1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 enum { UDF_MAX_LINKS = 0xffff }; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct dentry *); 96 97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 98 { 99 struct logicalVolIntegrityDesc *lvid = 100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 102 __u32 offset = number_of_partitions * 2 * 103 sizeof(uint32_t)/sizeof(uint8_t); 104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 105 } 106 107 /* UDF filesystem type */ 108 static struct dentry *udf_mount(struct file_system_type *fs_type, 109 int flags, const char *dev_name, void *data) 110 { 111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 112 } 113 114 static struct file_system_type udf_fstype = { 115 .owner = THIS_MODULE, 116 .name = "udf", 117 .mount = udf_mount, 118 .kill_sb = kill_block_super, 119 .fs_flags = FS_REQUIRES_DEV, 120 }; 121 122 static struct kmem_cache *udf_inode_cachep; 123 124 static struct inode *udf_alloc_inode(struct super_block *sb) 125 { 126 struct udf_inode_info *ei; 127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 128 if (!ei) 129 return NULL; 130 131 ei->i_unique = 0; 132 ei->i_lenExtents = 0; 133 ei->i_next_alloc_block = 0; 134 ei->i_next_alloc_goal = 0; 135 ei->i_strat4096 = 0; 136 init_rwsem(&ei->i_data_sem); 137 138 return &ei->vfs_inode; 139 } 140 141 static void udf_i_callback(struct rcu_head *head) 142 { 143 struct inode *inode = container_of(head, struct inode, i_rcu); 144 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 145 } 146 147 static void udf_destroy_inode(struct inode *inode) 148 { 149 call_rcu(&inode->i_rcu, udf_i_callback); 150 } 151 152 static void init_once(void *foo) 153 { 154 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 155 156 ei->i_ext.i_data = NULL; 157 inode_init_once(&ei->vfs_inode); 158 } 159 160 static int init_inodecache(void) 161 { 162 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 163 sizeof(struct udf_inode_info), 164 0, (SLAB_RECLAIM_ACCOUNT | 165 SLAB_MEM_SPREAD), 166 init_once); 167 if (!udf_inode_cachep) 168 return -ENOMEM; 169 return 0; 170 } 171 172 static void destroy_inodecache(void) 173 { 174 kmem_cache_destroy(udf_inode_cachep); 175 } 176 177 /* Superblock operations */ 178 static const struct super_operations udf_sb_ops = { 179 .alloc_inode = udf_alloc_inode, 180 .destroy_inode = udf_destroy_inode, 181 .write_inode = udf_write_inode, 182 .evict_inode = udf_evict_inode, 183 .put_super = udf_put_super, 184 .sync_fs = udf_sync_fs, 185 .statfs = udf_statfs, 186 .remount_fs = udf_remount_fs, 187 .show_options = udf_show_options, 188 }; 189 190 struct udf_options { 191 unsigned char novrs; 192 unsigned int blocksize; 193 unsigned int session; 194 unsigned int lastblock; 195 unsigned int anchor; 196 unsigned int volume; 197 unsigned short partition; 198 unsigned int fileset; 199 unsigned int rootdir; 200 unsigned int flags; 201 umode_t umask; 202 gid_t gid; 203 uid_t uid; 204 umode_t fmode; 205 umode_t dmode; 206 struct nls_table *nls_map; 207 }; 208 209 static int __init init_udf_fs(void) 210 { 211 int err; 212 213 err = init_inodecache(); 214 if (err) 215 goto out1; 216 err = register_filesystem(&udf_fstype); 217 if (err) 218 goto out; 219 220 return 0; 221 222 out: 223 destroy_inodecache(); 224 225 out1: 226 return err; 227 } 228 229 static void __exit exit_udf_fs(void) 230 { 231 unregister_filesystem(&udf_fstype); 232 destroy_inodecache(); 233 } 234 235 module_init(init_udf_fs) 236 module_exit(exit_udf_fs) 237 238 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 239 { 240 struct udf_sb_info *sbi = UDF_SB(sb); 241 242 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 243 GFP_KERNEL); 244 if (!sbi->s_partmaps) { 245 udf_err(sb, "Unable to allocate space for %d partition maps\n", 246 count); 247 sbi->s_partitions = 0; 248 return -ENOMEM; 249 } 250 251 sbi->s_partitions = count; 252 return 0; 253 } 254 255 static int udf_show_options(struct seq_file *seq, struct dentry *root) 256 { 257 struct super_block *sb = root->d_sb; 258 struct udf_sb_info *sbi = UDF_SB(sb); 259 260 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 261 seq_puts(seq, ",nostrict"); 262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 263 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 265 seq_puts(seq, ",unhide"); 266 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 267 seq_puts(seq, ",undelete"); 268 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 269 seq_puts(seq, ",noadinicb"); 270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 271 seq_puts(seq, ",shortad"); 272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 273 seq_puts(seq, ",uid=forget"); 274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 275 seq_puts(seq, ",uid=ignore"); 276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 277 seq_puts(seq, ",gid=forget"); 278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 279 seq_puts(seq, ",gid=ignore"); 280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 