1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * super.c 4 * 5 * PURPOSE 6 * Super block routines for the OSTA-UDF(tm) filesystem. 7 * 8 * DESCRIPTION 9 * OSTA-UDF(tm) = Optical Storage Technology Association 10 * Universal Disk Format. 11 * 12 * This code is based on version 2.00 of the UDF specification, 13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 14 * http://www.osta.org/ 15 * https://www.ecma.ch/ 16 * https://www.iso.org/ 17 * 18 * COPYRIGHT 19 * (C) 1998 Dave Boynton 20 * (C) 1998-2004 Ben Fennema 21 * (C) 2000 Stelias Computing Inc 22 * 23 * HISTORY 24 * 25 * 09/24/98 dgb changed to allow compiling outside of kernel, and 26 * added some debugging. 27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 28 * 10/16/98 attempting some multi-session support 29 * 10/17/98 added freespace count for "df" 30 * 11/11/98 gr added novrs option 31 * 11/26/98 dgb added fileset,anchor mount options 32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 33 * vol descs. rewrote option handling based on isofs 34 * 12/20/98 find the free space bitmap (if it exists) 35 */ 36 37 #include "udfdecl.h" 38 39 #include <linux/blkdev.h> 40 #include <linux/slab.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/parser.h> 44 #include <linux/stat.h> 45 #include <linux/cdrom.h> 46 #include <linux/nls.h> 47 #include <linux/vfs.h> 48 #include <linux/vmalloc.h> 49 #include <linux/errno.h> 50 #include <linux/mount.h> 51 #include <linux/seq_file.h> 52 #include <linux/bitmap.h> 53 #include <linux/crc-itu-t.h> 54 #include <linux/log2.h> 55 #include <asm/byteorder.h> 56 #include <linux/iversion.h> 57 58 #include "udf_sb.h" 59 #include "udf_i.h" 60 61 #include <linux/init.h> 62 #include <linux/uaccess.h> 63 64 enum { 65 VDS_POS_PRIMARY_VOL_DESC, 66 VDS_POS_UNALLOC_SPACE_DESC, 67 VDS_POS_LOGICAL_VOL_DESC, 68 VDS_POS_IMP_USE_VOL_DESC, 69 VDS_POS_LENGTH 70 }; 71 72 #define VSD_FIRST_SECTOR_OFFSET 32768 73 #define VSD_MAX_SECTOR_OFFSET 0x800000 74 75 /* 76 * Maximum number of Terminating Descriptor / Logical Volume Integrity 77 * Descriptor redirections. The chosen numbers are arbitrary - just that we 78 * hopefully don't limit any real use of rewritten inode on write-once media 79 * but avoid looping for too long on corrupted media. 80 */ 81 #define UDF_MAX_TD_NESTING 64 82 #define UDF_MAX_LVID_NESTING 1000 83 84 enum { UDF_MAX_LINKS = 0xffff }; 85 /* 86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports 87 * more but because the file space is described by a linked list of extents, 88 * each of which can have at most 1GB, the creation and handling of extents 89 * gets unusably slow beyond certain point... 90 */ 91 #define UDF_MAX_FILESIZE (1ULL << 42) 92 93 /* These are the "meat" - everything else is stuffing */ 94 static int udf_fill_super(struct super_block *, void *, int); 95 static void udf_put_super(struct super_block *); 96 static int udf_sync_fs(struct super_block *, int); 97 static int udf_remount_fs(struct super_block *, int *, char *); 98 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 116 offset = partnum * 2 * sizeof(uint32_t); 117 return (struct logicalVolIntegrityDescImpUse *) 118 (((uint8_t *)(lvid + 1)) + offset); 119 } 120 121 /* UDF filesystem type */ 122 static struct dentry *udf_mount(struct file_system_type *fs_type, 123 int flags, const char *dev_name, void *data) 124 { 125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 126 } 127 128 static struct file_system_type udf_fstype = { 129 .owner = THIS_MODULE, 130 .name = "udf", 131 .mount = udf_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("udf"); 136 137 static struct kmem_cache *udf_inode_cachep; 138 139 static struct inode *udf_alloc_inode(struct super_block *sb) 140 { 141 struct udf_inode_info *ei; 142 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL); 143 if (!ei) 144 return NULL; 145 146 ei->i_unique = 0; 147 ei->i_lenExtents = 0; 148 ei->i_lenStreams = 0; 149 ei->i_next_alloc_block = 0; 150 ei->i_next_alloc_goal = 0; 151 ei->i_strat4096 = 0; 152 ei->i_streamdir = 0; 153 ei->i_hidden = 0; 154 init_rwsem(&ei->i_data_sem); 155 ei->cached_extent.lstart = -1; 156 spin_lock_init(&ei->i_extent_cache_lock); 157 inode_set_iversion(&ei->vfs_inode, 1); 158 159 return &ei->vfs_inode; 160 } 161 162 static void udf_free_in_core_inode(struct inode *inode) 163 { 164 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 165 } 166 167 static void init_once(void *foo) 168 { 169 struct udf_inode_info *ei = foo; 170 171 ei->i_data = NULL; 172 inode_init_once(&ei->vfs_inode); 173 } 174 175 static int __init init_inodecache(void) 176 { 177 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 178 sizeof(struct udf_inode_info), 179 0, (SLAB_RECLAIM_ACCOUNT | 180 SLAB_ACCOUNT), 181 init_once); 182 if (!udf_inode_cachep) 183 return -ENOMEM; 184 return 0; 185 } 186 187 static void destroy_inodecache(void) 188 { 189 /* 190 * Make sure all delayed rcu free inodes are flushed before we 191 * destroy cache. 192 */ 193 rcu_barrier(); 194 kmem_cache_destroy(udf_inode_cachep); 195 } 196 197 /* Superblock operations */ 198 static const struct super_operations udf_sb_ops = { 199 .alloc_inode = udf_alloc_inode, 200 .free_inode = udf_free_in_core_inode, 201 .write_inode = udf_write_inode, 202 .evict_inode = udf_evict_inode, 203 .put_super = udf_put_super, 204 .sync_fs = udf_sync_fs, 205 .statfs = udf_statfs, 206 .remount_fs = udf_remount_fs, 207 .show_options = udf_show_options, 208 }; 209 210 struct udf_options { 211 unsigned char novrs; 212 unsigned int blocksize; 213 unsigned int session; 214 unsigned int lastblock; 215 unsigned int anchor; 216 unsigned int flags; 217 umode_t umask; 218 kgid_t gid; 219 kuid_t uid; 220 umode_t fmode; 221 umode_t dmode; 222 struct nls_table *nls_map; 223 }; 224 225 static int __init init_udf_fs(void) 226 { 227 int err; 228 229 err = init_inodecache(); 230 if (err) 231 goto out1; 232 err = register_filesystem(&udf_fstype); 233 if (err) 234 goto out; 235 236 return 0; 237 238 out: 239 destroy_inodecache(); 240 241 out1: 242 return err; 243 } 244 245 static void __exit exit_udf_fs(void) 246 { 247 unregister_filesystem(&udf_fstype); 248 destroy_inodecache(); 249 } 250 251 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 252 { 253 struct udf_sb_info *sbi = UDF_SB(sb); 254 255 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 256 if (!sbi->s_partmaps) { 257 sbi->s_partitions = 0; 258 return -ENOMEM; 259 } 260 261 sbi->s_partitions = count; 262 return 0; 263 } 264 265 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 266 { 267 int i; 268 int nr_groups = bitmap->s_nr_groups; 269 270 for (i = 0; i < nr_groups; i++) 271 brelse(bitmap->s_block_bitmap[i]); 272 273 kvfree(bitmap); 274 } 275 276 static void udf_free_partition(struct udf_part_map *map) 277 { 278 int i; 279 struct udf_meta_data *mdata; 280 281 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 282 iput(map->s_uspace.s_table); 283 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 284 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 285 if (map->s_partition_type == UDF_SPARABLE_MAP15) 286 for (i = 0; i < 4; i++) 287 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 288 else if (map->s_partition_type == UDF_METADATA_MAP25) { 289 mdata = &map->s_type_specific.s_metadata; 290 iput(mdata->s_metadata_fe); 291 mdata->s_metadata_fe = NULL; 292 293 iput(mdata->s_mirror_fe); 294 mdata->s_mirror_fe = NULL; 295 296 iput(mdata->s_bitmap_fe); 297 mdata->s_bitmap_fe = NULL; 298 } 299 } 300 301 static void udf_sb_free_partitions(struct super_block *sb) 302 { 303 struct udf_sb_info *sbi = UDF_SB(sb); 304 int i; 305 306 if (!sbi->s_partmaps) 307 return; 308 for (i = 0; i < sbi->s_partitions; i++) 309 udf_free_partition(&sbi->s_partmaps[i]); 310 kfree(sbi->s_partmaps); 311 sbi->s_partmaps = NULL; 312 } 313 314 static int udf_show_options(struct seq_file *seq, struct dentry *root) 315 { 316 struct super_block *sb = root->d_sb; 317 struct udf_sb_info *sbi = UDF_SB(sb); 318 319 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 320 seq_puts(seq, ",nostrict"); 321 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 322 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 324 seq_puts(seq, ",unhide"); 325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 326 seq_puts(seq, ",undelete"); 327 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 328 seq_puts(seq, ",noadinicb"); 329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 330 seq_puts(seq, ",shortad"); 331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 332 seq_puts(seq, ",uid=forget"); 333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 334 seq_puts(seq, ",gid=forget"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 336 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 338 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 339 if (sbi->s_umask != 0) 340 seq_printf(seq, ",umask=%ho", sbi->s_umask); 341 if (sbi->s_fmode != UDF_INVALID_MODE) 342 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 343 if (sbi->s_dmode != UDF_INVALID_MODE) 344 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 346 seq_printf(seq, ",session=%d", sbi->s_session); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 348 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 349 if (sbi->s_anchor != 0) 350 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 351 if (sbi->s_nls_map) 352 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 353 else 354 seq_puts(seq, ",iocharset=utf8"); 355 356 return 0; 357 } 358 359 /* 360 * udf_parse_options 361 * 362 * PURPOSE 363 * Parse mount options. 