1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/smp_lock.h> 52 #include <linux/buffer_head.h> 53 #include <linux/vfs.h> 54 #include <linux/vmalloc.h> 55 #include <linux/errno.h> 56 #include <linux/mount.h> 57 #include <linux/seq_file.h> 58 #include <linux/bitmap.h> 59 #include <linux/crc-itu-t.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 static char error_buf[1024]; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct vfsmount *); 96 static void udf_error(struct super_block *sb, const char *function, 97 const char *fmt, ...); 98 99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 100 { 101 struct logicalVolIntegrityDesc *lvid = 102 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 103 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 104 __u32 offset = number_of_partitions * 2 * 105 sizeof(uint32_t)/sizeof(uint8_t); 106 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 107 } 108 109 /* UDF filesystem type */ 110 static int udf_get_sb(struct file_system_type *fs_type, 111 int flags, const char *dev_name, void *data, 112 struct vfsmount *mnt) 113 { 114 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt); 115 } 116 117 static struct file_system_type udf_fstype = { 118 .owner = THIS_MODULE, 119 .name = "udf", 120 .get_sb = udf_get_sb, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 125 static struct kmem_cache *udf_inode_cachep; 126 127 static struct inode *udf_alloc_inode(struct super_block *sb) 128 { 129 struct udf_inode_info *ei; 130 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 131 if (!ei) 132 return NULL; 133 134 ei->i_unique = 0; 135 ei->i_lenExtents = 0; 136 ei->i_next_alloc_block = 0; 137 ei->i_next_alloc_goal = 0; 138 ei->i_strat4096 = 0; 139 140 return &ei->vfs_inode; 141 } 142 143 static void udf_destroy_inode(struct inode *inode) 144 { 145 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 146 } 147 148 static void init_once(void *foo) 149 { 150 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 151 152 ei->i_ext.i_data = NULL; 153 inode_init_once(&ei->vfs_inode); 154 } 155 156 static int init_inodecache(void) 157 { 158 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 159 sizeof(struct udf_inode_info), 160 0, (SLAB_RECLAIM_ACCOUNT | 161 SLAB_MEM_SPREAD), 162 init_once); 163 if (!udf_inode_cachep) 164 return -ENOMEM; 165 return 0; 166 } 167 168 static void destroy_inodecache(void) 169 { 170 kmem_cache_destroy(udf_inode_cachep); 171 } 172 173 /* Superblock operations */ 174 static const struct super_operations udf_sb_ops = { 175 .alloc_inode = udf_alloc_inode, 176 .destroy_inode = udf_destroy_inode, 177 .write_inode = udf_write_inode, 178 .delete_inode = udf_delete_inode, 179 .clear_inode = udf_clear_inode, 180 .put_super = udf_put_super, 181 .sync_fs = udf_sync_fs, 182 .statfs = udf_statfs, 183 .remount_fs = udf_remount_fs, 184 .show_options = udf_show_options, 185 }; 186 187 struct udf_options { 188 unsigned char novrs; 189 unsigned int blocksize; 190 unsigned int session; 191 unsigned int lastblock; 192 unsigned int anchor; 193 unsigned int volume; 194 unsigned short partition; 195 unsigned int fileset; 196 unsigned int rootdir; 197 unsigned int flags; 198 mode_t umask; 199 gid_t gid; 200 uid_t uid; 201 mode_t fmode; 202 mode_t dmode; 203 struct nls_table *nls_map; 204 }; 205 206 static int __init init_udf_fs(void) 207 { 208 int err; 209 210 err = init_inodecache(); 211 if (err) 212 goto out1; 213 err = register_filesystem(&udf_fstype); 214 if (err) 215 goto out; 216 217 return 0; 218 219 out: 220 destroy_inodecache(); 221 222 out1: 223 return err; 224 } 225 226 static void __exit exit_udf_fs(void) 227 { 228 unregister_filesystem(&udf_fstype); 229 destroy_inodecache(); 230 } 231 232 module_init(init_udf_fs) 233 module_exit(exit_udf_fs) 234 235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 236 { 237 struct udf_sb_info *sbi = UDF_SB(sb); 238 239 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 240 GFP_KERNEL); 241 if (!sbi->s_partmaps) { 242 udf_error(sb, __func__, 243 "Unable to allocate space for %d partition maps", 244 count); 245 sbi->s_partitions = 0; 246 return -ENOMEM; 247 } 248 249 sbi->s_partitions = count; 250 return 0; 251 } 252 253 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt) 254 { 255 struct super_block *sb = mnt->mnt_sb; 256 struct udf_sb_info *sbi = UDF_SB(sb); 257 258 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 259 seq_puts(seq, ",nostrict"); 260 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 261 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 263 seq_puts(seq, ",unhide"); 264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 265 seq_puts(seq, ",undelete"); 266 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 267 seq_puts(seq, ",noadinicb"); 268 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 269 seq_puts(seq, ",shortad"); 270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 271 seq_puts(seq, ",uid=forget"); 272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 273 seq_puts(seq, ",uid=ignore"); 274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 275 seq_puts(seq, ",gid=forget"); 276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 277 seq_puts(seq, ",gid=ignore"); 278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 279 seq_printf(seq, ",uid=%u", sbi->s_uid); 280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 281 seq_printf(seq, ",gid=%u", sbi->s_gid); 282 if (sbi->s_umask != 0) 283 seq_printf(seq, ",umask=%o", sbi->s_umask); 284 if (sbi->s_fmode != UDF_INVALID_MODE) 285 seq_printf(seq, ",mode=%o", sbi->s_fmode); 286 if (sbi->s_dmode != UDF_INVALID_MODE) 287 seq_printf(seq, ",dmode=%o", sbi->s_dmode); 288 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 289 seq_printf(seq, ",session=%u", sbi->s_session); 290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 291 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 292 if (sbi->s_anchor != 0) 293 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 294 /* 295 * volume, partition, fileset and rootdir seem to be ignored 296 * currently 297 */ 298 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 299 seq_puts(seq, ",utf8"); 300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 301 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 302 303 return 0; 304 } 305 306 /* 307 * udf_parse_options 308 * 309 * PURPOSE 310 * Parse mount options. 311 * 312 * DESCRIPTION 313 * The following mount options are supported: 314 * 315 * gid= Set the default group. 316 * umask= Set the default umask. 317 * mode= Set the default file permissions. 318 * dmode= Set the default directory permissions. 319 * uid= Set the default user. 320 * bs= Set the block size. 321 * unhide Show otherwise hidden files. 322 * undelete Show deleted files in lists. 323 * adinicb Embed data in the inode (default) 324 * noadinicb Don't embed data in the inode 325 * shortad Use short ad's 326 * longad Use long ad's (default) 327 * nostrict Unset strict conformance 328 * iocharset= Set the NLS character set 329 * 330 * The remaining are for debugging and disaster recovery: 331 * 332 * novrs Skip volume sequence recognition 333 * 334 * The following expect a offset from 0. 335 * 336 * session= Set the CDROM session (default= last session) 337 * anchor= Override standard anchor location. (default= 256) 338 * volume= Override the VolumeDesc location. (unused) 339 * partition= Override the PartitionDesc location. (unused) 340 * lastblock= Set the last block of the filesystem/ 341 * 342 * The following expect a offset from the partition root. 343 * 344 * fileset= Override the fileset block location. (unused) 345 * rootdir= Override the root directory location. (unused) 346 * WARNING: overriding the rootdir to a non-directory may 347 * yield highly unpredictable results. 348 * 349 * PRE-CONDITIONS 350 * options Pointer to mount options string. 351 * uopts Pointer to mount options variable. 352 * 353 * POST-CONDITIONS 354 * <return> 1 Mount options parsed okay. 355 * <return> 0 Error parsing mount options. 