vat_inode, 0);
1201 			bh = sb_bread(sb, pos);
1202 			if (!bh)
1203 				return -EIO;
1204 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205 		} else {
1206 			vat20 = (struct virtualAllocationTable20 *)
1207 							vati->i_data;
1208 		}
1209 
1210 		map->s_type_specific.s_virtual.s_start_offset =
1211 			le16_to_cpu(vat20->lengthHeader);
1212 		map->s_type_specific.s_virtual.s_num_entries =
1213 			(sbi->s_vat_inode->i_size -
1214 				map->s_type_specific.s_virtual.
1215 					s_start_offset) >> 2;
1216 		brelse(bh);
1217 	}
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Load partition descriptor block
1223  *
1224  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225  * sequence.
1226  */
1227 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228 {
1229 	struct buffer_head *bh;
1230 	struct partitionDesc *p;
1231 	struct udf_part_map *map;
1232 	struct udf_sb_info *sbi = UDF_SB(sb);
1233 	int i, type1_idx;
1234 	uint16_t partitionNumber;
1235 	uint16_t ident;
1236 	int ret;
1237 
1238 	bh = udf_read_tagged(sb, block, block, &ident);
1239 	if (!bh)
1240 		return -EAGAIN;
1241 	if (ident != TAG_IDENT_PD) {
1242 		ret = 0;
1243 		goto out_bh;
1244 	}
1245 
1246 	p = (struct partitionDesc *)bh->b_data;
1247 	partitionNumber = le16_to_cpu(p->partitionNumber);
1248 
1249 	/* First scan for TYPE1 and SPARABLE partitions */
1250 	for (i = 0; i < sbi->s_partitions; i++) {
1251 		map = &sbi->s_partmaps[i];
1252 		udf_debug("Searching map: (%u == %u)\n",
1253 			  map->s_partition_num, partitionNumber);
1254 		if (map->s_partition_num == partitionNumber &&
1255 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1257 			break;
1258 	}
1259 
1260 	if (i >= sbi->s_partitions) {
1261 		udf_debug("Partition (%u) not found in partition map\n",
1262 			  partitionNumber);
1263 		ret = 0;
1264 		goto out_bh;
1265 	}
1266 
1267 	ret = udf_fill_partdesc_info(sb, p, i);
1268 	if (ret < 0)
1269 		goto out_bh;
1270 
1271 	/*
1272 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273 	 * PHYSICAL partitions are already set up
1274 	 */
1275 	type1_idx = i;
1276 	map = NULL; /* supress 'maybe used uninitialized' warning */
1277 	for (i = 0; i < sbi->s_partitions; i++) {
1278 		map = &sbi->s_partmaps[i];
1279 
1280 		if (map->s_partition_num == partitionNumber &&
1281 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283 		     map->s_partition_type == UDF_METADATA_MAP25))
1284 			break;
1285 	}
1286 
1287 	if (i >= sbi->s_partitions) {
1288 		ret = 0;
1289 		goto out_bh;
1290 	}
1291 
1292 	ret = udf_fill_partdesc_info(sb, p, i);
1293 	if (ret < 0)
1294 		goto out_bh;
1295 
1296 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1297 		ret = udf_load_metadata_files(sb, i, type1_idx);
1298 		if (ret < 0) {
1299 			udf_err(sb, "error loading MetaData partition map %d\n",
1300 				i);
1301 			goto out_bh;
1302 		}
1303 	} else {
1304 		/*
1305 		 * If we have a partition with virtual map, we don't handle
1306 		 * writing to it (we overwrite blocks instead of relocating
1307 		 * them).
1308 		 */
1309 		if (!sb_rdonly(sb)) {
1310 			ret = -EACCES;
1311 			goto out_bh;
1312 		}
1313 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314 		ret = udf_load_vat(sb, i, type1_idx);
1315 		if (ret < 0)
1316 			goto out_bh;
1317 	}
1318 	ret = 0;
1319 out_bh:
1320 	/* In case loading failed, we handle cleanup in udf_fill_super */
1321 	brelse(bh);
1322 	return ret;
1323 }
1324 
1325 static int udf_load_sparable_map(struct super_block *sb,
1326 				 struct udf_part_map *map,
1327 				 struct sparablePartitionMap *spm)
1328 {
1329 	uint32_t loc;
1330 	uint16_t ident;
1331 	struct sparingTable *st;
1332 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333 	int i;
1334 	struct buffer_head *bh;
1335 
1336 	map->s_partition_type = UDF_SPARABLE_MAP15;
1337 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338 	if (!is_power_of_2(sdata->s_packet_len)) {
1339 		udf_err(sb, "error loading logical volume descriptor: "
1340 			"Invalid packet length %u\n",
1341 			(unsigned)sdata->s_packet_len);
1342 		return -EIO;
1343 	}
1344 	if (spm->numSparingTables > 4) {
1345 		udf_err(sb, "error loading logical volume descriptor: "
1346 			"Too many sparing tables (%d)\n",
1347 			(int)spm->numSparingTables);
1348 		return -EIO;
1349 	}
1350 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351 		udf_err(sb, "error loading logical volume descriptor: "
1352 			"Too big sparing table size (%u)\n",
1353 			le32_to_cpu(spm->sizeSparingTable));
1354 		return -EIO;
1355 	}
1356 
1357 	for (i = 0; i < spm->numSparingTables; i++) {
1358 		loc = le32_to_cpu(spm->locSparingTable[i]);
1359 		bh = udf_read_tagged(sb, loc, loc, &ident);
1360 		if (!bh)
1361 			continue;
1362 
1363 		st = (struct sparingTable *)bh->b_data;
1364 		if (ident != 0 ||
1365 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366 			    strlen(UDF_ID_SPARING)) ||
1367 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368 							sb->s_blocksize) {
1369 			brelse(bh);
1370 			continue;
1371 		}
1372 
1373 		sdata->s_spar_map[i] = bh;
1374 	}
1375 	map->s_partition_func = udf_get_pblock_spar15;
1376 	return 0;
1377 }
1378 
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380 			       struct kernel_lb_addr *fileset)
1381 {
1382 	struct logicalVolDesc *lvd;
