1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * https://www.ecma.ch/ 15 * https://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static void udf_open_lvid(struct super_block *); 96 static void udf_close_lvid(struct super_block *); 97 static unsigned int udf_count_free(struct super_block *); 98 static int udf_statfs(struct dentry *, struct kstatfs *); 99 static int udf_show_options(struct seq_file *, struct dentry *); 100 101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 102 { 103 struct logicalVolIntegrityDesc *lvid; 104 unsigned int partnum; 105 unsigned int offset; 106 107 if (!UDF_SB(sb)->s_lvid_bh) 108 return NULL; 109 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 110 partnum = le32_to_cpu(lvid->numOfPartitions); 111 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 112 offset = partnum * 2 * sizeof(uint32_t); 113 return (struct logicalVolIntegrityDescImpUse *) 114 (((uint8_t *)(lvid + 1)) + offset); 115 } 116 117 /* UDF filesystem type */ 118 static struct dentry *udf_mount(struct file_system_type *fs_type, 119 int flags, const char *dev_name, void *data) 120 { 121 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 122 } 123 124 static struct file_system_type udf_fstype = { 125 .owner = THIS_MODULE, 126 .name = "udf", 127 .mount = udf_mount, 128 .kill_sb = kill_block_super, 129 .fs_flags = FS_REQUIRES_DEV, 130 }; 131 MODULE_ALIAS_FS("udf"); 132 133 static struct kmem_cache *udf_inode_cachep; 134 135 static struct inode *udf_alloc_inode(struct super_block *sb) 136 { 137 struct udf_inode_info *ei; 138 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 139 if (!ei) 140 return NULL; 141 142 ei->i_unique = 0; 143 ei->i_lenExtents = 0; 144 ei->i_lenStreams = 0; 145 ei->i_next_alloc_block = 0; 146 ei->i_next_alloc_goal = 0; 147 ei->i_strat4096 = 0; 148 ei->i_streamdir = 0; 149 init_rwsem(&ei->i_data_sem); 150 ei->cached_extent.lstart = -1; 151 spin_lock_init(&ei->i_extent_cache_lock); 152 153 return &ei->vfs_inode; 154 } 155 156 static void udf_free_in_core_inode(struct inode *inode) 157 { 158 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 159 } 160 161 static void init_once(void *foo) 162 { 163 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 164 165 ei->i_data = NULL; 166 inode_init_once(&ei->vfs_inode); 167 } 168 169 static int __init init_inodecache(void) 170 { 171 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 172 sizeof(struct udf_inode_info), 173 0, (SLAB_RECLAIM_ACCOUNT | 174 SLAB_MEM_SPREAD | 175 SLAB_ACCOUNT), 176 init_once); 177 if (!udf_inode_cachep) 178 return -ENOMEM; 179 return 0; 180 } 181 182 static void destroy_inodecache(void) 183 { 184 /* 185 * Make sure all delayed rcu free inodes are flushed before we 186 * destroy cache. 187 */ 188 rcu_barrier(); 189 kmem_cache_destroy(udf_inode_cachep); 190 } 191 192 /* Superblock operations */ 193 static const struct super_operations udf_sb_ops = { 194 .alloc_inode = udf_alloc_inode, 195 .free_inode = udf_free_in_core_inode, 196 .write_inode = udf_write_inode, 197 .evict_inode = udf_evict_inode, 198 .put_super = udf_put_super, 199 .sync_fs = udf_sync_fs, 200 .statfs = udf_statfs, 201 .remount_fs = udf_remount_fs, 202 .show_options = udf_show_options, 203 }; 204 205 struct udf_options { 206 unsigned char novrs; 207 unsigned int blocksize; 208 unsigned int session; 209 unsigned int lastblock; 210 unsigned int anchor; 211 unsigned int flags; 212 umode_t umask; 213 kgid_t gid; 214 kuid_t uid; 215 umode_t fmode; 216 umode_t dmode; 217 struct nls_table *nls_map; 218 }; 219 220 static int __init init_udf_fs(void) 221 { 222 int err; 223 224 err = init_inodecache(); 225 if (err) 226 goto out1; 227 err = register_filesystem(&udf_fstype); 228 if (err) 229 goto out; 230 231 return 0; 232 233 out: 234 destroy_inodecache(); 235 236 out1: 237 return err; 238 } 239 240 static void __exit exit_udf_fs(void) 241 { 242 unregister_filesystem(&udf_fstype); 243 destroy_inodecache(); 244 } 245 246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 247 { 248 struct udf_sb_info *sbi = UDF_SB(sb); 249 250 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 251 if (!sbi->s_partmaps) { 252 sbi->s_partitions = 0; 253 return -ENOMEM; 254 } 255 256 sbi->s_partitions = count; 257 return 0; 258 } 259 260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 261 { 262 int i; 263 int nr_groups = bitmap->s_nr_groups; 264 265 for (i = 0; i < nr_groups; i++) 266 brelse(bitmap->s_block_bitmap[i]); 267 268 kvfree(bitmap); 269 } 270 271 static void udf_free_partition(struct udf_part_map *map) 272 { 273 int i; 274 struct udf_meta_data *mdata; 275 276 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 277 iput(map->s_uspace.s_table); 278 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 279 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 280 if (map->s_partition_type == UDF_SPARABLE_MAP15) 281 for (i = 0; i < 4; i++) 282 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 283 else if (map->s_partition_type == UDF_METADATA_MAP25) { 284 mdata = &map->s_type_specific.s_metadata; 285 iput(mdata->s_metadata_fe); 286 mdata->s_metadata_fe = NULL; 287 288 iput(mdata->s_mirror_fe); 289 mdata->s_mirror_fe = NULL; 290 291 iput(mdata->s_bitmap_fe); 292 mdata->s_bitmap_fe = NULL; 293 } 294 } 295 296 static void udf_sb_free_partitions(struct super_block *sb) 297 { 298 struct udf_sb_info *sbi = UDF_SB(sb); 299 int i; 300 301 if (!sbi->s_partmaps) 302 return; 303 for (i = 0; i < sbi->s_partitions; i++) 304 udf_free_partition(&sbi->s_partmaps[i]); 305 kfree(sbi->s_partmaps); 306 sbi->s_partmaps = NULL; 307 } 308 309 static int udf_show_options(struct seq_file *seq, struct dentry *root) 310 { 311 struct super_block *sb = root->d_sb; 312 struct udf_sb_info *sbi = UDF_SB(sb); 313 314 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 315 seq_puts(seq, ",nostrict"); 316 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 317 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 318 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 319 seq_puts(seq, ",unhide"); 320 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 321 seq_puts(seq, ",undelete"); 322 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 323 seq_puts(seq, ",noadinicb"); 324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 325 seq_puts(seq, ",shortad"); 326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 327 seq_puts(seq, ",uid=forget"); 328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 329 seq_puts(seq, ",gid=forget"); 330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 331 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 333 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 334 if (sbi->s_umask != 0) 335 seq_printf(seq, ",umask=%ho", sbi->s_umask); 336 if (sbi->s_fmode != UDF_INVALID_MODE) 337 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 338 if (sbi->s_dmode != UDF_INVALID_MODE) 339 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 341 seq_printf(seq, ",session=%d", sbi->s_session); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 343 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 344 if (sbi->s_anchor != 0) 345 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 346 if (sbi->s_nls_map) 347 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 348 else 349 seq_puts(seq, ",iocharset=utf8"); 350 351 return 0; 352 } 353 354 /* 355 * udf_parse_options 356 * 357 * PURPOSE 358 * Parse mount options. 359 * 360 * DESCRIPTION 361 * The following mount options are supported: 362 * 363 * gid= Set the default group. 364 * umask= Set the default umask. 365 * mode= Set the default file permissions. 366 * dmode= Set the default directory permissions. 367 * uid= Set the default user. 368 * bs= Set the block size. 369 * unhide Show otherwise hidden files. 370 * undelete Show deleted files in lists. 371 * adinicb Embed data in the inode (default) 372 * noadinicb Don't embed data in the inode 373 * shortad Use short ad's 374 * longad Use long ad's (default) 375 * nostrict Unset strict conformance 376 * iocharset= Set the NLS character set 377 * 378 * The remaining are for debugging and disaster recovery: 379 * 380 * novrs Skip volume sequence recognition 381 * 382 * The following expect a offset from 0. 383 * 384 * session= Set the CDROM session (default= last session) 385 * anchor= Override standard anchor location. (default= 256) 386 * volume= Override the VolumeDesc location. (unused) 387 * partition= Override the PartitionDesc location. (unused) 388 * lastblock= Set the last block of the filesystem/ 389 * 390 * The following expect a offset from the partition root. 391 * 392 * fileset= Override the fileset block location. (unused) 393 * rootdir= Override the root directory location. (unused) 394 * WARNING: overriding the rootdir to a non-directory may 395 * yield highly unpredictable results. 396 * 397 * PRE-CONDITIONS 398 * options Pointer to mount options string. 