364 * 365 * DESCRIPTION 366 * The following mount options are supported: 367 * 368 * gid= Set the default group. 369 * umask= Set the default umask. 370 * mode= Set the default file permissions. 371 * dmode= Set the default directory permissions. 372 * uid= Set the default user. 373 * bs= Set the block size. 374 * unhide Show otherwise hidden files. 375 * undelete Show deleted files in lists. 376 * adinicb Embed data in the inode (default) 377 * noadinicb Don't embed data in the inode 378 * shortad Use short ad's 379 * longad Use long ad's (default) 380 * nostrict Unset strict conformance 381 * iocharset= Set the NLS character set 382 * 383 * The remaining are for debugging and disaster recovery: 384 * 385 * novrs Skip volume sequence recognition 386 * 387 * The following expect a offset from 0. 388 * 389 * session= Set the CDROM session (default= last session) 390 * anchor= Override standard anchor location. (default= 256) 391 * volume= Override the VolumeDesc location. (unused) 392 * partition= Override the PartitionDesc location. (unused) 393 * lastblock= Set the last block of the filesystem/ 394 * 395 * The following expect a offset from the partition root. 396 * 397 * fileset= Override the fileset block location. (unused) 398 * rootdir= Override the root directory location. (unused) 399 * WARNING: overriding the rootdir to a non-directory may 400 * yield highly unpredictable results. 401 * 402 * PRE-CONDITIONS 403 * options Pointer to mount options string. 404 * uopts Pointer to mount options variable. 405 * 406 * POST-CONDITIONS 407 * <return> 1 Mount options parsed okay. 408 * <return> 0 Error parsing mount options. 409 * 410 * HISTORY 411 * July 1, 1997 - Andrew E. Mileski 412 * Written, tested, and released. 413 */ 414 415 enum { 416 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 417 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 418 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 419 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 420 Opt_rootdir, Opt_utf8, Opt_iocharset, 421 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 422 Opt_fmode, Opt_dmode 423 }; 424 425 static const match_table_t tokens = { 426 {Opt_novrs, "novrs"}, 427 {Opt_nostrict, "nostrict"}, 428 {Opt_bs, "bs=%u"}, 429 {Opt_unhide, "unhide"}, 430 {Opt_undelete, "undelete"}, 431 {Opt_noadinicb, "noadinicb"}, 432 {Opt_adinicb, "adinicb"}, 433 {Opt_shortad, "shortad"}, 434 {Opt_longad, "longad"}, 435 {Opt_uforget, "uid=forget"}, 436 {Opt_uignore, "uid=ignore"}, 437 {Opt_gforget, "gid=forget"}, 438 {Opt_gignore, "gid=ignore"}, 439 {Opt_gid, "gid=%u"}, 440 {Opt_uid, "uid=%u"}, 441 {Opt_umask, "umask=%o"}, 442 {Opt_session, "session=%u"}, 443 {Opt_lastblock, "lastblock=%u"}, 444 {Opt_anchor, "anchor=%u"}, 445 {Opt_volume, "volume=%u"}, 446 {Opt_partition, "partition=%u"}, 447 {Opt_fileset, "fileset=%u"}, 448 {Opt_rootdir, "rootdir=%u"}, 449 {Opt_utf8, "utf8"}, 450 {Opt_iocharset, "iocharset=%s"}, 451 {Opt_fmode, "mode=%o"}, 452 {Opt_dmode, "dmode=%o"}, 453 {Opt_err, NULL} 454 }; 455 456 static int udf_parse_options(char *options, struct udf_options *uopt, 457 bool remount) 458 { 459 char *p; 460 int option; 461 unsigned int uv; 462 463 uopt->novrs = 0; 464 uopt->session = 0xFFFFFFFF; 465 uopt->lastblock = 0; 466 uopt->anchor = 0; 467 468 if (!options) 469 return 1; 470 471 while ((p = strsep(&options, ",")) != NULL) { 472 substring_t args[MAX_OPT_ARGS]; 473 int token; 474 unsigned n; 475 if (!*p) 476 continue; 477 478 token = match_token(p, tokens, args); 479 switch (token) { 480 case Opt_novrs: 481 uopt->novrs = 1; 482 break; 483 case Opt_bs: 484 if (match_int(&args[0], &option)) 485 return 0; 486 n = option; 487 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 488 return 0; 489 uopt->blocksize = n; 490 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 491 break; 492 case Opt_unhide: 493 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 494 break; 495 case Opt_undelete: 496 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 497 break; 498 case Opt_noadinicb: 499 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 500 break; 501 case Opt_adinicb: 502 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 503 break; 504 case Opt_shortad: 505 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 506 break; 507 case Opt_longad: 508 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 509 break; 510 case Opt_gid: 511 if (match_uint(args, &uv)) 512 return 0; 513 uopt->gid = make_kgid(current_user_ns(), uv); 514 if (!gid_valid(uopt->gid)) 515 return 0; 516 uopt->flags |= (1 << UDF_FLAG_GID_SET); 517 break; 518 case Opt_uid: 519 if (match_uint(args, &uv)) 520 return 0; 521 uopt->uid = make_kuid(current_user_ns(), uv); 522 if (!uid_valid(uopt->uid)) 523 return 0; 524 uopt->flags |= (1 << UDF_FLAG_UID_SET); 525 break; 526 case Opt_umask: 527 if (match_octal(args, &option)) 528 return 0; 529 uopt->umask = option; 530 break; 531 case Opt_nostrict: 532 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 533 break; 534 case Opt_session: 535 if (match_int(args, &option)) 536 return 0; 537 uopt->session = option; 538 if (!remount) 539 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 540 break; 541 case Opt_lastblock: 542 if (match_int(args, &option)) 543 return 0; 544 uopt->lastblock = option; 545 if (!remount) 546 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 547 break; 548 case Opt_anchor: 549 if (match_int(args, &option)) 550 return 0; 551 uopt->anchor = option; 552 break; 553 case Opt_volume: 554 case Opt_partition: 555 case Opt_fileset: 556 case Opt_rootdir: 557 /* Ignored (never implemented properly) */ 558 break; 559 case Opt_utf8: 560 if (!remount) { 561 unload_nls(uopt->nls_map); 562 uopt->nls_map = NULL; 563 } 564 break; 565 case Opt_iocharset: 566 if (!remount) { 567 unload_nls(uopt->nls_map); 568 uopt->nls_map = NULL; 569 } 570 /* When nls_map is not loaded then UTF-8 is used */ 571 if (!remount && strcmp(args[0].from, "utf8") != 0) { 572 uopt->nls_map = load_nls(args[0].from); 573 if (!uopt->nls_map) { 574 pr_err("iocharset %s not found\n", 575 args[0].from); 576 return 0; 577 } 578 } 579 break; 580 case Opt_uforget: 581 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 582 break; 583 case Opt_uignore: 584 case Opt_gignore: 585 /* These options are superseeded by uid=<number> */ 586 break; 587 case Opt_gforget: 588 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 589 break; 590 case Opt_fmode: 591 if (match_octal(args, &option)) 592 return 0; 593 uopt->fmode = option & 0777; 594 break; 595 case Opt_dmode: 596 if (match_octal(args, &option)) 597 return 0; 598 uopt->dmode = option & 0777; 599 break; 600 default: 601 pr_err("bad mount option \"%s\" or missing value\n", p); 602 return 0; 603 } 604 } 605 return 1; 606 } 607 608 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 609 { 610 struct udf_options uopt; 611 struct udf_sb_info *sbi = UDF_SB(sb); 612 int error = 0; 613 614 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 615 return -EACCES; 616 617 sync_filesystem(sb); 618 619 uopt.flags = sbi->s_flags; 620 uopt.uid = sbi->s_uid; 621 uopt.gid = sbi->s_gid; 622 uopt.umask = sbi->s_umask; 623 uopt.fmode = sbi->s_fmode; 624 uopt.dmode = sbi->s_dmode; 625 uopt.nls_map = NULL; 626 627 if (!udf_parse_options(options, &uopt, true)) 628 return -EINVAL; 629 630 write_lock(&sbi->s_cred_lock); 631 sbi->s_flags = uopt.flags; 632 sbi->s_uid = uopt.uid; 633 sbi->s_gid = uopt.gid; 634 sbi->s_umask = uopt.umask; 635 sbi->s_fmode = uopt.fmode; 636 sbi->s_dmode = uopt.dmode; 637 write_unlock(&sbi->s_cred_lock); 638 639 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 640 goto out_unlock; 641 642 if (*flags & SB_RDONLY) 643 udf_close_lvid(sb); 644 else 645 udf_open_lvid(sb); 646 647 out_unlock: 648 return error; 649 } 650 651 /* 652 * Check VSD descriptor. Returns -1 in case we are at the end of volume 653 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 654 * we found one of NSR descriptors we are looking for. 655 */ 656 static int identify_vsd(const struct volStructDesc *vsd) 657 { 658 int ret = 0; 659 660 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 661 switch (vsd->structType) { 662 case 0: 663 udf_debug("ISO9660 Boot Record found\n"); 664 break; 665 case 1: 666 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 667 break; 668 case 2: 669 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 670 break; 671 case 3: 672 