1383 	int i, offset;
1384 	uint8_t type;
1385 	struct udf_sb_info *sbi = UDF_SB(sb);
1386 	struct genericPartitionMap *gpm;
1387 	uint16_t ident;
1388 	struct buffer_head *bh;
1389 	unsigned int table_len;
1390 	int ret;
1391 
1392 	bh = udf_read_tagged(sb, block, block, &ident);
1393 	if (!bh)
1394 		return -EAGAIN;
1395 	BUG_ON(ident != TAG_IDENT_LVD);
1396 	lvd = (struct logicalVolDesc *)bh->b_data;
1397 	table_len = le32_to_cpu(lvd->mapTableLength);
1398 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399 		udf_err(sb, "error loading logical volume descriptor: "
1400 			"Partition table too long (%u > %lu)\n", table_len,
1401 			sb->s_blocksize - sizeof(*lvd));
1402 		ret = -EIO;
1403 		goto out_bh;
1404 	}
1405 
1406 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407 					   "logical volume");
1408 	if (ret)
1409 		goto out_bh;
1410 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411 	if (ret)
1412 		goto out_bh;
1413 
1414 	for (i = 0, offset = 0;
1415 	     i < sbi->s_partitions && offset < table_len;
1416 	     i++, offset += gpm->partitionMapLength) {
1417 		struct udf_part_map *map = &sbi->s_partmaps[i];
1418 		gpm = (struct genericPartitionMap *)
1419 				&(lvd->partitionMaps[offset]);
1420 		type = gpm->partitionMapType;
1421 		if (type == 1) {
1422 			struct genericPartitionMap1 *gpm1 =
1423 				(struct genericPartitionMap1 *)gpm;
1424 			map->s_partition_type = UDF_TYPE1_MAP15;
1425 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427 			map->s_partition_func = NULL;
1428 		} else if (type == 2) {
1429 			struct udfPartitionMap2 *upm2 =
1430 						(struct udfPartitionMap2 *)gpm;
1431 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432 						strlen(UDF_ID_VIRTUAL))) {
1433 				u16 suf =
1434 					le16_to_cpu(((__le16 *)upm2->partIdent.
1435 							identSuffix)[0]);
1436 				if (suf < 0x0200) {
1437 					map->s_partition_type =
1438 							UDF_VIRTUAL_MAP15;
1439 					map->s_partition_func =
1440 							udf_get_pblock_virt15;
1441 				} else {
1442 					map->s_partition_type =
1443 							UDF_VIRTUAL_MAP20;
1444 					map->s_partition_func =
1445 							udf_get_pblock_virt20;
1446 				}
1447 			} else if (!strncmp(upm2->partIdent.ident,
1448 						UDF_ID_SPARABLE,
1449 						strlen(UDF_ID_SPARABLE))) {
1450 				ret = udf_load_sparable_map(sb, map,
1451 					(struct sparablePartitionMap *)gpm);
1452 				if (ret < 0)
1453 					goto out_bh;
1454 			} else if (!strncmp(upm2->partIdent.ident,
1455 						UDF_ID_METADATA,
1456 						strlen(UDF_ID_METADATA))) {
1457 				struct udf_meta_data *mdata =
1458 					&map->s_type_specific.s_metadata;
1459 				struct metadataPartitionMap *mdm =
1460 						(struct metadataPartitionMap *)
1461 						&(lvd->partitionMaps[offset]);
1462 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463 					  i, type, UDF_ID_METADATA);
1464 
1465 				map->s_partition_type = UDF_METADATA_MAP25;
1466 				map->s_partition_func = udf_get_pblock_meta25;
1467 
1468 				mdata->s_meta_file_loc   =
1469 					le32_to_cpu(mdm->metadataFileLoc);
1470 				mdata->s_mirror_file_loc =
1471 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1472 				mdata->s_bitmap_file_loc =
1473 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1474 				mdata->s_alloc_unit_size =
1475 					le32_to_cpu(mdm->allocUnitSize);
1476 				mdata->s_align_unit_size =
1477 					le16_to_cpu(mdm->alignUnitSize);
1478 				if (mdm->flags & 0x01)
1479 					mdata->s_flags |= MF_DUPLICATE_MD;
1480 
1481 				udf_debug("Metadata Ident suffix=0x%x\n",
1482 					  le16_to_cpu(*(__le16 *)
1483 						      mdm->partIdent.identSuffix));
1484 				udf_debug("Metadata part num=%u\n",
1485 					  le16_to_cpu(mdm->partitionNum));
1486 				udf_debug("Metadata part alloc unit size=%u\n",
1487 					  le32_to_cpu(mdm->allocUnitSize));
1488 				udf_debug("Metadata file loc=%u\n",
1489 					  le32_to_cpu(mdm->metadataFileLoc));
1490 				udf_debug("Mirror file loc=%u\n",
1491 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1492 				udf_debug("Bitmap file loc=%u\n",
1493 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1494 				udf_debug("Flags: %d %u\n",
1495 					  mdata->s_flags, mdm->flags);
1496 			} else {
1497 				udf_debug("Unknown ident: %s\n",
1498 					  upm2->partIdent.ident);
1499 				continue;
1500 			}
1501 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503 		}
1504 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1506 	}
1507 
1508 	if (fileset) {
1509 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510 
1511 		*fileset = lelb_to_cpu(la->extLocation);
1512 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513 			  fileset->logicalBlockNum,
1514 			  fileset->partitionReferenceNum);
1515 	}
1516 	if (lvd->integritySeqExt.extLength)
1517 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518 	ret = 0;
1519 
1520 	if (!sbi->s_lvid_bh) {
1521 		/* We can't generate unique IDs without a valid LVID */
1522 		if (sb_rdonly(sb)) {
1523 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524 		} else {
1525 			udf_warn(sb, "Damaged or missing LVID, forcing "
1526 				     "readonly mount\n");
1527 			ret = -EACCES;
1528 		}
1529 	}
1530 out_bh:
1531 	brelse(bh);
1532 	return ret;
1533 }
1534 
1535 /*
1536  * Find the prevailing Logical Volume Integrity Descriptor.
