xref: /linux/fs/udf/super.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 static char error_buf[1024];
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct vfsmount *);
96 static void udf_error(struct super_block *sb, const char *function,
97 		      const char *fmt, ...);
98 
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
100 {
101 	struct logicalVolIntegrityDesc *lvid =
102 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
104 	__u32 offset = number_of_partitions * 2 *
105 				sizeof(uint32_t)/sizeof(uint8_t);
106 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
107 }
108 
109 /* UDF filesystem type */
110 static int udf_get_sb(struct file_system_type *fs_type,
111 		      int flags, const char *dev_name, void *data,
112 		      struct vfsmount *mnt)
113 {
114 	return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
115 }
116 
117 static struct file_system_type udf_fstype = {
118 	.owner		= THIS_MODULE,
119 	.name		= "udf",
120 	.get_sb		= udf_get_sb,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 
125 static struct kmem_cache *udf_inode_cachep;
126 
127 static struct inode *udf_alloc_inode(struct super_block *sb)
128 {
129 	struct udf_inode_info *ei;
130 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
131 	if (!ei)
132 		return NULL;
133 
134 	ei->i_unique = 0;
135 	ei->i_lenExtents = 0;
136 	ei->i_next_alloc_block = 0;
137 	ei->i_next_alloc_goal = 0;
138 	ei->i_strat4096 = 0;
139 
140 	return &ei->vfs_inode;
141 }
142 
143 static void udf_destroy_inode(struct inode *inode)
144 {
145 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
146 }
147 
148 static void init_once(void *foo)
149 {
150 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
151 
152 	ei->i_ext.i_data = NULL;
153 	inode_init_once(&ei->vfs_inode);
154 }
155 
156 static int init_inodecache(void)
157 {
158 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
159 					     sizeof(struct udf_inode_info),
160 					     0, (SLAB_RECLAIM_ACCOUNT |
161 						 SLAB_MEM_SPREAD),
162 					     init_once);
163 	if (!udf_inode_cachep)
164 		return -ENOMEM;
165 	return 0;
166 }
167 
168 static void destroy_inodecache(void)
169 {
170 	kmem_cache_destroy(udf_inode_cachep);
171 }
172 
173 /* Superblock operations */
174 static const struct super_operations udf_sb_ops = {
175 	.alloc_inode	= udf_alloc_inode,
176 	.destroy_inode	= udf_destroy_inode,
177 	.write_inode	= udf_write_inode,
178 	.delete_inode	= udf_delete_inode,
179 	.clear_inode	= udf_clear_inode,
180 	.put_super	= udf_put_super,
181 	.sync_fs	= udf_sync_fs,
182 	.statfs		= udf_statfs,
183 	.remount_fs	= udf_remount_fs,
184 	.show_options	= udf_show_options,
185 };
186 
187 struct udf_options {
188 	unsigned char novrs;
189 	unsigned int blocksize;
190 	unsigned int session;
191 	unsigned int lastblock;
192 	unsigned int anchor;
193 	unsigned int volume;
194 	unsigned short partition;
195 	unsigned int fileset;
196 	unsigned int rootdir;
197 	unsigned int flags;
198 	mode_t umask;
199 	gid_t gid;
200 	uid_t uid;
201 	mode_t fmode;
202 	mode_t dmode;
203 	struct nls_table *nls_map;
204 };
205 
206 static int __init init_udf_fs(void)
207 {
208 	int err;
209 
210 	err = init_inodecache();
211 	if (err)
212 		goto out1;
213 	err = register_filesystem(&udf_fstype);
214 	if (err)
215 		goto out;
216 
217 	return 0;
218 
219 out:
220 	destroy_inodecache();
221 
222 out1:
223 	return err;
224 }
225 
226 static void __exit exit_udf_fs(void)
227 {
228 	unregister_filesystem(&udf_fstype);
229 	destroy_inodecache();
230 }
231 
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
234 
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
236 {
237 	struct udf_sb_info *sbi = UDF_SB(sb);
238 
239 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240 				  GFP_KERNEL);
241 	if (!sbi->s_partmaps) {
242 		udf_error(sb, __func__,
243 			  "Unable to allocate space for %d partition maps",
244 			  count);
245 		sbi->s_partitions = 0;
246 		return -ENOMEM;
247 	}
248 
249 	sbi->s_partitions = count;
250 	return 0;
251 }
252 
253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
254 {
255 	struct super_block *sb = mnt->mnt_sb;
256 	struct udf_sb_info *sbi = UDF_SB(sb);
257 
258 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
259 		seq_puts(seq, ",nostrict");
260 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
261 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
262 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
263 		seq_puts(seq, ",unhide");
264 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
265 		seq_puts(seq, ",undelete");
266 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
267 		seq_puts(seq, ",noadinicb");
268 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
269 		seq_puts(seq, ",shortad");
270 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
271 		seq_puts(seq, ",uid=forget");
272 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
273 		seq_puts(seq, ",uid=ignore");
274 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
275 		seq_puts(seq, ",gid=forget");
276 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
277 		seq_puts(seq, ",gid=ignore");
278 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
279 		seq_printf(seq, ",uid=%u", sbi->s_uid);
280 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
281 		seq_printf(seq, ",gid=%u", sbi->s_gid);
282 	if (sbi->s_umask != 0)
283 		seq_printf(seq, ",umask=%o", sbi->s_umask);
284 	if (sbi->s_fmode != UDF_INVALID_MODE)
285 		seq_printf(seq, ",mode=%o", sbi->s_fmode);
286 	if (sbi->s_dmode != UDF_INVALID_MODE)
287 		seq_printf(seq, ",dmode=%o", sbi->s_dmode);
288 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
289 		seq_printf(seq, ",session=%u", sbi->s_session);
290 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
291 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
292 	if (sbi->s_anchor != 0)
293 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
294 	/*
295 	 * volume, partition, fileset and rootdir seem to be ignored
296 	 * currently
297 	 */
298 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
299 		seq_puts(seq, ",utf8");
300 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
301 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
302 
303 	return 0;
304 }
305 
306 /*
307  * udf_parse_options
308  *
309  * PURPOSE
310  *	Parse mount options.
311  *
312  * DESCRIPTION
313  *	The following mount options are supported:
314  *
315  *	gid=		Set the default group.
316  *	umask=		Set the default umask.
317  *	mode=		Set the default file permissions.
318  *	dmode=		Set the default directory permissions.
319  *	uid=		Set the default user.
320  *	bs=		Set the block size.
321  *	unhide		Show otherwise hidden files.
322  *	undelete	Show deleted files in lists.
323  *	adinicb		Embed data in the inode (default)
324  *	noadinicb	Don't embed data in the inode
325  *	shortad		Use short ad's
326  *	longad		Use long ad's (default)
327  *	nostrict	Unset strict conformance
328  *	iocharset=	Set the NLS character set
329  *
330  *	The remaining are for debugging and disaster recovery:
331  *
332  *	novrs		Skip volume sequence recognition
333  *
334  *	The following expect a offset from 0.
335  *
336  *	session=	Set the CDROM session (default= last session)
337  *	anchor=		Override standard anchor location. (default= 256)
338  *	volume=		Override the VolumeDesc location. (unused)
339  *	partition=	Override the PartitionDesc location. (unused)
340  *	lastblock=	Set the last block of the filesystem/
341  *
342  *	The following expect a offset from the partition root.
343  *
344  *	fileset=	Override the fileset block location. (unused)
345  *	rootdir=	Override the root directory location. (unused)
346  *		WARNING: overriding the rootdir to a non-directory may
347  *		yield highly unpredictable results.
348  *
349  * PRE-CONDITIONS
350  *	options		Pointer to mount options string.
351  *	uopts		Pointer to mount options variable.
352  *
353  * POST-CONDITIONS
354  *	<return>	1	Mount options parsed okay.
355  *	<return>	0	Error parsing mount options.
356  *
357  * HISTORY
358  *	July 1, 1997 - Andrew E. Mileski
359  *	Written, tested, and released.