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 673 break; 674 case 255: 675 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 676 break; 677 default: 678 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 679 break; 680 } 681 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 682 ; /* ret = 0 */ 683 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 684 ret = 1; 685 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 686 ret = 1; 687 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 688 ; /* ret = 0 */ 689 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 690 ; /* ret = 0 */ 691 else { 692 /* TEA01 or invalid id : end of volume recognition area */ 693 ret = -1; 694 } 695 696 return ret; 697 } 698 699 /* 700 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 701 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 702 * @return 1 if NSR02 or NSR03 found, 703 * -1 if first sector read error, 0 otherwise 704 */ 705 static int udf_check_vsd(struct super_block *sb) 706 { 707 struct volStructDesc *vsd = NULL; 708 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 709 int sectorsize; 710 struct buffer_head *bh = NULL; 711 int nsr = 0; 712 struct udf_sb_info *sbi; 713 loff_t session_offset; 714 715 sbi = UDF_SB(sb); 716 if (sb->s_blocksize < sizeof(struct volStructDesc)) 717 sectorsize = sizeof(struct volStructDesc); 718 else 719 sectorsize = sb->s_blocksize; 720 721 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; 722 sector += session_offset; 723 724 udf_debug("Starting at sector %u (%lu byte sectors)\n", 725 (unsigned int)(sector >> sb->s_blocksize_bits), 726 sb->s_blocksize); 727 /* Process the sequence (if applicable). The hard limit on the sector 728 * offset is arbitrary, hopefully large enough so that all valid UDF 729 * filesystems will be recognised. There is no mention of an upper 730 * bound to the size of the volume recognition area in the standard. 731 * The limit will prevent the code to read all the sectors of a 732 * specially crafted image (like a bluray disc full of CD001 sectors), 733 * potentially causing minutes or even hours of uninterruptible I/O 734 * activity. This actually happened with uninitialised SSD partitions 735 * (all 0xFF) before the check for the limit and all valid IDs were 736 * added */ 737 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 738 /* Read a block */ 739 bh = sb_bread(sb, sector >> sb->s_blocksize_bits); 740 if (!bh) 741 break; 742 743 vsd = (struct volStructDesc *)(bh->b_data + 744 (sector & (sb->s_blocksize - 1))); 745 nsr = identify_vsd(vsd); 746 /* Found NSR or end? */ 747 if (nsr) { 748 brelse(bh); 749 break; 750 } 751 /* 752 * Special handling for improperly formatted VRS (e.g., Win10) 753 * where components are separated by 2048 bytes even though 754 * sectors are 4K 755 */ 756 if (sb->s_blocksize == 4096) { 757 nsr = identify_vsd(vsd + 1); 758 /* Ignore unknown IDs... */ 759 if (nsr < 0) 760 nsr = 0; 761 } 762 brelse(bh); 763 } 764 765 if (nsr > 0) 766 return 1; 767 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) 768 return -1; 769 else 770 return 0; 771 } 772 773 static int udf_verify_domain_identifier(struct super_block *sb, 774 struct regid *ident, char *dname) 775 { 776 struct domainIdentSuffix *suffix; 777 778 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 779 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 780 goto force_ro; 781 } 782 if (ident->flags & ENTITYID_FLAGS_DIRTY) { 783 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 784 dname); 785 goto force_ro; 786 } 787 suffix = (struct domainIdentSuffix *)ident->identSuffix; 788 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || 789 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { 790 if (!sb_rdonly(sb)) { 791 udf_warn(sb, "Descriptor for %s marked write protected." 792 " Forcing read only mount.\n", dname); 793 } 794 goto force_ro; 795 } 796 return 0; 797 798 force_ro: 799 if (!sb_rdonly(sb)) 800 return -EACCES; 801 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 802 return 0; 803 } 804 805 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 806 struct kernel_lb_addr *root) 807 { 808 int ret; 809 810 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 811 if (ret < 0) 812 return ret; 813 814 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 815 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 816 817 udf_debug("Rootdir at block=%u, partition=%u\n", 818 root->logicalBlockNum, root->partitionReferenceNum); 819 return 0; 820 } 821 822 static int udf_find_fileset(struct super_block *sb, 823 struct kernel_lb_addr *fileset, 824 struct kernel_lb_addr *root) 825 { 826 struct buffer_head *bh; 827 uint16_t ident; 828 int ret; 829 830 if (fileset->logicalBlockNum == 0xFFFFFFFF && 831 fileset->partitionReferenceNum == 0xFFFF) 832 return -EINVAL; 833 834 bh = udf_read_ptagged(sb, fileset, 0, &ident); 835 if (!bh) 836 return -EIO; 837 if (ident != TAG_IDENT_FSD) { 838 brelse(bh); 839 return -EINVAL; 840 } 841 842 udf_debug("Fileset at block=%u, partition=%u\n", 843 fileset->logicalBlockNum, fileset->partitionReferenceNum); 844 845 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 846 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 847 brelse(bh); 848 return ret; 849 } 850 851 /* 852 * Load primary Volume Descriptor Sequence 853 * 854 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 855 * should be tried. 856 */ 857 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 858 { 859 struct primaryVolDesc *pvoldesc; 860 uint8_t *outstr; 861 struct buffer_head *bh; 862 uint16_t ident; 863 int ret; 864 struct timestamp *ts; 865 866 outstr = kmalloc(128, GFP_NOFS); 867 if (!outstr) 868 return -ENOMEM; 869 870 bh = udf_read_tagged(sb, block, block, &ident); 871 if (!bh) { 872 ret = -EAGAIN; 873 goto out2; 874 } 875 876 if (ident != TAG_IDENT_PVD) { 877 ret = -EIO; 878 goto out_bh; 879 } 880 881 pvoldesc = (struct primaryVolDesc *)bh->b_data; 882 883 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 884 pvoldesc->recordingDateAndTime); 885 ts = &pvoldesc->recordingDateAndTime; 886 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 887 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 888 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 889 890 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 891 if (ret < 0) { 892 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 893 pr_warn("incorrect volume identification, setting to " 894 "'InvalidName'\n"); 895 } else { 896 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 897 } 898 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 899 900 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 901 if (ret < 0) { 902 ret = 0; 903 goto out_bh; 904 } 905 outstr[ret] = 0; 906 udf_debug("volSetIdent[] = '%s'\n", outstr); 907 908 ret = 0; 909 out_bh: 910 brelse(bh); 911 out2: 912 kfree(outstr); 913 return ret; 914 } 915 916 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 917 u32 meta_file_loc, u32 partition_ref) 918 { 919 struct kernel_lb_addr addr; 920 struct inode *metadata_fe; 921 922 addr.logicalBlockNum = meta_file_loc; 923 addr.partitionReferenceNum = partition_ref; 924 925 metadata_fe = udf_iget_special(sb, &addr); 926 927 if (IS_ERR(metadata_fe)) { 928 udf_warn(sb, "metadata inode efe not found\n"); 929 return metadata_fe; 930 } 931 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 932 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 933 iput(metadata_fe); 934 return ERR_PTR(-EIO); 935 } 936 937 return metadata_fe; 938 } 939 940 static int udf_load_metadata_files(struct super_block *sb, int partition, 941 int type1_index) 942 { 943 struct udf_sb_info *sbi = UDF_SB(sb); 944 struct udf_part_map *map; 945 struct udf_meta_data *mdata; 946 struct kernel_lb_addr addr; 947 struct inode *fe; 948 949 map = &sbi->s_partmaps[partition]; 950 mdata = &map->s_type_specific.s_metadata; 951 mdata->s_phys_partition_ref = type1_index; 952 953 /* metadata address */ 954 udf_debug("Metadata file location: block = %u part = %u\n", 955 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 956 957 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 958 mdata->s_phys_partition_ref); 959 if (IS_ERR(fe)) { 960 /* mirror file entry */ 961 udf_debug("Mirror metadata file location: block = %u part = %u\n", 962 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 963 964 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 965 mdata->s_phys_partition_ref); 966 967 if (IS_ERR(fe)) { 968 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 969 return PTR_ERR(fe); 970 } 971 mdata->s_mirror_fe = fe; 972 } else 973 mdata->s_metadata_fe = fe; 974 975 976 /* 977 * bitmap file entry 978 * Note: 979 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 980 */ 981 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 982 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 983 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 984 985 udf_debug("Bitmap file location: block = %u part = %u\n", 986 