1537  */
1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 {
1540 	struct buffer_head *bh, *final_bh;
1541 	uint16_t ident;
1542 	struct udf_sb_info *sbi = UDF_SB(sb);
1543 	struct logicalVolIntegrityDesc *lvid;
1544 	int indirections = 0;
1545 
1546 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1547 		final_bh = NULL;
1548 		while (loc.extLength > 0 &&
1549 			(bh = udf_read_tagged(sb, loc.extLocation,
1550 					loc.extLocation, &ident))) {
1551 			if (ident != TAG_IDENT_LVID) {
1552 				brelse(bh);
1553 				break;
1554 			}
1555 
1556 			brelse(final_bh);
1557 			final_bh = bh;
1558 
1559 			loc.extLength -= sb->s_blocksize;
1560 			loc.extLocation++;
1561 		}
1562 
1563 		if (!final_bh)
1564 			return;
1565 
1566 		brelse(sbi->s_lvid_bh);
1567 		sbi->s_lvid_bh = final_bh;
1568 
1569 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570 		if (lvid->nextIntegrityExt.extLength == 0)
1571 			return;
1572 
1573 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1574 	}
1575 
1576 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577 		UDF_MAX_LVID_NESTING);
1578 	brelse(sbi->s_lvid_bh);
1579 	sbi->s_lvid_bh = NULL;
1580 }
1581 
1582 /*
1583  * Step for reallocation of table of partition descriptor sequence numbers.
1584  * Must be power of 2.
1585  */
1586 #define PART_DESC_ALLOC_STEP 32
1587 
1588 struct part_desc_seq_scan_data {
1589 	struct udf_vds_record rec;
1590 	u32 partnum;
1591 };
1592 
1593 struct desc_seq_scan_data {
1594 	struct udf_vds_record vds[VDS_POS_LENGTH];
1595 	unsigned int size_part_descs;
1596 	unsigned int num_part_descs;
1597 	struct part_desc_seq_scan_data *part_descs_loc;
1598 };
1599 
1600 static struct udf_vds_record *handle_partition_descriptor(
1601 				struct buffer_head *bh,
1602 				struct desc_seq_scan_data *data)
1603 {
1604 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1605 	int partnum;
1606 	int i;
1607 
1608 	partnum = le16_to_cpu(desc->partitionNumber);
1609 	for (i = 0; i < data->num_part_descs; i++)
1610 		if (partnum == data->part_descs_loc[i].partnum)
1611 			return &(data->part_descs_loc[i].rec);
1612 	if (data->num_part_descs >= data->size_part_descs) {
1613 		struct part_desc_seq_scan_data *new_loc;
1614 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1615 
1616 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1617 		if (!new_loc)
1618 			return ERR_PTR(-ENOMEM);
1619 		memcpy(new_loc, data->part_descs_loc,
1620 		       data->size_part_descs * sizeof(*new_loc));
1621 		kfree(data->part_descs_loc);
1622 		data->part_descs_loc = new_loc;
1623 		data->size_part_descs = new_size;
1624 	}
1625 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1626 }
1627 
1628 
1629 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1630 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1631 {
1632 	switch (ident) {
1633 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1634 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1635 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1636 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1637 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1638 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1639 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1640 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1641 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1642 		return handle_partition_descriptor(bh, data);
1643 	}
1644 	return NULL;
1645 }
1646 
1647 /*
1648  * Process a main/reserve volume descriptor sequence.
1649  *   @block		First block of first extent of the sequence.
1650  *   @lastblock		Lastblock of first extent of the sequence.
1651  *   @fileset		There we store extent containing root fileset
1652  *
1653  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1654  * sequence
1655  */
1656 static noinline int udf_process_sequence(
1657 		struct super_block *sb,
1658 		sector_t block, sector_t lastblock,
1659 		struct kernel_lb_addr *fileset)
1660 {
1661 	struct buffer_head *bh = NULL;
1662 	struct udf_vds_record *curr;
1663 	struct generic_desc *gd;
1664 	struct volDescPtr *vdp;
1665 	bool done = false;
1666 	uint32_t vdsn;
1667 	uint16_t ident;
1668 	int ret;
1669 	unsigned int indirections = 0;
1670 	struct desc_seq_scan_data data;
1671 	unsigned int i;
1672 
1673 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1674 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1675 	data.num_part_descs = 0;
1676 	data.part_descs_loc = kcalloc(data.size_part_descs,
1677 				      sizeof(*data.part_descs_loc),
1678 				      GFP_KERNEL);
1679 	if (!data.part_descs_loc)
1680 		return -ENOMEM;
1681 
1682 	/*
1683 	 * Read the main descriptor sequence and find which descriptors
1684 	 * are in it.