360  */
361 
362 enum {
363 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
364 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
365 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
366 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
367 	Opt_rootdir, Opt_utf8, Opt_iocharset,
368 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
369 	Opt_fmode, Opt_dmode
370 };
371 
372 static const match_table_t tokens = {
373 	{Opt_novrs,	"novrs"},
374 	{Opt_nostrict,	"nostrict"},
375 	{Opt_bs,	"bs=%u"},
376 	{Opt_unhide,	"unhide"},
377 	{Opt_undelete,	"undelete"},
378 	{Opt_noadinicb,	"noadinicb"},
379 	{Opt_adinicb,	"adinicb"},
380 	{Opt_shortad,	"shortad"},
381 	{Opt_longad,	"longad"},
382 	{Opt_uforget,	"uid=forget"},
383 	{Opt_uignore,	"uid=ignore"},
384 	{Opt_gforget,	"gid=forget"},
385 	{Opt_gignore,	"gid=ignore"},
386 	{Opt_gid,	"gid=%u"},
387 	{Opt_uid,	"uid=%u"},
388 	{Opt_umask,	"umask=%o"},
389 	{Opt_session,	"session=%u"},
390 	{Opt_lastblock,	"lastblock=%u"},
391 	{Opt_anchor,	"anchor=%u"},
392 	{Opt_volume,	"volume=%u"},
393 	{Opt_partition,	"partition=%u"},
394 	{Opt_fileset,	"fileset=%u"},
395 	{Opt_rootdir,	"rootdir=%u"},
396 	{Opt_utf8,	"utf8"},
397 	{Opt_iocharset,	"iocharset=%s"},
398 	{Opt_fmode,     "mode=%o"},
399 	{Opt_dmode,     "dmode=%o"},
400 	{Opt_err,	NULL}
401 };
402 
403 static int udf_parse_options(char *options, struct udf_options *uopt,
404 			     bool remount)
405 {
406 	char *p;
407 	int option;
408 
409 	uopt->novrs = 0;
410 	uopt->partition = 0xFFFF;
411 	uopt->session = 0xFFFFFFFF;
412 	uopt->lastblock = 0;
413 	uopt->anchor = 0;
414 	uopt->volume = 0xFFFFFFFF;
415 	uopt->rootdir = 0xFFFFFFFF;
416 	uopt->fileset = 0xFFFFFFFF;
417 	uopt->nls_map = NULL;
418 
419 	if (!options)
420 		return 1;
421 
422 	while ((p = strsep(&options, ",")) != NULL) {
423 		substring_t args[MAX_OPT_ARGS];
424 		int token;
425 		if (!*p)
426 			continue;
427 
428 		token = match_token(p, tokens, args);
429 		switch (token) {
430 		case Opt_novrs:
431 			uopt->novrs = 1;
432 			break;
433 		case Opt_bs:
434 			if (match_int(&args[0], &option))
435 				return 0;
436 			uopt->blocksize = option;
437 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
438 			break;
439 		case Opt_unhide:
440 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
441 			break;
442 		case Opt_undelete:
443 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
444 			break;
445 		case Opt_noadinicb:
446 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
447 			break;
448 		case Opt_adinicb:
449 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
450 			break;
451 		case Opt_shortad:
452 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
453 			break;
454 		case Opt_longad:
455 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
456 			break;
457 		case Opt_gid:
458 			if (match_int(args, &option))
459 				return 0;
460 			uopt->gid = option;
461 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
462 			break;
463 		case Opt_uid:
464 			if (match_int(args, &option))
465 				return 0;
466 			uopt->uid = option;
467 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
468 			break;
469 		case Opt_umask:
470 			if (match_octal(args, &option))
471 				return 0;
472 			uopt->umask = option;
473 			break;
474 		case Opt_nostrict:
475 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
476 			break;
477 		case Opt_session:
478 			if (match_int(args, &option))
479 				return 0;
480 			uopt->session = option;
481 			if (!remount)
482 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
483 			break;
484 		case Opt_lastblock:
485 			if (match_int(args, &option))
486 				return 0;
487 			uopt->lastblock = option;
488 			if (!remount)
489 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
490 			break;
491 		case Opt_anchor:
492 			if (match_int(args, &option))
493 				return 0;
494 			uopt->anchor = option;
495 			break;
496 		case Opt_volume:
497 			if (match_int(args, &option))
498 				return 0;
499 			uopt->volume = option;
500 			break;
501 		case Opt_partition:
502 			if (match_int(args, &option))
503 				return 0;
504 			uopt->partition = option;
505 			break;
506 		case Opt_fileset:
507 			if (match_int(args, &option))
508 				return 0;
509 			uopt->fileset = option;
510 			break;
511 		case Opt_rootdir:
512 			if (match_int(args, &option))
513 				return 0;
514 			uopt->rootdir = option;
515 			break;
516 		case Opt_utf8:
517 			uopt->flags |= (1 << UDF_FLAG_UTF8);
518 			break;
519 #ifdef CONFIG_UDF_NLS
520 		case Opt_iocharset:
521 			uopt->nls_map = load_nls(args[0].from);
522 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
523 			break;
524 #endif
525 		case Opt_uignore:
526 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
527 			break;
528 		case Opt_uforget:
529 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
530 			break;
531 		case Opt_gignore:
532 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
533 			break;
534 		case Opt_gforget:
535 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
536 			break;
537 		case Opt_fmode:
538 			if (match_octal(args, &option))
539 				return 0;
540 			uopt->fmode = option & 0777;
541 			break;
542 		case Opt_dmode:
543 			if (match_octal(args, &option))
544 				return 0;
545 			uopt->dmode = option & 0777;
546 			break;
547 		default:
548 			printk(KERN_ERR "udf: bad mount option \"%s\" "
549 			       "or missing value\n", p);
550 			return 0;
551 		}
552 	}
553 	return 1;
554 }
555 
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558 	struct udf_options uopt;
559 	struct udf_sb_info *sbi = UDF_SB(sb);
560 
561 	uopt.flags = sbi->s_flags;
562 	uopt.uid   = sbi->s_uid;
563 	uopt.gid   = sbi->s_gid;
564 	uopt.umask = sbi->s_umask;
565 	uopt.fmode = sbi->s_fmode;
566 	uopt.dmode = sbi->s_dmode;
567 
568 	if (!udf_parse_options(options, &uopt, true))
569 		return -EINVAL;
570 
571 	lock_kernel();
572 	sbi->s_flags = uopt.flags;
573 	sbi->s_uid   = uopt.uid;
574 	sbi->s_gid   = uopt.gid;
575 	sbi->s_umask = uopt.umask;
576 	sbi->s_fmode = uopt.fmode;
577 	sbi->s_dmode = uopt.dmode;
578 
579 	if (sbi->s_lvid_bh) {
580 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
581 		if (write_rev > UDF_MAX_WRITE_VERSION)
582 			*flags |= MS_RDONLY;
583 	}
584 
585 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
586 		unlock_kernel();
587 		return 0;
588 	}
589 	if (*flags & MS_RDONLY)
590 		udf_close_lvid(sb);
591 	else
592 		udf_open_lvid(sb);
593 
594 	unlock_kernel();
595 	return 0;
596 }
597 
598 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
599 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
600 static loff_t udf_check_vsd(struct super_block *sb)
601 {
602 	struct volStructDesc *vsd = NULL;
603 	loff_t sector = 32768;
604 	int sectorsize;
605 	struct buffer_head *bh = NULL;
606 	int nsr02 = 0;
607 	int nsr03 = 0;
608 	struct udf_sb_info *sbi;
609 
610 	sbi = UDF_SB(sb);
611 	if (sb->s_blocksize < sizeof(struct volStructDesc))
612 		sectorsize = sizeof(struct volStructDesc);
613 	else
614 		sectorsize = sb->s_blocksize;
615 
616 	sector += (sbi->s_session << sb->s_blocksize_bits);
617 
618 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
619 		  (unsigned int)(sector >> sb->s_blocksize_bits),
620 		  sb->s_blocksize);
621 	/* Process the sequence (if applicable) */
622 	for (; !nsr02 && !nsr03; sector += sectorsize) {
623 		/* Read a block */
624 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
625 		if (!bh)
626 			break;
627 
628 		/* Look for ISO  descriptors */
629 		vsd = (struct volStructDesc *)(bh->b_data +
630 					      (sector & (sb->s_blocksize - 1)));
631 
632 		if (vsd->stdIdent[0] == 0) {
633 			brelse(bh);
634 			break;
635 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
636 				    VSD_STD_ID_LEN)) {
637 			switch (vsd->structType) {
638 			case 0:
639 				udf_debug("ISO9660 Boot Record found\n");
640 				break;
641 			case 1:
642 				udf_debug("ISO9660 Primary Volume Descriptor "
643 					  "found\n");
644 				break;
645 			case 2:
646 				udf_debug("ISO9660 Supplementary Volume "
647 					  "Descriptor found\n");
648 				break;
649 			case 3:
650 				udf_debug("ISO9660 Volume Partition Descriptor "
651 					  "found\n");
652 				break;
653 			case 255:
654 				udf_debug("ISO9660 Volume Descriptor Set "
655 					  "Terminator found\n");
656 				break;
657 			default:
658 				udf_debug("ISO9660 VRS (%u) found\n",
659 					  vsd->structType);
660 				break;
661 			}