addr.logicalBlockNum, addr.partitionReferenceNum); 987 988 fe = udf_iget_special(sb, &addr); 989 if (IS_ERR(fe)) { 990 if (sb_rdonly(sb)) 991 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 992 else { 993 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 994 return PTR_ERR(fe); 995 } 996 } else 997 mdata->s_bitmap_fe = fe; 998 } 999 1000 udf_debug("udf_load_metadata_files Ok\n"); 1001 return 0; 1002 } 1003 1004 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1005 { 1006 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1007 return DIV_ROUND_UP(map->s_partition_len + 1008 (sizeof(struct spaceBitmapDesc) << 3), 1009 sb->s_blocksize * 8); 1010 } 1011 1012 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1013 { 1014 struct udf_bitmap *bitmap; 1015 int nr_groups = udf_compute_nr_groups(sb, index); 1016 1017 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), 1018 GFP_KERNEL); 1019 if (!bitmap) 1020 return NULL; 1021 1022 bitmap->s_nr_groups = nr_groups; 1023 return bitmap; 1024 } 1025 1026 static int check_partition_desc(struct super_block *sb, 1027 struct partitionDesc *p, 1028 struct udf_part_map *map) 1029 { 1030 bool umap, utable, fmap, ftable; 1031 struct partitionHeaderDesc *phd; 1032 1033 switch (le32_to_cpu(p->accessType)) { 1034 case PD_ACCESS_TYPE_READ_ONLY: 1035 case PD_ACCESS_TYPE_WRITE_ONCE: 1036 case PD_ACCESS_TYPE_NONE: 1037 goto force_ro; 1038 } 1039 1040 /* No Partition Header Descriptor? */ 1041 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1042 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1043 goto force_ro; 1044 1045 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1046 utable = phd->unallocSpaceTable.extLength; 1047 umap = phd->unallocSpaceBitmap.extLength; 1048 ftable = phd->freedSpaceTable.extLength; 1049 fmap = phd->freedSpaceBitmap.extLength; 1050 1051 /* No allocation info? */ 1052 if (!utable && !umap && !ftable && !fmap) 1053 goto force_ro; 1054 1055 /* We don't support blocks that require erasing before overwrite */ 1056 if (ftable || fmap) 1057 goto force_ro; 1058 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1059 if (utable && umap) 1060 goto force_ro; 1061 1062 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1063 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1064 map->s_partition_type == UDF_METADATA_MAP25) 1065 goto force_ro; 1066 1067 return 0; 1068 force_ro: 1069 if (!sb_rdonly(sb)) 1070 return -EACCES; 1071 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1072 return 0; 1073 } 1074 1075 static int udf_fill_partdesc_info(struct super_block *sb, 1076 struct partitionDesc *p, int p_index) 1077 { 1078 struct udf_part_map *map; 1079 struct udf_sb_info *sbi = UDF_SB(sb); 1080 struct partitionHeaderDesc *phd; 1081 int err; 1082 1083 map = &sbi->s_partmaps[p_index]; 1084 1085 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1086 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1087 1088 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1089 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1091 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1093 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1094 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1095 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1096 1097 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1098 p_index, map->s_partition_type, 1099 map->s_partition_root, map->s_partition_len); 1100 1101 err = check_partition_desc(sb, p, map); 1102 if (err) 1103 return err; 1104 1105 /* 1106 * Skip loading allocation info it we cannot ever write to the fs. 1107 * This is a correctness thing as we may have decided to force ro mount 1108 * to avoid allocation info we don't support. 1109 */ 1110 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1111 return 0; 1112 1113 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1114 if (phd->unallocSpaceTable.extLength) { 1115 struct kernel_lb_addr loc = { 1116 .logicalBlockNum = le32_to_cpu( 1117 phd->unallocSpaceTable.extPosition), 1118 .partitionReferenceNum = p_index, 1119 }; 1120 struct inode *inode; 1121 1122 inode = udf_iget_special(sb, &loc); 1123 if (IS_ERR(inode)) { 1124 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1125 p_index); 1126 return PTR_ERR(inode); 1127 } 1128 map->s_uspace.s_table = inode; 1129 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1130 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1131 p_index, map->s_uspace.s_table->i_ino); 1132 } 1133 1134 if (phd->unallocSpaceBitmap.extLength) { 1135 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1136 if (!bitmap) 1137 return -ENOMEM; 1138 map->s_uspace.s_bitmap = bitmap; 1139 bitmap->s_extPosition = le32_to_cpu( 1140 phd->unallocSpaceBitmap.extPosition); 1141 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1142 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1143 p_index, bitmap->s_extPosition); 1144 } 1145 1146 return 0; 1147 } 1148 1149 static void udf_find_vat_block(struct super_block *sb, int p_index, 1150 int type1_index, sector_t start_block) 1151 { 1152 struct udf_sb_info *sbi = UDF_SB(sb); 1153 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1154 sector_t vat_block; 1155 struct kernel_lb_addr ino; 1156 struct inode *inode; 1157 1158 /* 1159 * VAT file entry is in the last recorded block. Some broken disks have 1160 * it a few blocks before so try a bit harder... 1161 */ 1162 ino.partitionReferenceNum = type1_index; 1163 for (vat_block = start_block; 1164 vat_block >= map->s_partition_root && 1165 vat_block >= start_block - 3; vat_block--) { 1166 ino.logicalBlockNum = vat_block - map->s_partition_root; 1167 inode = udf_iget_special(sb, &ino); 1168 if (!IS_ERR(inode)) { 1169 sbi->s_vat_inode = inode; 1170 break; 1171 } 1172 } 1173 } 1174 1175 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1176 { 1177 struct udf_sb_info *sbi = UDF_SB(sb); 1178 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1179 struct buffer_head *bh = NULL; 1180 struct udf_inode_info *vati; 1181 struct virtualAllocationTable20 *vat20; 1182 sector_t blocks = sb_bdev_nr_blocks(sb); 1183 1184 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1185 if (!sbi->s_vat_inode && 1186 sbi->s_last_block != blocks - 1) { 1187 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1188 (unsigned long)sbi->s_last_block, 1189 (unsigned long)blocks - 1); 1190 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1191 } 1192 if (!sbi->s_vat_inode) 1193 return -EIO; 1194 1195 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1196 map->s_type_specific.s_virtual.s_start_offset = 0; 1197 map->s_type_specific.s_virtual.s_num_entries = 1198 (sbi->s_vat_inode->i_size - 36) >> 2; 1199 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1200 vati = UDF_I(sbi->s_vat_inode); 1201 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1202 int err = 0; 1203 1204 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err); 1205 if (!bh) { 1206 if (!err) 1207 err = -EFSCORRUPTED; 1208 return err; 1209 } 1210 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1211 } else { 1212 vat20 = (struct virtualAllocationTable20 *) 1213 vati->i_data; 1214 } 1215 1216 map->s_type_specific.s_virtual.s_start_offset = 1217 le16_to_cpu(vat20->lengthHeader); 1218 map->s_type_specific.s_virtual.s_num_entries = 1219 (sbi->s_vat_inode->i_size - 1220 map->s_type_specific.s_virtual. 1221 s_start_offset) >> 2; 1222 brelse(bh); 1223 } 1224 return 0; 1225 } 1226 1227 /* 1228 * Load partition descriptor block 1229 * 1230 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1231 * sequence. 1232 */ 1233 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1234 { 1235 struct buffer_head *bh; 1236 struct partitionDesc *p; 1237 struct udf_part_map *map; 1238 struct udf_sb_info *sbi = UDF_SB(sb); 1239 int i, type1_idx; 1240 uint16_t partitionNumber; 1241 uint16_t ident; 1242 int ret; 1243 1244 bh = udf_read_tagged(sb, block, block, &ident); 1245 if (!bh) 1246 return -EAGAIN; 1247 if (ident != TAG_IDENT_PD) { 1248 ret = 0; 1249 goto out_bh; 1250 } 1251 1252 p = (struct partitionDesc *)bh->b_data; 1253 partitionNumber = le16_to_cpu(p->partitionNumber); 1254 1255 /* First scan for TYPE1 and SPARABLE partitions */ 1256 for (i = 0; i < sbi->s_partitions; i++) { 1257 map = &sbi->s_partmaps[i]; 1258 udf_debug("Searching map: (%u == %u)\n", 1259 map->s_partition_num, partitionNumber); 1260 if (map->s_partition_num == partitionNumber && 1261 (map->s_partition_type == UDF_TYPE1_MAP15 || 1262 map->s_partition_type == UDF_SPARABLE_MAP15)) 1263 break; 1264 } 1265 1266 if (i >= sbi->s_partitions) { 1267 udf_debug("Partition (%u) not found in partition map\n", 1268 partitionNumber); 1269 ret = 0; 1270 goto out_bh; 1271 } 1272 1273 ret = udf_fill_partdesc_info(sb, p, i); 1274 if (ret < 0) 1275 goto out_bh; 1276 1277 /* 1278 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1279 * PHYSICAL partitions are already set up 1280 */ 1281 type1_idx = i; 1282 map = NULL; /* supress 'maybe used uninitialized' warning */ 1283 for (i = 0; i < sbi->s_partitions; i++) { 1284 map = &sbi->s_partmaps[i]; 1285 1286 if (map->s_partition_num == partitionNumber && 1287 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1288 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1289 map->s_partition_type == UDF_METADATA_MAP25)) 1290 break; 1291 } 1292 1293 if (i >= sbi->s_partitions) { 1294 ret = 0; 1295 goto out_bh; 1296 } 1297 1298 ret = udf_fill_partdesc_info(sb, p, i); 1299 if (ret < 0) 1300 goto out_bh; 1301 1302 if (map->s_partition_type == UDF_METADATA_MAP25) { 1303 ret = udf_load_metadata_files(sb, i, type1_idx); 1304 if (ret < 0) { 1305 udf_err(sb, "error loading MetaData partition map %d\n", 1306 i); 1307 goto out_bh; 1308 } 1309 } else { 1310 /* 1311 * If we have a partition with virtual map, we don't handle 1312 * writing to it (we overwrite blocks instead of relocating 1313 * them). 