399 * uopts Pointer to mount options variable. 400 * 401 * POST-CONDITIONS 402 * <return> 1 Mount options parsed okay. 403 * <return> 0 Error parsing mount options. 404 * 405 * HISTORY 406 * July 1, 1997 - Andrew E. Mileski 407 * Written, tested, and released. 408 */ 409 410 enum { 411 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 412 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 413 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 414 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 415 Opt_rootdir, Opt_utf8, Opt_iocharset, 416 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 417 Opt_fmode, Opt_dmode 418 }; 419 420 static const match_table_t tokens = { 421 {Opt_novrs, "novrs"}, 422 {Opt_nostrict, "nostrict"}, 423 {Opt_bs, "bs=%u"}, 424 {Opt_unhide, "unhide"}, 425 {Opt_undelete, "undelete"}, 426 {Opt_noadinicb, "noadinicb"}, 427 {Opt_adinicb, "adinicb"}, 428 {Opt_shortad, "shortad"}, 429 {Opt_longad, "longad"}, 430 {Opt_uforget, "uid=forget"}, 431 {Opt_uignore, "uid=ignore"}, 432 {Opt_gforget, "gid=forget"}, 433 {Opt_gignore, "gid=ignore"}, 434 {Opt_gid, "gid=%u"}, 435 {Opt_uid, "uid=%u"}, 436 {Opt_umask, "umask=%o"}, 437 {Opt_session, "session=%u"}, 438 {Opt_lastblock, "lastblock=%u"}, 439 {Opt_anchor, "anchor=%u"}, 440 {Opt_volume, "volume=%u"}, 441 {Opt_partition, "partition=%u"}, 442 {Opt_fileset, "fileset=%u"}, 443 {Opt_rootdir, "rootdir=%u"}, 444 {Opt_utf8, "utf8"}, 445 {Opt_iocharset, "iocharset=%s"}, 446 {Opt_fmode, "mode=%o"}, 447 {Opt_dmode, "dmode=%o"}, 448 {Opt_err, NULL} 449 }; 450 451 static int udf_parse_options(char *options, struct udf_options *uopt, 452 bool remount) 453 { 454 char *p; 455 int option; 456 unsigned int uv; 457 458 uopt->novrs = 0; 459 uopt->session = 0xFFFFFFFF; 460 uopt->lastblock = 0; 461 uopt->anchor = 0; 462 463 if (!options) 464 return 1; 465 466 while ((p = strsep(&options, ",")) != NULL) { 467 substring_t args[MAX_OPT_ARGS]; 468 int token; 469 unsigned n; 470 if (!*p) 471 continue; 472 473 token = match_token(p, tokens, args); 474 switch (token) { 475 case Opt_novrs: 476 uopt->novrs = 1; 477 break; 478 case Opt_bs: 479 if (match_int(&args[0], &option)) 480 return 0; 481 n = option; 482 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 483 return 0; 484 uopt->blocksize = n; 485 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 486 break; 487 case Opt_unhide: 488 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 489 break; 490 case Opt_undelete: 491 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 492 break; 493 case Opt_noadinicb: 494 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 495 break; 496 case Opt_adinicb: 497 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 498 break; 499 case Opt_shortad: 500 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 501 break; 502 case Opt_longad: 503 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 504 break; 505 case Opt_gid: 506 if (match_uint(args, &uv)) 507 return 0; 508 uopt->gid = make_kgid(current_user_ns(), uv); 509 if (!gid_valid(uopt->gid)) 510 return 0; 511 uopt->flags |= (1 << UDF_FLAG_GID_SET); 512 break; 513 case Opt_uid: 514 if (match_uint(args, &uv)) 515 return 0; 516 uopt->uid = make_kuid(current_user_ns(), uv); 517 if (!uid_valid(uopt->uid)) 518 return 0; 519 uopt->flags |= (1 << UDF_FLAG_UID_SET); 520 break; 521 case Opt_umask: 522 if (match_octal(args, &option)) 523 return 0; 524 uopt->umask = option; 525 break; 526 case Opt_nostrict: 527 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 528 break; 529 case Opt_session: 530 if (match_int(args, &option)) 531 return 0; 532 uopt->session = option; 533 if (!remount) 534 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 535 break; 536 case Opt_lastblock: 537 if (match_int(args, &option)) 538 return 0; 539 uopt->lastblock = option; 540 if (!remount) 541 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 542 break; 543 case Opt_anchor: 544 if (match_int(args, &option)) 545 return 0; 546 uopt->anchor = option; 547 break; 548 case Opt_volume: 549 case Opt_partition: 550 case Opt_fileset: 551 case Opt_rootdir: 552 /* Ignored (never implemented properly) */ 553 break; 554 case Opt_utf8: 555 if (!remount) { 556 unload_nls(uopt->nls_map); 557 uopt->nls_map = NULL; 558 } 559 break; 560 case Opt_iocharset: 561 if (!remount) { 562 unload_nls(uopt->nls_map); 563 uopt->nls_map = NULL; 564 } 565 /* When nls_map is not loaded then UTF-8 is used */ 566 if (!remount && strcmp(args[0].from, "utf8") != 0) { 567 uopt->nls_map = load_nls(args[0].from); 568 if (!uopt->nls_map) { 569 pr_err("iocharset %s not found\n", 570 args[0].from); 571 return 0; 572 } 573 } 574 break; 575 case Opt_uforget: 576 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 577 break; 578 case Opt_uignore: 579 case Opt_gignore: 580 /* These options are superseeded by uid=<number> */ 581 break; 582 case Opt_gforget: 583 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 584 break; 585 case Opt_fmode: 586 if (match_octal(args, &option)) 587 return 0; 588 uopt->fmode = option & 0777; 589 break; 590 case Opt_dmode: 591 if (match_octal(args, &option)) 592 return 0; 593 uopt->dmode = option & 0777; 594 break; 595 default: 596 pr_err("bad mount option \"%s\" or missing value\n", p); 597 return 0; 598 } 599 } 600 return 1; 601 } 602 603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 604 { 605 struct udf_options uopt; 606 struct udf_sb_info *sbi = UDF_SB(sb); 607 int error = 0; 608 609 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 610 return -EACCES; 611 612 sync_filesystem(sb); 613 614 uopt.flags = sbi->s_flags; 615 uopt.uid = sbi->s_uid; 616 uopt.gid = sbi->s_gid; 617 uopt.umask = sbi->s_umask; 618 uopt.fmode = sbi->s_fmode; 619 uopt.dmode = sbi->s_dmode; 620 uopt.nls_map = NULL; 621 622 if (!udf_parse_options(options, &uopt, true)) 623 return -EINVAL; 624 625 write_lock(&sbi->s_cred_lock); 626 sbi->s_flags = uopt.flags; 627 sbi->s_uid = uopt.uid; 628 sbi->s_gid = uopt.gid; 629 sbi->s_umask = uopt.umask; 630 sbi->s_fmode = uopt.fmode; 631 sbi->s_dmode = uopt.dmode; 632 write_unlock(&sbi->s_cred_lock); 633 634 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 635 goto out_unlock; 636 637 if (*flags & SB_RDONLY) 638 udf_close_lvid(sb); 639 else 640 udf_open_lvid(sb); 641 642 out_unlock: 643 return error; 644 } 645 646 /* 647 * Check VSD descriptor. Returns -1 in case we are at the end of volume 648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 649 * we found one of NSR descriptors we are looking for. 650 */ 651 static int identify_vsd(const struct volStructDesc *vsd) 652 { 653 int ret = 0; 654 655 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 656 switch (vsd->structType) { 657 case 0: 658 udf_debug("ISO9660 Boot Record found\n"); 659 break; 660 case 1: 661 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 662 break; 663 case 2: 664 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 665 break; 666 case 3: 667 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 668 break; 669 case 255: 670 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 671 break; 672 default: 673 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 674 break; 675 } 676 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 677 ; /* ret = 0 */ 678 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 679 ret = 1; 680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 681 ret = 1; 682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 683 ; /* ret = 0 */ 684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 685 ; /* ret = 0 */ 686 else { 687 /* TEA01 or invalid id : end of volume recognition area */ 688 ret = -1; 689 } 690 691 return ret; 692 } 693 694 /* 695 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 697 * @return 1 if NSR02 or NSR03 found, 698 * -1 if first sector read error, 0 otherwise 699 */ 700 static int udf_check_vsd(struct super_block *sb) 701 { 702 struct volStructDesc *vsd = NULL; 703 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 704 int sectorsize; 705 struct buffer_head *bh = NULL; 706 int nsr = 0; 707 struct udf_sb_info *sbi; 708 loff_t session_offset; 709 710 sbi = UDF_SB(sb); 711 if (sb->s_blocksize < sizeof(struct volStructDesc)) 712 sectorsize = sizeof(struct volStructDesc); 713 else 714 sectorsize = sb->s_blocksize; 715 716 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; 717 sector += session_offset; 718 719 udf_debug("Starting at sector %u (%lu byte sectors)\n", 720 (unsigned int)(sector >> sb->s_blocksize_bits), 721 sb->s_blocksize); 722 /* Process the sequence (if applicable). The hard limit on the sector 723 * offset is arbitrary, hopefully large enough so that all valid UDF 724 * filesystems will be recognised. There is no mention of an upper 725 * bound to the size of the volume recognition area in the standard. 