662 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
663 				    VSD_STD_ID_LEN))
664 			; /* nothing */
665 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
666 				    VSD_STD_ID_LEN)) {
667 			brelse(bh);
668 			break;
669 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
670 				    VSD_STD_ID_LEN))
671 			nsr02 = sector;
672 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
673 				    VSD_STD_ID_LEN))
674 			nsr03 = sector;
675 		brelse(bh);
676 	}
677 
678 	if (nsr03)
679 		return nsr03;
680 	else if (nsr02)
681 		return nsr02;
682 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
683 		return -1;
684 	else
685 		return 0;
686 }
687 
688 static int udf_find_fileset(struct super_block *sb,
689 			    struct kernel_lb_addr *fileset,
690 			    struct kernel_lb_addr *root)
691 {
692 	struct buffer_head *bh = NULL;
693 	long lastblock;
694 	uint16_t ident;
695 	struct udf_sb_info *sbi;
696 
697 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
698 	    fileset->partitionReferenceNum != 0xFFFF) {
699 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
700 
701 		if (!bh) {
702 			return 1;
703 		} else if (ident != TAG_IDENT_FSD) {
704 			brelse(bh);
705 			return 1;
706 		}
707 
708 	}
709 
710 	sbi = UDF_SB(sb);
711 	if (!bh) {
712 		/* Search backwards through the partitions */
713 		struct kernel_lb_addr newfileset;
714 
715 /* --> cvg: FIXME - is it reasonable? */
716 		return 1;
717 
718 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
719 		     (newfileset.partitionReferenceNum != 0xFFFF &&
720 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
721 		      fileset->partitionReferenceNum == 0xFFFF);
722 		     newfileset.partitionReferenceNum--) {
723 			lastblock = sbi->s_partmaps
724 					[newfileset.partitionReferenceNum]
725 						.s_partition_len;
726 			newfileset.logicalBlockNum = 0;
727 
728 			do {
729 				bh = udf_read_ptagged(sb, &newfileset, 0,
730 						      &ident);
731 				if (!bh) {
732 					newfileset.logicalBlockNum++;
733 					continue;
734 				}
735 
736 				switch (ident) {
737 				case TAG_IDENT_SBD:
738 				{
739 					struct spaceBitmapDesc *sp;
740 					sp = (struct spaceBitmapDesc *)
741 								bh->b_data;
742 					newfileset.logicalBlockNum += 1 +
743 						((le32_to_cpu(sp->numOfBytes) +
744 						  sizeof(struct spaceBitmapDesc)
745 						  - 1) >> sb->s_blocksize_bits);
746 					brelse(bh);
747 					break;
748 				}
749 				case TAG_IDENT_FSD:
750 					*fileset = newfileset;
751 					break;
752 				default:
753 					newfileset.logicalBlockNum++;
754 					brelse(bh);
755 					bh = NULL;
756 					break;
757 				}
758 			} while (newfileset.logicalBlockNum < lastblock &&
759 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
760 				 fileset->partitionReferenceNum == 0xFFFF);
761 		}
762 	}
763 
764 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
765 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
766 		udf_debug("Fileset at block=%d, partition=%d\n",
767 			  fileset->logicalBlockNum,
768 			  fileset->partitionReferenceNum);
769 
770 		sbi->s_partition = fileset->partitionReferenceNum;
771 		udf_load_fileset(sb, bh, root);
772 		brelse(bh);
773 		return 0;
774 	}
775 	return 1;
776 }
777 
778 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
779 {
780 	struct primaryVolDesc *pvoldesc;
781 	struct ustr *instr, *outstr;
782 	struct buffer_head *bh;
783 	uint16_t ident;
784 	int ret = 1;
785 
786 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
787 	if (!instr)
788 		return 1;
789 
790 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
791 	if (!outstr)
792 		goto out1;
793 
794 	bh = udf_read_tagged(sb, block, block, &ident);
795 	if (!bh)
796 		goto out2;
797 
798 	BUG_ON(ident != TAG_IDENT_PVD);
799 
800 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
801 
802 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
803 			      pvoldesc->recordingDateAndTime)) {
804 #ifdef UDFFS_DEBUG
805 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
806 		udf_debug("recording time %04u/%02u/%02u"
807 			  " %02u:%02u (%x)\n",
808 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
809 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
810 #endif
811 	}
812 
813 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
814 		if (udf_CS0toUTF8(outstr, instr)) {
815 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
816 				outstr->u_len > 31 ? 31 : outstr->u_len);
817 			udf_debug("volIdent[] = '%s'\n",
818 					UDF_SB(sb)->s_volume_ident);
819 		}
820 
821 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
822 		if (udf_CS0toUTF8(outstr, instr))
823 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
824 
825 	brelse(bh);
826 	ret = 0;
827 out2:
828 	kfree(outstr);
829 out1:
830 	kfree(instr);
831 	return ret;
832 }
833 
834 static int udf_load_metadata_files(struct super_block *sb, int partition)
835 {
836 	struct udf_sb_info *sbi = UDF_SB(sb);
837 	struct udf_part_map *map;
838 	struct udf_meta_data *mdata;
839 	struct kernel_lb_addr addr;
840 	int fe_error = 0;
841 
842 	map = &sbi->s_partmaps[partition];
843 	mdata = &map->s_type_specific.s_metadata;
844 
845 	/* metadata address */
846 	addr.logicalBlockNum =  mdata->s_meta_file_loc;
847 	addr.partitionReferenceNum = map->s_partition_num;
848 
849 	udf_debug("Metadata file location: block = %d part = %d\n",
850 			  addr.logicalBlockNum, addr.partitionReferenceNum);
851 
852 	mdata->s_metadata_fe = udf_iget(sb, &addr);
853 
854 	if (mdata->s_metadata_fe == NULL) {
855 		udf_warning(sb, __func__, "metadata inode efe not found, "
856 				"will try mirror inode.");
857 		fe_error = 1;
858 	} else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
859 		 ICBTAG_FLAG_AD_SHORT) {
860 		udf_warning(sb, __func__, "metadata inode efe does not have "
861 			"short allocation descriptors!");
862 		fe_error = 1;
863 		iput(mdata->s_metadata_fe);
864 		mdata->s_metadata_fe = NULL;
865 	}
866 
867 	/* mirror file entry */
868 	addr.logicalBlockNum = mdata->s_mirror_file_loc;
869 	addr.partitionReferenceNum = map->s_partition_num;
870 
871 	udf_debug("Mirror metadata file location: block = %d part = %d\n",
872 			  addr.logicalBlockNum, addr.partitionReferenceNum);
873 
874 	mdata->s_mirror_fe = udf_iget(sb, &addr);
875 
876 	if (mdata->s_mirror_fe == NULL) {
877 		if (fe_error) {
878 			udf_error(sb, __func__, "mirror inode efe not found "
879 			"and metadata inode is missing too, exiting...");
880 			goto error_exit;
881 		} else
882 			udf_warning(sb, __func__, "mirror inode efe not found,"
883 					" but metadata inode is OK");
884 	} else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
885 		 ICBTAG_FLAG_AD_SHORT) {
886 		udf_warning(sb, __func__, "mirror inode efe does not have "
887 			"short allocation descriptors!");
888 		iput(mdata->s_mirror_fe);
889 		mdata->s_mirror_fe = NULL;
890 		if (fe_error)
891 			goto error_exit;
892 	}
893 
894 	/*
895 	 * bitmap file entry
896 	 * Note:
897 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
898 	*/
899 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
900 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
901 		addr.partitionReferenceNum = map->s_partition_num;
902 
903 		udf_debug("Bitmap file location: block = %d part = %d\n",
904 			addr.logicalBlockNum, addr.partitionReferenceNum);
905 
906 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
907 
908 		if (mdata->s_bitmap_fe == NULL) {
909 			if (sb->s_flags & MS_RDONLY)
910 				udf_warning(sb, __func__, "bitmap inode efe "
911 					"not found but it's ok since the disc"
912 					" is mounted read-only");
913 			else {
914 				udf_error(sb, __func__, "bitmap inode efe not "
915 					"found and attempted read-write mount");
916 				goto error_exit;
917 			}
918 		}
919 	}
920 
921 	udf_debug("udf_load_metadata_files Ok\n");
922 
923 	return 0;
924 
925 error_exit:
926 	return 1;
927 }
928 
929 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
930 			     struct kernel_lb_addr *root)
931 {
932 	struct fileSetDesc *fset;
933 
934 	fset = (struct fileSetDesc *)bh->b_data;
935 
936 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
937 
938 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
939 
940 	udf_debug("Rootdir at block=%d, partition=%d\n",
941 		  root->logicalBlockNum, root->partitionReferenceNum);
942 }
943 
944 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
945 {
946 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
947 	return DIV_ROUND_UP(map->s_partition_len +