1685 	 */
1686 	for (; (!done && block <= lastblock); block++) {
1687 		bh = udf_read_tagged(sb, block, block, &ident);
1688 		if (!bh)
1689 			break;
1690 
1691 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1692 		gd = (struct generic_desc *)bh->b_data;
1693 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1694 		switch (ident) {
1695 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1696 			if (++indirections > UDF_MAX_TD_NESTING) {
1697 				udf_err(sb, "too many Volume Descriptor "
1698 					"Pointers (max %u supported)\n",
1699 					UDF_MAX_TD_NESTING);
1700 				brelse(bh);
1701 				ret = -EIO;
1702 				goto out;
1703 			}
1704 
1705 			vdp = (struct volDescPtr *)bh->b_data;
1706 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1707 			lastblock = le32_to_cpu(
1708 				vdp->nextVolDescSeqExt.extLength) >>
1709 				sb->s_blocksize_bits;
1710 			lastblock += block - 1;
1711 			/* For loop is going to increment 'block' again */
1712 			block--;
1713 			break;
1714 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1715 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1716 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1717 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1718 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1719 			curr = get_volume_descriptor_record(ident, bh, &data);
1720 			if (IS_ERR(curr)) {
1721 				brelse(bh);
1722 				ret = PTR_ERR(curr);
1723 				goto out;
1724 			}
1725 			/* Descriptor we don't care about? */
1726 			if (!curr)
1727 				break;
1728 			if (vdsn >= curr->volDescSeqNum) {
1729 				curr->volDescSeqNum = vdsn;
1730 				curr->block = block;
1731 			}
1732 			break;
1733 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1734 			done = true;
1735 			break;
1736 		}
1737 		brelse(bh);
1738 	}
1739 	/*
1740 	 * Now read interesting descriptors again and process them
1741 	 * in a suitable order
1742 	 */
1743 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1744 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1745 		ret = -EAGAIN;
1746 		goto out;
1747 	}
1748 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1749 	if (ret < 0)
1750 		goto out;
1751 
1752 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1753 		ret = udf_load_logicalvol(sb,
1754 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1755 				fileset);
1756 		if (ret < 0)
1757 			goto out;
1758 	}
1759 
1760 	/* Now handle prevailing Partition Descriptors */
1761 	for (i = 0; i < data.num_part_descs; i++) {
1762 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1763 		if (ret < 0)
1764 			goto out;
1765 	}
1766 	ret = 0;
1767 out:
1768 	kfree(data.part_descs_loc);
1769 	return ret;
1770 }
1771 
1772 /*
1773  * Load Volume Descriptor Sequence described by anchor in bh
1774  *
1775  * Returns <0 on error, 0 on success
1776  */
1777 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1778 			     struct kernel_lb_addr *fileset)
1779 {
1780 	struct anchorVolDescPtr *anchor;
1781 	sector_t main_s, main_e, reserve_s, reserve_e;
1782 	int ret;
1783 
1784 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1785 
1786 	/* Locate the main sequence */
1787 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1788 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1789 	main_e = main_e >> sb->s_blocksize_bits;
1790 	main_e += main_s - 1;
1791 
1792 	/* Locate the reserve sequence */
1793 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1794 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1795 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1796 	reserve_e += reserve_s - 1;
1797 
1798 	/* Process the main & reserve sequences */
1799 	/* responsible for finding the PartitionDesc(s) */
1800 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1801 	if (ret != -EAGAIN)
1802 		return ret;
1803 	udf_sb_free_partitions(sb);
1804 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1805 	if (ret < 0) {
1806 		udf_sb_free_partitions(sb);
1807 		/* No sequence was OK, return -EIO */
1808 		if (ret == -EAGAIN)
1809 			ret = -EIO;
1810 	}
1811 	return ret;
1812 }
1813 
1814 /*
1815  * Check whether there is an anchor block in the given block and
1816  * load Volume Descriptor Sequence if so.
1817  *
1818  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1819  * block
1820  */
1821 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1822 				  struct kernel_lb_addr *fileset)
1823 {
1824 	struct buffer_head *bh;
1825 	uint16_t ident;
1826 	int ret;
1827 
1828 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1829 	    udf_fixed_to_variable(block) >=
1830 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1831 		return -EAGAIN;
1832 
1833 	bh = udf_read_tagged(sb, block, block, &ident);
1834 	if (!bh)
1835 		return -EAGAIN;
1836 	if (ident != TAG_IDENT_AVDP) {
1837 		brelse(bh);
1838 		return -EAGAIN;
1839 	}
1840 	ret = udf_load_sequence(sb, bh, fileset);
1841 	brelse(bh);
1842 	return ret;
1843 }
1844 
1845 /*
1846  * Search for an anchor volume descriptor pointer.
1847  *
1848  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1849  * of anchors.
1850  */
1851 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1852 			    struct kernel_lb_addr *fileset)
1853 {
1854 	sector_t last[6];
1855 	int i;
1856 	struct udf_sb_info *sbi = UDF_SB(sb);
1857 	int last_count = 0;
1858 	int ret;
1859 
1860 	/* First try user provided anchor */
1861 	if (sbi->s_anchor) {
1862 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1863 		if (ret != -EAGAIN)
1864 			return ret;
1865 	}
1866 	/*
1867 	 * according to spec, anchor is in either:
1868 	 *     block 256
1869 	 *     lastblock-256
1870 	 *     lastblock
1871 	 *  however, if the disc isn't closed, it could be 512.