726 * The limit will prevent the code to read all the sectors of a 727 * specially crafted image (like a bluray disc full of CD001 sectors), 728 * potentially causing minutes or even hours of uninterruptible I/O 729 * activity. This actually happened with uninitialised SSD partitions 730 * (all 0xFF) before the check for the limit and all valid IDs were 731 * added */ 732 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 733 /* Read a block */ 734 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 735 if (!bh) 736 break; 737 738 vsd = (struct volStructDesc *)(bh->b_data + 739 (sector & (sb->s_blocksize - 1))); 740 nsr = identify_vsd(vsd); 741 /* Found NSR or end? */ 742 if (nsr) { 743 brelse(bh); 744 break; 745 } 746 /* 747 * Special handling for improperly formatted VRS (e.g., Win10) 748 * where components are separated by 2048 bytes even though 749 * sectors are 4K 750 */ 751 if (sb->s_blocksize == 4096) { 752 nsr = identify_vsd(vsd + 1); 753 /* Ignore unknown IDs... */ 754 if (nsr < 0) 755 nsr = 0; 756 } 757 brelse(bh); 758 } 759 760 if (nsr > 0) 761 return 1; 762 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) 763 return -1; 764 else 765 return 0; 766 } 767 768 static int udf_verify_domain_identifier(struct super_block *sb, 769 struct regid *ident, char *dname) 770 { 771 struct domainIdentSuffix *suffix; 772 773 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 774 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 775 goto force_ro; 776 } 777 if (ident->flags & ENTITYID_FLAGS_DIRTY) { 778 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 779 dname); 780 goto force_ro; 781 } 782 suffix = (struct domainIdentSuffix *)ident->identSuffix; 783 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || 784 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { 785 if (!sb_rdonly(sb)) { 786 udf_warn(sb, "Descriptor for %s marked write protected." 787 " Forcing read only mount.\n", dname); 788 } 789 goto force_ro; 790 } 791 return 0; 792 793 force_ro: 794 if (!sb_rdonly(sb)) 795 return -EACCES; 796 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 797 return 0; 798 } 799 800 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 801 struct kernel_lb_addr *root) 802 { 803 int ret; 804 805 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 806 if (ret < 0) 807 return ret; 808 809 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 810 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 811 812 udf_debug("Rootdir at block=%u, partition=%u\n", 813 root->logicalBlockNum, root->partitionReferenceNum); 814 return 0; 815 } 816 817 static int udf_find_fileset(struct super_block *sb, 818 struct kernel_lb_addr *fileset, 819 struct kernel_lb_addr *root) 820 { 821 struct buffer_head *bh = NULL; 822 uint16_t ident; 823 int ret; 824 825 if (fileset->logicalBlockNum == 0xFFFFFFFF && 826 fileset->partitionReferenceNum == 0xFFFF) 827 return -EINVAL; 828 829 bh = udf_read_ptagged(sb, fileset, 0, &ident); 830 if (!bh) 831 return -EIO; 832 if (ident != TAG_IDENT_FSD) { 833 brelse(bh); 834 return -EINVAL; 835 } 836 837 udf_debug("Fileset at block=%u, partition=%u\n", 838 fileset->logicalBlockNum, fileset->partitionReferenceNum); 839 840 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 841 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 842 brelse(bh); 843 return ret; 844 } 845 846 /* 847 * Load primary Volume Descriptor Sequence 848 * 849 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 850 * should be tried. 851 */ 852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 853 { 854 struct primaryVolDesc *pvoldesc; 855 uint8_t *outstr; 856 struct buffer_head *bh; 857 uint16_t ident; 858 int ret; 859 struct timestamp *ts; 860 861 outstr = kmalloc(128, GFP_NOFS); 862 if (!outstr) 863 return -ENOMEM; 864 865 bh = udf_read_tagged(sb, block, block, &ident); 866 if (!bh) { 867 ret = -EAGAIN; 868 goto out2; 869 } 870 871 if (ident != TAG_IDENT_PVD) { 872 ret = -EIO; 873 goto out_bh; 874 } 875 876 pvoldesc = (struct primaryVolDesc *)bh->b_data; 877 878 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 879 pvoldesc->recordingDateAndTime); 880 ts = &pvoldesc->recordingDateAndTime; 881 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 882 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 883 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 884 885 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 886 if (ret < 0) { 887 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 888 pr_warn("incorrect volume identification, setting to " 889 "'InvalidName'\n"); 890 } else { 891 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 892 } 893 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 894 895 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 896 if (ret < 0) { 897 ret = 0; 898 goto out_bh; 899 } 900 outstr[ret] = 0; 901 udf_debug("volSetIdent[] = '%s'\n", outstr); 902 903 ret = 0; 904 out_bh: 905 brelse(bh); 906 out2: 907 kfree(outstr); 908 return ret; 909 } 910 911 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 912 u32 meta_file_loc, u32 partition_ref) 913 { 914 struct kernel_lb_addr addr; 915 struct inode *metadata_fe; 916 917 addr.logicalBlockNum = meta_file_loc; 918 addr.partitionReferenceNum = partition_ref; 919 920 metadata_fe = udf_iget_special(sb, &addr); 921 922 if (IS_ERR(metadata_fe)) { 923 udf_warn(sb, "metadata inode efe not found\n"); 924 return metadata_fe; 925 } 926 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 927 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 928 iput(metadata_fe); 929 return ERR_PTR(-EIO); 930 } 931 932 return metadata_fe; 933 } 934 935 static int udf_load_metadata_files(struct super_block *sb, int partition, 936 int type1_index) 937 { 938 struct udf_sb_info *sbi = UDF_SB(sb); 939 struct udf_part_map *map; 940 struct udf_meta_data *mdata; 941 struct kernel_lb_addr addr; 942 struct inode *fe; 943 944 map = &sbi->s_partmaps[partition]; 945 mdata = &map->s_type_specific.s_metadata; 946 mdata->s_phys_partition_ref = type1_index; 947 948 /* metadata address */ 949 udf_debug("Metadata file location: block = %u part = %u\n", 950 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 951 952 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 953 mdata->s_phys_partition_ref); 954 if (IS_ERR(fe)) { 955 /* mirror file entry */ 956 udf_debug("Mirror metadata file location: block = %u part = %u\n", 957 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 958 959 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 960 mdata->s_phys_partition_ref); 961 962 if (IS_ERR(fe)) { 963 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 964 return PTR_ERR(fe); 965 } 966 mdata->s_mirror_fe = fe; 967 } else 968 mdata->s_metadata_fe = fe; 969 970 971 /* 972 * bitmap file entry 973 * Note: 974 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 975 */ 976 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 977 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 978 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 979 980 udf_debug("Bitmap file location: block = %u part = %u\n", 981 addr.logicalBlockNum, addr.partitionReferenceNum); 982 983 fe = udf_iget_special(sb, &addr); 984 if (IS_ERR(fe)) { 985 if (sb_rdonly(sb)) 986 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 987 else { 988 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 989 return PTR_ERR(fe); 990 } 991 } else 992 mdata->s_bitmap_fe = fe; 993 } 994 995 udf_debug("udf_load_metadata_files Ok\n"); 996 return 0; 997 } 998 999 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1000 { 1001 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1002 return DIV_ROUND_UP(map->s_partition_len + 1003 (sizeof(struct spaceBitmapDesc) << 3), 1004 sb->s_blocksize * 8); 1005 } 1006 1007 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1008 { 1009 struct udf_bitmap *bitmap; 1010 int nr_groups = udf_compute_nr_groups(sb, index); 1011 1012 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), 1013 GFP_KERNEL); 1014 if (!bitmap) 1015 return NULL; 1016 1017 bitmap->s_nr_groups = nr_groups; 1018 return bitmap; 1019 } 1020 1021 static int check_partition_desc(struct super_block *sb, 1022 struct partitionDesc *p, 1023 struct udf_part_map *map) 1024 { 1025 bool umap, utable, fmap, ftable; 1026 struct partitionHeaderDesc *phd; 1027 1028 switch (le32_to_cpu(p->accessType)) { 1029 case PD_ACCESS_TYPE_READ_ONLY: 1030 case PD_ACCESS_TYPE_WRITE_ONCE: 1031 case PD_ACCESS_TYPE_NONE: 1032 goto force_ro; 1033 } 1034 1035 /* No Partition Header Descriptor? */ 1036 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1037 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1038 goto force_ro; 1039 1040 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1041 utable = phd->unallocSpaceTable.extLength; 1042 umap = phd->unallocSpaceBitmap.extLength; 1043 ftable = phd->freedSpaceTable.extLength; 1044 fmap = phd->freedSpaceBitmap.extLength; 1045 1046 /* No allocation info? */ 1047 if (!utable && !umap && !ftable && !fmap) 1048 goto force_ro; 1049 1050 /* We don't support blocks that require erasing before overwrite */ 1051 if (ftable || fmap) 1052 goto force_ro; 1053 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1054 if (utable && umap) 1055 goto force_ro; 1056 1057 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1058 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1059 map->s_partition_type == UDF_METADATA_MAP25) 1060 goto force_ro; 1061 1062 return 0; 1063 force_ro: 1064 if (!sb_rdonly(sb)) 1065 return -EACCES; 1066 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1067 return 0; 1068 } 1069 1070 static int udf_fill_partdesc_info(struct super_block *sb, 1071 struct partitionDesc *p, int p_index) 1072 { 1073 struct udf_part_map *map; 1074 struct udf_sb_info *sbi = UDF_SB(sb); 1075 struct partitionHeaderDesc *phd; 1076 int err; 1077 1078 map = &sbi->s_partmaps[p_index]; 1079 1080 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1081 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1082 1083 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1084 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1086 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1088 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1090 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1091 1092 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1093 p_index, map->s_partition_type, 1094 map->s_partition_root, map->s_partition_len); 1095 1096 err = check_partition_desc(sb, p, map); 1097 if (err) 1098 return err; 1099 1100 /* 1101 * Skip loading allocation info it we cannot ever write to the fs. 1102 * This is a correctness thing as we may have decided to force ro mount 1103 * to avoid allocation info we don't support. 1104 */ 1105 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1106 return 0; 1107 1108 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1109 if (phd->unallocSpaceTable.extLength) { 1110 struct kernel_lb_addr loc = { 1111 .logicalBlockNum = le32_to_cpu( 1112 phd->unallocSpaceTable.extPosition), 1113 .partitionReferenceNum = p_index, 1114 }; 1115 struct inode *inode; 1116 1117 inode = udf_iget_special(sb, &loc); 1118 if (IS_ERR(inode)) { 1119 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1120 p_index); 1121 return PTR_ERR(inode); 1122 } 1123 map->s_uspace.s_table = inode; 1124 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1125 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1126 p_index, map->s_uspace.s_table->i_ino); 1127 } 1128 1129 if (phd->unallocSpaceBitmap.extLength) { 1130 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1131 if (!bitmap) 1132 return -ENOMEM; 1133 map->s_uspace.s_bitmap = bitmap; 1134 bitmap->s_extPosition = le32_to_cpu( 1135 phd->unallocSpaceBitmap.extPosition); 1136 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1137 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1138 p_index, bitmap->s_extPosition); 1139 } 1140 1141 return 0; 1142 } 1143 1144 static void udf_find_vat_block(struct super_block *sb, int p_index, 1145 int type1_index, sector_t start_block) 1146 { 1147 struct udf_sb_info *sbi = UDF_SB(sb); 1148 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1149 sector_t vat_block; 1150 struct kernel_lb_addr ino; 1151 struct inode *inode; 1152 1153 /* 1154 * VAT file entry is in the last recorded block. Some broken disks have 1155 * it a few blocks before so try a bit harder... 1156 */ 1157 ino.partitionReferenceNum = type1_index; 1158 for (vat_block = start_block; 1159 vat_block >= map->s_partition_root && 1160 vat_block >= start_block - 3; vat_block--) { 1161 ino.logicalBlockNum = vat_block - map->s_partition_root; 1162 inode = udf_iget_special(sb, &ino); 1163 if (!IS_ERR(inode)) { 1164 sbi->s_vat_inode = inode; 1165 break; 1166 } 1167 } 1168 } 1169 1170 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1171 { 1172 struct udf_sb_info *sbi = UDF_SB(sb); 1173 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1174 struct buffer_head *bh = NULL; 1175 struct udf_inode_info *vati; 1176 uint32_t pos; 1177 struct virtualAllocationTable20 *vat20; 1178 sector_t blocks = sb_bdev_nr_blocks(sb); 1179 1180 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1181 if (!sbi->s_vat_inode && 1182 sbi->s_last_block != blocks - 1) { 1183 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1184 (unsigned long)sbi->s_last_block, 1185 (unsigned long)blocks - 1); 1186 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1187 } 1188 if (!sbi->s_vat_inode) 1189 return -EIO; 1190 1191 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1192 map->s_type_specific.s_virtual.s_start_offset = 0; 1193 map->s_type_specific.s_virtual.s_num_entries = 1194 (sbi->s_vat_inode->i_size - 36) >> 2; 1195 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1196 vati = UDF_I(sbi->s_vat_inode); 1197 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1198 pos = udf_block_map(sbi->s_vat_inode, 0); 1199 bh = sb_bread(sb, pos); 1200 if (!bh) 1201 return -EIO; 1202 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1203 } else { 1204 vat20 = (struct virtualAllocationTable20 *) 1205 vati->i_data; 1206 } 1207 1208 map->s_type_specific.s_virtual.s_start_offset = 1209 le16_to_cpu(vat20->lengthHeader); 1210 map->s_type_specific.s_virtual.s_num_entries = 1211 (sbi->s_vat_inode->i_size - 1212 map->s_type_specific.s_virtual. 1213 s_start_offset) >> 2; 1214 brelse(bh); 1215 } 1216 return 0; 1217 } 1218 1219 /* 1220 * Load partition descriptor block 1221 * 1222 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1223 * sequence. 1224 */ 1225 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1226 { 1227 struct buffer_head *bh; 1228 struct partitionDesc *p; 1229 struct udf_part_map *map; 1230 struct udf_sb_info *sbi = UDF_SB(sb); 1231 int i, type1_idx; 1232 uint16_t partitionNumber; 1233 uint16_t ident; 1234 int ret; 1235 1236 bh = udf_read_tagged(sb, block, block, &ident); 1237 if (!bh) 1238 return -EAGAIN; 1239 if (ident != TAG_IDENT_PD) { 1240 ret = 0; 1241 goto out_bh; 1242 } 1243 1244 p = (struct partitionDesc *)bh->b_data; 1245 partitionNumber = le16_to_cpu(p->partitionNumber); 1246 1247 /* First scan for TYPE1 and SPARABLE partitions */ 1248 for (i = 0; i < sbi->s_partitions; i++) { 1249 map = &sbi->s_partmaps[i]; 1250 udf_debug("Searching map: (%u == %u)\n", 1251 map->s_partition_num, partitionNumber); 1252 if (map->s_partition_num == partitionNumber && 1253 (map->s_partition_type == UDF_TYPE1_MAP15 || 1254 map->s_partition_type == UDF_SPARABLE_MAP15)) 1255 break; 1256 } 1257 1258 if (i >= sbi->s_partitions) { 1259 udf_debug("Partition (%u) not found in partition map\n", 1260 partitionNumber); 1261 ret = 0; 1262 goto out_bh; 1263 } 1264 1265 ret = udf_fill_partdesc_info(sb, p, i); 1266 if (ret < 0) 1267 goto out_bh; 1268 1269 /* 1270 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1271 * PHYSICAL partitions are already set up 1272 */ 1273 type1_idx = i; 1274 map = NULL; /* supress 'maybe used uninitialized' warning */ 1275 for (i = 0; i < sbi->s_partitions; i++) { 1276 map = &sbi->s_partmaps[i]; 1277 1278 if (map->s_partition_num == partitionNumber && 1279 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1280 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1281 map->s_partition_type == UDF_METADATA_MAP25)) 1282 break; 1283 } 1284 1285 if (i >= sbi->s_partitions) { 1286 ret = 0; 1287 goto out_bh; 1288 } 1289 1290 ret = udf_fill_partdesc_info(sb, p, i); 1291 if (ret < 0) 1292 goto out_bh; 1293 1294 if (map->s_partition_type == UDF_METADATA_MAP25) { 1295 ret = udf_load_metadata_files(sb, i, type1_idx); 1296 if (ret < 0) { 1297 udf_err(sb, "error loading MetaData partition map %d\n", 1298 i); 1299 goto out_bh; 1300 } 1301 } else { 1302 /* 1303 * If we have a partition with virtual map, we don't handle 1304 * writing to it (we overwrite blocks instead of relocating 1305 * them). 