356 * 357 * HISTORY 358 * July 1, 1997 - Andrew E. Mileski 359 * Written, tested, and released. 360 */ 361 362 enum { 363 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 364 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 365 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 366 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 367 Opt_rootdir, Opt_utf8, Opt_iocharset, 368 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 369 Opt_fmode, Opt_dmode 370 }; 371 372 static const match_table_t tokens = { 373 {Opt_novrs, "novrs"}, 374 {Opt_nostrict, "nostrict"}, 375 {Opt_bs, "bs=%u"}, 376 {Opt_unhide, "unhide"}, 377 {Opt_undelete, "undelete"}, 378 {Opt_noadinicb, "noadinicb"}, 379 {Opt_adinicb, "adinicb"}, 380 {Opt_shortad, "shortad"}, 381 {Opt_longad, "longad"}, 382 {Opt_uforget, "uid=forget"}, 383 {Opt_uignore, "uid=ignore"}, 384 {Opt_gforget, "gid=forget"}, 385 {Opt_gignore, "gid=ignore"}, 386 {Opt_gid, "gid=%u"}, 387 {Opt_uid, "uid=%u"}, 388 {Opt_umask, "umask=%o"}, 389 {Opt_session, "session=%u"}, 390 {Opt_lastblock, "lastblock=%u"}, 391 {Opt_anchor, "anchor=%u"}, 392 {Opt_volume, "volume=%u"}, 393 {Opt_partition, "partition=%u"}, 394 {Opt_fileset, "fileset=%u"}, 395 {Opt_rootdir, "rootdir=%u"}, 396 {Opt_utf8, "utf8"}, 397 {Opt_iocharset, "iocharset=%s"}, 398 {Opt_fmode, "mode=%o"}, 399 {Opt_dmode, "dmode=%o"}, 400 {Opt_err, NULL} 401 }; 402 403 static int udf_parse_options(char *options, struct udf_options *uopt, 404 bool remount) 405 { 406 char *p; 407 int option; 408 409 uopt->novrs = 0; 410 uopt->partition = 0xFFFF; 411 uopt->session = 0xFFFFFFFF; 412 uopt->lastblock = 0; 413 uopt->anchor = 0; 414 uopt->volume = 0xFFFFFFFF; 415 uopt->rootdir = 0xFFFFFFFF; 416 uopt->fileset = 0xFFFFFFFF; 417 uopt->nls_map = NULL; 418 419 if (!options) 420 return 1; 421 422 while ((p = strsep(&options, ",")) != NULL) { 423 substring_t args[MAX_OPT_ARGS]; 424 int token; 425 if (!*p) 426 continue; 427 428 token = match_token(p, tokens, args); 429 switch (token) { 430 case Opt_novrs: 431 uopt->novrs = 1; 432 break; 433 case Opt_bs: 434 if (match_int(&args[0], &option)) 435 return 0; 436 uopt->blocksize = option; 437 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 438 break; 439 case Opt_unhide: 440 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 441 break; 442 case Opt_undelete: 443 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 444 break; 445 case Opt_noadinicb: 446 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 447 break; 448 case Opt_adinicb: 449 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 450 break; 451 case Opt_shortad: 452 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 453 break; 454 case Opt_longad: 455 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 456 break; 457 case Opt_gid: 458 if (match_int(args, &option)) 459 return 0; 460 uopt->gid = option; 461 uopt->flags |= (1 << UDF_FLAG_GID_SET); 462 break; 463 case Opt_uid: 464 if (match_int(args, &option)) 465 return 0; 466 uopt->uid = option; 467 uopt->flags |= (1 << UDF_FLAG_UID_SET); 468 break; 469 case Opt_umask: 470 if (match_octal(args, &option)) 471 return 0; 472 uopt->umask = option; 473 break; 474 case Opt_nostrict: 475 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 476 break; 477 case Opt_session: 478 if (match_int(args, &option)) 479 return 0; 480 uopt->session = option; 481 if (!remount) 482 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 483 break; 484 case Opt_lastblock: 485 if (match_int(args, &option)) 486 return 0; 487 uopt->lastblock = option; 488 if (!remount) 489 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 490 break; 491 case Opt_anchor: 492 if (match_int(args, &option)) 493 return 0; 494 uopt->anchor = option; 495 break; 496 case Opt_volume: 497 if (match_int(args, &option)) 498 return 0; 499 uopt->volume = option; 500 break; 501 case Opt_partition: 502 if (match_int(args, &option)) 503 return 0; 504 uopt->partition = option; 505 break; 506 case Opt_fileset: 507 if (match_int(args, &option)) 508 return 0; 509 uopt->fileset = option; 510 break; 511 case Opt_rootdir: 512 if (match_int(args, &option)) 513 return 0; 514 uopt->rootdir = option; 515 break; 516 case Opt_utf8: 517 uopt->flags |= (1 << UDF_FLAG_UTF8); 518 break; 519 #ifdef CONFIG_UDF_NLS 520 case Opt_iocharset: 521 uopt->nls_map = load_nls(args[0].from); 522 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 523 break; 524 #endif 525 case Opt_uignore: 526 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 527 break; 528 case Opt_uforget: 529 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 530 break; 531 case Opt_gignore: 532 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 533 break; 534 case Opt_gforget: 535 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 536 break; 537 case Opt_fmode: 538 if (match_octal(args, &option)) 539 return 0; 540 uopt->fmode = option & 0777; 541 break; 542 case Opt_dmode: 543 if (match_octal(args, &option)) 544 return 0; 545 uopt->dmode = option & 0777; 546 break; 547 default: 548 printk(KERN_ERR "udf: bad mount option \"%s\" " 549 "or missing value\n", p); 550 return 0; 551 } 552 } 553 return 1; 554 } 555 556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 557 { 558 struct udf_options uopt; 559 struct udf_sb_info *sbi = UDF_SB(sb); 560 561 uopt.flags = sbi->s_flags; 562 uopt.uid = sbi->s_uid; 563 uopt.gid = sbi->s_gid; 564 uopt.umask = sbi->s_umask; 565 uopt.fmode = sbi->s_fmode; 566 uopt.dmode = sbi->s_dmode; 567 568 if (!udf_parse_options(options, &uopt, true)) 569 return -EINVAL; 570 571 lock_kernel(); 572 sbi->s_flags = uopt.flags; 573 sbi->s_uid = uopt.uid; 574 sbi->s_gid = uopt.gid; 575 sbi->s_umask = uopt.umask; 576 sbi->s_fmode = uopt.fmode; 577 sbi->s_dmode = uopt.dmode; 578 579 if (sbi->s_lvid_bh) { 580 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 581 if (write_rev > UDF_MAX_WRITE_VERSION) 582 *flags |= MS_RDONLY; 583 } 584 585 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) { 586 unlock_kernel(); 587 return 0; 588 } 589 if (*flags & MS_RDONLY) 590 udf_close_lvid(sb); 591 else 592 udf_open_lvid(sb); 593 594 unlock_kernel(); 595 return 0; 596 } 597 598 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 599 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 600 static loff_t udf_check_vsd(struct super_block *sb) 601 { 602 struct volStructDesc *vsd = NULL; 603 loff_t sector = 32768; 604 int sectorsize; 605 struct buffer_head *bh = NULL; 606 int nsr02 = 0; 607 int nsr03 = 0; 608 struct udf_sb_info *sbi; 609 610 sbi = UDF_SB(sb); 611 if (sb->s_blocksize < sizeof(struct volStructDesc)) 612 sectorsize = sizeof(struct volStructDesc); 613 else 614 sectorsize = sb->s_blocksize; 615 616 sector += (sbi->s_session << sb->s_blocksize_bits); 617 618 udf_debug("Starting at sector %u (%ld byte sectors)\n", 619 (unsigned int)(sector >> sb->s_blocksize_bits), 620 sb->s_blocksize); 621 /* Process the sequence (if applicable) */ 622 for (; !nsr02 && !nsr03; sector += sectorsize) { 623 /* Read a block */ 624 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 625 if (!bh) 626 break; 627 628 /* Look for ISO descriptors */ 629 vsd = (struct volStructDesc *)(bh->b_data + 630 (sector & (sb->s_blocksize - 1))); 631 632 if (vsd->stdIdent[0] == 0) { 633 brelse(bh); 634 break; 635 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 636 VSD_STD_ID_LEN)) { 637 switch (vsd->structType) { 638 case 0: 639 udf_debug("ISO9660 Boot Record found\n"); 640 break; 641 case 1: 642 udf_debug("ISO9660 Primary Volume Descriptor " 643 "found\n"); 644 break; 645 case 2: 646 udf_debug("ISO9660 Supplementary Volume " 647 "Descriptor found\n"); 648 break; 649 case 3: 650 udf_debug("ISO9660 Volume Partition Descriptor " 651 "found\n"); 652 break; 653 case 255: 654 udf_debug("ISO9660 Volume Descriptor Set " 655 "Terminator found\n"); 656 break; 657 default: 658 udf_debug("ISO9660 VRS (%u) found\n", 659 vsd->structType); 660 break; 661 } 662 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 663 VSD_STD_ID_LEN)) 664 ; /* nothing */ 665 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 666 VSD_STD_ID_LEN)) { 667 brelse(bh); 668 break; 669 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 670 VSD_STD_ID_LEN)) 671 nsr02 = sector; 672 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 673 VSD_STD_ID_LEN)) 674 nsr03 = sector; 675 brelse(bh); 676 } 677 678 if (nsr03) 679 return nsr03; 680 else if (nsr02) 681 return nsr02; 682 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 683 return -1; 684 else 685 return 0; 686 } 687 688 static int udf_find_fileset(struct super_block *sb, 689 struct kernel_lb_addr *fileset, 690 struct kernel_lb_addr *root) 691 { 692 struct buffer_head *bh = NULL; 693 long lastblock; 694 uint16_t ident; 695 struct udf_sb_info *sbi; 696 697 if (fileset->logicalBlockNum != 0xFFFFFFFF || 698 fileset->partitionReferenceNum != 0xFFFF) { 699 bh = udf_read_ptagged(sb, fileset, 0, &ident); 700 701 if (!bh) { 702 return 1; 703 } else if (ident != TAG_IDENT_FSD) { 704 brelse(bh); 705 return 1; 706 } 707 708 } 709 710 sbi = UDF_SB(sb); 711 if (!bh) { 712 /* Search backwards through the partitions */ 713 struct kernel_lb_addr newfileset; 714 715 /* --> cvg: FIXME - is it reasonable? */ 716 return 1; 717 718 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 719 (newfileset.partitionReferenceNum != 0xFFFF && 720 fileset->logicalBlockNum == 0xFFFFFFFF && 721 fileset->partitionReferenceNum == 0xFFFF); 722 newfileset.partitionReferenceNum--) { 723 lastblock = sbi->s_partmaps 724 [newfileset.partitionReferenceNum] 725 .s_partition_len; 726 newfileset.logicalBlockNum = 0; 727 728 do { 729 bh = udf_read_ptagged(sb, &newfileset, 0, 730 &ident); 731 if (!bh) { 732 newfileset.logicalBlockNum++; 733 continue; 734 } 735 736 switch (ident) { 737 case TAG_IDENT_SBD: 738 { 739 struct spaceBitmapDesc *sp; 740 sp = (struct spaceBitmapDesc *) 741 bh->b_data; 742 newfileset.logicalBlockNum += 1 + 743 ((le32_to_cpu(sp->numOfBytes) + 744 sizeof(struct spaceBitmapDesc) 745 - 1) >> sb->s_blocksize_bits); 746 brelse(bh); 747 break; 748 } 749 case TAG_IDENT_FSD: 750 *fileset = newfileset; 751 break; 752 default: 753 newfileset.logicalBlockNum++; 754 brelse(bh); 755 bh = NULL; 756 break; 757 } 758 } while (newfileset.logicalBlockNum < lastblock && 759 fileset->logicalBlockNum == 0xFFFFFFFF && 760 fileset->partitionReferenceNum == 0xFFFF); 761 } 762 } 763 764 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 765 fileset->partitionReferenceNum != 0xFFFF) && bh) { 766 udf_debug("Fileset at block=%d, partition=%d\n", 767 fileset->logicalBlockNum, 768 fileset->partitionReferenceNum); 769 770 sbi->s_partition = fileset->partitionReferenceNum; 771 udf_load_fileset(sb, bh, root); 772 brelse(bh); 773 return 0; 774 } 775 return 1; 776 } 777 778 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 779 { 780 struct primaryVolDesc *pvoldesc; 781 struct ustr *instr, *outstr; 782 struct buffer_head *bh; 783 uint16_t ident; 784 int ret = 1; 785 786 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 787 if (!instr) 788 return 1; 789 790 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 791 if (!outstr) 792 goto out1; 793 794 bh = udf_read_tagged(sb, block, block, &ident); 795 if (!bh) 796 goto out2; 797 798 BUG_ON(ident != TAG_IDENT_PVD); 799 800 pvoldesc = (struct primaryVolDesc *)bh->b_data; 801 802 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 803 pvoldesc->recordingDateAndTime)) { 804 #ifdef UDFFS_DEBUG 805 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 806 udf_debug("recording time %04u/%02u/%02u" 807 " %02u:%02u (%x)\n", 808 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 809 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 810 #endif 811 } 812 813 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 814 if (udf_CS0toUTF8(outstr, instr)) { 815 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 816 outstr->u_len > 31 ? 31 : outstr->u_len); 817 udf_debug("volIdent[] = '%s'\n", 818 UDF_SB(sb)->s_volume_ident); 819 } 820 821 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 822 if (udf_CS0toUTF8(outstr, instr)) 823 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 824 825 brelse(bh); 826 ret = 0; 827 out2: 828 kfree(outstr); 829 out1: 830 kfree(instr); 831 return ret; 832 } 833 834 static int udf_load_metadata_files(struct super_block *sb, int partition) 835 { 836 struct udf_sb_info *sbi = UDF_SB(sb); 837 struct udf_part_map *map; 838 struct udf_meta_data *mdata; 839 struct kernel_lb_addr addr; 840 int fe_error = 0; 841 842 map = &sbi->s_partmaps[partition]; 843 mdata = &map->s_type_specific.s_metadata; 844 845 /* metadata address */ 846 addr.logicalBlockNum = mdata->s_meta_file_loc; 847 addr.partitionReferenceNum = map->s_partition_num; 848 849 udf_debug("Metadata file location: block = %d part = %d\n", 850 addr.logicalBlockNum, addr.partitionReferenceNum); 851 852 mdata->s_metadata_fe = udf_iget(sb, &addr); 853 854 if (mdata->s_metadata_fe == NULL) { 855 udf_warning(sb, __func__, "metadata inode efe not found, " 856 "will try mirror inode."); 857 fe_error = 1; 858 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type != 859 ICBTAG_FLAG_AD_SHORT) { 860 udf_warning(sb, __func__, "metadata inode efe does not have " 861 "short allocation descriptors!"); 862 fe_error = 1; 863 iput(mdata->s_metadata_fe); 864 mdata->s_metadata_fe = NULL; 865 } 866 867 /* mirror file entry */ 868 addr.logicalBlockNum = mdata->s_mirror_file_loc; 869 addr.partitionReferenceNum = map->s_partition_num; 870 871 udf_debug("Mirror metadata file location: block = %d part = %d\n", 872 addr.logicalBlockNum, addr.partitionReferenceNum); 873 874 mdata->s_mirror_fe = udf_iget(sb, &addr); 875 876 if (mdata->s_mirror_fe == NULL) { 877 if (fe_error) { 878 udf_error(sb, __func__, "mirror inode efe not found " 879 "and metadata inode is missing too, exiting..."); 880 goto error_exit; 881 } else 882 udf_warning(sb, __func__, "mirror inode efe not found," 883 " but metadata inode is OK"); 884 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type != 885 ICBTAG_FLAG_AD_SHORT) { 886 udf_warning(sb, __func__, "mirror inode efe does not have " 887 "short allocation descriptors!"); 888 iput(mdata->s_mirror_fe); 889 mdata->s_mirror_fe = NULL; 890 if (fe_error) 891 goto error_exit; 892 } 893 894 /* 895 * bitmap file entry 896 * Note: 897 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 898 */ 899 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 900 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 901 addr.partitionReferenceNum = map->s_partition_num; 902 903 udf_debug("Bitmap file location: block = %d part = %d\n", 904 addr.logicalBlockNum, addr.partitionReferenceNum); 905 906 mdata->s_bitmap_fe = udf_iget(sb, &addr); 907 908 if (mdata->s_bitmap_fe == NULL) { 909 if (sb->s_flags & MS_RDONLY) 910 udf_warning(sb, __func__, "bitmap inode efe " 911 "not found but it's ok since the disc" 912 " is mounted read-only"); 913 else { 914 udf_error(sb, __func__, "bitmap inode efe not " 915 "found and attempted read-write mount"); 916 goto error_exit; 917 } 918 } 919 } 920 921 udf_debug("udf_load_metadata_files Ok\n"); 922 923 return 0; 924 925 error_exit: 926 return 1; 927 } 928 929 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 930 struct kernel_lb_addr *root) 931 { 932 struct fileSetDesc *fset; 933 934 fset = (struct fileSetDesc *)bh->b_data; 935 936 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 937 938 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 939 940 udf_debug("Rootdir at block=%d, partition=%d\n", 941 root->logicalBlockNum, root->partitionReferenceNum); 942 } 943 944 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 945 { 946 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 947 return DIV_ROUND_UP(map->s_partition_len + 948 (sizeof(struct spaceBitmapDesc) << 3), 949 sb->s_blocksize * 8); 950 } 951 952 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 953 { 954 struct udf_bitmap *bitmap; 955 int nr_groups; 956 int size; 957 958 nr_groups = udf_compute_nr_groups(sb, index); 959 size = sizeof(struct udf_bitmap) + 960 (sizeof(struct buffer_head *) * nr_groups); 961 962 if (size <= PAGE_SIZE) 963 bitmap = kmalloc(size, GFP_KERNEL); 964 else 965 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */ 966 967 if (bitmap == NULL) { 968 udf_error(sb, __func__, 969 "Unable to allocate space for bitmap " 970 "and %d buffer_head pointers", nr_groups); 971 return NULL; 972 } 973 974 memset(bitmap, 0x00, size); 975 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 976 bitmap->s_nr_groups = nr_groups; 977 return bitmap; 978 } 979 980 static int udf_fill_partdesc_info(struct super_block *sb, 981 struct partitionDesc *p, int p_index) 982 { 983 struct udf_part_map *map; 984 struct udf_sb_info *sbi = UDF_SB(sb); 985 struct partitionHeaderDesc *phd; 986 987 map = &sbi->s_partmaps[p_index]; 988 989 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 990 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 991 992 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 993 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 994 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 995 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 996 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 997 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 998 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 999 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1000 1001 udf_debug("Partition (%d type %x) starts at physical %d, " 1002 "block length %d\n", p_index, 1003 map->s_partition_type, map->s_partition_root, 1004 map->s_partition_len); 1005 1006 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1007 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1008 return 0; 1009 1010 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1011 if (phd->unallocSpaceTable.extLength) { 1012 struct kernel_lb_addr loc = { 1013 .logicalBlockNum = le32_to_cpu( 1014 phd->unallocSpaceTable.extPosition), 1015 .partitionReferenceNum = p_index, 1016 }; 1017 1018 map->s_uspace.s_table = udf_iget(sb, &loc); 1019 if (!map->s_uspace.s_table) { 1020 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1021 p_index); 1022 return 1; 1023 } 1024 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1025 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1026 p_index, map->s_uspace.s_table->i_ino); 1027 } 1028 1029 if (phd->unallocSpaceBitmap.extLength) { 1030 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1031 if (!bitmap) 1032 return 1; 1033 map->s_uspace.s_bitmap = bitmap; 1034 bitmap->s_extLength = le32_to_cpu( 1035 phd->unallocSpaceBitmap.extLength); 1036 bitmap->s_extPosition = le32_to_cpu( 1037 phd->unallocSpaceBitmap.extPosition); 1038 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1039 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index, 1040 bitmap->s_extPosition); 1041 } 1042 1043 if (phd->partitionIntegrityTable.extLength) 1044 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1045 1046 if (phd->freedSpaceTable.extLength) { 1047 struct kernel_lb_addr loc = { 1048 .logicalBlockNum = le32_to_cpu( 1049 phd->freedSpaceTable.extPosition), 1050 .partitionReferenceNum = p_index, 1051 }; 1052 1053 map->s_fspace.s_table = udf_iget(sb, &loc); 1054 if (!map->s_fspace.s_table) { 1055 udf_debug("cannot load freedSpaceTable (part %d)\n", 1056 p_index); 1057 return 1; 1058 } 1059 1060 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1061 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1062 p_index, map->s_fspace.s_table->i_ino); 1063 } 1064 1065 if (phd->freedSpaceBitmap.extLength) { 1066 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1067 if (!bitmap) 1068 return 1; 1069 map->s_fspace.s_bitmap = bitmap; 1070 bitmap->s_extLength = le32_to_cpu( 1071 phd->freedSpaceBitmap.extLength); 1072 bitmap->s_extPosition = le32_to_cpu( 1073 phd->freedSpaceBitmap.extPosition); 1074 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1075 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index, 1076 bitmap->s_extPosition); 1077 } 1078 return 0; 1079 } 1080 1081 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1082 { 1083 struct udf_sb_info *sbi = UDF_SB(sb); 1084 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1085 struct kernel_lb_addr ino; 1086 struct buffer_head *bh = NULL; 1087 struct udf_inode_info *vati; 1088 uint32_t pos; 1089 struct virtualAllocationTable20 *vat20; 1090 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1091 1092 /* VAT file entry is in the last recorded block */ 1093 ino.partitionReferenceNum = type1_index; 1094 ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root; 1095 sbi->s_vat_inode = udf_iget(sb, &ino); 1096 if (!sbi->s_vat_inode && 1097 sbi->s_last_block != blocks - 1) { 1098 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the" 1099 " last recorded block (%lu), retrying with the last " 1100 "block of the device (%lu).\n", 1101 (unsigned long)sbi->s_last_block, 1102 (unsigned long)blocks - 1); 1103 ino.partitionReferenceNum = type1_index; 1104 ino.logicalBlockNum = blocks - 1 - map->s_partition_root; 1105 sbi->s_vat_inode = udf_iget(sb, &ino); 1106 } 1107 if (!sbi->s_vat_inode) 1108 return 1; 1109 1110 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1111 map->s_type_specific.s_virtual.s_start_offset = 0; 1112 map->s_type_specific.s_virtual.s_num_entries = 1113 (sbi->s_vat_inode->i_size - 36) >> 2; 1114 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1115 vati = UDF_I(sbi->s_vat_inode); 1116 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1117 pos = udf_block_map(sbi->s_vat_inode, 0); 1118 bh = sb_bread(sb, pos); 1119 if (!bh) 1120 return 1; 1121 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1122 } else { 1123 vat20 = (struct virtualAllocationTable20 *) 1124 vati->i_ext.i_data; 1125 } 1126 1127 map->s_type_specific.s_virtual.s_start_offset = 1128 le16_to_cpu(vat20->lengthHeader); 1129 map->s_type_specific.s_virtual.s_num_entries = 1130 (sbi->s_vat_inode->i_size - 1131 map->s_type_specific.s_virtual. 1132 s_start_offset) >> 2; 1133 brelse(bh); 1134 } 1135 return 0; 1136 } 1137 1138 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1139 { 1140 struct buffer_head *bh; 1141 struct partitionDesc *p; 1142 struct udf_part_map *map; 1143 struct udf_sb_info *sbi = UDF_SB(sb); 1144 int i, type1_idx; 1145 uint16_t partitionNumber; 1146 uint16_t ident; 1147 int ret = 0; 1148 1149 bh = udf_read_tagged(sb, block, block, &ident); 1150 if (!bh) 1151 return 1; 1152 if (ident != TAG_IDENT_PD) 1153 goto out_bh; 1154 1155 p = (struct partitionDesc *)bh->b_data; 1156 partitionNumber = le16_to_cpu(p->partitionNumber); 1157 1158 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1159 for (i = 0; i < sbi->s_partitions; i++) { 1160 map = &sbi->s_partmaps[i]; 1161 udf_debug("Searching map: (%d == %d)\n", 1162 map->s_partition_num, partitionNumber); 1163 if (map->s_partition_num == partitionNumber && 1164 (map->s_partition_type == UDF_TYPE1_MAP15 || 1165 map->s_partition_type == UDF_SPARABLE_MAP15)) 1166 break; 1167 } 1168 1169 if (i >= sbi->s_partitions) { 1170 udf_debug("Partition (%d) not found in partition map\n", 1171 partitionNumber); 1172 goto out_bh; 1173 } 1174 1175 ret = udf_fill_partdesc_info(sb, p, i); 1176 1177 /* 1178 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1179 * PHYSICAL partitions are already set up 1180 */ 1181 type1_idx = i; 1182 for (i = 0; i < sbi->s_partitions; i++) { 1183 map = &sbi->s_partmaps[i]; 1184 1185 if (map->s_partition_num == partitionNumber && 1186 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1187 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1188 map->s_partition_type == UDF_METADATA_MAP25)) 1189 break; 1190 } 1191 1192 if (i >= sbi->s_partitions) 1193 goto out_bh; 1194 1195 ret = udf_fill_partdesc_info(sb, p, i); 1196 if (ret) 1197 goto out_bh; 1198 1199 if (map->s_partition_type == UDF_METADATA_MAP25) { 1200 ret = udf_load_metadata_files(sb, i); 1201 if (ret) { 1202 printk(KERN_ERR "UDF-fs: error loading MetaData " 1203 "partition map %d\n", i); 1204 goto out_bh; 1205 } 1206 } else { 1207 ret = udf_load_vat(sb, i, type1_idx); 1208 if (ret) 1209 goto out_bh; 1210 /* 1211 * Mark filesystem read-only if we have a partition with 1212 * virtual map since we don't handle writing to it (we 1213 * overwrite blocks instead of relocating them). 