281 seq_printf(seq, ",uid=%u", sbi->s_uid); 282 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 283 seq_printf(seq, ",gid=%u", sbi->s_gid); 284 if (sbi->s_umask != 0) 285 seq_printf(seq, ",umask=%ho", sbi->s_umask); 286 if (sbi->s_fmode != UDF_INVALID_MODE) 287 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 288 if (sbi->s_dmode != UDF_INVALID_MODE) 289 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 291 seq_printf(seq, ",session=%u", sbi->s_session); 292 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 293 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 294 if (sbi->s_anchor != 0) 295 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 296 /* 297 * volume, partition, fileset and rootdir seem to be ignored 298 * currently 299 */ 300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 301 seq_puts(seq, ",utf8"); 302 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 303 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 304 305 return 0; 306 } 307 308 /* 309 * udf_parse_options 310 * 311 * PURPOSE 312 * Parse mount options. 313 * 314 * DESCRIPTION 315 * The following mount options are supported: 316 * 317 * gid= Set the default group. 318 * umask= Set the default umask. 319 * mode= Set the default file permissions. 320 * dmode= Set the default directory permissions. 321 * uid= Set the default user. 322 * bs= Set the block size. 323 * unhide Show otherwise hidden files. 324 * undelete Show deleted files in lists. 325 * adinicb Embed data in the inode (default) 326 * noadinicb Don't embed data in the inode 327 * shortad Use short ad's 328 * longad Use long ad's (default) 329 * nostrict Unset strict conformance 330 * iocharset= Set the NLS character set 331 * 332 * The remaining are for debugging and disaster recovery: 333 * 334 * novrs Skip volume sequence recognition 335 * 336 * The following expect a offset from 0. 337 * 338 * session= Set the CDROM session (default= last session) 339 * anchor= Override standard anchor location. (default= 256) 340 * volume= Override the VolumeDesc location. (unused) 341 * partition= Override the PartitionDesc location. (unused) 342 * lastblock= Set the last block of the filesystem/ 343 * 344 * The following expect a offset from the partition root. 345 * 346 * fileset= Override the fileset block location. (unused) 347 * rootdir= Override the root directory location. (unused) 348 * WARNING: overriding the rootdir to a non-directory may 349 * yield highly unpredictable results. 350 * 351 * PRE-CONDITIONS 352 * options Pointer to mount options string. 353 * uopts Pointer to mount options variable. 354 * 355 * POST-CONDITIONS 356 * <return> 1 Mount options parsed okay. 357 * <return> 0 Error parsing mount options. 358 * 359 * HISTORY 360 * July 1, 1997 - Andrew E. Mileski 361 * Written, tested, and released. 362 */ 363 364 enum { 365 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 366 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 367 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 368 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 369 Opt_rootdir, Opt_utf8, Opt_iocharset, 370 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 371 Opt_fmode, Opt_dmode 372 }; 373 374 static const match_table_t tokens = { 375 {Opt_novrs, "novrs"}, 376 {Opt_nostrict, "nostrict"}, 377 {Opt_bs, "bs=%u"}, 378 {Opt_unhide, "unhide"}, 379 {Opt_undelete, "undelete"}, 380 {Opt_noadinicb, "noadinicb"}, 381 {Opt_adinicb, "adinicb"}, 382 {Opt_shortad, "shortad"}, 383 {Opt_longad, "longad"}, 384 {Opt_uforget, "uid=forget"}, 385 {Opt_uignore, "uid=ignore"}, 386 {Opt_gforget, "gid=forget"}, 387 {Opt_gignore, "gid=ignore"}, 388 {Opt_gid, "gid=%u"}, 389 {Opt_uid, "uid=%u"}, 390 {Opt_umask, "umask=%o"}, 391 {Opt_session, "session=%u"}, 392 {Opt_lastblock, "lastblock=%u"}, 393 {Opt_anchor, "anchor=%u"}, 394 {Opt_volume, "volume=%u"}, 395 {Opt_partition, "partition=%u"}, 396 {Opt_fileset, "fileset=%u"}, 397 {Opt_rootdir, "rootdir=%u"}, 398 {Opt_utf8, "utf8"}, 399 {Opt_iocharset, "iocharset=%s"}, 400 {Opt_fmode, "mode=%o"}, 401 {Opt_dmode, "dmode=%o"}, 402 {Opt_err, NULL} 403 }; 404 405 static int udf_parse_options(char *options, struct udf_options *uopt, 406 bool remount) 407 { 408 char *p; 409 int option; 410 411 uopt->novrs = 0; 412 uopt->partition = 0xFFFF; 413 uopt->session = 0xFFFFFFFF; 414 uopt->lastblock = 0; 415 uopt->anchor = 0; 416 uopt->volume = 0xFFFFFFFF; 417 uopt->rootdir = 0xFFFFFFFF; 418 uopt->fileset = 0xFFFFFFFF; 419 uopt->nls_map = NULL; 420 421 if (!options) 422 return 1; 423 424 while ((p = strsep(&options, ",")) != NULL) { 425 substring_t args[MAX_OPT_ARGS]; 426 int token; 427 if (!