1314 */ 1315 if (!sb_rdonly(sb)) { 1316 ret = -EACCES; 1317 goto out_bh; 1318 } 1319 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1320 ret = udf_load_vat(sb, i, type1_idx); 1321 if (ret < 0) 1322 goto out_bh; 1323 } 1324 ret = 0; 1325 out_bh: 1326 /* In case loading failed, we handle cleanup in udf_fill_super */ 1327 brelse(bh); 1328 return ret; 1329 } 1330 1331 static int udf_load_sparable_map(struct super_block *sb, 1332 struct udf_part_map *map, 1333 struct sparablePartitionMap *spm) 1334 { 1335 uint32_t loc; 1336 uint16_t ident; 1337 struct sparingTable *st; 1338 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1339 int i; 1340 struct buffer_head *bh; 1341 1342 map->s_partition_type = UDF_SPARABLE_MAP15; 1343 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1344 if (!is_power_of_2(sdata->s_packet_len)) { 1345 udf_err(sb, "error loading logical volume descriptor: " 1346 "Invalid packet length %u\n", 1347 (unsigned)sdata->s_packet_len); 1348 return -EIO; 1349 } 1350 if (spm->numSparingTables > 4) { 1351 udf_err(sb, "error loading logical volume descriptor: " 1352 "Too many sparing tables (%d)\n", 1353 (int)spm->numSparingTables); 1354 return -EIO; 1355 } 1356 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { 1357 udf_err(sb, "error loading logical volume descriptor: " 1358 "Too big sparing table size (%u)\n", 1359 le32_to_cpu(spm->sizeSparingTable)); 1360 return -EIO; 1361 } 1362 1363 for (i = 0; i < spm->numSparingTables; i++) { 1364 loc = le32_to_cpu(spm->locSparingTable[i]); 1365 bh = udf_read_tagged(sb, loc, loc, &ident); 1366 if (!bh) 1367 continue; 1368 1369 st = (struct sparingTable *)bh->b_data; 1370 if (ident != 0 || 1371 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1372 strlen(UDF_ID_SPARING)) || 1373 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1374 sb->s_blocksize) { 1375 brelse(bh); 1376 continue; 1377 } 1378 1379 sdata->s_spar_map[i] = bh; 1380 } 1381 map->s_partition_func = udf_get_pblock_spar15; 1382 return 0; 1383 } 1384 1385 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1386 struct kernel_lb_addr *fileset) 1387 { 1388 struct logicalVolDesc *lvd; 1389 int i, offset; 1390 uint8_t type; 1391 struct udf_sb_info *sbi = UDF_SB(sb); 1392 struct genericPartitionMap *gpm; 1393 uint16_t ident; 1394 struct buffer_head *bh; 1395 unsigned int table_len; 1396 int ret; 1397 1398 bh = udf_read_tagged(sb, block, block, &ident); 1399 if (!bh) 1400 return -EAGAIN; 1401 BUG_ON(ident != TAG_IDENT_LVD); 1402 lvd = (struct logicalVolDesc *)bh->b_data; 1403 table_len = le32_to_cpu(lvd->mapTableLength); 1404 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1405 udf_err(sb, "error loading logical volume descriptor: " 1406 "Partition table too long (%u > %lu)\n", table_len, 1407 sb->s_blocksize - sizeof(*lvd)); 1408 ret = -EIO; 1409 goto out_bh; 1410 } 1411 1412 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1413 "logical volume"); 1414 if (ret) 1415 goto out_bh; 1416 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1417 if (ret) 1418 goto out_bh; 1419 1420 for (i = 0, offset = 0; 1421 i < sbi->s_partitions && offset < table_len; 1422 i++, offset += gpm->partitionMapLength) { 1423 struct udf_part_map *map = &sbi->s_partmaps[i]; 1424 gpm = (struct genericPartitionMap *) 1425 &(lvd->partitionMaps[offset]); 1426 type = gpm->partitionMapType; 1427 if (type == 1) { 1428 struct genericPartitionMap1 *gpm1 = 1429 (struct genericPartitionMap1 *)gpm; 1430 map->s_partition_type = UDF_TYPE1_MAP15; 1431 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1432 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1433 map->s_partition_func = NULL; 1434 } else if (type == 2) { 1435 struct udfPartitionMap2 *upm2 = 1436 (struct udfPartitionMap2 *)gpm; 1437 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1438 strlen(UDF_ID_VIRTUAL))) { 1439 u16 suf = 1440 le16_to_cpu(((__le16 *)upm2->partIdent. 1441 identSuffix)[0]); 1442 if (suf < 0x0200) { 1443 map->s_partition_type = 1444 UDF_VIRTUAL_MAP15; 1445 map->s_partition_func = 1446 udf_get_pblock_virt15; 1447 } else { 1448 map->s_partition_type = 1449 UDF_VIRTUAL_MAP20; 1450 map->s_partition_func = 1451 udf_get_pblock_virt20; 1452 } 1453 } else if (!strncmp(upm2->partIdent.ident, 1454 UDF_ID_SPARABLE, 1455 strlen(UDF_ID_SPARABLE))) { 1456 ret = udf_load_sparable_map(sb, map, 1457 (struct sparablePartitionMap *)gpm); 1458 if (ret < 0) 1459 goto out_bh; 1460 } else if (!strncmp(upm2->partIdent.ident, 1461 UDF_ID_METADATA, 1462 strlen(UDF_ID_METADATA))) { 1463 struct udf_meta_data *mdata = 1464 &map->s_type_specific.s_metadata; 1465 struct metadataPartitionMap *mdm = 1466 (struct metadataPartitionMap *) 1467 &(lvd->partitionMaps[offset]); 1468 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1469 i, type, UDF_ID_METADATA); 1470 1471 map->s_partition_type = UDF_METADATA_MAP25; 1472 map->s_partition_func = udf_get_pblock_meta25; 1473 1474 mdata->s_meta_file_loc = 1475 le32_to_cpu(mdm->metadataFileLoc); 1476 mdata->s_mirror_file_loc = 1477 le32_to_cpu(mdm->metadataMirrorFileLoc); 1478 mdata->s_bitmap_file_loc = 1479 le32_to_cpu(mdm->metadataBitmapFileLoc); 1480 mdata->s_alloc_unit_size = 1481 le32_to_cpu(mdm->allocUnitSize); 1482 mdata->s_align_unit_size = 1483 le16_to_cpu(mdm->alignUnitSize); 1484 if (mdm->flags & 0x01) 1485 mdata->s_flags |= MF_DUPLICATE_MD; 1486 1487 udf_debug("Metadata Ident suffix=0x%x\n", 1488 le16_to_cpu(*(__le16 *) 1489 mdm->partIdent.identSuffix)); 1490 udf_debug("Metadata part num=%u\n", 1491 le16_to_cpu(mdm->partitionNum)); 1492 udf_debug("Metadata part alloc unit size=%u\n", 1493 le32_to_cpu(mdm->allocUnitSize)); 1494 udf_debug("Metadata file loc=%u\n", 1495 le32_to_cpu(mdm->metadataFileLoc)); 1496 udf_debug("Mirror file loc=%u\n", 1497 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1498 udf_debug("Bitmap file loc=%u\n", 1499 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1500 udf_debug("Flags: %d %u\n", 1501 mdata->s_flags, mdm->flags); 1502 } else { 1503 udf_debug("Unknown ident: %s\n", 1504 upm2->partIdent.ident); 1505 continue; 1506 } 1507 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1508 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1509 } 1510 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1511 i, map->s_partition_num, type, map->s_volumeseqnum); 1512 } 1513 1514 if (fileset) { 1515 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1516 1517 *fileset = lelb_to_cpu(la->extLocation); 1518 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1519 fileset->logicalBlockNum, 1520 fileset->partitionReferenceNum); 1521 } 1522 if (lvd->integritySeqExt.extLength) 1523 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1524 ret = 0; 1525 1526 if (!sbi->s_lvid_bh) { 1527 /* We can't generate unique IDs without a valid LVID */ 1528 if (sb_rdonly(sb)) { 1529 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1530 } else { 1531 udf_warn(sb, "Damaged or missing LVID, forcing " 1532 "readonly mount\n"); 1533 ret = -EACCES; 1534 } 1535 } 1536 out_bh: 1537 brelse(bh); 1538 return ret; 1539 } 1540 1541 /* 1542 * Find the prevailing Logical Volume Integrity Descriptor. 1543 */ 1544 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1545 { 1546 struct buffer_head *bh, *final_bh; 1547 uint16_t ident; 1548 struct udf_sb_info *sbi = UDF_SB(sb); 1549 struct logicalVolIntegrityDesc *lvid; 1550 int indirections = 0; 1551 u32 parts, impuselen; 1552 1553 while (++indirections <= UDF_MAX_LVID_NESTING) { 1554 final_bh = NULL; 1555 while (loc.extLength > 0 && 1556 (bh = udf_read_tagged(sb, loc.extLocation, 1557 loc.extLocation, &ident))) { 1558 if (ident != TAG_IDENT_LVID) { 1559 brelse(bh); 1560 break; 1561 } 1562 1563 brelse(final_bh); 1564 final_bh = bh; 1565 1566 loc.extLength -= sb->s_blocksize; 1567 loc.extLocation++; 1568 } 1569 1570 if (!final_bh) 1571 return; 1572 1573 brelse(sbi->s_lvid_bh); 1574 sbi->s_lvid_bh = final_bh; 1575 1576 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1577 if (lvid->nextIntegrityExt.extLength == 0) 1578 goto check; 1579 1580 loc = leea_to_cpu(lvid->nextIntegrityExt); 1581 } 1582 1583 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1584 UDF_MAX_LVID_NESTING); 1585 out_err: 1586 brelse(sbi->s_lvid_bh); 1587 sbi->s_lvid_bh = NULL; 1588 return; 1589 check: 1590 parts = le32_to_cpu(lvid->numOfPartitions); 1591 impuselen = le32_to_cpu(lvid->lengthOfImpUse); 1592 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize || 1593 sizeof(struct logicalVolIntegrityDesc) + impuselen + 1594 2 * parts * sizeof(u32) > sb->s_blocksize) { 1595 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), " 1596 "ignoring.