1306 */ 1307 if (!sb_rdonly(sb)) { 1308 ret = -EACCES; 1309 goto out_bh; 1310 } 1311 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1312 ret = udf_load_vat(sb, i, type1_idx); 1313 if (ret < 0) 1314 goto out_bh; 1315 } 1316 ret = 0; 1317 out_bh: 1318 /* In case loading failed, we handle cleanup in udf_fill_super */ 1319 brelse(bh); 1320 return ret; 1321 } 1322 1323 static int udf_load_sparable_map(struct super_block *sb, 1324 struct udf_part_map *map, 1325 struct sparablePartitionMap *spm) 1326 { 1327 uint32_t loc; 1328 uint16_t ident; 1329 struct sparingTable *st; 1330 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1331 int i; 1332 struct buffer_head *bh; 1333 1334 map->s_partition_type = UDF_SPARABLE_MAP15; 1335 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1336 if (!is_power_of_2(sdata->s_packet_len)) { 1337 udf_err(sb, "error loading logical volume descriptor: " 1338 "Invalid packet length %u\n", 1339 (unsigned)sdata->s_packet_len); 1340 return -EIO; 1341 } 1342 if (spm->numSparingTables > 4) { 1343 udf_err(sb, "error loading logical volume descriptor: " 1344 "Too many sparing tables (%d)\n", 1345 (int)spm->numSparingTables); 1346 return -EIO; 1347 } 1348 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { 1349 udf_err(sb, "error loading logical volume descriptor: " 1350 "Too big sparing table size (%u)\n", 1351 le32_to_cpu(spm->sizeSparingTable)); 1352 return -EIO; 1353 } 1354 1355 for (i = 0; i < spm->numSparingTables; i++) { 1356 loc = le32_to_cpu(spm->locSparingTable[i]); 1357 bh = udf_read_tagged(sb, loc, loc, &ident); 1358 if (!bh) 1359 continue; 1360 1361 st = (struct sparingTable *)bh->b_data; 1362 if (ident != 0 || 1363 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1364 strlen(UDF_ID_SPARING)) || 1365 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1366 sb->s_blocksize) { 1367 brelse(bh); 1368 continue; 1369 } 1370 1371 sdata->s_spar_map[i] = bh; 1372 } 1373 map->s_partition_func = udf_get_pblock_spar15; 1374 return 0; 1375 } 1376 1377 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1378 struct kernel_lb_addr *fileset) 1379 { 1380 struct logicalVolDesc *lvd; 1381 int i, offset; 1382 uint8_t type; 1383 struct udf_sb_info *sbi = UDF_SB(sb); 1384 struct genericPartitionMap *gpm; 1385 uint16_t ident; 1386 struct buffer_head *bh; 1387 unsigned int table_len; 1388 int ret; 1389 1390 bh = udf_read_tagged(sb, block, block, &ident); 1391 if (!bh) 1392 return -EAGAIN; 1393 BUG_ON(ident != TAG_IDENT_LVD); 1394 lvd = (struct logicalVolDesc *)bh->b_data; 1395 table_len = le32_to_cpu(lvd->mapTableLength); 1396 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1397 udf_err(sb, "error loading logical volume descriptor: " 1398 "Partition table too long (%u > %lu)\n", table_len, 1399 sb->s_blocksize - sizeof(*lvd)); 1400 ret = -EIO; 1401 goto out_bh; 1402 } 1403 1404 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1405 "logical volume"); 1406 if (ret) 1407 goto out_bh; 1408 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1409 if (ret) 1410 goto out_bh; 1411 1412 for (i = 0, offset = 0; 1413 i < sbi->s_partitions && offset < table_len; 1414 i++, offset += gpm->partitionMapLength) { 1415 struct udf_part_map *map = &sbi->s_partmaps[i]; 1416 gpm = (struct genericPartitionMap *) 1417 &(lvd->partitionMaps[offset]); 1418 type = gpm->partitionMapType; 1419 if (type == 1) { 1420 struct genericPartitionMap1 *gpm1 = 1421 (struct genericPartitionMap1 *)gpm; 1422 map->s_partition_type = UDF_TYPE1_MAP15; 1423 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1424 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1425 map->s_partition_func = NULL; 1426 } else if (type == 2) { 1427 struct udfPartitionMap2 *upm2 = 1428 (struct udfPartitionMap2 *)gpm; 1429 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1430 strlen(UDF_ID_VIRTUAL))) { 1431 u16 suf = 1432 le16_to_cpu(((__le16 *)upm2->partIdent. 1433 identSuffix)[0]); 1434 if (suf < 0x0200) { 1435 map->s_partition_type = 1436 UDF_VIRTUAL_MAP15; 1437 map->s_partition_func = 1438 udf_get_pblock_virt15; 1439 } else { 1440 map->s_partition_type = 1441 UDF_VIRTUAL_MAP20; 1442 map->s_partition_func = 1443 udf_get_pblock_virt20; 1444 } 1445 } else if (!strncmp(upm2->partIdent.ident, 1446 UDF_ID_SPARABLE, 1447 strlen(UDF_ID_SPARABLE))) { 1448 ret = udf_load_sparable_map(sb, map, 1449 (struct sparablePartitionMap *)gpm); 1450 if (ret < 0) 1451 goto out_bh; 1452 } else if (!strncmp(upm2->partIdent.ident, 1453 UDF_ID_METADATA, 1454 strlen(UDF_ID_METADATA))) { 1455 struct udf_meta_data *mdata = 1456 &map->s_type_specific.s_metadata; 1457 struct metadataPartitionMap *mdm = 1458 (struct metadataPartitionMap *) 1459 &(lvd->partitionMaps[offset]); 1460 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1461 i, type, UDF_ID_METADATA); 1462 1463 map->s_partition_type = UDF_METADATA_MAP25; 1464 map->s_partition_func = udf_get_pblock_meta25; 1465 1466 mdata->s_meta_file_loc = 1467 le32_to_cpu(mdm->metadataFileLoc); 1468 mdata->s_mirror_file_loc = 1469 le32_to_cpu(mdm->metadataMirrorFileLoc); 1470 mdata->s_bitmap_file_loc = 1471 le32_to_cpu(mdm->metadataBitmapFileLoc); 1472 mdata->s_alloc_unit_size = 1473 le32_to_cpu(mdm->allocUnitSize); 1474 mdata->s_align_unit_size = 1475 le16_to_cpu(mdm->alignUnitSize); 1476 if (mdm->flags & 0x01) 1477 mdata->s_flags |= MF_DUPLICATE_MD; 1478 1479 udf_debug("Metadata Ident suffix=0x%x\n", 1480 le16_to_cpu(*(__le16 *) 1481 mdm->partIdent.identSuffix)); 1482 udf_debug("Metadata part num=%u\n", 1483 le16_to_cpu(mdm->partitionNum)); 1484 udf_debug("Metadata part alloc unit size=%u\n", 1485 le32_to_cpu(mdm->allocUnitSize)); 1486 udf_debug("Metadata file loc=%u\n", 1487 le32_to_cpu(mdm->metadataFileLoc)); 1488 udf_debug("Mirror file loc=%u\n", 1489 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1490 udf_debug("Bitmap file loc=%u\n", 1491 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1492 udf_debug("Flags: %d %u\n", 1493 mdata->s_flags, mdm->flags); 1494 } else { 1495 udf_debug("Unknown ident: %s\n", 1496 upm2->partIdent.ident); 1497 continue; 1498 } 1499 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1500 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1501 } 1502 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1503 i, map->s_partition_num, type, map->s_volumeseqnum); 1504 } 1505 1506 if (fileset) { 1507 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1508 1509 *fileset = lelb_to_cpu(la->extLocation); 1510 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1511 fileset->logicalBlockNum, 1512 fileset->partitionReferenceNum); 1513 } 1514 if (lvd->integritySeqExt.extLength) 1515 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1516 ret = 0; 1517 1518 if (!sbi->s_lvid_bh) { 1519 /* We can't generate unique IDs without a valid LVID */ 1520 if (sb_rdonly(sb)) { 1521 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1522 } else { 1523 udf_warn(sb, "Damaged or missing LVID, forcing " 1524 "readonly mount\n"); 1525 ret = -EACCES; 1526 } 1527 } 1528 out_bh: 1529 brelse(bh); 1530 return ret; 1531 } 1532 1533 /* 1534 * Find the prevailing Logical Volume Integrity Descriptor. 1535 */ 1536 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1537 { 1538 struct buffer_head *bh, *final_bh; 1539 uint16_t ident; 1540 struct udf_sb_info *sbi = UDF_SB(sb); 1541 struct logicalVolIntegrityDesc *lvid; 1542 int indirections = 0; 1543 u32 parts, impuselen; 1544 1545 while (++indirections <= UDF_MAX_LVID_NESTING) { 1546 final_bh = NULL; 1547 while (loc.extLength > 0 && 1548 (bh = udf_read_tagged(sb, loc.extLocation, 1549 loc.extLocation, &ident))) { 1550 if (ident != TAG_IDENT_LVID) { 1551 brelse(bh); 1552 break; 1553 } 1554 1555 brelse(final_bh); 1556 final_bh = bh; 1557 1558 loc.extLength -= sb->s_blocksize; 1559 loc.extLocation++; 1560 } 1561 1562 if (!final_bh) 1563 return; 1564 1565 brelse(sbi->s_lvid_bh); 1566 sbi->s_lvid_bh = final_bh; 1567 1568 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1569 if (lvid->nextIntegrityExt.extLength == 0) 1570 goto check; 1571 1572 loc = leea_to_cpu(lvid->nextIntegrityExt); 1573 } 1574 1575 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1576 UDF_MAX_LVID_NESTING); 1577 out_err: 1578 brelse(sbi->s_lvid_bh); 1579 sbi->s_lvid_bh = NULL; 1580 return; 1581 check: 1582 parts = le32_to_cpu(lvid->numOfPartitions); 1583 impuselen = le32_to_cpu(lvid->lengthOfImpUse); 1584 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize || 1585 sizeof(struct logicalVolIntegrityDesc) + impuselen + 1586 2 * parts * sizeof(u32) > sb->s_blocksize) { 1587 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), " 1588 "ignoring.\n", parts, impuselen); 1589 goto out_err; 1590 } 1591 } 1592 1593 /* 1594 * Step for reallocation of table of partition descriptor sequence numbers. 1595 * Must be power of 2. 1596 */ 1597 #define PART_DESC_ALLOC_STEP 32 1598 1599 struct part_desc_seq_scan_data { 1600 struct udf_vds_record rec; 1601 u32 partnum; 1602 }; 1603 1604 struct desc_seq_scan_data { 1605 struct udf_vds_record vds[VDS_POS_LENGTH]; 1606 unsigned int size_part_descs; 1607 unsigned int num_part_descs; 1608 struct part_desc_seq_scan_data *part_descs_loc; 1609 }; 1610 1611 static struct udf_vds_record *handle_partition_descriptor( 1612 struct buffer_head *bh, 1613 struct desc_seq_scan_data *data) 1614 { 1615 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1616 int partnum; 1617 int i; 1618 1619 partnum = le16_to_cpu(desc->partitionNumber); 1620 for (i = 0; i < data->num_part_descs; i++) 1621 if (partnum == data->part_descs_loc[i].partnum) 1622 return &(data->part_descs_loc[i].rec); 1623 if (data->num_part_descs >= data->size_part_descs) { 1624 struct part_desc_seq_scan_data *new_loc; 1625 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1626 1627 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1628 if (!new_loc) 1629 return ERR_PTR(-ENOMEM); 1630 memcpy(new_loc, data->part_descs_loc, 1631 data->size_part_descs * sizeof(*new_loc)); 1632 kfree(data->part_descs_loc); 1633 data->part_descs_loc = new_loc; 1634 data->size_part_descs = new_size; 1635 } 1636 return &(data->part_descs_loc[data->num_part_descs++].rec); 1637 } 1638 1639 1640 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1641 struct buffer_head *bh, struct desc_seq_scan_data *data) 1642 { 1643 switch (ident) { 1644 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1645 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1646 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1647 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1648 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1649 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1650 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1651 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1652 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1653 return handle_partition_descriptor(bh, data); 1654 } 1655 return NULL; 1656 } 1657 1658 /* 1659 * Process a main/reserve volume descriptor sequence. 