*p) 428 continue; 429 430 token = match_token(p, tokens, args); 431 switch (token) { 432 case Opt_novrs: 433 uopt->novrs = 1; 434 break; 435 case Opt_bs: 436 if (match_int(&args[0], &option)) 437 return 0; 438 uopt->blocksize = option; 439 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 440 break; 441 case Opt_unhide: 442 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 443 break; 444 case Opt_undelete: 445 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 446 break; 447 case Opt_noadinicb: 448 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 449 break; 450 case Opt_adinicb: 451 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 452 break; 453 case Opt_shortad: 454 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 455 break; 456 case Opt_longad: 457 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 458 break; 459 case Opt_gid: 460 if (match_int(args, &option)) 461 return 0; 462 uopt->gid = option; 463 uopt->flags |= (1 << UDF_FLAG_GID_SET); 464 break; 465 case Opt_uid: 466 if (match_int(args, &option)) 467 return 0; 468 uopt->uid = option; 469 uopt->flags |= (1 << UDF_FLAG_UID_SET); 470 break; 471 case Opt_umask: 472 if (match_octal(args, &option)) 473 return 0; 474 uopt->umask = option; 475 break; 476 case Opt_nostrict: 477 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 478 break; 479 case Opt_session: 480 if (match_int(args, &option)) 481 return 0; 482 uopt->session = option; 483 if (!remount) 484 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 485 break; 486 case Opt_lastblock: 487 if (match_int(args, &option)) 488 return 0; 489 uopt->lastblock = option; 490 if (!remount) 491 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 492 break; 493 case Opt_anchor: 494 if (match_int(args, &option)) 495 return 0; 496 uopt->anchor = option; 497 break; 498 case Opt_volume: 499 if (match_int(args, &option)) 500 return 0; 501 uopt->volume = option; 502 break; 503 case Opt_partition: 504 if (match_int(args, &option)) 505 return 0; 506 uopt->partition = option; 507 break; 508 case Opt_fileset: 509 if (match_int(args, &option)) 510 return 0; 511 uopt->fileset = option; 512 break; 513 case Opt_rootdir: 514 if (match_int(args, &option)) 515 return 0; 516 uopt->rootdir = option; 517 break; 518 case Opt_utf8: 519 uopt->flags |= (1 << UDF_FLAG_UTF8); 520 break; 521 #ifdef CONFIG_UDF_NLS 522 case Opt_iocharset: 523 uopt->nls_map = load_nls(args[0].from); 524 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 525 break; 526 #endif 527 case Opt_uignore: 528 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 529 break; 530 case Opt_uforget: 531 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 532 break; 533 case Opt_gignore: 534 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 535 break; 536 case Opt_gforget: 537 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 538 break; 539 case Opt_fmode: 540 if (match_octal(args, &option)) 541 return 0; 542 uopt->fmode = option & 0777; 543 break; 544 case Opt_dmode: 545 if (match_octal(args, &option)) 546 return 0; 547 uopt->dmode = option & 0777; 548 break; 549 default: 550 pr_err("bad mount option \"%s\" or missing value\n", p); 551 return 0; 552 } 553 } 554 return 1; 555 } 556 557 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 558 { 559 struct udf_options uopt; 560 struct udf_sb_info *sbi = UDF_SB(sb); 561 int error = 0; 562 563 uopt.flags = sbi->s_flags; 564 uopt.uid = sbi->s_uid; 565 uopt.gid = sbi->s_gid; 566 uopt.umask = sbi->s_umask; 567 uopt.fmode = sbi->s_fmode; 568 uopt.dmode = sbi->s_dmode; 569 570 if (!udf_parse_options(options, &uopt, true)) 571 return -EINVAL; 572 573 write_lock(&sbi->s_cred_lock); 574 sbi->s_flags = uopt.flags; 575 sbi->s_uid = uopt.uid; 576 sbi->s_gid = uopt.gid; 577 sbi->s_umask = uopt.umask; 578 sbi->s_fmode = uopt.fmode; 579 sbi->s_dmode = uopt.dmode; 580 write_unlock(&sbi->s_cred_lock); 581 582 if (sbi->s_lvid_bh) { 583 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 584 if (write_rev > UDF_MAX_WRITE_VERSION) 585 *flags |= MS_RDONLY; 586 } 587 588 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 589 goto out_unlock; 590 591 if (*flags & MS_RDONLY) 592 udf_close_lvid(sb); 593 else 594 udf_open_lvid(sb); 595 596 out_unlock: 597 return error; 598 } 599 600 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 601 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 602 static loff_t udf_check_vsd(struct super_block *sb) 603 { 604 struct volStructDesc *vsd = NULL; 605 loff_t sector = 32768; 606 int sectorsize; 607 struct buffer_head *bh = NULL; 608 int nsr02 = 0; 609 int nsr03 = 0; 610 struct udf_sb_info *sbi; 611 612 sbi = UDF_SB(sb); 613 if (sb->s_blocksize < sizeof(struct volStructDesc)) 614 sectorsize = sizeof(struct volStructDesc); 615 else 616 sectorsize = sb->s_blocksize; 617 618 sector += (sbi->s_session << sb->s_blocksize_bits); 619 620 udf_debug("Starting at sector %u (%ld byte sectors)\n", 621 (unsigned int)(sector >> sb->s_blocksize_bits), 622 sb->s_blocksize); 623 /* Process the sequence (if applicable) */ 624 for (; !nsr02 && !nsr03; sector += sectorsize) { 625 /* Read a block */ 626 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 627 if (!bh) 628 break; 629 630 /* Look for ISO descriptors */ 631 vsd = (struct volStructDesc *)(bh->b_data + 632 (sector & (sb->s_blocksize - 1))); 633 634 if (vsd->stdIdent[0] == 0) { 635 brelse(bh); 636 break; 637 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 638 VSD_STD_ID_LEN)) { 639 switch (vsd->structType) { 640 case 0: 641 udf_debug("ISO9660 Boot Record found\n"); 642 break; 643 case 1: 644 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 645 break; 646 case 2: 647 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 648 break; 649 case 3: 650 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 651 break; 652 case 255: 653 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 654 break; 655 default: 656 udf_debug("ISO9660 VRS (%u) found\n", 657 vsd->structType); 658 break; 659 } 660 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 661 VSD_STD_ID_LEN)) 662 ; /* nothing */ 663 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 664 VSD_STD_ID_LEN)) { 665 brelse(bh); 666 break; 667 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 668 VSD_STD_ID_LEN)) 669 nsr02 = sector; 670 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 671 VSD_STD_ID_LEN)) 672 nsr03 = sector; 673 brelse(bh); 674 } 675 676 if (nsr03) 677 return nsr03; 678 else if (nsr02) 679 return nsr02; 680 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 681 return -1; 682 else 683 return 0; 684 } 685 686 static int udf_find_fileset(struct super_block *sb, 687 struct kernel_lb_addr *fileset, 688 struct kernel_lb_addr *root) 689 { 690 struct buffer_head *bh = NULL; 691 long lastblock; 692 uint16_t ident; 693 struct udf_sb_info *sbi; 694 695 if (fileset->logicalBlockNum != 0xFFFFFFFF || 696 fileset->partitionReferenceNum != 0xFFFF) { 697 bh = udf_read_ptagged(sb, fileset, 0, &ident); 698 699 if (!bh) { 700 return 1; 701 } else if (ident != TAG_IDENT_FSD) { 702 brelse(bh); 703 return 1; 704 } 705 706 } 707 708 sbi = UDF_SB(sb); 709 if (!bh) { 710 /* Search backwards through the partitions */ 711 struct kernel_lb_addr newfileset; 712 713 /* --> cvg: FIXME - is it reasonable? */ 714 return 1; 715 716 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 717 (newfileset.partitionReferenceNum != 0xFFFF && 718 fileset->logicalBlockNum == 0xFFFFFFFF && 719 fileset->partitionReferenceNum == 0xFFFF); 720 newfileset.partitionReferenceNum--) { 721 lastblock = sbi->s_partmaps 722 [newfileset.partitionReferenceNum] 723 .s_partition_len; 724 newfileset.logicalBlockNum = 0; 725 726 do { 727 bh = udf_read_ptagged(sb, &newfileset, 0, 728 &ident); 729 if (!bh) { 730 newfileset.logicalBlockNum++; 731 continue; 732 } 733 734 switch (ident) { 735 case TAG_IDENT_SBD: 736 { 737 struct spaceBitmapDesc *sp; 738 sp = (struct spaceBitmapDesc *) 739 bh->b_data; 740 newfileset.logicalBlockNum += 1 + 741 ((le32_to_cpu(sp->numOfBytes) + 742 sizeof(struct spaceBitmapDesc) 743 - 1) >> sb->s_blocksize_bits); 744 brelse(bh); 745 break; 746 } 747 case TAG_IDENT_FSD: 748 *fileset = newfileset; 749 break; 750 default: 751 newfileset.logicalBlockNum++; 752 brelse(bh); 753 bh = NULL; 754 break; 755 } 756 } while (newfileset.logicalBlockNum < lastblock && 757 fileset->logicalBlockNum == 0xFFFFFFFF && 758 fileset->partitionReferenceNum == 0xFFFF); 759 } 760 } 761 762 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 763 fileset->partitionReferenceNum != 0xFFFF) && bh) { 764 udf_debug("Fileset at block=%d, partition=%d\n", 765 fileset->logicalBlockNum, 766 fileset->partitionReferenceNum); 767 768 sbi->s_partition = fileset->partitionReferenceNum; 769 udf_load_fileset(sb, bh, root); 770 brelse(bh); 771 return 0; 772 } 773 return 1; 774 } 775 776 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 777 { 778 struct primaryVolDesc *pvoldesc; 779 struct ustr *instr, *outstr; 780 struct buffer_head *bh; 781 uint16_t ident; 782 int ret = 1; 783 784 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 785 if (!instr) 786 return 1; 787 788 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 789 if (!outstr) 790 goto out1; 791 792 bh = udf_read_tagged(sb, block, block, &ident); 793 if (!bh) 794 goto out2; 795 796 BUG_ON(ident != TAG_IDENT_PVD); 797 798 pvoldesc = (struct primaryVolDesc *)bh->b_data; 799 800 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 801 pvoldesc->recordingDateAndTime)) { 802 #ifdef UDFFS_DEBUG 803 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 804 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 805 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 806 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 807 #endif 808 } 809 810 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 811 if (udf_CS0toUTF8(outstr, instr)) { 812 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 813 outstr->u_len > 31 ? 