1214 */ 1215 sb->s_flags |= MS_RDONLY; 1216 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only " 1217 "because writing to pseudooverwrite partition is " 1218 "not implemented.\n"); 1219 } 1220 out_bh: 1221 /* In case loading failed, we handle cleanup in udf_fill_super */ 1222 brelse(bh); 1223 return ret; 1224 } 1225 1226 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1227 struct kernel_lb_addr *fileset) 1228 { 1229 struct logicalVolDesc *lvd; 1230 int i, j, offset; 1231 uint8_t type; 1232 struct udf_sb_info *sbi = UDF_SB(sb); 1233 struct genericPartitionMap *gpm; 1234 uint16_t ident; 1235 struct buffer_head *bh; 1236 int ret = 0; 1237 1238 bh = udf_read_tagged(sb, block, block, &ident); 1239 if (!bh) 1240 return 1; 1241 BUG_ON(ident != TAG_IDENT_LVD); 1242 lvd = (struct logicalVolDesc *)bh->b_data; 1243 1244 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1245 if (i != 0) { 1246 ret = i; 1247 goto out_bh; 1248 } 1249 1250 for (i = 0, offset = 0; 1251 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength); 1252 i++, offset += gpm->partitionMapLength) { 1253 struct udf_part_map *map = &sbi->s_partmaps[i]; 1254 gpm = (struct genericPartitionMap *) 1255 &(lvd->partitionMaps[offset]); 1256 type = gpm->partitionMapType; 1257 if (type == 1) { 1258 struct genericPartitionMap1 *gpm1 = 1259 (struct genericPartitionMap1 *)gpm; 1260 map->s_partition_type = UDF_TYPE1_MAP15; 1261 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1262 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1263 map->s_partition_func = NULL; 1264 } else if (type == 2) { 1265 struct udfPartitionMap2 *upm2 = 1266 (struct udfPartitionMap2 *)gpm; 1267 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1268 strlen(UDF_ID_VIRTUAL))) { 1269 u16 suf = 1270 le16_to_cpu(((__le16 *)upm2->partIdent. 1271 identSuffix)[0]); 1272 if (suf < 0x0200) { 1273 map->s_partition_type = 1274 UDF_VIRTUAL_MAP15; 1275 map->s_partition_func = 1276 udf_get_pblock_virt15; 1277 } else { 1278 map->s_partition_type = 1279 UDF_VIRTUAL_MAP20; 1280 map->s_partition_func = 1281 udf_get_pblock_virt20; 1282 } 1283 } else if (!strncmp(upm2->partIdent.ident, 1284 UDF_ID_SPARABLE, 1285 strlen(UDF_ID_SPARABLE))) { 1286 uint32_t loc; 1287 struct sparingTable *st; 1288 struct sparablePartitionMap *spm = 1289 (struct sparablePartitionMap *)gpm; 1290 1291 map->s_partition_type = UDF_SPARABLE_MAP15; 1292 map->s_type_specific.s_sparing.s_packet_len = 1293 le16_to_cpu(spm->packetLength); 1294 for (j = 0; j < spm->numSparingTables; j++) { 1295 struct buffer_head *bh2; 1296 1297 loc = le32_to_cpu( 1298 spm->locSparingTable[j]); 1299 bh2 = udf_read_tagged(sb, loc, loc, 1300 &ident); 1301 map->s_type_specific.s_sparing. 1302 s_spar_map[j] = bh2; 1303 1304 if (bh2 == NULL) 1305 continue; 1306 1307 st = (struct sparingTable *)bh2->b_data; 1308 if (ident != 0 || strncmp( 1309 st->sparingIdent.ident, 1310 UDF_ID_SPARING, 1311 strlen(UDF_ID_SPARING))) { 1312 brelse(bh2); 1313 map->s_type_specific.s_sparing. 1314 s_spar_map[j] = NULL; 1315 } 1316 } 1317 map->s_partition_func = udf_get_pblock_spar15; 1318 } else if (!strncmp(upm2->partIdent.ident, 1319 UDF_ID_METADATA, 1320 strlen(UDF_ID_METADATA))) { 1321 struct udf_meta_data *mdata = 1322 &map->s_type_specific.s_metadata; 1323 struct metadataPartitionMap *mdm = 1324 (struct metadataPartitionMap *) 1325 &(lvd->partitionMaps[offset]); 1326 udf_debug("Parsing Logical vol part %d " 1327 "type %d id=%s\n", i, type, 1328 UDF_ID_METADATA); 1329 1330 map->s_partition_type = UDF_METADATA_MAP25; 1331 map->s_partition_func = udf_get_pblock_meta25; 1332 1333 mdata->s_meta_file_loc = 1334 le32_to_cpu(mdm->metadataFileLoc); 1335 mdata->s_mirror_file_loc = 1336 le32_to_cpu(mdm->metadataMirrorFileLoc); 1337 mdata->s_bitmap_file_loc = 1338 le32_to_cpu(mdm->metadataBitmapFileLoc); 1339 mdata->s_alloc_unit_size = 1340 le32_to_cpu(mdm->allocUnitSize); 1341 mdata->s_align_unit_size = 1342 le16_to_cpu(mdm->alignUnitSize); 1343 mdata->s_dup_md_flag = 1344 mdm->flags & 0x01; 1345 1346 udf_debug("Metadata Ident suffix=0x%x\n", 1347 (le16_to_cpu( 1348 ((__le16 *) 1349 mdm->partIdent.identSuffix)[0]))); 1350 udf_debug("Metadata part num=%d\n", 1351 le16_to_cpu(mdm->partitionNum)); 1352 udf_debug("Metadata part alloc unit size=%d\n", 1353 le32_to_cpu(mdm->allocUnitSize)); 1354 udf_debug("Metadata file loc=%d\n", 1355 le32_to_cpu(mdm->metadataFileLoc)); 1356 udf_debug("Mirror file loc=%d\n", 1357 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1358 udf_debug("Bitmap file loc=%d\n", 1359 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1360 udf_debug("Duplicate Flag: %d %d\n", 1361 mdata->s_dup_md_flag, mdm->flags); 1362 } else { 1363 udf_debug("Unknown ident: %s\n", 1364 upm2->partIdent.ident); 1365 continue; 1366 } 1367 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1368 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1369 } 1370 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1371 i, map->s_partition_num, type, 1372 map->s_volumeseqnum); 1373 } 1374 1375 if (fileset) { 1376 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1377 1378 *fileset = lelb_to_cpu(la->extLocation); 1379 udf_debug("FileSet found in LogicalVolDesc at block=%d, " 1380 "partition=%d\n", fileset->logicalBlockNum, 1381 fileset->partitionReferenceNum); 1382 } 1383 if (lvd->integritySeqExt.extLength) 1384 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1385 1386 out_bh: 1387 brelse(bh); 1388 return ret; 1389 } 1390 1391 /* 1392 * udf_load_logicalvolint 1393 * 1394 */ 1395 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1396 { 1397 struct buffer_head *bh = NULL; 1398 uint16_t ident; 1399 struct udf_sb_info *sbi = UDF_SB(sb); 1400 struct logicalVolIntegrityDesc *lvid; 1401 1402 while (loc.extLength > 0 && 1403 (bh = udf_read_tagged(sb, loc.extLocation, 1404 loc.extLocation, &ident)) && 1405 ident == TAG_IDENT_LVID) { 1406 sbi->s_lvid_bh = bh; 1407 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1408 1409 if (lvid->nextIntegrityExt.extLength) 1410 udf_load_logicalvolint(sb, 1411 leea_to_cpu(lvid->nextIntegrityExt)); 1412 1413 if (sbi->s_lvid_bh != bh) 1414 brelse(bh); 1415 loc.extLength -= sb->s_blocksize; 1416 loc.extLocation++; 1417 } 1418 if (sbi->s_lvid_bh != bh) 1419 brelse(bh); 1420 } 1421 1422 /* 1423 * udf_process_sequence 1424 * 1425 * PURPOSE 1426 * Process a main/reserve volume descriptor sequence. 1427 * 1428 * PRE-CONDITIONS 1429 * sb Pointer to _locked_ superblock. 1430 * block First block of first extent of the sequence. 1431 * lastblock Lastblock of first extent of the sequence. 1432 * 1433 * HISTORY 1434 * July 1, 1997 - Andrew E. Mileski 1435 * Written, tested, and released. 1436 */ 1437 static noinline int udf_process_sequence(struct super_block *sb, long block, 1438 long lastblock, struct kernel_lb_addr *fileset) 1439 { 1440 struct buffer_head *bh = NULL; 1441 struct udf_vds_record vds[VDS_POS_LENGTH]; 1442 struct udf_vds_record *curr; 1443 struct generic_desc *gd; 1444 struct volDescPtr *vdp; 1445 int done = 0; 1446 uint32_t vdsn; 1447 uint16_t ident; 1448 long next_s = 0, next_e = 0; 1449 1450 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1451 1452 /* 1453 * Read the main descriptor sequence and find which descriptors 1454 * are in it. 1455 */ 1456 for (; (!done && block <= lastblock); block++) { 1457 1458 bh = udf_read_tagged(sb, block, block, &ident); 1459 if (!bh) { 1460 printk(KERN_ERR "udf: Block %Lu of volume descriptor " 1461 "sequence is corrupted or we could not read " 1462 "it.