948 			    (sizeof(struct spaceBitmapDesc) << 3),
949 			    sb->s_blocksize * 8);
950 }
951 
952 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
953 {
954 	struct udf_bitmap *bitmap;
955 	int nr_groups;
956 	int size;
957 
958 	nr_groups = udf_compute_nr_groups(sb, index);
959 	size = sizeof(struct udf_bitmap) +
960 		(sizeof(struct buffer_head *) * nr_groups);
961 
962 	if (size <= PAGE_SIZE)
963 		bitmap = kmalloc(size, GFP_KERNEL);
964 	else
965 		bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
966 
967 	if (bitmap == NULL) {
968 		udf_error(sb, __func__,
969 			  "Unable to allocate space for bitmap "
970 			  "and %d buffer_head pointers", nr_groups);
971 		return NULL;
972 	}
973 
974 	memset(bitmap, 0x00, size);
975 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
976 	bitmap->s_nr_groups = nr_groups;
977 	return bitmap;
978 }
979 
980 static int udf_fill_partdesc_info(struct super_block *sb,
981 		struct partitionDesc *p, int p_index)
982 {
983 	struct udf_part_map *map;
984 	struct udf_sb_info *sbi = UDF_SB(sb);
985 	struct partitionHeaderDesc *phd;
986 
987 	map = &sbi->s_partmaps[p_index];
988 
989 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
990 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
991 
992 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
993 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
994 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
995 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
996 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
997 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
998 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
999 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1000 
1001 	udf_debug("Partition (%d type %x) starts at physical %d, "
1002 		  "block length %d\n", p_index,
1003 		  map->s_partition_type, map->s_partition_root,
1004 		  map->s_partition_len);
1005 
1006 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1007 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1008 		return 0;
1009 
1010 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1011 	if (phd->unallocSpaceTable.extLength) {
1012 		struct kernel_lb_addr loc = {
1013 			.logicalBlockNum = le32_to_cpu(
1014 				phd->unallocSpaceTable.extPosition),
1015 			.partitionReferenceNum = p_index,
1016 		};
1017 
1018 		map->s_uspace.s_table = udf_iget(sb, &loc);
1019 		if (!map->s_uspace.s_table) {
1020 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1021 					p_index);
1022 			return 1;
1023 		}
1024 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1025 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1026 				p_index, map->s_uspace.s_table->i_ino);
1027 	}
1028 
1029 	if (phd->unallocSpaceBitmap.extLength) {
1030 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1031 		if (!bitmap)
1032 			return 1;
1033 		map->s_uspace.s_bitmap = bitmap;
1034 		bitmap->s_extLength = le32_to_cpu(
1035 				phd->unallocSpaceBitmap.extLength);
1036 		bitmap->s_extPosition = le32_to_cpu(
1037 				phd->unallocSpaceBitmap.extPosition);
1038 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1039 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1040 						bitmap->s_extPosition);
1041 	}
1042 
1043 	if (phd->partitionIntegrityTable.extLength)
1044 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1045 
1046 	if (phd->freedSpaceTable.extLength) {
1047 		struct kernel_lb_addr loc = {
1048 			.logicalBlockNum = le32_to_cpu(
1049 				phd->freedSpaceTable.extPosition),
1050 			.partitionReferenceNum = p_index,
1051 		};
1052 
1053 		map->s_fspace.s_table = udf_iget(sb, &loc);
1054 		if (!map->s_fspace.s_table) {
1055 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1056 				p_index);
1057 			return 1;
1058 		}
1059 
1060 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1061 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1062 				p_index, map->s_fspace.s_table->i_ino);
1063 	}
1064 
1065 	if (phd->freedSpaceBitmap.extLength) {
1066 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1067 		if (!bitmap)
1068 			return 1;
1069 		map->s_fspace.s_bitmap = bitmap;
1070 		bitmap->s_extLength = le32_to_cpu(
1071 				phd->freedSpaceBitmap.extLength);
1072 		bitmap->s_extPosition = le32_to_cpu(
1073 				phd->freedSpaceBitmap.extPosition);
1074 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1075 		udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1076 					bitmap->s_extPosition);
1077 	}
1078 	return 0;
1079 }
1080 
1081 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1082 {
1083 	struct udf_sb_info *sbi = UDF_SB(sb);
1084 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1085 	struct kernel_lb_addr ino;
1086 	struct buffer_head *bh = NULL;
1087 	struct udf_inode_info *vati;
1088 	uint32_t pos;
1089 	struct virtualAllocationTable20 *vat20;
1090 
1091 	/* VAT file entry is in the last recorded block */
1092 	ino.partitionReferenceNum = type1_index;
1093 	ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root;
1094 	sbi->s_vat_inode = udf_iget(sb, &ino);
1095 	if (!sbi->s_vat_inode)
1096 		return 1;
1097 
1098 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1099 		map->s_type_specific.s_virtual.s_start_offset = 0;
1100 		map->s_type_specific.s_virtual.s_num_entries =
1101 			(sbi->s_vat_inode->i_size - 36) >> 2;
1102 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1103 		vati = UDF_I(sbi->s_vat_inode);
1104 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1105 			pos = udf_block_map(sbi->s_vat_inode, 0);
1106 			bh = sb_bread(sb, pos);
1107 			if (!bh)
1108 				return 1;
1109 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1110 		} else {
1111 			vat20 = (struct virtualAllocationTable20 *)
1112 							vati->i_ext.i_data;
1113 		}
1114 
1115 		map->s_type_specific.s_virtual.s_start_offset =
1116 			le16_to_cpu(vat20->lengthHeader);
1117 		map->s_type_specific.s_virtual.s_num_entries =
1118 			(sbi->s_vat_inode->i_size -
1119 				map->s_type_specific.s_virtual.
1120 					s_start_offset) >> 2;
1121 		brelse(bh);
1122 	}
1123 	return 0;
1124 }
1125 
1126 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1127 {
1128 	struct buffer_head *bh;
1129 	struct partitionDesc *p;
1130 	struct udf_part_map *map;
1131 	struct udf_sb_info *sbi = UDF_SB(sb);
1132 	int i, type1_idx;
1133 	uint16_t partitionNumber;
1134 	uint16_t ident;
1135 	int ret = 0;
1136 
1137 	bh = udf_read_tagged(sb, block, block, &ident);
1138 	if (!bh)
1139 		return 1;
1140 	if (ident != TAG_IDENT_PD)
1141 		goto out_bh;
1142 
1143 	p = (struct partitionDesc *)bh->b_data;
1144 	partitionNumber = le16_to_cpu(p->partitionNumber);
1145 
1146 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1147 	for (i = 0; i < sbi->s_partitions; i++) {
1148 		map = &sbi->s_partmaps[i];
1149 		udf_debug("Searching map: (%d == %d)\n",
1150 			  map->s_partition_num, partitionNumber);
1151 		if (map->s_partition_num == partitionNumber &&
1152 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1153 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1154 			break;
1155 	}
1156 
1157 	if (i >= sbi->s_partitions) {
1158 		udf_debug("Partition (%d) not found in partition map\n",
1159 			  partitionNumber);
1160 		goto out_bh;
1161 	}
1162 
1163 	ret = udf_fill_partdesc_info(sb, p, i);
1164 
1165 	/*
1166 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1167 	 * PHYSICAL partitions are already set up
1168 	 */
1169 	type1_idx = i;
1170 	for (i = 0; i < sbi->s_partitions; i++) {
1171 		map = &sbi->s_partmaps[i];
1172 
1173 		if (map->s_partition_num == partitionNumber &&
1174 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1175 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1176 		     map->s_partition_type == UDF_METADATA_MAP25))
1177 			break;
1178 	}
1179 
1180 	if (i >= sbi->s_partitions)
1181 		goto out_bh;
1182 
1183 	ret = udf_fill_partdesc_info(sb, p, i);
1184 	if (ret)
1185 		goto out_bh;
1186 
1187 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1188 		ret = udf_load_metadata_files(sb, i);
1189 		if (ret) {
1190 			printk(KERN_ERR "UDF-fs: error loading MetaData "
1191 			"partition map %d\n", i);
1192 			goto out_bh;
1193 		}
1194 	} else {
1195 		ret = udf_load_vat(sb, i, type1_idx);
1196 		if (ret)
1197 			goto out_bh;
1198 		/*
1199 		 * Mark filesystem read-only if we have a partition with
1200 		 * virtual map since we don't handle writing to it (we
1201 		 * overwrite blocks instead of relocating them).