31 : outstr->u_len); 814 udf_debug("volIdent[] = '%s'\n", 815 UDF_SB(sb)->s_volume_ident); 816 } 817 818 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 819 if (udf_CS0toUTF8(outstr, instr)) 820 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 821 822 brelse(bh); 823 ret = 0; 824 out2: 825 kfree(outstr); 826 out1: 827 kfree(instr); 828 return ret; 829 } 830 831 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 832 u32 meta_file_loc, u32 partition_num) 833 { 834 struct kernel_lb_addr addr; 835 struct inode *metadata_fe; 836 837 addr.logicalBlockNum = meta_file_loc; 838 addr.partitionReferenceNum = partition_num; 839 840 metadata_fe = udf_iget(sb, &addr); 841 842 if (metadata_fe == NULL) 843 udf_warn(sb, "metadata inode efe not found\n"); 844 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 845 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 846 iput(metadata_fe); 847 metadata_fe = NULL; 848 } 849 850 return metadata_fe; 851 } 852 853 static int udf_load_metadata_files(struct super_block *sb, int partition) 854 { 855 struct udf_sb_info *sbi = UDF_SB(sb); 856 struct udf_part_map *map; 857 struct udf_meta_data *mdata; 858 struct kernel_lb_addr addr; 859 860 map = &sbi->s_partmaps[partition]; 861 mdata = &map->s_type_specific.s_metadata; 862 863 /* metadata address */ 864 udf_debug("Metadata file location: block = %d part = %d\n", 865 mdata->s_meta_file_loc, map->s_partition_num); 866 867 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 868 mdata->s_meta_file_loc, map->s_partition_num); 869 870 if (mdata->s_metadata_fe == NULL) { 871 /* mirror file entry */ 872 udf_debug("Mirror metadata file location: block = %d part = %d\n", 873 mdata->s_mirror_file_loc, map->s_partition_num); 874 875 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 876 mdata->s_mirror_file_loc, map->s_partition_num); 877 878 if (mdata->s_mirror_fe == NULL) { 879 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 880 goto error_exit; 881 } 882 } 883 884 /* 885 * bitmap file entry 886 * Note: 887 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 888 */ 889 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 890 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 891 addr.partitionReferenceNum = map->s_partition_num; 892 893 udf_debug("Bitmap file location: block = %d part = %d\n", 894 addr.logicalBlockNum, addr.partitionReferenceNum); 895 896 mdata->s_bitmap_fe = udf_iget(sb, &addr); 897 898 if (mdata->s_bitmap_fe == NULL) { 899 if (sb->s_flags & MS_RDONLY) 900 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 901 else { 902 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 903 goto error_exit; 904 } 905 } 906 } 907 908 udf_debug("udf_load_metadata_files Ok\n"); 909 910 return 0; 911 912 error_exit: 913 return 1; 914 } 915 916 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 917 struct kernel_lb_addr *root) 918 { 919 struct fileSetDesc *fset; 920 921 fset = (struct fileSetDesc *)bh->b_data; 922 923 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 924 925 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 926 927 udf_debug("Rootdir at block=%d, partition=%d\n", 928 root->logicalBlockNum, root->partitionReferenceNum); 929 } 930 931 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 932 { 933 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 934 return DIV_ROUND_UP(map->s_partition_len + 935 (sizeof(struct spaceBitmapDesc) << 3), 936 sb->s_blocksize * 8); 937 } 938 939 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 940 { 941 struct udf_bitmap *bitmap; 942 int nr_groups; 943 int size; 944 945 nr_groups = udf_compute_nr_groups(sb, index); 946 size = sizeof(struct udf_bitmap) + 947 (sizeof(struct buffer_head *) * nr_groups); 948 949 if (size <= PAGE_SIZE) 950 bitmap = kzalloc(size, GFP_KERNEL); 951 else 952 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 953 954 if (bitmap == NULL) 955 return NULL; 956 957 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); 958 bitmap->s_nr_groups = nr_groups; 959 return bitmap; 960 } 961 962 static int udf_fill_partdesc_info(struct super_block *sb, 963 struct partitionDesc *p, int p_index) 964 { 965 struct udf_part_map *map; 966 struct udf_sb_info *sbi = UDF_SB(sb); 967 struct partitionHeaderDesc *phd; 968 969 map = &sbi->s_partmaps[p_index]; 970 971 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 972 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 973 974 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 975 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 976 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 977 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 978 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 979 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 980 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 981 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 982 983 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 984 p_index, map->s_partition_type, 985 map->s_partition_root, map->s_partition_len); 986 987 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 988 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 989 return 0; 990 991 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 992 if (phd->unallocSpaceTable.extLength) { 