\n", (unsigned long long)block); 1463 return 1; 1464 } 1465 1466 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1467 gd = (struct generic_desc *)bh->b_data; 1468 vdsn = le32_to_cpu(gd->volDescSeqNum); 1469 switch (ident) { 1470 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1471 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1472 if (vdsn >= curr->volDescSeqNum) { 1473 curr->volDescSeqNum = vdsn; 1474 curr->block = block; 1475 } 1476 break; 1477 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1478 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1479 if (vdsn >= curr->volDescSeqNum) { 1480 curr->volDescSeqNum = vdsn; 1481 curr->block = block; 1482 1483 vdp = (struct volDescPtr *)bh->b_data; 1484 next_s = le32_to_cpu( 1485 vdp->nextVolDescSeqExt.extLocation); 1486 next_e = le32_to_cpu( 1487 vdp->nextVolDescSeqExt.extLength); 1488 next_e = next_e >> sb->s_blocksize_bits; 1489 next_e += next_s; 1490 } 1491 break; 1492 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1493 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1494 if (vdsn >= curr->volDescSeqNum) { 1495 curr->volDescSeqNum = vdsn; 1496 curr->block = block; 1497 } 1498 break; 1499 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1500 curr = &vds[VDS_POS_PARTITION_DESC]; 1501 if (!curr->block) 1502 curr->block = block; 1503 break; 1504 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1505 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1506 if (vdsn >= curr->volDescSeqNum) { 1507 curr->volDescSeqNum = vdsn; 1508 curr->block = block; 1509 } 1510 break; 1511 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1512 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1513 if (vdsn >= curr->volDescSeqNum) { 1514 curr->volDescSeqNum = vdsn; 1515 curr->block = block; 1516 } 1517 break; 1518 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1519 vds[VDS_POS_TERMINATING_DESC].block = block; 1520 if (next_e) { 1521 block = next_s; 1522 lastblock = next_e; 1523 next_s = next_e = 0; 1524 } else 1525 done = 1; 1526 break; 1527 } 1528 brelse(bh); 1529 } 1530 /* 1531 * Now read interesting descriptors again and process them 1532 * in a suitable order 1533 */ 1534 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1535 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n"); 1536 return 1; 1537 } 1538 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1539 return 1; 1540 1541 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1542 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1543 return 1; 1544 1545 if (vds[VDS_POS_PARTITION_DESC].block) { 1546 /* 1547 * We rescan the whole descriptor sequence to find 1548 * partition descriptor blocks and process them. 1549 */ 1550 for (block = vds[VDS_POS_PARTITION_DESC].block; 1551 block < vds[VDS_POS_TERMINATING_DESC].block; 1552 block++) 1553 if (udf_load_partdesc(sb, block)) 1554 return 1; 1555 } 1556 1557 return 0; 1558 } 1559 1560 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1561 struct kernel_lb_addr *fileset) 1562 { 1563 struct anchorVolDescPtr *anchor; 1564 long main_s, main_e, reserve_s, reserve_e; 1565 struct udf_sb_info *sbi; 1566 1567 sbi = UDF_SB(sb); 1568 anchor = (struct anchorVolDescPtr *)bh->b_data; 1569 1570 /* Locate the main sequence */ 1571 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1572 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1573 main_e = main_e >> sb->s_blocksize_bits; 1574 main_e += main_s; 1575 1576 /* Locate the reserve sequence */ 1577 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1578 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1579 reserve_e = reserve_e >> sb->s_blocksize_bits; 1580 reserve_e += reserve_s; 1581 1582 /* Process the main & reserve sequences */ 1583 /* responsible for finding the PartitionDesc(s) */ 1584 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1585 return 1; 1586 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1587 } 1588 1589 /* 1590 * Check whether there is an anchor block in the given block and 1591 * load Volume Descriptor Sequence if so. 1592 */ 1593 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1594 struct kernel_lb_addr *fileset) 1595 { 1596 struct buffer_head *bh; 1597 uint16_t ident; 1598 int ret; 1599 1600 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1601 udf_fixed_to_variable(block) >= 1602 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1603 return 0; 1604 1605 bh = udf_read_tagged(sb, block, block, &ident); 1606 if (!bh) 1607 return 0; 1608 if (ident != TAG_IDENT_AVDP) { 1609 brelse(bh); 1610 return 0; 1611 } 1612 ret = udf_load_sequence(sb, bh, fileset); 1613 brelse(bh); 1614 return ret; 1615 } 1616 1617 /* Search for an anchor volume descriptor pointer */ 1618 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1619 struct kernel_lb_addr *fileset) 1620 { 1621 sector_t last[6]; 1622 int i; 1623 struct udf_sb_info *sbi = UDF_SB(sb); 1624 int last_count = 0; 1625 1626 /* First try user provided anchor */ 1627 if (sbi->s_anchor) { 1628 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1629 return lastblock; 1630 } 1631 /* 1632 * according to spec, anchor is in either: 1633 * block 256 1634 * lastblock-256 1635 * lastblock 1636 * however, if the disc isn't closed, it could be 512. 1637 */ 1638 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1639 return lastblock; 1640 /* 1641 * The trouble is which block is the last one. Drives often misreport 1642 * this so we try various possibilities. 1643 */ 1644 last[last_count++] = lastblock; 1645 if (lastblock >= 1) 1646 last[last_count++] = lastblock - 1; 1647 last[last_count++] = lastblock + 1; 1648 if (lastblock >= 2) 1649 last[last_count++] = lastblock - 2; 1650 if (lastblock >= 150) 1651 last[last_count++] = lastblock - 150; 1652 if (lastblock >= 152) 1653 last[last_count++] = lastblock - 152; 1654 1655 for (i = 0; i < last_count; i++) { 1656 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1657 sb->s_blocksize_bits) 1658 continue; 1659 if (udf_check_anchor_block(sb, last[i], fileset)) 1660 return last[i]; 1661 if (last[i] < 256) 1662 continue; 1663 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1664 return last[i]; 1665 } 1666 1667 /* Finally try block 512 in case media is open */ 1668 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1669 return last[0]; 1670 return 0; 1671 } 1672 1673 /* 1674 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1675 * area specified by it. The function expects sbi->s_lastblock to be the last 1676 * block on the media. 1677 * 1678 * Return 1 if ok, 0 if not found. 1679 * 1680 */ 1681 static int udf_find_anchor(struct super_block *sb, 1682 struct kernel_lb_addr *fileset) 1683 { 1684 sector_t lastblock; 1685 struct udf_sb_info *sbi = UDF_SB(sb); 1686 1687 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1688 if (lastblock) 1689 goto out; 1690 1691 /* No anchor found? Try VARCONV conversion of block numbers */ 1692 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1693 /* Firstly, we try to not convert number of the last block */ 1694 lastblock = udf_scan_anchors(sb, 1695 udf_variable_to_fixed(sbi->s_last_block), 1696 fileset); 1697 if (lastblock) 1698 goto out; 1699 1700 /* Secondly, we try with converted number of the last block */ 1701 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1702 if (!lastblock) { 1703 /* VARCONV didn't help. Clear it. */ 1704 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1705 return 0; 1706 } 1707 out: 1708 sbi->s_last_block = lastblock; 1709 return 1; 1710 } 1711 1712 /* 1713 * Check Volume Structure Descriptor, find Anchor block and load Volume 1714 * Descriptor Sequence 1715 */ 1716 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1717 int silent, struct kernel_lb_addr *fileset) 1718 { 1719 struct udf_sb_info *sbi = UDF_SB(sb); 1720 loff_t nsr_off; 1721 1722 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1723 if (!silent) 1724 printk(KERN_WARNING "UDF-fs: Bad block size\n"); 1725 return 0; 1726 } 1727 sbi->s_last_block = uopt->lastblock; 1728 if (!uopt->novrs) { 1729 /* Check that it is NSR02 compliant */ 1730 nsr_off = udf_check_vsd(sb); 1731 if (!nsr_off) { 1732 if (!silent) 1733 printk(KERN_WARNING "UDF-fs: No VRS found\n"); 