1872 	 */
1873 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1874 	if (ret != -EAGAIN)
1875 		return ret;
1876 	/*
1877 	 * The trouble is which block is the last one. Drives often misreport
1878 	 * this so we try various possibilities.
1879 	 */
1880 	last[last_count++] = *lastblock;
1881 	if (*lastblock >= 1)
1882 		last[last_count++] = *lastblock - 1;
1883 	last[last_count++] = *lastblock + 1;
1884 	if (*lastblock >= 2)
1885 		last[last_count++] = *lastblock - 2;
1886 	if (*lastblock >= 150)
1887 		last[last_count++] = *lastblock - 150;
1888 	if (*lastblock >= 152)
1889 		last[last_count++] = *lastblock - 152;
1890 
1891 	for (i = 0; i < last_count; i++) {
1892 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1893 				sb->s_blocksize_bits)
1894 			continue;
1895 		ret = udf_check_anchor_block(sb, last[i], fileset);
1896 		if (ret != -EAGAIN) {
1897 			if (!ret)
1898 				*lastblock = last[i];
1899 			return ret;
1900 		}
1901 		if (last[i] < 256)
1902 			continue;
1903 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1904 		if (ret != -EAGAIN) {
1905 			if (!ret)
1906 				*lastblock = last[i];
1907 			return ret;
1908 		}
1909 	}
1910 
1911 	/* Finally try block 512 in case media is open */
1912 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1913 }
1914 
1915 /*
1916  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1917  * area specified by it. The function expects sbi->s_lastblock to be the last
1918  * block on the media.
1919  *
1920  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1921  * was not found.
1922  */
1923 static int udf_find_anchor(struct super_block *sb,
1924 			   struct kernel_lb_addr *fileset)
1925 {
1926 	struct udf_sb_info *sbi = UDF_SB(sb);
1927 	sector_t lastblock = sbi->s_last_block;
1928 	int ret;
1929 
1930 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1931 	if (ret != -EAGAIN)
1932 		goto out;
1933 
1934 	/* No anchor found? Try VARCONV conversion of block numbers */
1935 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1936 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1937 	/* Firstly, we try to not convert number of the last block */
1938 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1939 	if (ret != -EAGAIN)
1940 		goto out;
1941 
1942 	lastblock = sbi->s_last_block;
1943 	/* Secondly, we try with converted number of the last block */
1944 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1945 	if (ret < 0) {
1946 		/* VARCONV didn't help. Clear it. */
1947 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1948 	}
1949 out:
1950 	if (ret == 0)
1951 		sbi->s_last_block = lastblock;
1952 	return ret;
1953 }
1954 
1955 /*
1956  * Check Volume Structure Descriptor, find Anchor block and load Volume
1957  * Descriptor Sequence.
1958  *
1959  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1960  * block was not found.
1961  */
1962 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1963 			int silent, struct kernel_lb_addr *fileset)
1964 {
1965 	struct udf_sb_info *sbi = UDF_SB(sb);
1966 	int nsr = 0;
1967 	int ret;
1968 
1969 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1970 		if (!silent)
1971 			udf_warn(sb, "Bad block size\n");
1972 		return -EINVAL;
1973 	}
1974 	sbi->s_last_block = uopt->lastblock;
1975 	if (!uopt->novrs) {
1976 		/* Check that it is NSR02 compliant */
1977 		nsr = udf_check_vsd(sb);
1978 		if (!nsr) {
1979 			if (!silent)
1980 				udf_warn(sb, "No VRS found\n");
1981 			return -EINVAL;
1982 		}
1983 		if (nsr == -1)
1984 			udf_debug("Failed to read sector at offset %d. "
1985 				  "Assuming open disc. Skipping validity "
1986 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1987 		if (!sbi->s_last_block)
1988 			sbi->s_last_block = udf_get_last_block(sb);
1989 	} else {
1990 		udf_debug("Validity check skipped because of novrs option\n");
1991 	}
1992 
1993 	/* Look for anchor block and load Volume Descriptor Sequence */
1994 	sbi->s_anchor = uopt->anchor;
1995 	ret = udf_find_anchor(sb, fileset);
1996 	if (ret < 0) {
1997 		if (!silent && ret == -EAGAIN)
1998 			udf_warn(sb, "No anchor found\n");
1999 		return ret;
2000 	}
2001 	return 0;
2002 }
2003 
2004 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2005 {
2006 	struct timespec64 ts;
2007 
2008 	ktime_get_real_ts64(&ts);
2009 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2010 	lvid->descTag.descCRC = cpu_to_le16(
2011 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2012 			le16_to_cpu(lvid->descTag.descCRCLength)));
2013 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2014 }
2015 
2016 static void udf_open_lvid(struct super_block *sb)
2017 {
2018 	struct udf_sb_info *sbi = UDF_SB(sb);
2019 	struct buffer_head *bh = sbi->s_lvid_bh;
2020 	struct logicalVolIntegrityDesc *lvid;
2021 	struct logicalVolIntegrityDescImpUse *lvidiu;
2022 
2023 	if (!bh)
2024 		return;
2025 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 	lvidiu = udf_sb_lvidiu(sb);
2027 	if (!lvidiu)
2028 		return;
2029 
2030 	mutex_lock(&sbi->s_alloc_mutex);
2031 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2034 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2035 	else
2036 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2037 
2038 	udf_finalize_lvid(lvid);
2039 	mark_buffer_dirty(bh);
2040 	sbi->s_lvid_dirty = 0;