1202 		 */
1203 		sb->s_flags |= MS_RDONLY;
1204 		printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1205 			"because writing to pseudooverwrite partition is "
1206 			"not implemented.\n");
1207 	}
1208 out_bh:
1209 	/* In case loading failed, we handle cleanup in udf_fill_super */
1210 	brelse(bh);
1211 	return ret;
1212 }
1213 
1214 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1215 			       struct kernel_lb_addr *fileset)
1216 {
1217 	struct logicalVolDesc *lvd;
1218 	int i, j, offset;
1219 	uint8_t type;
1220 	struct udf_sb_info *sbi = UDF_SB(sb);
1221 	struct genericPartitionMap *gpm;
1222 	uint16_t ident;
1223 	struct buffer_head *bh;
1224 	int ret = 0;
1225 
1226 	bh = udf_read_tagged(sb, block, block, &ident);
1227 	if (!bh)
1228 		return 1;
1229 	BUG_ON(ident != TAG_IDENT_LVD);
1230 	lvd = (struct logicalVolDesc *)bh->b_data;
1231 
1232 	i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1233 	if (i != 0) {
1234 		ret = i;
1235 		goto out_bh;
1236 	}
1237 
1238 	for (i = 0, offset = 0;
1239 	     i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1240 	     i++, offset += gpm->partitionMapLength) {
1241 		struct udf_part_map *map = &sbi->s_partmaps[i];
1242 		gpm = (struct genericPartitionMap *)
1243 				&(lvd->partitionMaps[offset]);
1244 		type = gpm->partitionMapType;
1245 		if (type == 1) {
1246 			struct genericPartitionMap1 *gpm1 =
1247 				(struct genericPartitionMap1 *)gpm;
1248 			map->s_partition_type = UDF_TYPE1_MAP15;
1249 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1250 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1251 			map->s_partition_func = NULL;
1252 		} else if (type == 2) {
1253 			struct udfPartitionMap2 *upm2 =
1254 						(struct udfPartitionMap2 *)gpm;
1255 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1256 						strlen(UDF_ID_VIRTUAL))) {
1257 				u16 suf =
1258 					le16_to_cpu(((__le16 *)upm2->partIdent.
1259 							identSuffix)[0]);
1260 				if (suf < 0x0200) {
1261 					map->s_partition_type =
1262 							UDF_VIRTUAL_MAP15;
1263 					map->s_partition_func =
1264 							udf_get_pblock_virt15;
1265 				} else {
1266 					map->s_partition_type =
1267 							UDF_VIRTUAL_MAP20;
1268 					map->s_partition_func =
1269 							udf_get_pblock_virt20;
1270 				}
1271 			} else if (!strncmp(upm2->partIdent.ident,
1272 						UDF_ID_SPARABLE,
1273 						strlen(UDF_ID_SPARABLE))) {
1274 				uint32_t loc;
1275 				struct sparingTable *st;
1276 				struct sparablePartitionMap *spm =
1277 					(struct sparablePartitionMap *)gpm;
1278 
1279 				map->s_partition_type = UDF_SPARABLE_MAP15;
1280 				map->s_type_specific.s_sparing.s_packet_len =
1281 						le16_to_cpu(spm->packetLength);
1282 				for (j = 0; j < spm->numSparingTables; j++) {
1283 					struct buffer_head *bh2;
1284 
1285 					loc = le32_to_cpu(
1286 						spm->locSparingTable[j]);
1287 					bh2 = udf_read_tagged(sb, loc, loc,
1288 							     &ident);
1289 					map->s_type_specific.s_sparing.
1290 							s_spar_map[j] = bh2;
1291 
1292 					if (bh2 == NULL)
1293 						continue;
1294 
1295 					st = (struct sparingTable *)bh2->b_data;
1296 					if (ident != 0 || strncmp(
1297 						st->sparingIdent.ident,
1298 						UDF_ID_SPARING,
1299 						strlen(UDF_ID_SPARING))) {
1300 						brelse(bh2);
1301 						map->s_type_specific.s_sparing.
1302 							s_spar_map[j] = NULL;
1303 					}
1304 				}
1305 				map->s_partition_func = udf_get_pblock_spar15;
1306 			} else if (!strncmp(upm2->partIdent.ident,
1307 						UDF_ID_METADATA,
1308 						strlen(UDF_ID_METADATA))) {
1309 				struct udf_meta_data *mdata =
1310 					&map->s_type_specific.s_metadata;
1311 				struct metadataPartitionMap *mdm =
1312 						(struct metadataPartitionMap *)
1313 						&(lvd->partitionMaps[offset]);
1314 				udf_debug("Parsing Logical vol part %d "
1315 					"type %d  id=%s\n", i, type,
1316 					UDF_ID_METADATA);
1317 
1318 				map->s_partition_type = UDF_METADATA_MAP25;
1319 				map->s_partition_func = udf_get_pblock_meta25;
1320 
1321 				mdata->s_meta_file_loc   =
1322 					le32_to_cpu(mdm->metadataFileLoc);
1323 				mdata->s_mirror_file_loc =
1324 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1325 				mdata->s_bitmap_file_loc =
1326 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1327 				mdata->s_alloc_unit_size =
1328 					le32_to_cpu(mdm->allocUnitSize);
1329 				mdata->s_align_unit_size =
1330 					le16_to_cpu(mdm->alignUnitSize);
1331 				mdata->s_dup_md_flag 	 =
1332 					mdm->flags & 0x01;
1333 
1334 				udf_debug("Metadata Ident suffix=0x%x\n",
1335 					(le16_to_cpu(
1336 					 ((__le16 *)
1337 					      mdm->partIdent.identSuffix)[0])));
1338 				udf_debug("Metadata part num=%d\n",
1339 					le16_to_cpu(mdm->partitionNum));
1340 				udf_debug("Metadata part alloc unit size=%d\n",
1341 					le32_to_cpu(mdm->allocUnitSize));
1342 				udf_debug("Metadata file loc=%d\n",
1343 					le32_to_cpu(mdm->metadataFileLoc));
1344 				udf_debug("Mirror file loc=%d\n",
1345 				       le32_to_cpu(mdm->metadataMirrorFileLoc));
1346 				udf_debug("Bitmap file loc=%d\n",
1347 				       le32_to_cpu(mdm->metadataBitmapFileLoc));
1348 				udf_debug("Duplicate Flag: %d %d\n",
1349 					mdata->s_dup_md_flag, mdm->flags);
1350 			} else {
1351 				udf_debug("Unknown ident: %s\n",
1352 					  upm2->partIdent.ident);
1353 				continue;
1354 			}
1355 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1356 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1357 		}
1358 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1359 			  i, map->s_partition_num, type,
1360 			  map->s_volumeseqnum);
1361 	}
1362 
1363 	if (fileset) {
1364 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1365 
1366 		*fileset = lelb_to_cpu(la->extLocation);
1367 		udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1368 			  "partition=%d\n", fileset->logicalBlockNum,
1369 			  fileset->partitionReferenceNum);
1370 	}
1371 	if (lvd->integritySeqExt.extLength)
1372 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1373 
1374 out_bh:
1375 	brelse(bh);
1376 	return ret;
1377 }
1378 
1379 /*
1380  * udf_load_logicalvolint
1381  *
1382  */
1383 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1384 {
1385 	struct buffer_head *bh = NULL;
1386 	uint16_t ident;
1387 	struct udf_sb_info *sbi = UDF_SB(sb);
1388 	struct logicalVolIntegrityDesc *lvid;
1389 
1390 	while (loc.extLength > 0 &&
1391 	       (bh = udf_read_tagged(sb, loc.extLocation,
1392 				     loc.extLocation, &ident)) &&
1393 	       ident == TAG_IDENT_LVID) {
1394 		sbi->s_lvid_bh = bh;
1395 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1396 
1397 		if (lvid->nextIntegrityExt.extLength)
1398 			udf_load_logicalvolint(sb,
1399 				leea_to_cpu(lvid->nextIntegrityExt));
1400 
1401 		if (sbi->s_lvid_bh != bh)
1402 			brelse(bh);
1403 		loc.extLength -= sb->s_blocksize;
1404 		loc.extLocation++;
1405 	}
1406 	if (sbi->s_lvid_bh != bh)
1407 		brelse(bh);
1408 }
1409 
1410 /*
1411  * udf_process_sequence
1412  *
1413  * PURPOSE
1414  *	Process a main/reserve volume descriptor sequence.
1415  *
1416  * PRE-CONDITIONS
1417  *	sb			Pointer to _locked_ superblock.
1418  *	block			First block of first extent of the sequence.
1419  *	lastblock		Lastblock of first extent of the sequence.
1420  *
1421  * HISTORY
1422  *	July 1, 1997 - Andrew E. Mileski
1423  *	Written, tested, and released.