1734 return 0; 1735 } 1736 if (nsr_off == -1) 1737 udf_debug("Failed to read byte 32768. Assuming open " 1738 "disc. Skipping validity check\n"); 1739 if (!sbi->s_last_block) 1740 sbi->s_last_block = udf_get_last_block(sb); 1741 } else { 1742 udf_debug("Validity check skipped because of novrs option\n"); 1743 } 1744 1745 /* Look for anchor block and load Volume Descriptor Sequence */ 1746 sbi->s_anchor = uopt->anchor; 1747 if (!udf_find_anchor(sb, fileset)) { 1748 if (!silent) 1749 printk(KERN_WARNING "UDF-fs: No anchor found\n"); 1750 return 0; 1751 } 1752 return 1; 1753 } 1754 1755 static void udf_open_lvid(struct super_block *sb) 1756 { 1757 struct udf_sb_info *sbi = UDF_SB(sb); 1758 struct buffer_head *bh = sbi->s_lvid_bh; 1759 struct logicalVolIntegrityDesc *lvid; 1760 struct logicalVolIntegrityDescImpUse *lvidiu; 1761 1762 if (!bh) 1763 return; 1764 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1765 lvidiu = udf_sb_lvidiu(sbi); 1766 1767 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1768 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1769 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1770 CURRENT_TIME); 1771 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1772 1773 lvid->descTag.descCRC = cpu_to_le16( 1774 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1775 le16_to_cpu(lvid->descTag.descCRCLength))); 1776 1777 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1778 mark_buffer_dirty(bh); 1779 sbi->s_lvid_dirty = 0; 1780 } 1781 1782 static void udf_close_lvid(struct super_block *sb) 1783 { 1784 struct udf_sb_info *sbi = UDF_SB(sb); 1785 struct buffer_head *bh = sbi->s_lvid_bh; 1786 struct logicalVolIntegrityDesc *lvid; 1787 struct logicalVolIntegrityDescImpUse *lvidiu; 1788 1789 if (!bh) 1790 return; 1791 1792 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1793 lvidiu = udf_sb_lvidiu(sbi); 1794 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1795 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1796 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1797 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1798 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1799 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1800 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1801 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1802 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1803 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1804 1805 lvid->descTag.descCRC = cpu_to_le16( 1806 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1807 le16_to_cpu(lvid->descTag.descCRCLength))); 1808 1809 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1810 mark_buffer_dirty(bh); 1811 sbi->s_lvid_dirty = 0; 1812 } 1813 1814 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1815 { 1816 int i; 1817 int nr_groups = bitmap->s_nr_groups; 1818 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1819 nr_groups); 1820 1821 for (i = 0; i < nr_groups; i++) 1822 if (bitmap->s_block_bitmap[i]) 1823 brelse(bitmap->s_block_bitmap[i]); 1824 1825 if (size <= PAGE_SIZE) 1826 kfree(bitmap); 1827 else 1828 vfree(bitmap); 1829 } 1830 1831 static void udf_free_partition(struct udf_part_map *map) 1832 { 1833 int i; 1834 struct udf_meta_data *mdata; 1835 1836 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1837 iput(map->s_uspace.s_table); 1838 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1839 iput(map->s_fspace.s_table); 1840 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1841 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1842 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1843 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1844 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1845 for (i = 0; i < 4; i++) 1846 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1847 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1848 mdata = &map->s_type_specific.s_metadata; 1849 iput(mdata->s_metadata_fe); 1850 mdata->s_metadata_fe = NULL; 1851 1852 iput(mdata->s_mirror_fe); 1853 mdata->s_mirror_fe = NULL; 1854 1855 iput(mdata->s_bitmap_fe); 1856 mdata->s_bitmap_fe = NULL; 1857 } 1858 } 1859 1860 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1861 { 1862 int i; 1863 int ret; 1864 struct inode *inode = NULL; 1865 struct udf_options uopt; 1866 struct kernel_lb_addr rootdir, fileset; 1867 struct udf_sb_info *sbi; 1868 1869 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1870 uopt.uid = -1; 1871 uopt.gid = -1; 1872 uopt.umask = 0; 1873 uopt.fmode = UDF_INVALID_MODE; 1874 uopt.dmode = UDF_INVALID_MODE; 1875 1876 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1877 if (!sbi) 1878 return -ENOMEM; 1879 1880 sb->s_fs_info = sbi; 1881 1882 mutex_init(&sbi->s_alloc_mutex); 1883 1884 if (!udf_parse_options((char *)options, &uopt, false)) 1885 goto error_out; 1886 1887 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1888 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1889 udf_error(sb, "udf_read_super", 1890 "utf8 cannot be combined with iocharset\n"); 1891 goto error_out; 1892 } 1893 #ifdef CONFIG_UDF_NLS 1894 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1895 uopt.nls_map = load_nls_default(); 1896 if (!uopt.nls_map) 1897 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1898 else 1899 udf_debug("Using default NLS map\n"); 1900 } 1901 #endif 1902 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1903 uopt.flags |= (1 << UDF_FLAG_UTF8); 1904 1905 fileset.logicalBlockNum = 0xFFFFFFFF; 1906 fileset.partitionReferenceNum = 0xFFFF; 1907 1908 sbi->s_flags = uopt.flags; 1909 sbi->s_uid = uopt.uid; 1910 sbi->s_gid = uopt.gid; 1911 sbi->s_umask = uopt.umask; 1912 sbi->s_fmode = uopt.fmode; 1913 sbi->s_dmode = uopt.dmode; 1914 sbi->s_nls_map = uopt.nls_map; 1915 1916 if (uopt.session == 0xFFFFFFFF) 1917 sbi->s_session = udf_get_last_session(sb); 1918 else 1919 sbi->s_session = uopt.session; 1920 1921 udf_debug("Multi-session=%d\n", sbi->s_session); 1922 1923 /* Fill in the rest of the superblock */ 1924 sb->s_op = &udf_sb_ops; 1925 sb->s_export_op = &udf_export_ops; 1926 sb->dq_op = NULL; 1927 sb->s_dirt = 0; 1928 sb->s_magic = UDF_SUPER_MAGIC; 1929 sb->s_time_gran = 1000; 1930 1931 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1932 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1933 } else { 1934 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 1935 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1936 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 1937 if (!silent) 1938 printk(KERN_NOTICE 1939 "UDF-fs: Rescanning with blocksize " 1940 "%d\n", UDF_DEFAULT_BLOCKSIZE); 1941 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 1942 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1943 } 1944 } 1945 if (!ret) { 1946 printk(KERN_WARNING "UDF-fs: No partition found (1)\n"); 1947 goto error_out; 1948 } 1949 1950 udf_debug("Lastblock=%d\n", sbi->s_last_block); 1951 1952 if (sbi->s_lvid_bh) { 1953 struct logicalVolIntegrityDescImpUse *lvidiu = 1954 udf_sb_lvidiu(sbi); 1955 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 1956 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 1957 /* uint16_t maxUDFWriteRev = 1958 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 1959 1960 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 1961 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x " 1962 "(max is %x)\n", 1963 le16_to_cpu(lvidiu->minUDFReadRev), 1964 UDF_MAX_READ_VERSION); 1965 goto error_out; 1966 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 1967 sb->s_flags |= MS_RDONLY; 1968 1969 sbi->s_udfrev = minUDFWriteRev; 1970 1971 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 1972 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 1973 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 1974 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 1975 } 1976 1977 if (!sbi->s_partitions) { 1978 printk(KERN_WARNING "UDF-fs: No partition found (2)\n"); 1979 goto error_out; 1980 } 1981 1982 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 1983 UDF_PART_FLAG_READ_ONLY) { 1984 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; " 1985 "forcing readonly mount\n"); 1986 sb->s_flags |= MS_RDONLY; 1987 } 1988 1989 if (udf_find_fileset(sb, &fileset, &rootdir)) { 1990 printk(KERN_WARNING "UDF-fs: No fileset found\n"); 1991 goto error_out; 1992 } 1993 1994 if (!silent) { 1995 struct timestamp ts; 1996 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 1997 udf_info("UDF: Mounting volume '%s', " 1998 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 1999 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day, 2000 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2001 } 2002 if (!