2041 	mutex_unlock(&sbi->s_alloc_mutex);
2042 	/* Make opening of filesystem visible on the media immediately */
2043 	sync_dirty_buffer(bh);
2044 }
2045 
2046 static void udf_close_lvid(struct super_block *sb)
2047 {
2048 	struct udf_sb_info *sbi = UDF_SB(sb);
2049 	struct buffer_head *bh = sbi->s_lvid_bh;
2050 	struct logicalVolIntegrityDesc *lvid;
2051 	struct logicalVolIntegrityDescImpUse *lvidiu;
2052 
2053 	if (!bh)
2054 		return;
2055 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2056 	lvidiu = udf_sb_lvidiu(sb);
2057 	if (!lvidiu)
2058 		return;
2059 
2060 	mutex_lock(&sbi->s_alloc_mutex);
2061 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2062 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2063 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2064 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2065 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2066 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2067 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2068 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2069 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2070 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2071 
2072 	/*
2073 	 * We set buffer uptodate unconditionally here to avoid spurious
2074 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2075 	 * the buffer as !uptodate
2076 	 */
2077 	set_buffer_uptodate(bh);
2078 	udf_finalize_lvid(lvid);
2079 	mark_buffer_dirty(bh);
2080 	sbi->s_lvid_dirty = 0;
2081 	mutex_unlock(&sbi->s_alloc_mutex);
2082 	/* Make closing of filesystem visible on the media immediately */
2083 	sync_dirty_buffer(bh);
2084 }
2085 
2086 u64 lvid_get_unique_id(struct super_block *sb)
2087 {
2088 	struct buffer_head *bh;
2089 	struct udf_sb_info *sbi = UDF_SB(sb);
2090 	struct logicalVolIntegrityDesc *lvid;
2091 	struct logicalVolHeaderDesc *lvhd;
2092 	u64 uniqueID;
2093 	u64 ret;
2094 
2095 	bh = sbi->s_lvid_bh;
2096 	if (!bh)
2097 		return 0;
2098 
2099 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2100 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2101 
2102 	mutex_lock(&sbi->s_alloc_mutex);
2103 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2104 	if (!(++uniqueID & 0xFFFFFFFF))
2105 		uniqueID += 16;
2106 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2107 	udf_updated_lvid(sb);
2108 	mutex_unlock(&sbi->s_alloc_mutex);
2109 
2110 	return ret;
2111 }
2112 
2113 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2114 {
2115 	int ret = -EINVAL;
2116 	struct inode *inode = NULL;
2117 	struct udf_options uopt;
2118 	struct kernel_lb_addr rootdir, fileset;
2119 	struct udf_sb_info *sbi;
2120 	bool lvid_open = false;
2121 
2122 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2123 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2124 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2125 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2126 	uopt.umask = 0;
2127 	uopt.fmode = UDF_INVALID_MODE;
2128 	uopt.dmode = UDF_INVALID_MODE;
2129 	uopt.nls_map = NULL;
2130 
2131 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2132 	if (!sbi)
2133 		return -ENOMEM;
2134 
2135 	sb->s_fs_info = sbi;
2136 
2137 	mutex_init(&sbi->s_alloc_mutex);
2138 
2139 	if (!udf_parse_options((char *)options, &uopt, false))
2140 		goto parse_options_failure;
2141 
2142 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2143 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2144 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2145 		goto parse_options_failure;
2146 	}
2147 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2148 		uopt.nls_map = load_nls_default();
2149 		if (!uopt.nls_map)
2150 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2151 		else
2152 			udf_debug("Using default NLS map\n");
2153 	}
2154 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2155 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2156 
2157 	fileset.logicalBlockNum = 0xFFFFFFFF;
2158 	fileset.partitionReferenceNum = 0xFFFF;
2159 
2160 	sbi->s_flags = uopt.flags;
2161 	sbi->s_uid = uopt.uid;
2162 	sbi->s_gid = uopt.gid;
2163 	sbi->s_umask = uopt.umask;
2164 	sbi->s_fmode = uopt.fmode;
2165 	sbi->s_dmode = uopt.dmode;
2166 	sbi->s_nls_map = uopt.nls_map;
2167 	rwlock_init(&sbi->s_cred_lock);
2168 
2169 	if (uopt.session == 0xFFFFFFFF)
2170 		sbi->s_session = udf_get_last_session(sb);
2171 	else
2172 		sbi->s_session = uopt.session;
2173 
2174 	udf_debug("Multi-session=%d\n", sbi->s_session);
2175 
2176 	/* Fill in the rest of the superblock */
2177 	sb->s_op = &udf_sb_ops;
2178 	sb->s_export_op = &udf_export_ops;
2179 
2180 	sb->s_magic = UDF_SUPER_MAGIC;
2181 	sb->s_time_gran = 1000;
2182 
2183 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2184 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185 	} else {
2186 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2187 		while (uopt.blocksize <= 4096) {
2188 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2189 			if (ret < 0) {
2190 				if (!silent && ret != -EACCES) {
2191 					pr_notice("Scanning with blocksize %u failed\n",
2192 						  uopt.blocksize);
2193 				}
2194 				brelse(sbi->s_lvid_bh);
2195 				sbi->s_lvid_bh = NULL;
2196 				/*
2197 				 * EACCES is special - we want to propagate to
2198 				 * upper layers that we cannot handle RW mount.