\n", parts, impuselen); 1597 goto out_err; 1598 } 1599 } 1600 1601 /* 1602 * Step for reallocation of table of partition descriptor sequence numbers. 1603 * Must be power of 2. 1604 */ 1605 #define PART_DESC_ALLOC_STEP 32 1606 1607 struct part_desc_seq_scan_data { 1608 struct udf_vds_record rec; 1609 u32 partnum; 1610 }; 1611 1612 struct desc_seq_scan_data { 1613 struct udf_vds_record vds[VDS_POS_LENGTH]; 1614 unsigned int size_part_descs; 1615 unsigned int num_part_descs; 1616 struct part_desc_seq_scan_data *part_descs_loc; 1617 }; 1618 1619 static struct udf_vds_record *handle_partition_descriptor( 1620 struct buffer_head *bh, 1621 struct desc_seq_scan_data *data) 1622 { 1623 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1624 int partnum; 1625 int i; 1626 1627 partnum = le16_to_cpu(desc->partitionNumber); 1628 for (i = 0; i < data->num_part_descs; i++) 1629 if (partnum == data->part_descs_loc[i].partnum) 1630 return &(data->part_descs_loc[i].rec); 1631 if (data->num_part_descs >= data->size_part_descs) { 1632 struct part_desc_seq_scan_data *new_loc; 1633 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1634 1635 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1636 if (!new_loc) 1637 return ERR_PTR(-ENOMEM); 1638 memcpy(new_loc, data->part_descs_loc, 1639 data->size_part_descs * sizeof(*new_loc)); 1640 kfree(data->part_descs_loc); 1641 data->part_descs_loc = new_loc; 1642 data->size_part_descs = new_size; 1643 } 1644 return &(data->part_descs_loc[data->num_part_descs++].rec); 1645 } 1646 1647 1648 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1649 struct buffer_head *bh, struct desc_seq_scan_data *data) 1650 { 1651 switch (ident) { 1652 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1653 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1654 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1655 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1656 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1657 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1658 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1659 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1660 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1661 return handle_partition_descriptor(bh, data); 1662 } 1663 return NULL; 1664 } 1665 1666 /* 1667 * Process a main/reserve volume descriptor sequence. 1668 * @block First block of first extent of the sequence. 1669 * @lastblock Lastblock of first extent of the sequence. 1670 * @fileset There we store extent containing root fileset 1671 * 1672 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1673 * sequence 1674 */ 1675 static noinline int udf_process_sequence( 1676 struct super_block *sb, 1677 sector_t block, sector_t lastblock, 1678 struct kernel_lb_addr *fileset) 1679 { 1680 struct buffer_head *bh = NULL; 1681 struct udf_vds_record *curr; 1682 struct generic_desc *gd; 1683 struct volDescPtr *vdp; 1684 bool done = false; 1685 uint32_t vdsn; 1686 uint16_t ident; 1687 int ret; 1688 unsigned int indirections = 0; 1689 struct desc_seq_scan_data data; 1690 unsigned int i; 1691 1692 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1693 data.size_part_descs = PART_DESC_ALLOC_STEP; 1694 data.num_part_descs = 0; 1695 data.part_descs_loc = kcalloc(data.size_part_descs, 1696 sizeof(*data.part_descs_loc), 1697 GFP_KERNEL); 1698 if (!data.part_descs_loc) 1699 return -ENOMEM; 1700 1701 /* 1702 * Read the main descriptor sequence and find which descriptors 1703 * are in it. 1704 */ 1705 for (; (!done && block <= lastblock); block++) { 1706 bh = udf_read_tagged(sb, block, block, &ident); 1707 if (!bh) 1708 break; 1709 1710 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1711 gd = (struct generic_desc *)bh->b_data; 1712 vdsn = le32_to_cpu(gd->volDescSeqNum); 1713 switch (ident) { 1714 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1715 if (++indirections > UDF_MAX_TD_NESTING) { 1716 udf_err(sb, "too many Volume Descriptor " 1717 "Pointers (max %u supported)\n", 1718 UDF_MAX_TD_NESTING); 1719 brelse(bh); 1720 ret = -EIO; 1721 goto out; 1722 } 1723 1724 vdp = (struct volDescPtr *)bh->b_data; 1725 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1726 lastblock = le32_to_cpu( 1727 vdp->nextVolDescSeqExt.extLength) >> 1728 sb->s_blocksize_bits; 1729 lastblock += block - 1; 1730 /* For loop is going to increment 'block' again */ 1731 block--; 1732 break; 1733 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1734 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1735 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1736 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1737 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1738 curr = get_volume_descriptor_record(ident, bh, &data); 1739 if (IS_ERR(curr)) { 1740 brelse(bh); 1741 ret = PTR_ERR(curr); 1742 goto out; 1743 } 1744 /* Descriptor we don't care about? */ 1745 if (!curr) 1746 break; 1747 if (vdsn >= curr->volDescSeqNum) { 1748 curr->volDescSeqNum = vdsn; 1749 curr->block = block; 1750 } 1751 break; 1752 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1753 done = true; 1754 break; 1755 } 1756 brelse(bh); 1757 } 1758 /* 1759 * Now read interesting descriptors again and process them 1760 * in a suitable order 1761 */ 1762 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1763 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1764 ret = -EAGAIN; 1765 goto out; 1766 } 1767 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1768 if (ret < 0) 1769 goto out; 1770 1771 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1772 ret = udf_load_logicalvol(sb, 1773 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1774 fileset); 1775 if (ret < 0) 1776 goto out; 1777 } 1778 1779 /* Now handle prevailing Partition Descriptors */ 1780 for (i = 0; i < data.num_part_descs; i++) { 1781 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1782 if (ret < 0) 1783 goto out; 1784 } 1785 ret = 0; 1786 out: 1787 kfree(data.part_descs_loc); 1788 return ret; 1789 } 1790 1791 /* 1792 * Load Volume Descriptor Sequence described by anchor in bh 1793 * 1794 * Returns <0 on error, 0 on success 1795 */ 1796 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1797 struct kernel_lb_addr *fileset) 1798 { 1799 struct anchorVolDescPtr *anchor; 1800 sector_t main_s, main_e, reserve_s, reserve_e; 1801 int ret; 1802 1803 anchor = (struct anchorVolDescPtr *)bh->b_data; 1804 1805 /* Locate the main sequence */ 1806 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1807 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1808 main_e = main_e >> sb->s_blocksize_bits; 1809 main_e += main_s - 1; 1810 1811 /* Locate the reserve sequence */ 1812 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1813 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1814 reserve_e = reserve_e >> sb->s_blocksize_bits; 1815 reserve_e += reserve_s - 1; 1816 1817 /* Process the main & reserve sequences */ 1818 /* responsible for finding the PartitionDesc(s) */ 1819 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1820 if (ret != -EAGAIN) 1821 return ret; 1822 udf_sb_free_partitions(sb); 1823 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1824 if (ret < 0) { 1825 udf_sb_free_partitions(sb); 1826 /* No sequence was OK, return -EIO */ 1827 if (ret == -EAGAIN) 1828 ret = -EIO; 1829 } 1830 return ret; 1831 } 1832 1833 /* 1834 * Check whether there is an anchor block in the given block and 1835 * load Volume Descriptor Sequence if so. 1836 * 1837 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1838 * block 1839 */ 1840 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1841 struct kernel_lb_addr *fileset) 1842 { 1843 struct buffer_head *bh; 1844 uint16_t ident; 1845 int ret; 1846 1847 bh = udf_read_tagged(sb, block, block, &ident); 1848 if (!bh) 1849 return -EAGAIN; 1850 if (ident != TAG_IDENT_AVDP) { 1851 brelse(bh); 1852 return -EAGAIN; 1853 } 1854 ret = udf_load_sequence(sb, bh, fileset); 1855 brelse(bh); 1856 return ret; 1857 } 1858 1859 /* 1860 * Search for an anchor volume descriptor pointer. 1861 * 1862 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1863 * of anchors. 1864 */ 1865 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock, 1866 struct kernel_lb_addr *fileset) 1867 { 1868 udf_pblk_t last[6]; 1869 int i; 1870 struct udf_sb_info *sbi = UDF_SB(sb); 1871 int last_count = 0; 1872 int ret; 1873 1874 /* First try user provided anchor */ 1875 if (sbi->s_anchor) { 1876 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1877 if (ret != -EAGAIN) 1878 return ret; 1879 } 1880 /* 1881 * according to spec, anchor is in either: 1882 * block 256 1883 * lastblock-256 1884 * lastblock 1885 * however, if the disc isn't closed, it could be 512. 