1660 * @block First block of first extent of the sequence. 1661 * @lastblock Lastblock of first extent of the sequence. 1662 * @fileset There we store extent containing root fileset 1663 * 1664 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1665 * sequence 1666 */ 1667 static noinline int udf_process_sequence( 1668 struct super_block *sb, 1669 sector_t block, sector_t lastblock, 1670 struct kernel_lb_addr *fileset) 1671 { 1672 struct buffer_head *bh = NULL; 1673 struct udf_vds_record *curr; 1674 struct generic_desc *gd; 1675 struct volDescPtr *vdp; 1676 bool done = false; 1677 uint32_t vdsn; 1678 uint16_t ident; 1679 int ret; 1680 unsigned int indirections = 0; 1681 struct desc_seq_scan_data data; 1682 unsigned int i; 1683 1684 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1685 data.size_part_descs = PART_DESC_ALLOC_STEP; 1686 data.num_part_descs = 0; 1687 data.part_descs_loc = kcalloc(data.size_part_descs, 1688 sizeof(*data.part_descs_loc), 1689 GFP_KERNEL); 1690 if (!data.part_descs_loc) 1691 return -ENOMEM; 1692 1693 /* 1694 * Read the main descriptor sequence and find which descriptors 1695 * are in it. 1696 */ 1697 for (; (!done && block <= lastblock); block++) { 1698 bh = udf_read_tagged(sb, block, block, &ident); 1699 if (!bh) 1700 break; 1701 1702 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1703 gd = (struct generic_desc *)bh->b_data; 1704 vdsn = le32_to_cpu(gd->volDescSeqNum); 1705 switch (ident) { 1706 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1707 if (++indirections > UDF_MAX_TD_NESTING) { 1708 udf_err(sb, "too many Volume Descriptor " 1709 "Pointers (max %u supported)\n", 1710 UDF_MAX_TD_NESTING); 1711 brelse(bh); 1712 ret = -EIO; 1713 goto out; 1714 } 1715 1716 vdp = (struct volDescPtr *)bh->b_data; 1717 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1718 lastblock = le32_to_cpu( 1719 vdp->nextVolDescSeqExt.extLength) >> 1720 sb->s_blocksize_bits; 1721 lastblock += block - 1; 1722 /* For loop is going to increment 'block' again */ 1723 block--; 1724 break; 1725 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1726 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1727 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1728 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1729 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1730 curr = get_volume_descriptor_record(ident, bh, &data); 1731 if (IS_ERR(curr)) { 1732 brelse(bh); 1733 ret = PTR_ERR(curr); 1734 goto out; 1735 } 1736 /* Descriptor we don't care about? */ 1737 if (!curr) 1738 break; 1739 if (vdsn >= curr->volDescSeqNum) { 1740 curr->volDescSeqNum = vdsn; 1741 curr->block = block; 1742 } 1743 break; 1744 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1745 done = true; 1746 break; 1747 } 1748 brelse(bh); 1749 } 1750 /* 1751 * Now read interesting descriptors again and process them 1752 * in a suitable order 1753 */ 1754 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1755 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1756 ret = -EAGAIN; 1757 goto out; 1758 } 1759 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1760 if (ret < 0) 1761 goto out; 1762 1763 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1764 ret = udf_load_logicalvol(sb, 1765 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1766 fileset); 1767 if (ret < 0) 1768 goto out; 1769 } 1770 1771 /* Now handle prevailing Partition Descriptors */ 1772 for (i = 0; i < data.num_part_descs; i++) { 1773 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1774 if (ret < 0) 1775 goto out; 1776 } 1777 ret = 0; 1778 out: 1779 kfree(data.part_descs_loc); 1780 return ret; 1781 } 1782 1783 /* 1784 * Load Volume Descriptor Sequence described by anchor in bh 1785 * 1786 * Returns <0 on error, 0 on success 1787 */ 1788 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1789 struct kernel_lb_addr *fileset) 1790 { 1791 struct anchorVolDescPtr *anchor; 1792 sector_t main_s, main_e, reserve_s, reserve_e; 1793 int ret; 1794 1795 anchor = (struct anchorVolDescPtr *)bh->b_data; 1796 1797 /* Locate the main sequence */ 1798 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1799 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1800 main_e = main_e >> sb->s_blocksize_bits; 1801 main_e += main_s - 1; 1802 1803 /* Locate the reserve sequence */ 1804 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1805 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1806 reserve_e = reserve_e >> sb->s_blocksize_bits; 1807 reserve_e += reserve_s - 1; 1808 1809 /* Process the main & reserve sequences */ 1810 /* responsible for finding the PartitionDesc(s) */ 1811 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1812 if (ret != -EAGAIN) 1813 return ret; 1814 udf_sb_free_partitions(sb); 1815 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1816 if (ret < 0) { 1817 udf_sb_free_partitions(sb); 1818 /* No sequence was OK, return -EIO */ 1819 if (ret == -EAGAIN) 1820 ret = -EIO; 1821 } 1822 return ret; 1823 } 1824 1825 /* 1826 * Check whether there is an anchor block in the given block and 1827 * load Volume Descriptor Sequence if so. 1828 * 1829 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1830 * block 1831 */ 1832 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1833 struct kernel_lb_addr *fileset) 1834 { 1835 struct buffer_head *bh; 1836 uint16_t ident; 1837 int ret; 1838 1839 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1840 udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb)) 1841 return -EAGAIN; 1842 1843 bh = udf_read_tagged(sb, block, block, &ident); 1844 if (!bh) 1845 return -EAGAIN; 1846 if (ident != TAG_IDENT_AVDP) { 1847 brelse(bh); 1848 return -EAGAIN; 1849 } 1850 ret = udf_load_sequence(sb, bh, fileset); 1851 brelse(bh); 1852 return ret; 1853 } 1854 1855 /* 1856 * Search for an anchor volume descriptor pointer. 1857 * 1858 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1859 * of anchors. 1860 */ 1861 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1862 struct kernel_lb_addr *fileset) 1863 { 1864 sector_t last[6]; 1865 int i; 1866 struct udf_sb_info *sbi = UDF_SB(sb); 1867 int last_count = 0; 1868 int ret; 1869 1870 /* First try user provided anchor */ 1871 if (sbi->s_anchor) { 1872 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1873 if (ret != -EAGAIN) 1874 return ret; 1875 } 1876 /* 1877 * according to spec, anchor is in either: 1878 * block 256 1879 * lastblock-256 1880 * lastblock 1881 * however, if the disc isn't closed, it could be 512. 1882 */ 1883 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1884 if (ret != -EAGAIN) 1885 return ret; 1886 /* 1887 * The trouble is which block is the last one. Drives often misreport 1888 * this so we try various possibilities. 1889 */ 1890 last[last_count++] = *lastblock; 1891 if (*lastblock >= 1) 1892 last[last_count++] = *lastblock - 1; 1893 last[last_count++] = *lastblock + 1; 1894 if (*lastblock >= 2) 1895 last[last_count++] = *lastblock - 2; 1896 if (*lastblock >= 150) 1897 last[last_count++] = *lastblock - 150; 1898 if (*lastblock >= 152) 1899 last[last_count++] = *lastblock - 152; 1900 1901 for (i = 0; i < last_count; i++) { 1902 if (last[i] >= sb_bdev_nr_blocks(sb)) 1903 continue; 1904 ret = udf_check_anchor_block(sb, last[i], fileset); 1905 if (ret != -EAGAIN) { 1906 if (!ret) 1907 *lastblock = last[i]; 1908 return ret; 1909 } 1910 if (last[i] < 256) 1911 continue; 1912 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1913 if (ret != -EAGAIN) { 1914 if (!ret) 1915 *lastblock = last[i]; 1916 return ret; 1917 } 1918 } 1919 1920 /* Finally try block 512 in case media is open */ 1921 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1922 } 1923 1924 /* 1925 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1926 * area specified by it. The function expects sbi->s_lastblock to be the last 1927 * block on the media. 