2199 				 */
2200 				if (ret == -EACCES)
2201 					break;
2202 			} else
2203 				break;
2204 
2205 			uopt.blocksize <<= 1;
2206 		}
2207 	}
2208 	if (ret < 0) {
2209 		if (ret == -EAGAIN) {
2210 			udf_warn(sb, "No partition found (1)\n");
2211 			ret = -EINVAL;
2212 		}
2213 		goto error_out;
2214 	}
2215 
2216 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2217 
2218 	if (sbi->s_lvid_bh) {
2219 		struct logicalVolIntegrityDescImpUse *lvidiu =
2220 							udf_sb_lvidiu(sb);
2221 		uint16_t minUDFReadRev;
2222 		uint16_t minUDFWriteRev;
2223 
2224 		if (!lvidiu) {
2225 			ret = -EINVAL;
2226 			goto error_out;
2227 		}
2228 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2229 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2230 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2231 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2232 				minUDFReadRev,
2233 				UDF_MAX_READ_VERSION);
2234 			ret = -EINVAL;
2235 			goto error_out;
2236 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2237 			if (!sb_rdonly(sb)) {
2238 				ret = -EACCES;
2239 				goto error_out;
2240 			}
2241 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2242 		}
2243 
2244 		sbi->s_udfrev = minUDFWriteRev;
2245 
2246 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2247 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2248 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2249 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2250 	}
2251 
2252 	if (!sbi->s_partitions) {
2253 		udf_warn(sb, "No partition found (2)\n");
2254 		ret = -EINVAL;
2255 		goto error_out;
2256 	}
2257 
2258 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2259 			UDF_PART_FLAG_READ_ONLY) {
2260 		if (!sb_rdonly(sb)) {
2261 			ret = -EACCES;
2262 			goto error_out;
2263 		}
2264 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2265 	}
2266 
2267 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2268 	if (ret < 0) {
2269 		udf_warn(sb, "No fileset found\n");
2270 		goto error_out;
2271 	}
2272 
2273 	if (!silent) {
2274 		struct timestamp ts;
2275 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2276 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2277 			 sbi->s_volume_ident,
2278 			 le16_to_cpu(ts.year), ts.month, ts.day,
2279 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2280 	}
2281 	if (!sb_rdonly(sb)) {
2282 		udf_open_lvid(sb);
2283 		lvid_open = true;
2284 	}
2285 
2286 	/* Assign the root inode */
2287 	/* assign inodes by physical block number */
2288 	/* perhaps it's not extensible enough, but for now ... */
2289 	inode = udf_iget(sb, &rootdir);
2290 	if (IS_ERR(inode)) {
2291 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2292 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2293 		ret = PTR_ERR(inode);
2294 		goto error_out;
2295 	}
2296 
2297 	/* Allocate a dentry for the root inode */
2298 	sb->s_root = d_make_root(inode);
2299 	if (!sb->s_root) {
2300 		udf_err(sb, "Couldn't allocate root dentry\n");
2301 		ret = -ENOMEM;
2302 		goto error_out;
2303 	}
2304 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2305 	sb->s_max_links = UDF_MAX_LINKS;
2306 	return 0;
2307 
2308 error_out:
2309 	iput(sbi->s_vat_inode);
2310 parse_options_failure:
2311 	if (uopt.nls_map)
2312 		unload_nls(uopt.nls_map);
2313 	if (lvid_open)
2314 		udf_close_lvid(sb);
2315 	brelse(sbi->s_lvid_bh);
2316 	udf_sb_free_partitions(sb);
2317 	kfree(sbi);
2318 	sb->s_fs_info = NULL;
2319 
2320 	return ret;
2321 }
2322 
2323 void _udf_err(struct super_block *sb, const char *function,
2324 	      const char *fmt, ...)
2325 {
2326 	struct va_format vaf;
2327 	va_list args;
2328 
2329 	va_start(args, fmt);
2330 
2331 	vaf.fmt = fmt;
2332 	vaf.va = &args;
2333 
2334 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2335 
2336 	va_end(args);
2337 }
2338 
2339 void _udf_warn(struct super_block *sb, const char *function,
2340 	       const char *fmt, ...)
2341 {
2342 	struct va_format vaf;
2343 	va_list args;
2344 
2345 	va_start(args, fmt);
2346 
2347 	vaf.fmt = fmt;
2348 	vaf.va = &args;
2349 
2350 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2351 
2352 	va_end(args);
2353 }
2354 
2355 static void udf_put_super(struct super_block *sb)
2356 {
2357 	struct udf_sb_info *sbi;
2358 
2359 	sbi = UDF_SB(sb);
2360 
2361 	iput(sbi->s_vat_inode);
2362 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2363 		unload_nls(sbi->s_nls_map);
2364 	if (!sb_rdonly(sb))
2365 		udf_close_lvid(sb);
2366 	brelse(sbi->s_lvid_bh);
2367 	udf_sb_free_partitions(sb);
2368 	mutex_destroy(&sbi->s_alloc_mutex);
2369 	kfree(sb->s_fs_info);
2370 	sb->s_fs_info = NULL;
2371 }
2372 
2373 static int udf_sync_fs(struct super_block *sb, int wait)
2374 {
2375 	struct udf_sb_info *sbi = UDF_SB(sb);
2376 
2377 	mutex_lock(&sbi->s_alloc_mutex);
2378 	if (sbi->s_lvid_dirty) {
2379 		struct buffer_head *bh = sbi->s_lvid_bh;
2380 		struct logicalVolIntegrityDesc *lvid;
2381 
2382 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2383 		udf_finalize_lvid(lvid);
2384 
2385 		/*
2386 		 * Blockdevice will be synced later so we don't have to submit
2387 		 * the buffer for IO
2388 		 */
2389 		mark_buffer_dirty(bh);
2390 		sbi->s_lvid_dirty = 0;
2391 	}
2392 	mutex_unlock(&sbi->s_alloc_mutex);
2393 
2394 	return 0;
2395 }
2396 
2397 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2398 {
2399 	struct super_block *sb = dentry->d_sb;
2400 	struct udf_sb_info *sbi = UDF_SB(sb);
2401 	struct logicalVolIntegrityDescImpUse *lvidiu;
2402 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2403 
2404 	lvidiu = udf_sb_lvidiu(sb);
2405 	buf->f_type = UDF_SUPER_MAGIC;
2406 	buf->f_bsize = sb->s_blocksize;
2407 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2408 	buf->f_bfree = udf_count_free(sb);
2409 	buf->f_bavail = buf->f_bfree;
2410 	/*
2411 	 * Let's pretend each free block is also a free 'inode' since UDF does
2412 	 * not have separate preallocated table of inodes.