1886 */ 1887 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1888 if (ret != -EAGAIN) 1889 return ret; 1890 /* 1891 * The trouble is which block is the last one. Drives often misreport 1892 * this so we try various possibilities. 1893 */ 1894 last[last_count++] = *lastblock; 1895 if (*lastblock >= 1) 1896 last[last_count++] = *lastblock - 1; 1897 last[last_count++] = *lastblock + 1; 1898 if (*lastblock >= 2) 1899 last[last_count++] = *lastblock - 2; 1900 if (*lastblock >= 150) 1901 last[last_count++] = *lastblock - 150; 1902 if (*lastblock >= 152) 1903 last[last_count++] = *lastblock - 152; 1904 1905 for (i = 0; i < last_count; i++) { 1906 if (last[i] >= sb_bdev_nr_blocks(sb)) 1907 continue; 1908 ret = udf_check_anchor_block(sb, last[i], fileset); 1909 if (ret != -EAGAIN) { 1910 if (!ret) 1911 *lastblock = last[i]; 1912 return ret; 1913 } 1914 if (last[i] < 256) 1915 continue; 1916 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1917 if (ret != -EAGAIN) { 1918 if (!ret) 1919 *lastblock = last[i]; 1920 return ret; 1921 } 1922 } 1923 1924 /* Finally try block 512 in case media is open */ 1925 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1926 } 1927 1928 /* 1929 * Check Volume Structure Descriptor, find Anchor block and load Volume 1930 * Descriptor Sequence. 1931 * 1932 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1933 * block was not found. 1934 */ 1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1936 int silent, struct kernel_lb_addr *fileset) 1937 { 1938 struct udf_sb_info *sbi = UDF_SB(sb); 1939 int nsr = 0; 1940 int ret; 1941 1942 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1943 if (!silent) 1944 udf_warn(sb, "Bad block size\n"); 1945 return -EINVAL; 1946 } 1947 sbi->s_last_block = uopt->lastblock; 1948 if (!uopt->novrs) { 1949 /* Check that it is NSR02 compliant */ 1950 nsr = udf_check_vsd(sb); 1951 if (!nsr) { 1952 if (!silent) 1953 udf_warn(sb, "No VRS found\n"); 1954 return -EINVAL; 1955 } 1956 if (nsr == -1) 1957 udf_debug("Failed to read sector at offset %d. " 1958 "Assuming open disc. Skipping validity " 1959 "check\n", VSD_FIRST_SECTOR_OFFSET); 1960 if (!sbi->s_last_block) 1961 sbi->s_last_block = udf_get_last_block(sb); 1962 } else { 1963 udf_debug("Validity check skipped because of novrs option\n"); 1964 } 1965 1966 /* Look for anchor block and load Volume Descriptor Sequence */ 1967 sbi->s_anchor = uopt->anchor; 1968 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset); 1969 if (ret < 0) { 1970 if (!silent && ret == -EAGAIN) 1971 udf_warn(sb, "No anchor found\n"); 1972 return ret; 1973 } 1974 return 0; 1975 } 1976 1977 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 1978 { 1979 struct timespec64 ts; 1980 1981 ktime_get_real_ts64(&ts); 1982 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1983 lvid->descTag.descCRC = cpu_to_le16( 1984 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1985 le16_to_cpu(lvid->descTag.descCRCLength))); 1986 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1987 } 1988 1989 static void udf_open_lvid(struct super_block *sb) 1990 { 1991 struct udf_sb_info *sbi = UDF_SB(sb); 1992 struct buffer_head *bh = sbi->s_lvid_bh; 1993 struct logicalVolIntegrityDesc *lvid; 1994 struct logicalVolIntegrityDescImpUse *lvidiu; 1995 1996 if (!bh) 1997 return; 1998 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1999 lvidiu = udf_sb_lvidiu(sb); 2000 if (!lvidiu) 2001 return; 2002 2003 mutex_lock(&sbi->s_alloc_mutex); 2004 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2005 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2006 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2007 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2008 else 2009 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2010 2011 udf_finalize_lvid(lvid); 2012 mark_buffer_dirty(bh); 2013 sbi->s_lvid_dirty = 0; 2014 mutex_unlock(&sbi->s_alloc_mutex); 2015 /* Make opening of filesystem visible on the media immediately */ 2016 sync_dirty_buffer(bh); 2017 } 2018 2019 static void udf_close_lvid(struct super_block *sb) 2020 { 2021 struct udf_sb_info *sbi = UDF_SB(sb); 2022 struct buffer_head *bh = sbi->s_lvid_bh; 2023 struct logicalVolIntegrityDesc *lvid; 2024 struct logicalVolIntegrityDescImpUse *lvidiu; 2025 2026 if (!bh) 2027 return; 2028 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2029 lvidiu = udf_sb_lvidiu(sb); 2030 if (!lvidiu) 2031 return; 2032 2033 mutex_lock(&sbi->s_alloc_mutex); 2034 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2035 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2036 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2037 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2038 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2039 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2040 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2041 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2042 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2043 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2044 2045 /* 2046 * We set buffer uptodate unconditionally here to avoid spurious 2047 * warnings from mark_buffer_dirty() when previous EIO has marked 2048 * the buffer as !uptodate 2049 */ 2050 set_buffer_uptodate(bh); 2051 udf_finalize_lvid(lvid); 2052 mark_buffer_dirty(bh); 2053 sbi->s_lvid_dirty = 0; 2054 mutex_unlock(&sbi->s_alloc_mutex); 2055 /* Make closing of filesystem visible on the media immediately */ 2056 sync_dirty_buffer(bh); 2057 } 2058 2059 u64 lvid_get_unique_id(struct super_block *sb) 2060 { 2061 struct buffer_head *bh; 2062 struct udf_sb_info *sbi = UDF_SB(sb); 2063 struct logicalVolIntegrityDesc *lvid; 2064 struct logicalVolHeaderDesc *lvhd; 2065 u64 uniqueID; 2066 u64 ret; 2067 2068 bh = sbi->s_lvid_bh; 2069 if (!bh) 2070 return 0; 2071 2072 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2073 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2074 2075 mutex_lock(&sbi->s_alloc_mutex); 2076 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2077 if (!(++uniqueID & 0xFFFFFFFF)) 2078 uniqueID += 16; 2079 lvhd->uniqueID = cpu_to_le64(uniqueID); 2080 udf_updated_lvid(sb); 2081 mutex_unlock(&sbi->s_alloc_mutex); 2082 2083 return ret; 2084 } 2085 2086 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2087 { 2088 int ret = -EINVAL; 2089 struct inode *inode = NULL; 2090 struct udf_options uopt; 2091 struct kernel_lb_addr rootdir, fileset; 2092 struct udf_sb_info *sbi; 2093 bool lvid_open = false; 2094 2095 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2096 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2097 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2098 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2099 uopt.umask = 0; 2100 uopt.fmode = UDF_INVALID_MODE; 2101 uopt.dmode = UDF_INVALID_MODE; 2102 uopt.nls_map = NULL; 2103 2104 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2105 if (!sbi) 2106 return -ENOMEM; 2107 2108 sb->s_fs_info = sbi; 2109 2110 mutex_init(&sbi->s_alloc_mutex); 2111 2112 if (!udf_parse_options((char *)options, &uopt, false)) 2113 goto parse_options_failure; 2114 2115 fileset.logicalBlockNum = 0xFFFFFFFF; 2116 fileset.partitionReferenceNum = 0xFFFF; 2117 2118 sbi->s_flags = uopt.flags; 2119 sbi->s_uid = uopt.uid; 2120 sbi->s_gid = uopt.gid; 2121 sbi->s_umask = uopt.umask; 2122 sbi->s_fmode = uopt.fmode; 2123 sbi->s_dmode = uopt.dmode; 2124 sbi->s_nls_map = uopt.nls_map; 2125 rwlock_init(&sbi->s_cred_lock); 2126 2127 if (uopt.session == 0xFFFFFFFF) 2128 sbi->s_session = udf_get_last_session(sb); 2129 else 2130 sbi->s_session = uopt.session; 2131 2132 udf_debug("Multi-session=%d\n", sbi->s_session); 2133 2134 /* Fill in the rest of the superblock */ 2135 sb->s_op = &udf_sb_ops; 2136 sb->s_export_op = &udf_export_ops; 2137 2138 sb->s_magic = UDF_SUPER_MAGIC; 2139 sb->s_time_gran = 1000; 2140 2141 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2142 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2143 } else { 2144 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2145 while (uopt.blocksize <= 4096) { 2146 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2147 if (ret < 0) { 2148 if (!silent && ret != -EACCES) { 2149 pr_notice("Scanning with blocksize %u failed\n", 2150 uopt.blocksize); 2151 } 2152 brelse(sbi->s_lvid_bh); 2153 sbi->s_lvid_bh = NULL; 2154 /* 2155 * EACCES is special - we want to propagate to 2156 * upper layers that we cannot handle RW mount. 