1424  */
1425 static noinline int udf_process_sequence(struct super_block *sb, long block,
1426 				long lastblock, struct kernel_lb_addr *fileset)
1427 {
1428 	struct buffer_head *bh = NULL;
1429 	struct udf_vds_record vds[VDS_POS_LENGTH];
1430 	struct udf_vds_record *curr;
1431 	struct generic_desc *gd;
1432 	struct volDescPtr *vdp;
1433 	int done = 0;
1434 	uint32_t vdsn;
1435 	uint16_t ident;
1436 	long next_s = 0, next_e = 0;
1437 
1438 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1439 
1440 	/*
1441 	 * Read the main descriptor sequence and find which descriptors
1442 	 * are in it.
1443 	 */
1444 	for (; (!done && block <= lastblock); block++) {
1445 
1446 		bh = udf_read_tagged(sb, block, block, &ident);
1447 		if (!bh) {
1448 			printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1449 			       "sequence is corrupted or we could not read "
1450 			       "it.\n", (unsigned long long)block);
1451 			return 1;
1452 		}
1453 
1454 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1455 		gd = (struct generic_desc *)bh->b_data;
1456 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1457 		switch (ident) {
1458 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1459 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1460 			if (vdsn >= curr->volDescSeqNum) {
1461 				curr->volDescSeqNum = vdsn;
1462 				curr->block = block;
1463 			}
1464 			break;
1465 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1466 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1467 			if (vdsn >= curr->volDescSeqNum) {
1468 				curr->volDescSeqNum = vdsn;
1469 				curr->block = block;
1470 
1471 				vdp = (struct volDescPtr *)bh->b_data;
1472 				next_s = le32_to_cpu(
1473 					vdp->nextVolDescSeqExt.extLocation);
1474 				next_e = le32_to_cpu(
1475 					vdp->nextVolDescSeqExt.extLength);
1476 				next_e = next_e >> sb->s_blocksize_bits;
1477 				next_e += next_s;
1478 			}
1479 			break;
1480 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1481 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1482 			if (vdsn >= curr->volDescSeqNum) {
1483 				curr->volDescSeqNum = vdsn;
1484 				curr->block = block;
1485 			}
1486 			break;
1487 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1488 			curr = &vds[VDS_POS_PARTITION_DESC];
1489 			if (!curr->block)
1490 				curr->block = block;
1491 			break;
1492 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1493 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1494 			if (vdsn >= curr->volDescSeqNum) {
1495 				curr->volDescSeqNum = vdsn;
1496 				curr->block = block;
1497 			}
1498 			break;
1499 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1500 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1501 			if (vdsn >= curr->volDescSeqNum) {
1502 				curr->volDescSeqNum = vdsn;
1503 				curr->block = block;
1504 			}
1505 			break;
1506 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1507 			vds[VDS_POS_TERMINATING_DESC].block = block;
1508 			if (next_e) {
1509 				block = next_s;
1510 				lastblock = next_e;
1511 				next_s = next_e = 0;
1512 			} else
1513 				done = 1;
1514 			break;
1515 		}
1516 		brelse(bh);
1517 	}
1518 	/*
1519 	 * Now read interesting descriptors again and process them
1520 	 * in a suitable order
1521 	 */
1522 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1523 		printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1524 		return 1;
1525 	}
1526 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1527 		return 1;
1528 
1529 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1530 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1531 		return 1;
1532 
1533 	if (vds[VDS_POS_PARTITION_DESC].block) {
1534 		/*
1535 		 * We rescan the whole descriptor sequence to find
1536 		 * partition descriptor blocks and process them.
1537 		 */
1538 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1539 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1540 		     block++)
1541 			if (udf_load_partdesc(sb, block))
1542 				return 1;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1549 			     struct kernel_lb_addr *fileset)
1550 {
1551 	struct anchorVolDescPtr *anchor;
1552 	long main_s, main_e, reserve_s, reserve_e;
1553 	struct udf_sb_info *sbi;
1554 
1555 	sbi = UDF_SB(sb);
1556 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1557 
1558 	/* Locate the main sequence */
1559 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1560 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1561 	main_e = main_e >> sb->s_blocksize_bits;
1562 	main_e += main_s;
1563 
1564 	/* Locate the reserve sequence */
1565 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1566 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1567 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1568 	reserve_e += reserve_s;
1569 
1570 	/* Process the main & reserve sequences */
1571 	/* responsible for finding the PartitionDesc(s) */
1572 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1573 		return 1;
1574 	return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1575 }
1576 
1577 /*
1578  * Check whether there is an anchor block in the given block and
1579  * load Volume Descriptor Sequence if so.
1580  */
1581 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1582 				  struct kernel_lb_addr *fileset)
1583 {
1584 	struct buffer_head *bh;
1585 	uint16_t ident;
1586 	int ret;
1587 
1588 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1589 	    udf_fixed_to_variable(block) >=
1590 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1591 		return 0;
1592 
1593 	bh = udf_read_tagged(sb, block, block, &ident);
1594 	if (!bh)
1595 		return 0;
1596 	if (ident != TAG_IDENT_AVDP) {
1597 		brelse(bh);
1598 		return 0;
1599 	}
1600 	ret = udf_load_sequence(sb, bh, fileset);
1601 	brelse(bh);
1602 	return ret;
1603 }
1604 
1605 /* Search for an anchor volume descriptor pointer */
1606 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1607 				 struct kernel_lb_addr *fileset)
1608 {
1609 	sector_t last[6];
1610 	int i;
1611 	struct udf_sb_info *sbi = UDF_SB(sb);
1612 	int last_count = 0;
1613 
1614 	/* First try user provided anchor */
1615 	if (sbi->s_anchor) {
1616 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1617 			return lastblock;
1618 	}
1619 	/*
1620 	 * according to spec, anchor is in either:
1621 	 *     block 256
1622 	 *     lastblock-256
1623 	 *     lastblock
1624 	 *  however, if the disc isn't closed, it could be 512.
1625 	 */
1626 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1627 		return lastblock;
1628 	/*
1629 	 * The trouble is which block is the last one. Drives often misreport
1630 	 * this so we try various possibilities.
1631 	 */
1632 	last[last_count++] = lastblock;
1633 	if (lastblock >= 1)
1634 		last[last_count++] = lastblock - 1;
1635 	last[last_count++] = lastblock + 1;
1636 	if (lastblock >= 2)
1637 		last[last_count++] = lastblock - 2;
1638 	if (lastblock >= 150)
1639 		last[last_count++] = lastblock - 150;
1640 	if (lastblock >= 152)
1641 		last[last_count++] = lastblock - 152;
1642 
1643 	for (i = 0; i < last_count; i++) {
1644 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1645 				sb->s_blocksize_bits)
1646 			continue;
1647 		if (udf_check_anchor_block(sb, last[i], fileset))
1648 			return last[i];
1649 		if (last[i] < 256)
1650 			continue;
1651 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1652 			return last[i];
1653 	}
1654 
1655 	/* Finally try block 512 in case media is open */
1656 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1657 		return last[0];
1658 	return 0;
1659 }
1660 
1661 /*
1662  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1663  * area specified by it. The function expects sbi->s_lastblock to be the last
1664  * block on the media.
1665  *
1666  * Return 1 if ok, 0 if not found.