2413 	 */
2414 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2415 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2416 			+ buf->f_bfree;
2417 	buf->f_ffree = buf->f_bfree;
2418 	buf->f_namelen = UDF_NAME_LEN;
2419 	buf->f_fsid = u64_to_fsid(id);
2420 
2421 	return 0;
2422 }
2423 
2424 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2425 					  struct udf_bitmap *bitmap)
2426 {
2427 	struct buffer_head *bh = NULL;
2428 	unsigned int accum = 0;
2429 	int index;
2430 	udf_pblk_t block = 0, newblock;
2431 	struct kernel_lb_addr loc;
2432 	uint32_t bytes;
2433 	uint8_t *ptr;
2434 	uint16_t ident;
2435 	struct spaceBitmapDesc *bm;
2436 
2437 	loc.logicalBlockNum = bitmap->s_extPosition;
2438 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2439 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2440 
2441 	if (!bh) {
2442 		udf_err(sb, "udf_count_free failed\n");
2443 		goto out;
2444 	} else if (ident != TAG_IDENT_SBD) {
2445 		brelse(bh);
2446 		udf_err(sb, "udf_count_free failed\n");
2447 		goto out;
2448 	}
2449 
2450 	bm = (struct spaceBitmapDesc *)bh->b_data;
2451 	bytes = le32_to_cpu(bm->numOfBytes);
2452 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2453 	ptr = (uint8_t *)bh->b_data;
2454 
2455 	while (bytes > 0) {
2456 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2457 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2458 					cur_bytes * 8);
2459 		bytes -= cur_bytes;
2460 		if (bytes) {
2461 			brelse(bh);
2462 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2463 			bh = udf_tread(sb, newblock);
2464 			if (!bh) {
2465 				udf_debug("read failed\n");
2466 				goto out;
2467 			}
2468 			index = 0;
2469 			ptr = (uint8_t *)bh->b_data;
2470 		}
2471 	}
2472 	brelse(bh);
2473 out:
2474 	return accum;
2475 }
2476 
2477 static unsigned int udf_count_free_table(struct super_block *sb,
2478 					 struct inode *table)
2479 {
2480 	unsigned int accum = 0;
2481 	uint32_t elen;
2482 	struct kernel_lb_addr eloc;
2483 	int8_t etype;
2484 	struct extent_position epos;
2485 
2486 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2487 	epos.block = UDF_I(table)->i_location;
2488 	epos.offset = sizeof(struct unallocSpaceEntry);
2489 	epos.bh = NULL;
2490 
2491 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2492 		accum += (elen >> table->i_sb->s_blocksize_bits);
2493 
2494 	brelse(epos.bh);
2495 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2496 
2497 	return accum;
2498 }
2499 
2500 static unsigned int udf_count_free(struct super_block *sb)
2501 {
2502 	unsigned int accum = 0;
2503 	struct udf_sb_info *sbi = UDF_SB(sb);
2504 	struct udf_part_map *map;
2505 	unsigned int part = sbi->s_partition;
2506 	int ptype = sbi->s_partmaps[part].s_partition_type;
2507 
2508 	if (ptype == UDF_METADATA_MAP25) {
2509 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2510 							s_phys_partition_ref;
2511 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2512 		/*
2513 		 * Filesystems with VAT are append-only and we cannot write to
2514  		 * them. Let's just report 0 here.
2515 		 */
2516 		return 0;
2517 	}
2518 
2519 	if (sbi->s_lvid_bh) {
2520 		struct logicalVolIntegrityDesc *lvid =
2521 			(struct logicalVolIntegrityDesc *)
2522 			sbi->s_lvid_bh->b_data;
2523 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2524 			accum = le32_to_cpu(
2525 					lvid->freeSpaceTable[part]);
2526 			if (accum == 0xFFFFFFFF)
2527 				accum = 0;
2528 		}
2529 	}
2530 
2531 	if (accum)
2532 		return accum;
2533 
2534 	map = &sbi->s_partmaps[part];
2535 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2536 		accum += udf_count_free_bitmap(sb,
2537 					       map->s_uspace.s_bitmap);
2538 	}
2539 	if (accum)
2540 		return accum;
2541 
2542 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2543 		accum += udf_count_free_table(sb,
2544 					      map->s_uspace.s_table);
2545 	}
2546 	return accum;
2547 }
2548 
2549 MODULE_AUTHOR("Ben Fennema");
2550 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2551 MODULE_LICENSE("GPL");
2552 module_init(init_udf_fs)
2553 module_exit(exit_udf_fs)
2554