2157 */ 2158 if (ret == -EACCES) 2159 break; 2160 } else 2161 break; 2162 2163 uopt.blocksize <<= 1; 2164 } 2165 } 2166 if (ret < 0) { 2167 if (ret == -EAGAIN) { 2168 udf_warn(sb, "No partition found (1)\n"); 2169 ret = -EINVAL; 2170 } 2171 goto error_out; 2172 } 2173 2174 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2175 2176 if (sbi->s_lvid_bh) { 2177 struct logicalVolIntegrityDescImpUse *lvidiu = 2178 udf_sb_lvidiu(sb); 2179 uint16_t minUDFReadRev; 2180 uint16_t minUDFWriteRev; 2181 2182 if (!lvidiu) { 2183 ret = -EINVAL; 2184 goto error_out; 2185 } 2186 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2187 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2188 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2189 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2190 minUDFReadRev, 2191 UDF_MAX_READ_VERSION); 2192 ret = -EINVAL; 2193 goto error_out; 2194 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2195 if (!sb_rdonly(sb)) { 2196 ret = -EACCES; 2197 goto error_out; 2198 } 2199 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2200 } 2201 2202 sbi->s_udfrev = minUDFWriteRev; 2203 2204 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2205 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2206 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2207 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2208 } 2209 2210 if (!sbi->s_partitions) { 2211 udf_warn(sb, "No partition found (2)\n"); 2212 ret = -EINVAL; 2213 goto error_out; 2214 } 2215 2216 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2217 UDF_PART_FLAG_READ_ONLY) { 2218 if (!sb_rdonly(sb)) { 2219 ret = -EACCES; 2220 goto error_out; 2221 } 2222 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2223 } 2224 2225 ret = udf_find_fileset(sb, &fileset, &rootdir); 2226 if (ret < 0) { 2227 udf_warn(sb, "No fileset found\n"); 2228 goto error_out; 2229 } 2230 2231 if (!silent) { 2232 struct timestamp ts; 2233 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2234 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2235 sbi->s_volume_ident, 2236 le16_to_cpu(ts.year), ts.month, ts.day, 2237 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2238 } 2239 if (!sb_rdonly(sb)) { 2240 udf_open_lvid(sb); 2241 lvid_open = true; 2242 } 2243 2244 /* Assign the root inode */ 2245 /* assign inodes by physical block number */ 2246 /* perhaps it's not extensible enough, but for now ... */ 2247 inode = udf_iget(sb, &rootdir); 2248 if (IS_ERR(inode)) { 2249 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2250 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2251 ret = PTR_ERR(inode); 2252 goto error_out; 2253 } 2254 2255 /* Allocate a dentry for the root inode */ 2256 sb->s_root = d_make_root(inode); 2257 if (!sb->s_root) { 2258 udf_err(sb, "Couldn't allocate root dentry\n"); 2259 ret = -ENOMEM; 2260 goto error_out; 2261 } 2262 sb->s_maxbytes = UDF_MAX_FILESIZE; 2263 sb->s_max_links = UDF_MAX_LINKS; 2264 return 0; 2265 2266 error_out: 2267 iput(sbi->s_vat_inode); 2268 parse_options_failure: 2269 unload_nls(uopt.nls_map); 2270 if (lvid_open) 2271 udf_close_lvid(sb); 2272 brelse(sbi->s_lvid_bh); 2273 udf_sb_free_partitions(sb); 2274 kfree(sbi); 2275 sb->s_fs_info = NULL; 2276 2277 return ret; 2278 } 2279 2280 void _udf_err(struct super_block *sb, const char *function, 2281 const char *fmt, ...) 2282 { 2283 struct va_format vaf; 2284 va_list args; 2285 2286 va_start(args, fmt); 2287 2288 vaf.fmt = fmt; 2289 vaf.va = &args; 2290 2291 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2292 2293 va_end(args); 2294 } 2295 2296 void _udf_warn(struct super_block *sb, const char *function, 2297 const char *fmt, ...) 2298 { 2299 struct va_format vaf; 2300 va_list args; 2301 2302 va_start(args, fmt); 2303 2304 vaf.fmt = fmt; 2305 vaf.va = &args; 2306 2307 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2308 2309 va_end(args); 2310 } 2311 2312 static void udf_put_super(struct super_block *sb) 2313 { 2314 struct udf_sb_info *sbi; 2315 2316 sbi = UDF_SB(sb); 2317 2318 iput(sbi->s_vat_inode); 2319 unload_nls(sbi->s_nls_map); 2320 if (!sb_rdonly(sb)) 2321 udf_close_lvid(sb); 2322 brelse(sbi->s_lvid_bh); 2323 udf_sb_free_partitions(sb); 2324 mutex_destroy(&sbi->s_alloc_mutex); 2325 kfree(sb->s_fs_info); 2326 sb->s_fs_info = NULL; 2327 } 2328 2329 static int udf_sync_fs(struct super_block *sb, int wait) 2330 { 2331 struct udf_sb_info *sbi = UDF_SB(sb); 2332 2333 mutex_lock(&sbi->s_alloc_mutex); 2334 if (sbi->s_lvid_dirty) { 2335 struct buffer_head *bh = sbi->s_lvid_bh; 2336 struct logicalVolIntegrityDesc *lvid; 2337 2338 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2339 udf_finalize_lvid(lvid); 2340 2341 /* 2342 * Blockdevice will be synced later so we don't have to submit 2343 * the buffer for IO 2344 */ 2345 mark_buffer_dirty(bh); 2346 sbi->s_lvid_dirty = 0; 2347 } 2348 mutex_unlock(&sbi->s_alloc_mutex); 2349 2350 return 0; 2351 } 2352 2353 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2354 { 2355 struct super_block *sb = dentry->d_sb; 2356 struct udf_sb_info *sbi = UDF_SB(sb); 2357 struct logicalVolIntegrityDescImpUse *lvidiu; 2358 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2359 2360 lvidiu = udf_sb_lvidiu(sb); 2361 buf->f_type = UDF_SUPER_MAGIC; 2362 buf->f_bsize = sb->s_blocksize; 2363 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2364 buf->f_bfree = udf_count_free(sb); 2365 buf->f_bavail = buf->f_bfree; 2366 /* 2367 * Let's pretend each free block is also a free 'inode' since UDF does 2368 * not have separate preallocated table of inodes. 2369 */ 2370 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2371 le32_to_cpu(lvidiu->numDirs)) : 0) 2372 + buf->f_bfree; 2373 buf->f_ffree = buf->f_bfree; 2374 buf->f_namelen = UDF_NAME_LEN; 2375 buf->f_fsid = u64_to_fsid(id); 2376 2377 return 0; 2378 } 2379 2380 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2381 struct udf_bitmap *bitmap) 2382 { 2383 struct buffer_head *bh = NULL; 2384 unsigned int accum = 0; 2385 int index; 2386 udf_pblk_t block = 0, newblock; 2387 struct kernel_lb_addr loc; 2388 uint32_t bytes; 2389 uint8_t *ptr; 2390 uint16_t ident; 2391 struct spaceBitmapDesc *bm; 2392 2393 loc.logicalBlockNum = bitmap->s_extPosition; 2394 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2395 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2396 2397 if (!bh) { 2398 udf_err(sb, "udf_count_free failed\n"); 2399 goto out; 2400 } else if (ident != TAG_IDENT_SBD) { 2401 brelse(bh); 2402 udf_err(sb, "udf_count_free failed\n"); 2403 goto out; 2404 } 2405 2406 bm = (struct spaceBitmapDesc *)bh->b_data; 2407 bytes = le32_to_cpu(bm->numOfBytes); 2408 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2409 ptr = (uint8_t *)bh->b_data; 2410 2411 while (bytes > 0) { 2412 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2413 accum += bitmap_weight((const unsigned long *)(ptr + index), 2414 cur_bytes * 8); 2415 bytes -= cur_bytes; 2416 if (bytes) { 2417 brelse(bh); 2418 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2419 bh = sb_bread(sb, newblock); 2420 if (!bh) { 2421 udf_debug("read failed\n"); 2422 goto out; 2423 } 2424 index = 0; 2425 ptr = (uint8_t *)bh->b_data; 2426 } 2427 } 2428 brelse(bh); 2429 out: 2430 return accum; 2431 } 2432 2433 static unsigned int udf_count_free_table(struct super_block *sb, 2434 struct inode *table) 2435 { 2436 unsigned int accum = 0; 2437 uint32_t elen; 2438 struct kernel_lb_addr eloc; 2439 struct extent_position epos; 2440 2441 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2442 epos.block = UDF_I(table)->i_location; 2443 epos.offset = sizeof(struct unallocSpaceEntry); 2444 epos.bh = NULL; 2445 2446 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1) 2447 accum += (elen >> table->i_sb->s_blocksize_bits); 2448 2449 brelse(epos.bh); 2450 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2451 2452 return accum; 2453 } 2454 2455 static unsigned int udf_count_free(struct super_block *sb) 2456 { 2457 unsigned int accum = 0; 2458 struct udf_sb_info *sbi = UDF_SB(sb); 2459 struct udf_part_map *map; 2460 unsigned int part = sbi->s_partition; 2461 int ptype = sbi->s_partmaps[part].s_partition_type; 2462 2463 if (ptype == UDF_METADATA_MAP25) { 2464 part = sbi->s_partmaps[part].s_type_specific.s_metadata. 2465 s_phys_partition_ref; 2466 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { 2467 /* 2468 * Filesystems with VAT are append-only and we cannot write to 2469 * them. Let's just report 0 here. 2470 */ 2471 return 0; 2472 } 2473 2474 if (sbi->s_lvid_bh) { 2475 struct logicalVolIntegrityDesc *lvid = 2476 (struct logicalVolIntegrityDesc *) 2477 sbi->s_lvid_bh->b_data; 2478 if (le32_to_cpu(lvid->numOfPartitions) > part) { 2479 accum = le32_to_cpu( 2480 lvid->freeSpaceTable[part]); 2481 if (accum == 0xFFFFFFFF) 2482 accum = 0; 2483 } 2484 } 2485 2486 if (accum) 2487 return accum; 2488 2489 map = &sbi->s_partmaps[part]; 2490 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2491 accum += udf_count_free_bitmap(sb, 2492 map->s_uspace.s_bitmap); 2493 } 2494 if (accum) 2495 return accum; 2496 2497 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2498 accum += udf_count_free_table(sb, 2499 map->s_uspace.s_table); 2500 } 2501 return accum; 2502 } 2503 2504 MODULE_AUTHOR("Ben Fennema"); 2505 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2506 MODULE_LICENSE("GPL"); 2507 module_init(init_udf_fs) 2508 module_exit(exit_udf_fs) 2509