1928 * 1929 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1930 * was not found. 1931 */ 1932 static int udf_find_anchor(struct super_block *sb, 1933 struct kernel_lb_addr *fileset) 1934 { 1935 struct udf_sb_info *sbi = UDF_SB(sb); 1936 sector_t lastblock = sbi->s_last_block; 1937 int ret; 1938 1939 ret = udf_scan_anchors(sb, &lastblock, fileset); 1940 if (ret != -EAGAIN) 1941 goto out; 1942 1943 /* No anchor found? Try VARCONV conversion of block numbers */ 1944 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1945 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1946 /* Firstly, we try to not convert number of the last block */ 1947 ret = udf_scan_anchors(sb, &lastblock, fileset); 1948 if (ret != -EAGAIN) 1949 goto out; 1950 1951 lastblock = sbi->s_last_block; 1952 /* Secondly, we try with converted number of the last block */ 1953 ret = udf_scan_anchors(sb, &lastblock, fileset); 1954 if (ret < 0) { 1955 /* VARCONV didn't help. Clear it. */ 1956 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1957 } 1958 out: 1959 if (ret == 0) 1960 sbi->s_last_block = lastblock; 1961 return ret; 1962 } 1963 1964 /* 1965 * Check Volume Structure Descriptor, find Anchor block and load Volume 1966 * Descriptor Sequence. 1967 * 1968 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1969 * block was not found. 1970 */ 1971 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1972 int silent, struct kernel_lb_addr *fileset) 1973 { 1974 struct udf_sb_info *sbi = UDF_SB(sb); 1975 int nsr = 0; 1976 int ret; 1977 1978 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1979 if (!silent) 1980 udf_warn(sb, "Bad block size\n"); 1981 return -EINVAL; 1982 } 1983 sbi->s_last_block = uopt->lastblock; 1984 if (!uopt->novrs) { 1985 /* Check that it is NSR02 compliant */ 1986 nsr = udf_check_vsd(sb); 1987 if (!nsr) { 1988 if (!silent) 1989 udf_warn(sb, "No VRS found\n"); 1990 return -EINVAL; 1991 } 1992 if (nsr == -1) 1993 udf_debug("Failed to read sector at offset %d. " 1994 "Assuming open disc. Skipping validity " 1995 "check\n", VSD_FIRST_SECTOR_OFFSET); 1996 if (!sbi->s_last_block) 1997 sbi->s_last_block = udf_get_last_block(sb); 1998 } else { 1999 udf_debug("Validity check skipped because of novrs option\n"); 2000 } 2001 2002 /* Look for anchor block and load Volume Descriptor Sequence */ 2003 sbi->s_anchor = uopt->anchor; 2004 ret = udf_find_anchor(sb, fileset); 2005 if (ret < 0) { 2006 if (!silent && ret == -EAGAIN) 2007 udf_warn(sb, "No anchor found\n"); 2008 return ret; 2009 } 2010 return 0; 2011 } 2012 2013 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 2014 { 2015 struct timespec64 ts; 2016 2017 ktime_get_real_ts64(&ts); 2018 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2019 lvid->descTag.descCRC = cpu_to_le16( 2020 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2021 le16_to_cpu(lvid->descTag.descCRCLength))); 2022 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2023 } 2024 2025 static void udf_open_lvid(struct super_block *sb) 2026 { 2027 struct udf_sb_info *sbi = UDF_SB(sb); 2028 struct buffer_head *bh = sbi->s_lvid_bh; 2029 struct logicalVolIntegrityDesc *lvid; 2030 struct logicalVolIntegrityDescImpUse *lvidiu; 2031 2032 if (!bh) 2033 return; 2034 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2035 lvidiu = udf_sb_lvidiu(sb); 2036 if (!lvidiu) 2037 return; 2038 2039 mutex_lock(&sbi->s_alloc_mutex); 2040 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2041 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2042 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2043 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2044 else 2045 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2046 2047 udf_finalize_lvid(lvid); 2048 mark_buffer_dirty(bh); 2049 sbi->s_lvid_dirty = 0; 2050 mutex_unlock(&sbi->s_alloc_mutex); 2051 /* Make opening of filesystem visible on the media immediately */ 2052 sync_dirty_buffer(bh); 2053 } 2054 2055 static void udf_close_lvid(struct super_block *sb) 2056 { 2057 struct udf_sb_info *sbi = UDF_SB(sb); 2058 struct buffer_head *bh = sbi->s_lvid_bh; 2059 struct logicalVolIntegrityDesc *lvid; 2060 struct logicalVolIntegrityDescImpUse *lvidiu; 2061 2062 if (!bh) 2063 return; 2064 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2065 lvidiu = udf_sb_lvidiu(sb); 2066 if (!lvidiu) 2067 return; 2068 2069 mutex_lock(&sbi->s_alloc_mutex); 2070 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2071 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2072 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2073 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2074 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2075 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2076 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2077 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2078 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2079 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2080 2081 /* 2082 * We set buffer uptodate unconditionally here to avoid spurious 2083 * warnings from mark_buffer_dirty() when previous EIO has marked 2084 * the buffer as !uptodate 2085 */ 2086 set_buffer_uptodate(bh); 2087 udf_finalize_lvid(lvid); 2088 mark_buffer_dirty(bh); 2089 sbi->s_lvid_dirty = 0; 2090 mutex_unlock(&sbi->s_alloc_mutex); 2091 /* Make closing of filesystem visible on the media immediately */ 2092 sync_dirty_buffer(bh); 2093 } 2094 2095 u64 lvid_get_unique_id(struct super_block *sb) 2096 { 2097 struct buffer_head *bh; 2098 struct udf_sb_info *sbi = UDF_SB(sb); 2099 struct logicalVolIntegrityDesc *lvid; 2100 struct logicalVolHeaderDesc *lvhd; 2101 u64 uniqueID; 2102 u64 ret; 2103 2104 bh = sbi->s_lvid_bh; 2105 if (!bh) 2106 return 0; 2107 2108 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2109 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2110 2111 mutex_lock(&sbi->s_alloc_mutex); 2112 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2113 if (!(++uniqueID & 0xFFFFFFFF)) 2114 uniqueID += 16; 2115 lvhd->uniqueID = cpu_to_le64(uniqueID); 2116 udf_updated_lvid(sb); 2117 mutex_unlock(&sbi->s_alloc_mutex); 2118 2119 return ret; 2120 } 2121 2122 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2123 { 2124 int ret = -EINVAL; 2125 struct inode *inode = NULL; 2126 struct udf_options uopt; 2127 struct kernel_lb_addr rootdir, fileset; 2128 struct udf_sb_info *sbi; 2129 bool lvid_open = false; 2130 2131 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2132 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2133 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2134 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2135 uopt.umask = 0; 2136 uopt.fmode = UDF_INVALID_MODE; 2137 uopt.dmode = UDF_INVALID_MODE; 2138 uopt.nls_map = NULL; 2139 2140 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2141 if (!sbi) 2142 return -ENOMEM; 2143 2144 sb->s_fs_info = sbi; 2145 2146 mutex_init(&sbi->s_alloc_mutex); 2147 2148 if (!udf_parse_options((char *)options, &uopt, false)) 2149 goto parse_options_failure; 2150 2151 fileset.logicalBlockNum = 0xFFFFFFFF; 2152 fileset.partitionReferenceNum = 0xFFFF; 2153 2154 sbi->s_flags = uopt.flags; 2155 sbi->s_uid = uopt.uid; 2156 sbi->s_gid = uopt.gid; 2157 sbi->s_umask = uopt.umask; 2158 sbi->s_fmode = uopt.fmode; 2159 sbi->s_dmode = uopt.dmode; 2160 sbi->s_nls_map = uopt.nls_map; 2161 rwlock_init(&sbi->s_cred_lock); 2162 2163 if (uopt.session == 0xFFFFFFFF) 2164 sbi->s_session = udf_get_last_session(sb); 2165 else 2166 sbi->s_session = uopt.session; 2167 2168 udf_debug("Multi-session=%d\n", sbi->s_session); 2169 2170 /* Fill in the rest of the superblock */ 2171 sb->s_op = &udf_sb_ops; 2172 sb->s_export_op = &udf_export_ops; 2173 2174 sb->s_magic = UDF_SUPER_MAGIC; 2175 sb->s_time_gran = 1000; 2176 2177 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2178 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2179 } else { 2180 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2181 while (uopt.blocksize <= 4096) { 2182 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2183 if (ret < 0) { 2184 if (!silent && ret != -EACCES) { 2185 pr_notice("Scanning with blocksize %u failed\n", 2186 uopt.blocksize); 2187 } 2188 brelse(sbi->s_lvid_bh); 2189 sbi->s_lvid_bh = NULL; 2190 /* 2191 * EACCES is special - we want to propagate to 2192 * upper layers that we cannot handle RW mount. 