1667  *
1668  */
1669 static int udf_find_anchor(struct super_block *sb,
1670 			   struct kernel_lb_addr *fileset)
1671 {
1672 	sector_t lastblock;
1673 	struct udf_sb_info *sbi = UDF_SB(sb);
1674 
1675 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1676 	if (lastblock)
1677 		goto out;
1678 
1679 	/* No anchor found? Try VARCONV conversion of block numbers */
1680 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1681 	/* Firstly, we try to not convert number of the last block */
1682 	lastblock = udf_scan_anchors(sb,
1683 				udf_variable_to_fixed(sbi->s_last_block),
1684 				fileset);
1685 	if (lastblock)
1686 		goto out;
1687 
1688 	/* Secondly, we try with converted number of the last block */
1689 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1690 	if (!lastblock) {
1691 		/* VARCONV didn't help. Clear it. */
1692 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1693 		return 0;
1694 	}
1695 out:
1696 	sbi->s_last_block = lastblock;
1697 	return 1;
1698 }
1699 
1700 /*
1701  * Check Volume Structure Descriptor, find Anchor block and load Volume
1702  * Descriptor Sequence
1703  */
1704 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1705 			int silent, struct kernel_lb_addr *fileset)
1706 {
1707 	struct udf_sb_info *sbi = UDF_SB(sb);
1708 	loff_t nsr_off;
1709 
1710 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1711 		if (!silent)
1712 			printk(KERN_WARNING "UDF-fs: Bad block size\n");
1713 		return 0;
1714 	}
1715 	sbi->s_last_block = uopt->lastblock;
1716 	if (!uopt->novrs) {
1717 		/* Check that it is NSR02 compliant */
1718 		nsr_off = udf_check_vsd(sb);
1719 		if (!nsr_off) {
1720 			if (!silent)
1721 				printk(KERN_WARNING "UDF-fs: No VRS found\n");
1722 			return 0;
1723 		}
1724 		if (nsr_off == -1)
1725 			udf_debug("Failed to read byte 32768. Assuming open "
1726 				  "disc. Skipping validity check\n");
1727 		if (!sbi->s_last_block)
1728 			sbi->s_last_block = udf_get_last_block(sb);
1729 	} else {
1730 		udf_debug("Validity check skipped because of novrs option\n");
1731 	}
1732 
1733 	/* Look for anchor block and load Volume Descriptor Sequence */
1734 	sbi->s_anchor = uopt->anchor;
1735 	if (!udf_find_anchor(sb, fileset)) {
1736 		if (!silent)
1737 			printk(KERN_WARNING "UDF-fs: No anchor found\n");
1738 		return 0;
1739 	}
1740 	return 1;
1741 }
1742 
1743 static void udf_open_lvid(struct super_block *sb)
1744 {
1745 	struct udf_sb_info *sbi = UDF_SB(sb);
1746 	struct buffer_head *bh = sbi->s_lvid_bh;
1747 	struct logicalVolIntegrityDesc *lvid;
1748 	struct logicalVolIntegrityDescImpUse *lvidiu;
1749 
1750 	if (!bh)
1751 		return;
1752 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1753 	lvidiu = udf_sb_lvidiu(sbi);
1754 
1755 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1756 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1757 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1758 				CURRENT_TIME);
1759 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1760 
1761 	lvid->descTag.descCRC = cpu_to_le16(
1762 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1763 			le16_to_cpu(lvid->descTag.descCRCLength)));
1764 
1765 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1766 	mark_buffer_dirty(bh);
1767 	sbi->s_lvid_dirty = 0;
1768 }
1769 
1770 static void udf_close_lvid(struct super_block *sb)
1771 {
1772 	struct udf_sb_info *sbi = UDF_SB(sb);
1773 	struct buffer_head *bh = sbi->s_lvid_bh;
1774 	struct logicalVolIntegrityDesc *lvid;
1775 	struct logicalVolIntegrityDescImpUse *lvidiu;
1776 
1777 	if (!bh)
1778 		return;
1779 
1780 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1781 	lvidiu = udf_sb_lvidiu(sbi);
1782 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1783 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1784 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1785 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1786 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1787 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1788 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1789 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1790 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1791 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1792 
1793 	lvid->descTag.descCRC = cpu_to_le16(
1794 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1795 				le16_to_cpu(lvid->descTag.descCRCLength)));
1796 
1797 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1798 	mark_buffer_dirty(bh);
1799 	sbi->s_lvid_dirty = 0;
1800 }
1801 
1802 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1803 {
1804 	int i;
1805 	int nr_groups = bitmap->s_nr_groups;
1806 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1807 						nr_groups);
1808 
1809 	for (i = 0; i < nr_groups; i++)
1810 		if (bitmap->s_block_bitmap[i])
1811 			brelse(bitmap->s_block_bitmap[i]);
1812 
1813 	if (size <= PAGE_SIZE)
1814 		kfree(bitmap);
1815 	else
1816 		vfree(bitmap);
1817 }
1818 
1819 static void udf_free_partition(struct udf_part_map *map)
1820 {
1821 	int i;
1822 	struct udf_meta_data *mdata;
1823 
1824 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1825 		iput(map->s_uspace.s_table);
1826 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1827 		iput(map->s_fspace.s_table);
1828 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1829 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1830 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1831 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1832 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
1833 		for (i = 0; i < 4; i++)
1834 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1835 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
1836 		mdata = &map->s_type_specific.s_metadata;
1837 		iput(mdata->s_metadata_fe);
1838 		mdata->s_metadata_fe = NULL;
1839 
1840 		iput(mdata->s_mirror_fe);
1841 		mdata->s_mirror_fe = NULL;
1842 
1843 		iput(mdata->s_bitmap_fe);
1844 		mdata->s_bitmap_fe = NULL;
1845 	}
1846 }
1847 
1848 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1849 {
1850 	int i;
1851 	int ret;
1852 	struct inode *inode = NULL;
1853 	struct udf_options uopt;
1854 	struct kernel_lb_addr rootdir, fileset;
1855 	struct udf_sb_info *sbi;
1856 
1857 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1858 	uopt.uid = -1;
1859 	uopt.gid = -1;
1860 	uopt.umask = 0;
1861 	uopt.fmode = UDF_INVALID_MODE;
1862 	uopt.dmode = UDF_INVALID_MODE;
1863 
1864 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1865 	if (!sbi)
1866 		return -ENOMEM;
1867 
1868 	sb->s_fs_info = sbi;
1869 
1870 	mutex_init(&sbi->s_alloc_mutex);
1871 
1872 	if (!udf_parse_options((char *)options, &uopt, false))
1873 		goto error_out;
1874 
1875 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1876 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1877 		udf_error(sb, "udf_read_super",
1878 			  "utf8 cannot be combined with iocharset\n");
1879 		goto error_out;
1880 	}
1881 #ifdef CONFIG_UDF_NLS
1882 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1883 		uopt.nls_map = load_nls_default();
1884 		if (!uopt.nls_map)
1885 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1886 		else
1887 			udf_debug("Using default NLS map\n");
1888 	}
1889 #endif
1890 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1891 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1892 
1893 	fileset.logicalBlockNum = 0xFFFFFFFF;
1894 	fileset.partitionReferenceNum = 0xFFFF;
1895 
1896 	sbi->s_flags = uopt.flags;
1897 	sbi->s_uid = uopt.uid;
1898 	sbi->s_gid = uopt.gid;
1899 	sbi->s_umask = uopt.umask;
1900 	sbi->s_fmode = uopt.fmode;
1901 	sbi->s_dmode = uopt.dmode;
1902 	sbi->s_nls_map = uopt.nls_map;
1903 
1904 	if (uopt.session == 0xFFFFFFFF)
1905 		sbi->s_session = udf_get_last_session(sb);
1906 	else
1907 		sbi->s_session = uopt.session;
1908 
1909 	udf_debug("Multi-session=%d\n", sbi->s_session);
1910 
1911 	/* Fill in the rest of the superblock */
1912 	sb->s_op = &udf_sb_ops;
1913 	sb->s_export_op = &udf_export_ops;
1914 	sb->dq_op = NULL;
1915 	sb->s_dirt = 0;
1916 	sb->s_magic = UDF_SUPER_MAGIC;
1917 	sb->s_time_gran = 1000;
1918 
1919 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1920 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1921 	} else {
1922 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1923 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1924 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1925 			if (!silent)
1926 				printk(KERN_NOTICE
1927 				       "UDF-fs: Rescanning with blocksize "
1928 				       "%d\n", UDF_DEFAULT_BLOCKSIZE);
1929 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1930 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1931 		}
1932 	}
1933 	if (!ret) {
1934 		printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1935 		goto error_out;
1936 	}
1937 
1938 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
1939 
1940 	if (sbi->s_lvid_bh) {
1941 		struct logicalVolIntegrityDescImpUse *lvidiu =
1942 							udf_sb_lvidiu(sbi);
1943 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1944 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1945 		/* uint16_t maxUDFWriteRev =
1946 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
1947 
1948 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1949 			printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1950 					"(max is %x)\n",
1951 			       le16_to_cpu(lvidiu->minUDFReadRev),
1952 			       UDF_MAX_READ_VERSION);
1953 			goto error_out;
1954 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1955 			sb->s_flags |= MS_RDONLY;
1956 
1957 		sbi->s_udfrev = minUDFWriteRev;
1958 
1959 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1960 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1961 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1962 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1963 	}
1964 
1965 	if (!sbi->s_partitions) {
1966 		printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1967 		goto error_out;
1968 	}
1969 
1970 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
1971 			UDF_PART_FLAG_READ_ONLY) {
1972 		printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
1973 				   "forcing readonly mount\n");
1974 		sb->s_flags |= MS_RDONLY;
1975 	}
1976 
1977 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
1978 		printk(KERN_WARNING "UDF-fs: No fileset found\n");
1979 		goto error_out;
1980 	}
1981 
1982 	if (!silent) {
1983 		struct timestamp ts;
1984 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
1985 		udf_info("UDF: Mounting volume '%s', "
1986 			 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
1987 			 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
1988 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
1989 	}
1990 	if (!(sb->s_flags & MS_RDONLY))
1991 		udf_open_lvid(sb);
1992 
1993 	/* Assign the root inode */
1994 	/* assign inodes by physical block number */
1995 	/* perhaps it's not extensible enough, but for now ... */
1996 	inode = udf_iget(sb, &rootdir);
1997 	if (!inode) {
1998 		printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
1999 				"partition=%d\n",
2000 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2001 		goto error_out;
2002 	}
2003 
2004 	/* Allocate a dentry for the root inode */
2005 	sb->s_root = d_alloc_root(inode);
2006 	if (!sb->s_root) {
2007 		printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2008 		iput(inode);
2009 		goto error_out;
2010 	}
2011 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2012 	return 0;
2013 
2014 error_out:
2015 	if (sbi->s_vat_inode)
2016 		iput(sbi->s_vat_inode);
2017 	if (sbi->s_partitions)
2018 		for (i = 0; i < sbi->s_partitions; i++)
2019 			udf_free_partition(&sbi->s_partmaps[i]);
2020 #ifdef CONFIG_UDF_NLS
2021 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2022 		unload_nls(sbi->s_nls_map);
2023 #endif
2024 	if (!(sb->s_flags & MS_RDONLY))
2025 		udf_close_lvid(sb);
2026 	brelse(sbi->s_lvid_bh);
2027 
2028 	kfree(sbi->s_partmaps);
2029 	kfree(sbi);
2030 	sb->s_fs_info = NULL;
2031 
2032 	return -EINVAL;
2033 }
2034 
2035 static void udf_error(struct super_block *sb, const char *function,
2036 		      const char *fmt, ...)