993 struct kernel_lb_addr loc = { 994 .logicalBlockNum = le32_to_cpu( 995 phd->unallocSpaceTable.extPosition), 996 .partitionReferenceNum = p_index, 997 }; 998 999 map->s_uspace.s_table = udf_iget(sb, &loc); 1000 if (!map->s_uspace.s_table) { 1001 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1002 p_index); 1003 return 1; 1004 } 1005 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1006 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1007 p_index, map->s_uspace.s_table->i_ino); 1008 } 1009 1010 if (phd->unallocSpaceBitmap.extLength) { 1011 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1012 if (!bitmap) 1013 return 1; 1014 map->s_uspace.s_bitmap = bitmap; 1015 bitmap->s_extLength = le32_to_cpu( 1016 phd->unallocSpaceBitmap.extLength); 1017 bitmap->s_extPosition = le32_to_cpu( 1018 phd->unallocSpaceBitmap.extPosition); 1019 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1020 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1021 p_index, bitmap->s_extPosition); 1022 } 1023 1024 if (phd->partitionIntegrityTable.extLength) 1025 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1026 1027 if (phd->freedSpaceTable.extLength) { 1028 struct kernel_lb_addr loc = { 1029 .logicalBlockNum = le32_to_cpu( 1030 phd->freedSpaceTable.extPosition), 1031 .partitionReferenceNum = p_index, 1032 }; 1033 1034 map->s_fspace.s_table = udf_iget(sb, &loc); 1035 if (!map->s_fspace.s_table) { 1036 udf_debug("cannot load freedSpaceTable (part %d)\n", 1037 p_index); 1038 return 1; 1039 } 1040 1041 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1042 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1043 p_index, map->s_fspace.s_table->i_ino); 1044 } 1045 1046 if (phd->freedSpaceBitmap.extLength) { 1047 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1048 if (!bitmap) 1049 return 1; 1050 map->s_fspace.s_bitmap = bitmap; 1051 bitmap->s_extLength = le32_to_cpu( 1052 phd->freedSpaceBitmap.extLength); 1053 bitmap->s_extPosition = le32_to_cpu( 1054 phd->freedSpaceBitmap.extPosition); 1055 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1056 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1057 p_index, bitmap->s_extPosition); 1058 } 1059 return 0; 1060 } 1061 1062 static void udf_find_vat_block(struct super_block *sb, int p_index, 1063 int type1_index, sector_t start_block) 1064 { 1065 struct udf_sb_info *sbi = UDF_SB(sb); 1066 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1067 sector_t vat_block; 1068 struct kernel_lb_addr ino; 1069 1070 /* 1071 * VAT file entry is in the last recorded block. Some broken disks have 1072 * it a few blocks before so try a bit harder... 1073 */ 1074 ino.partitionReferenceNum = type1_index; 1075 for (vat_block = start_block; 1076 vat_block >= map->s_partition_root && 1077 vat_block >= start_block - 3 && 1078 !sbi->s_vat_inode; vat_block--) { 1079 ino.logicalBlockNum = vat_block - map->s_partition_root; 1080 sbi->s_vat_inode = udf_iget(sb, &ino); 1081 } 1082 } 1083 1084 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1085 { 1086 struct udf_sb_info *sbi = UDF_SB(sb); 1087 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1088 struct buffer_head *bh = NULL; 1089 struct udf_inode_info *vati; 1090 uint32_t pos; 1091 struct virtualAllocationTable20 *vat20; 1092 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1093 1094 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1095 if (!sbi->s_vat_inode && 1096 sbi->s_last_block != blocks - 1) { 1097 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1098 (unsigned long)sbi->s_last_block, 1099 (unsigned long)blocks - 1); 1100 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1101 } 1102 if (!sbi->s_vat_inode) 1103 return 1; 1104 1105 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1106 map->s_type_specific.s_virtual.s_start_offset = 0; 1107 map->s_type_specific.s_virtual.s_num_entries = 1108 (sbi->s_vat_inode->i_size - 36) >> 2; 1109 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1110 vati = UDF_I(sbi->s_vat_inode); 1111 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1112 pos = udf_block_map(sbi->s_vat_inode, 0); 1113 bh = sb_bread(sb, pos); 1114 if (!bh) 1115 return 1; 1116 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1117 } else { 1118 vat20 = (struct virtualAllocationTable20 *) 1119 vati->i_ext.i_data; 1120 } 1121 1122 map->s_type_specific.s_virtual.s_start_offset = 1123 le16_to_cpu(vat20->lengthHeader); 1124 map->s_type_specific.s_virtual.s_num_entries = 1125 (sbi->s_vat_inode->i_size - 1126 map->s_type_specific.s_virtual. 