2193 */ 2194 if (ret == -EACCES) 2195 break; 2196 } else 2197 break; 2198 2199 uopt.blocksize <<= 1; 2200 } 2201 } 2202 if (ret < 0) { 2203 if (ret == -EAGAIN) { 2204 udf_warn(sb, "No partition found (1)\n"); 2205 ret = -EINVAL; 2206 } 2207 goto error_out; 2208 } 2209 2210 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2211 2212 if (sbi->s_lvid_bh) { 2213 struct logicalVolIntegrityDescImpUse *lvidiu = 2214 udf_sb_lvidiu(sb); 2215 uint16_t minUDFReadRev; 2216 uint16_t minUDFWriteRev; 2217 2218 if (!lvidiu) { 2219 ret = -EINVAL; 2220 goto error_out; 2221 } 2222 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2223 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2224 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2225 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2226 minUDFReadRev, 2227 UDF_MAX_READ_VERSION); 2228 ret = -EINVAL; 2229 goto error_out; 2230 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2231 if (!sb_rdonly(sb)) { 2232 ret = -EACCES; 2233 goto error_out; 2234 } 2235 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2236 } 2237 2238 sbi->s_udfrev = minUDFWriteRev; 2239 2240 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2241 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2242 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2243 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2244 } 2245 2246 if (!sbi->s_partitions) { 2247 udf_warn(sb, "No partition found (2)\n"); 2248 ret = -EINVAL; 2249 goto error_out; 2250 } 2251 2252 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2253 UDF_PART_FLAG_READ_ONLY) { 2254 if (!sb_rdonly(sb)) { 2255 ret = -EACCES; 2256 goto error_out; 2257 } 2258 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2259 } 2260 2261 ret = udf_find_fileset(sb, &fileset, &rootdir); 2262 if (ret < 0) { 2263 udf_warn(sb, "No fileset found\n"); 2264 goto error_out; 2265 } 2266 2267 if (!silent) { 2268 struct timestamp ts; 2269 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2270 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2271 sbi->s_volume_ident, 2272 le16_to_cpu(ts.year), ts.month, ts.day, 2273 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2274 } 2275 if (!sb_rdonly(sb)) { 2276 udf_open_lvid(sb); 2277 lvid_open = true; 2278 } 2279 2280 /* Assign the root inode */ 2281 /* assign inodes by physical block number */ 2282 /* perhaps it's not extensible enough, but for now ... */ 2283 inode = udf_iget(sb, &rootdir); 2284 if (IS_ERR(inode)) { 2285 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2286 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2287 ret = PTR_ERR(inode); 2288 goto error_out; 2289 } 2290 2291 /* Allocate a dentry for the root inode */ 2292 sb->s_root = d_make_root(inode); 2293 if (!sb->s_root) { 2294 udf_err(sb, "Couldn't allocate root dentry\n"); 2295 ret = -ENOMEM; 2296 goto error_out; 2297 } 2298 sb->s_maxbytes = MAX_LFS_FILESIZE; 2299 sb->s_max_links = UDF_MAX_LINKS; 2300 return 0; 2301 2302 error_out: 2303 iput(sbi->s_vat_inode); 2304 parse_options_failure: 2305 unload_nls(uopt.nls_map); 2306 if (lvid_open) 2307 udf_close_lvid(sb); 2308 brelse(sbi->s_lvid_bh); 2309 udf_sb_free_partitions(sb); 2310 kfree(sbi); 2311 sb->s_fs_info = NULL; 2312 2313 return ret; 2314 } 2315 2316 void _udf_err(struct super_block *sb, const char *function, 2317 const char *fmt, ...) 2318 { 2319 struct va_format vaf; 2320 va_list args; 2321 2322 va_start(args, fmt); 2323 2324 vaf.fmt = fmt; 2325 vaf.va = &args; 2326 2327 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2328 2329 va_end(args); 2330 } 2331 2332 void _udf_warn(struct super_block *sb, const char *function, 2333 const char *fmt, ...) 2334 { 2335 struct va_format vaf; 2336 va_list args; 2337 2338 va_start(args, fmt); 2339 2340 vaf.fmt = fmt; 2341 vaf.va = &args; 2342 2343 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2344 2345 va_end(args); 2346 } 2347 2348 static void udf_put_super(struct super_block *sb) 2349 { 2350 struct udf_sb_info *sbi; 2351 2352 sbi = UDF_SB(sb); 2353 2354 iput(sbi->s_vat_inode); 2355 unload_nls(sbi->s_nls_map); 2356 if (!sb_rdonly(sb)) 2357 udf_close_lvid(sb); 2358 brelse(sbi->s_lvid_bh); 2359 udf_sb_free_partitions(sb); 2360 mutex_destroy(&sbi->s_alloc_mutex); 2361 kfree(sb->s_fs_info); 2362 sb->s_fs_info = NULL; 2363 } 2364 2365 static int udf_sync_fs(struct super_block *sb, int wait) 2366 { 2367 struct udf_sb_info *sbi = UDF_SB(sb); 2368 2369 mutex_lock(&sbi->s_alloc_mutex); 2370 if (sbi->s_lvid_dirty) { 2371 struct buffer_head *bh = sbi->s_lvid_bh; 2372 struct logicalVolIntegrityDesc *lvid; 2373 2374 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2375 udf_finalize_lvid(lvid); 2376 2377 /* 2378 * Blockdevice will be synced later so we don't have to submit 2379 * the buffer for IO 2380 */ 2381 mark_buffer_dirty(bh); 2382 sbi->s_lvid_dirty = 0; 2383 } 2384 mutex_unlock(&sbi->s_alloc_mutex); 2385 2386 return 0; 2387 } 2388 2389 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2390 { 2391 struct super_block *sb = dentry->d_sb; 2392 struct udf_sb_info *sbi = UDF_SB(sb); 2393 struct logicalVolIntegrityDescImpUse *lvidiu; 2394 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2395 2396 lvidiu = udf_sb_lvidiu(sb); 2397 buf->f_type = UDF_SUPER_MAGIC; 2398 buf->f_bsize = sb->s_blocksize; 2399 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2400 buf->f_bfree = udf_count_free(sb); 2401 buf->f_bavail = buf->f_bfree; 2402 /* 2403 * Let's pretend each free block is also a free 'inode' since UDF does 2404 * not have separate preallocated table of inodes. 2405 */ 2406 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2407 le32_to_cpu(lvidiu->numDirs)) : 0) 2408 + buf->f_bfree; 2409 buf->f_ffree = buf->f_bfree; 2410 buf->f_namelen = UDF_NAME_LEN; 2411 buf->f_fsid = u64_to_fsid(id); 2412 2413 return 0; 2414 } 2415 2416 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2417 struct udf_bitmap *bitmap) 2418 { 2419 struct buffer_head *bh = NULL; 2420 unsigned int accum = 0; 2421 int index; 2422 udf_pblk_t block = 0, newblock; 2423 struct kernel_lb_addr loc; 2424 uint32_t bytes; 2425 uint8_t *ptr; 2426 uint16_t ident; 2427 struct spaceBitmapDesc *bm; 2428 2429 loc.logicalBlockNum = bitmap->s_extPosition; 2430 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2431 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2432 2433 if (!bh) { 2434 udf_err(sb, "udf_count_free failed\n"); 2435 goto out; 2436 } else if (ident != TAG_IDENT_SBD) { 2437 brelse(bh); 2438 udf_err(sb, "udf_count_free failed\n"); 2439 goto out; 2440 } 2441 2442 bm = (struct spaceBitmapDesc *)bh->b_data; 2443 bytes = le32_to_cpu(bm->numOfBytes); 2444 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2445 ptr = (uint8_t *)bh->b_data; 2446 2447 while (bytes > 0) { 2448 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2449 accum += bitmap_weight((const unsigned long *)(ptr + index), 2450 cur_bytes * 8); 2451 bytes -= cur_bytes; 2452 if (bytes) { 2453 brelse(bh); 2454 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2455 bh = udf_tread(sb, newblock); 2456 if (!bh) { 2457 udf_debug("read failed\n"); 2458 goto out; 2459 } 2460 index = 0; 2461 ptr = (uint8_t *)bh->b_data; 2462 } 2463 } 2464 brelse(bh); 2465 out: 2466 return accum; 2467 } 2468 2469 static unsigned int udf_count_free_table(struct super_block *sb, 2470 struct inode *table) 2471 { 2472 unsigned int accum = 0; 2473 uint32_t elen; 2474 struct kernel_lb_addr eloc; 2475 int8_t etype; 2476 struct extent_position epos; 2477 2478 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2479 epos.block = UDF_I(table)->i_location; 2480 epos.offset = sizeof(struct unallocSpaceEntry); 2481 epos.bh = NULL; 2482 2483 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2484 accum += (elen >> table->i_sb->s_blocksize_bits); 2485 2486 brelse(epos.bh); 2487 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2488 2489 return accum; 2490 } 2491 2492 static unsigned int udf_count_free(struct super_block *sb) 2493 { 2494 unsigned int accum = 0; 2495 struct udf_sb_info *sbi = UDF_SB(sb); 2496 struct udf_part_map *map; 2497 unsigned int part = sbi->s_partition; 2498 int ptype = sbi->s_partmaps[part].s_partition_type; 2499 2500 if (ptype == UDF_METADATA_MAP25) { 2501 part = sbi->s_partmaps[part].s_type_specific.s_metadata. 2502 s_phys_partition_ref; 2503 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { 2504 /* 2505 * Filesystems with VAT are append-only and we cannot write to 2506 * them. Let's just report 0 here. 2507 */ 2508 return 0; 2509 } 2510 2511 if (sbi->s_lvid_bh) { 2512 struct logicalVolIntegrityDesc *lvid = 2513 (struct logicalVolIntegrityDesc *) 2514 sbi->s_lvid_bh->b_data; 2515 if (le32_to_cpu(lvid->numOfPartitions) > part) { 2516 accum = le32_to_cpu( 2517 lvid->freeSpaceTable[part]); 2518 if (accum == 0xFFFFFFFF) 2519 accum = 0; 2520 } 2521 } 2522 2523 if (accum) 2524 return accum; 2525 2526 map = &sbi->s_partmaps[part]; 2527 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2528 accum += udf_count_free_bitmap(sb, 2529 map->s_uspace.s_bitmap); 2530 } 2531 if (accum) 2532 return accum; 2533 2534 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2535 accum += udf_count_free_table(sb, 2536 map->s_uspace.s_table); 2537 } 2538 return accum; 2539 } 2540 2541 MODULE_AUTHOR("Ben Fennema"); 2542 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2543 MODULE_LICENSE("GPL"); 2544 module_init(init_udf_fs) 2545 module_exit(exit_udf_fs) 2546