2037 {
2038 	va_list args;
2039 
2040 	if (!(sb->s_flags & MS_RDONLY)) {
2041 		/* mark sb error */
2042 		sb->s_dirt = 1;
2043 	}
2044 	va_start(args, fmt);
2045 	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2046 	va_end(args);
2047 	printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2048 		sb->s_id, function, error_buf);
2049 }
2050 
2051 void udf_warning(struct super_block *sb, const char *function,
2052 		 const char *fmt, ...)
2053 {
2054 	va_list args;
2055 
2056 	va_start(args, fmt);
2057 	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2058 	va_end(args);
2059 	printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2060 	       sb->s_id, function, error_buf);
2061 }
2062 
2063 static void udf_put_super(struct super_block *sb)
2064 {
2065 	int i;
2066 	struct udf_sb_info *sbi;
2067 
2068 	sbi = UDF_SB(sb);
2069 
2070 	lock_kernel();
2071 
2072 	if (sbi->s_vat_inode)
2073 		iput(sbi->s_vat_inode);
2074 	if (sbi->s_partitions)
2075 		for (i = 0; i < sbi->s_partitions; i++)
2076 			udf_free_partition(&sbi->s_partmaps[i]);
2077 #ifdef CONFIG_UDF_NLS
2078 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2079 		unload_nls(sbi->s_nls_map);
2080 #endif
2081 	if (!(sb->s_flags & MS_RDONLY))
2082 		udf_close_lvid(sb);
2083 	brelse(sbi->s_lvid_bh);
2084 	kfree(sbi->s_partmaps);
2085 	kfree(sb->s_fs_info);
2086 	sb->s_fs_info = NULL;
2087 
2088 	unlock_kernel();
2089 }
2090 
2091 static int udf_sync_fs(struct super_block *sb, int wait)
2092 {
2093 	struct udf_sb_info *sbi = UDF_SB(sb);
2094 
2095 	mutex_lock(&sbi->s_alloc_mutex);
2096 	if (sbi->s_lvid_dirty) {
2097 		/*
2098 		 * Blockdevice will be synced later so we don't have to submit
2099 		 * the buffer for IO
2100 		 */
2101 		mark_buffer_dirty(sbi->s_lvid_bh);
2102 		sb->s_dirt = 0;
2103 		sbi->s_lvid_dirty = 0;
2104 	}
2105 	mutex_unlock(&sbi->s_alloc_mutex);
2106 
2107 	return 0;
2108 }
2109 
2110 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2111 {
2112 	struct super_block *sb = dentry->d_sb;
2113 	struct udf_sb_info *sbi = UDF_SB(sb);
2114 	struct logicalVolIntegrityDescImpUse *lvidiu;
2115 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2116 
2117 	if (sbi->s_lvid_bh != NULL)
2118 		lvidiu = udf_sb_lvidiu(sbi);
2119 	else
2120 		lvidiu = NULL;
2121 
2122 	buf->f_type = UDF_SUPER_MAGIC;
2123 	buf->f_bsize = sb->s_blocksize;
2124 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2125 	buf->f_bfree = udf_count_free(sb);
2126 	buf->f_bavail = buf->f_bfree;
2127 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2128 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2129 			+ buf->f_bfree;
2130 	buf->f_ffree = buf->f_bfree;
2131 	buf->f_namelen = UDF_NAME_LEN - 2;
2132 	buf->f_fsid.val[0] = (u32)id;
2133 	buf->f_fsid.val[1] = (u32)(id >> 32);
2134 
2135 	return 0;
2136 }
2137 
2138 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2139 					  struct udf_bitmap *bitmap)
2140 {
2141 	struct buffer_head *bh = NULL;
2142 	unsigned int accum = 0;
2143 	int index;
2144 	int block = 0, newblock;
2145 	struct kernel_lb_addr loc;
2146 	uint32_t bytes;
2147 	uint8_t *ptr;
2148 	uint16_t ident;
2149 	struct spaceBitmapDesc *bm;
2150 
2151 	lock_kernel();
2152 
2153 	loc.logicalBlockNum = bitmap->s_extPosition;
2154 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2155 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2156 
2157 	if (!bh) {
2158 		printk(KERN_ERR "udf: udf_count_free failed\n");
2159 		goto out;
2160 	} else if (ident != TAG_IDENT_SBD) {
2161 		brelse(bh);
2162 		printk(KERN_ERR "udf: udf_count_free failed\n");
2163 		goto out;
2164 	}
2165 
2166 	bm = (struct spaceBitmapDesc *)bh->b_data;
2167 	bytes = le32_to_cpu(bm->numOfBytes);
2168 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2169 	ptr = (uint8_t *)bh->b_data;
2170 
2171 	while (bytes > 0) {
2172 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2173 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2174 					cur_bytes * 8);
2175 		bytes -= cur_bytes;
2176 		if (bytes) {
2177 			brelse(bh);
2178 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2179 			bh = udf_tread(sb, newblock);
2180 			if (!bh) {
2181 				udf_debug("read failed\n");
2182 				goto out;
2183 			}
2184 			index = 0;
2185 			ptr = (uint8_t *)bh->b_data;
2186 		}
2187 	}
2188 	brelse(bh);
2189 
2190 out:
2191 	unlock_kernel();
2192 
2193 	return accum;
2194 }
2195 
2196 static unsigned int udf_count_free_table(struct super_block *sb,
2197 					 struct inode *table)
2198 {
2199 	unsigned int accum = 0;
2200 	uint32_t elen;
2201 	struct kernel_lb_addr eloc;
2202 	int8_t etype;
2203 	struct extent_position epos;
2204 
2205 	lock_kernel();
2206 
2207 	epos.block = UDF_I(table)->i_location;
2208 	epos.offset = sizeof(struct unallocSpaceEntry);
2209 	epos.bh = NULL;
2210 
2211 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2212 		accum += (elen >> table->i_sb->s_blocksize_bits);
2213 
2214 	brelse(epos.bh);
2215 
2216 	unlock_kernel();
2217 
2218 	return accum;
2219 }
2220 
2221 static unsigned int udf_count_free(struct super_block *sb)
2222 {
2223 	unsigned int accum = 0;
2224 	struct udf_sb_info *sbi;
2225 	struct udf_part_map *map;
2226 
2227 	sbi = UDF_SB(sb);
2228 	if (sbi->s_lvid_bh) {
2229 		struct logicalVolIntegrityDesc *lvid =
2230 			(struct logicalVolIntegrityDesc *)
2231 			sbi->s_lvid_bh->b_data;
2232 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2233 			accum = le32_to_cpu(
2234 					lvid->freeSpaceTable[sbi->s_partition]);
2235 			if (accum == 0xFFFFFFFF)
2236 				accum = 0;
2237 		}
2238 	}
2239 
2240 	if (accum)
2241 		return accum;
2242 
2243 	map = &sbi->s_partmaps[sbi->s_partition];
2244 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2245 		accum += udf_count_free_bitmap(sb,
2246 					       map->s_uspace.s_bitmap);
2247 	}
2248 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2249 		accum += udf_count_free_bitmap(sb,
2250 					       map->s_fspace.s_bitmap);
2251 	}
2252 	if (accum)
2253 		return accum;
2254 
2255 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2256 		accum += udf_count_free_table(sb,
2257 					      map->s_uspace.s_table);
2258 	}
2259 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2260 		accum += udf_count_free_table(sb,
2261 					      map->s_fspace.s_table);
2262 	}
2263 
2264 	return accum;
2265 }
2266