1127 s_start_offset) >> 2; 1128 brelse(bh); 1129 } 1130 return 0; 1131 } 1132 1133 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1134 { 1135 struct buffer_head *bh; 1136 struct partitionDesc *p; 1137 struct udf_part_map *map; 1138 struct udf_sb_info *sbi = UDF_SB(sb); 1139 int i, type1_idx; 1140 uint16_t partitionNumber; 1141 uint16_t ident; 1142 int ret = 0; 1143 1144 bh = udf_read_tagged(sb, block, block, &ident); 1145 if (!bh) 1146 return 1; 1147 if (ident != TAG_IDENT_PD) 1148 goto out_bh; 1149 1150 p = (struct partitionDesc *)bh->b_data; 1151 partitionNumber = le16_to_cpu(p->partitionNumber); 1152 1153 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1154 for (i = 0; i < sbi->s_partitions; i++) { 1155 map = &sbi->s_partmaps[i]; 1156 udf_debug("Searching map: (%d == %d)\n", 1157 map->s_partition_num, partitionNumber); 1158 if (map->s_partition_num == partitionNumber && 1159 (map->s_partition_type == UDF_TYPE1_MAP15 || 1160 map->s_partition_type == UDF_SPARABLE_MAP15)) 1161 break; 1162 } 1163 1164 if (i >= sbi->s_partitions) { 1165 udf_debug("Partition (%d) not found in partition map\n", 1166 partitionNumber); 1167 goto out_bh; 1168 } 1169 1170 ret = udf_fill_partdesc_info(sb, p, i); 1171 1172 /* 1173 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1174 * PHYSICAL partitions are already set up 1175 */ 1176 type1_idx = i; 1177 for (i = 0; i < sbi->s_partitions; i++) { 1178 map = &sbi->s_partmaps[i]; 1179 1180 if (map->s_partition_num == partitionNumber && 1181 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1182 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1183 map->s_partition_type == UDF_METADATA_MAP25)) 1184 break; 1185 } 1186 1187 if (i >= sbi->s_partitions) 1188 goto out_bh; 1189 1190 ret = udf_fill_partdesc_info(sb, p, i); 1191 if (ret) 1192 goto out_bh; 1193 1194 if (map->s_partition_type == UDF_METADATA_MAP25) { 1195 ret = udf_load_metadata_files(sb, i); 1196 if (ret) { 1197 udf_err(sb, "error loading MetaData partition map %d\n", 1198 i); 1199 goto out_bh; 1200 } 1201 } else { 1202 ret = udf_load_vat(sb, i, type1_idx); 1203 if (ret) 1204 goto out_bh; 1205 /* 1206 * Mark filesystem read-only if we have a partition with 1207 * virtual map since we don't handle writing to it (we 1208 * overwrite blocks instead of relocating them). 1209 */ 1210 sb->s_flags |= MS_RDONLY; 1211 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); 1212 } 1213 out_bh: 1214 /* In case loading failed, we handle cleanup in udf_fill_super */ 1215 brelse(bh); 1216 return ret; 1217 } 1218 1219 static int udf_load_sparable_map(struct super_block *sb, 1220 struct udf_part_map *map, 1221 struct sparablePartitionMap *spm) 1222 { 1223 uint32_t loc; 1224 uint16_t ident; 1225 struct sparingTable *st; 1226 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1227 int i; 1228 struct buffer_head *bh; 1229 1230 map->s_partition_type = UDF_SPARABLE_MAP15; 1231 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1232 if (!is_power_of_2(sdata->s_packet_len)) { 1233 udf_err(sb, "error loading logical volume descriptor: " 1234 "Invalid packet length %u\n", 1235 (unsigned)sdata->s_packet_len); 1236 return -EIO; 1237 } 1238 if (spm->numSparingTables > 4) { 1239 udf_err(sb, "error loading logical volume descriptor: " 1240 "Too many sparing tables (%d)\n", 1241 (int)spm->numSparingTables); 1242 return -EIO; 1243 } 1244 1245 for (i = 0; i < spm->numSparingTables; i++) { 1246 loc = le32_to_cpu(spm->locSparingTable[i]); 1247 bh = udf_read_tagged(sb, loc, loc, &ident); 1248 if (!bh) 1249 continue; 1250 1251 st = (struct sparingTable *)bh->b_data; 1252 if (ident != 0 || 1253 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1254 strlen(UDF_ID_SPARING)) || 1255 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1256 sb->s_blocksize) { 1257 brelse(bh); 1258 continue; 1259 } 1260 1261 sdata->s_spar_map[i] = bh; 1262 } 1263 map->s_partition_func = udf_get_pblock_spar15; 1264 return 0; 1265 } 1266 1267 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1268 struct kernel_lb_addr *fileset) 1269 { 1270 struct logicalVolDesc *lvd; 1271 int i, offset; 1272 uint8_t type; 1273 struct udf_sb_info *sbi = UDF_SB(sb); 1274 struct genericPartitionMap *gpm; 1275 uint16_t ident; 1276 struct buffer_head *bh; 1277 unsigned int table_len; 1278 int ret = 0; 1279 1280 bh = udf_read_tagged(sb, block, block, &ident); 1281 if (!bh) 1282 return 1; 1283 BUG_ON(ident != TAG_IDENT_LVD); 1284 lvd = (struct logicalVolDesc *)bh->b_data; 1285 table_len = le32_to_cpu(lvd->mapTableLength); 1286 if (sizeof(*lvd) + table_len > sb->s_blocksize) { 1287 udf_err(sb, "error loading logical volume descriptor: " 1288 "Partition table too long (%u > %lu)\n", table_len, 1289 sb->s_blocksize - sizeof(*lvd)); 1290 goto out_bh; 1291 } 1292 1293 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1294 if (ret) 1295 goto out_bh; 1296 1297 for (i = 0, offset = 0; 1298 i < sbi->s_partitions && offset < table_len; 1299 i++, offset += gpm->partitionMapLength) { 1300 struct udf_part_map *map = &sbi->s_partmaps[i]; 1301 gpm = (struct genericPartitionMap *) 1302 &(lvd->partitionMaps[offset]); 1303 type = gpm->partitionMapType; 1304 if (type == 1) { 1305 struct genericPartitionMap1 *gpm1 = 1306 (struct genericPartitionMap1 *)gpm; 1307 map->s_partition_type = UDF_TYPE1_MAP15; 1308 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1309 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1310 map->s_partition_func = NULL; 1311 } else if (type == 2) { 1312 struct udfPartitionMap2 *upm2 = 1313 (struct udfPartitionMap2 *)gpm; 1314 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1315 strlen(UDF_ID_VIRTUAL))) { 1316 u16 suf = 1317 le16_to_cpu(((__le16 *)upm2->partIdent. 