(sb->s_flags & MS_RDONLY)) 2003 udf_open_lvid(sb); 2004 2005 /* Assign the root inode */ 2006 /* assign inodes by physical block number */ 2007 /* perhaps it's not extensible enough, but for now ... */ 2008 inode = udf_iget(sb, &rootdir); 2009 if (!inode) { 2010 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, " 2011 "partition=%d\n", 2012 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2013 goto error_out; 2014 } 2015 2016 /* Allocate a dentry for the root inode */ 2017 sb->s_root = d_alloc_root(inode); 2018 if (!sb->s_root) { 2019 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n"); 2020 iput(inode); 2021 goto error_out; 2022 } 2023 sb->s_maxbytes = MAX_LFS_FILESIZE; 2024 return 0; 2025 2026 error_out: 2027 if (sbi->s_vat_inode) 2028 iput(sbi->s_vat_inode); 2029 if (sbi->s_partitions) 2030 for (i = 0; i < sbi->s_partitions; i++) 2031 udf_free_partition(&sbi->s_partmaps[i]); 2032 #ifdef CONFIG_UDF_NLS 2033 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2034 unload_nls(sbi->s_nls_map); 2035 #endif 2036 if (!(sb->s_flags & MS_RDONLY)) 2037 udf_close_lvid(sb); 2038 brelse(sbi->s_lvid_bh); 2039 2040 kfree(sbi->s_partmaps); 2041 kfree(sbi); 2042 sb->s_fs_info = NULL; 2043 2044 return -EINVAL; 2045 } 2046 2047 static void udf_error(struct super_block *sb, const char *function, 2048 const char *fmt, ...) 2049 { 2050 va_list args; 2051 2052 if (!(sb->s_flags & MS_RDONLY)) { 2053 /* mark sb error */ 2054 sb->s_dirt = 1; 2055 } 2056 va_start(args, fmt); 2057 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2058 va_end(args); 2059 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n", 2060 sb->s_id, function, error_buf); 2061 } 2062 2063 void udf_warning(struct super_block *sb, const char *function, 2064 const char *fmt, ...) 2065 { 2066 va_list args; 2067 2068 va_start(args, fmt); 2069 vsnprintf(error_buf, sizeof(error_buf), fmt, args); 2070 va_end(args); 2071 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n", 2072 sb->s_id, function, error_buf); 2073 } 2074 2075 static void udf_put_super(struct super_block *sb) 2076 { 2077 int i; 2078 struct udf_sb_info *sbi; 2079 2080 sbi = UDF_SB(sb); 2081 2082 lock_kernel(); 2083 2084 if (sbi->s_vat_inode) 2085 iput(sbi->s_vat_inode); 2086 if (sbi->s_partitions) 2087 for (i = 0; i < sbi->s_partitions; i++) 2088 udf_free_partition(&sbi->s_partmaps[i]); 2089 #ifdef CONFIG_UDF_NLS 2090 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2091 unload_nls(sbi->s_nls_map); 2092 #endif 2093 if (!(sb->s_flags & MS_RDONLY)) 2094 udf_close_lvid(sb); 2095 brelse(sbi->s_lvid_bh); 2096 kfree(sbi->s_partmaps); 2097 kfree(sb->s_fs_info); 2098 sb->s_fs_info = NULL; 2099 2100 unlock_kernel(); 2101 } 2102 2103 static int udf_sync_fs(struct super_block *sb, int wait) 2104 { 2105 struct udf_sb_info *sbi = UDF_SB(sb); 2106 2107 mutex_lock(&sbi->s_alloc_mutex); 2108 if (sbi->s_lvid_dirty) { 2109 /* 2110 * Blockdevice will be synced later so we don't have to submit 2111 * the buffer for IO 2112 */ 2113 mark_buffer_dirty(sbi->s_lvid_bh); 2114 sb->s_dirt = 0; 2115 sbi->s_lvid_dirty = 0; 2116 } 2117 mutex_unlock(&sbi->s_alloc_mutex); 2118 2119 return 0; 2120 } 2121 2122 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2123 { 2124 struct super_block *sb = dentry->d_sb; 2125 struct udf_sb_info *sbi = UDF_SB(sb); 2126 struct logicalVolIntegrityDescImpUse *lvidiu; 2127 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2128 2129 if (sbi->s_lvid_bh != NULL) 2130 lvidiu = udf_sb_lvidiu(sbi); 2131 else 2132 lvidiu = NULL; 2133 2134 buf->f_type = UDF_SUPER_MAGIC; 2135 buf->f_bsize = sb->s_blocksize; 2136 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2137 buf->f_bfree = udf_count_free(sb); 2138 buf->f_bavail = buf->f_bfree; 2139 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2140 le32_to_cpu(lvidiu->numDirs)) : 0) 2141 + buf->f_bfree; 2142 buf->f_ffree = buf->f_bfree; 2143 buf->f_namelen = UDF_NAME_LEN - 2; 2144 buf->f_fsid.val[0] = (u32)id; 2145 buf->f_fsid.val[1] = (u32)(id >> 32); 2146 2147 return 0; 2148 } 2149 2150 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2151 struct udf_bitmap *bitmap) 2152 { 2153 struct buffer_head *bh = NULL; 2154 unsigned int accum = 0; 2155 int index; 2156 int block = 0, newblock; 2157 struct kernel_lb_addr loc; 2158 uint32_t bytes; 2159 uint8_t *ptr; 2160 uint16_t ident; 2161 struct spaceBitmapDesc *bm; 2162 2163 lock_kernel(); 2164 2165 loc.logicalBlockNum = bitmap->s_extPosition; 2166 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2167 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2168 2169 if (!bh) { 2170 printk(KERN_ERR "udf: udf_count_free failed\n"); 2171 goto out; 2172 } else if (ident != TAG_IDENT_SBD) { 2173 brelse(bh); 2174 printk(KERN_ERR "udf: udf_count_free failed\n"); 2175 goto out; 2176 } 2177 2178 bm = (struct spaceBitmapDesc *)bh->b_data; 2179 bytes = le32_to_cpu(bm->numOfBytes); 2180 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2181 ptr = (uint8_t *)bh->b_data; 2182 2183 while (bytes > 0) { 2184 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2185 accum += bitmap_weight((const unsigned long *)(ptr + index), 2186 cur_bytes * 8); 2187 bytes -= cur_bytes; 2188 if (bytes) { 2189 brelse(bh); 2190 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2191 bh = udf_tread(sb, newblock); 2192 if (!bh) { 2193 udf_debug("read failed\n"); 2194 goto out; 2195 } 2196 index = 0; 2197 ptr = (uint8_t *)bh->b_data; 2198 } 2199 } 2200 brelse(bh); 2201 2202 out: 2203 unlock_kernel(); 2204 2205 return accum; 2206 } 2207 2208 static unsigned int udf_count_free_table(struct super_block *sb, 2209 struct inode *table) 2210 { 2211 unsigned int accum = 0; 2212 uint32_t elen; 2213 struct kernel_lb_addr eloc; 2214 int8_t etype; 2215 struct extent_position epos; 2216 2217 lock_kernel(); 2218 2219 epos.block = UDF_I(table)->i_location; 2220 epos.offset = sizeof(struct unallocSpaceEntry); 2221 epos.bh = NULL; 2222 2223 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2224 accum += (elen >> table->i_sb->s_blocksize_bits); 2225 2226 brelse(epos.bh); 2227 2228 unlock_kernel(); 2229 2230 return accum; 2231 } 2232 2233 static unsigned int udf_count_free(struct super_block *sb) 2234 { 2235 unsigned int accum = 0; 2236 struct udf_sb_info *sbi; 2237 struct udf_part_map *map; 2238 2239 sbi = UDF_SB(sb); 2240 if (sbi->s_lvid_bh) { 2241 struct logicalVolIntegrityDesc *lvid = 2242 (struct logicalVolIntegrityDesc *) 2243 sbi->s_lvid_bh->b_data; 2244 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2245 accum = le32_to_cpu( 2246 lvid->freeSpaceTable[sbi->s_partition]); 2247 if (accum == 0xFFFFFFFF) 2248 accum = 0; 2249 } 2250 } 2251 2252 if (accum) 2253 return accum; 2254 2255 map = &sbi->s_partmaps[sbi->s_partition]; 2256 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2257 accum += udf_count_free_bitmap(sb, 2258 map->s_uspace.s_bitmap); 2259 } 2260 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2261 accum += udf_count_free_bitmap(sb, 2262 map->s_fspace.s_bitmap); 2263 } 2264 if (accum) 2265 return accum; 2266 2267 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2268 accum += udf_count_free_table(sb, 2269 map->s_uspace.s_table); 2270 } 2271 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2272 accum += udf_count_free_table(sb, 2273 map->s_fspace.s_table); 2274 } 2275 2276 return accum; 2277 } 2278