1318 identSuffix)[0]); 1319 if (suf < 0x0200) { 1320 map->s_partition_type = 1321 UDF_VIRTUAL_MAP15; 1322 map->s_partition_func = 1323 udf_get_pblock_virt15; 1324 } else { 1325 map->s_partition_type = 1326 UDF_VIRTUAL_MAP20; 1327 map->s_partition_func = 1328 udf_get_pblock_virt20; 1329 } 1330 } else if (!strncmp(upm2->partIdent.ident, 1331 UDF_ID_SPARABLE, 1332 strlen(UDF_ID_SPARABLE))) { 1333 if (udf_load_sparable_map(sb, map, 1334 (struct sparablePartitionMap *)gpm) < 0) 1335 goto out_bh; 1336 } else if (!strncmp(upm2->partIdent.ident, 1337 UDF_ID_METADATA, 1338 strlen(UDF_ID_METADATA))) { 1339 struct udf_meta_data *mdata = 1340 &map->s_type_specific.s_metadata; 1341 struct metadataPartitionMap *mdm = 1342 (struct metadataPartitionMap *) 1343 &(lvd->partitionMaps[offset]); 1344 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1345 i, type, UDF_ID_METADATA); 1346 1347 map->s_partition_type = UDF_METADATA_MAP25; 1348 map->s_partition_func = udf_get_pblock_meta25; 1349 1350 mdata->s_meta_file_loc = 1351 le32_to_cpu(mdm->metadataFileLoc); 1352 mdata->s_mirror_file_loc = 1353 le32_to_cpu(mdm->metadataMirrorFileLoc); 1354 mdata->s_bitmap_file_loc = 1355 le32_to_cpu(mdm->metadataBitmapFileLoc); 1356 mdata->s_alloc_unit_size = 1357 le32_to_cpu(mdm->allocUnitSize); 1358 mdata->s_align_unit_size = 1359 le16_to_cpu(mdm->alignUnitSize); 1360 if (mdm->flags & 0x01) 1361 mdata->s_flags |= MF_DUPLICATE_MD; 1362 1363 udf_debug("Metadata Ident suffix=0x%x\n", 1364 le16_to_cpu(*(__le16 *) 1365 mdm->partIdent.identSuffix)); 1366 udf_debug("Metadata part num=%d\n", 1367 le16_to_cpu(mdm->partitionNum)); 1368 udf_debug("Metadata part alloc unit size=%d\n", 1369 le32_to_cpu(mdm->allocUnitSize)); 1370 udf_debug("Metadata file loc=%d\n", 1371 le32_to_cpu(mdm->metadataFileLoc)); 1372 udf_debug("Mirror file loc=%d\n", 1373 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1374 udf_debug("Bitmap file loc=%d\n", 1375 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1376 udf_debug("Flags: %d %d\n", 1377 mdata->s_flags, mdm->flags); 1378 } else { 1379 udf_debug("Unknown ident: %s\n", 1380 upm2->partIdent.ident); 1381 continue; 1382 } 1383 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1384 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1385 } 1386 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1387 i, map->s_partition_num, type, map->s_volumeseqnum); 1388 } 1389 1390 if (fileset) { 1391 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1392 1393 *fileset = lelb_to_cpu(la->extLocation); 1394 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1395 fileset->logicalBlockNum, 1396 fileset->partitionReferenceNum); 1397 } 1398 if (lvd->integritySeqExt.extLength) 1399 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1400 1401 out_bh: 1402 brelse(bh); 1403 return ret; 1404 } 1405 1406 /* 1407 * udf_load_logicalvolint 1408 * 1409 */ 1410 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1411 { 1412 struct buffer_head *bh = NULL; 1413 uint16_t ident; 1414 struct udf_sb_info *sbi = UDF_SB(sb); 1415 struct logicalVolIntegrityDesc *lvid; 1416 1417 while (loc.extLength > 0 && 1418 (bh = udf_read_tagged(sb, loc.extLocation, 1419 loc.extLocation, &ident)) && 1420 ident == TAG_IDENT_LVID) { 1421 sbi->s_lvid_bh = bh; 1422 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1423 1424 if (lvid->nextIntegrityExt.extLength) 1425 udf_load_logicalvolint(sb, 1426 leea_to_cpu(lvid->nextIntegrityExt)); 1427 1428 if (sbi->s_lvid_bh != bh) 1429 brelse(bh); 1430 loc.extLength -= sb->s_blocksize; 1431 loc.extLocation++; 1432 } 1433 if (sbi->s_lvid_bh != bh) 1434 brelse(bh); 1435 } 1436 1437 /* 1438 * udf_process_sequence 1439 * 1440 * PURPOSE 1441 * Process a main/reserve volume descriptor sequence. 1442 * 1443 * PRE-CONDITIONS 1444 * sb Pointer to _locked_ superblock. 1445 * block First block of first extent of the sequence. 1446 * lastblock Lastblock of first extent of the sequence. 1447 * 1448 * HISTORY 1449 * July 1, 1997 - Andrew E. Mileski 1450 * Written, tested, and released. 1451 */ 1452 static noinline int udf_process_sequence(struct super_block *sb, long block, 1453 long lastblock, struct kernel_lb_addr *fileset) 1454 { 1455 struct buffer_head *bh = NULL; 1456 struct udf_vds_record vds[VDS_POS_LENGTH]; 1457 struct udf_vds_record *curr; 1458 struct generic_desc *gd; 1459 struct volDescPtr *vdp; 1460 int done = 0; 1461 uint32_t vdsn; 1462 uint16_t ident; 1463 long next_s = 0, next_e = 0; 1464 1465 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1466 1467 /* 1468 * Read the main descriptor sequence and find which descriptors 1469 * are in it. 1470 */ 1471 for (; (!done && block <= lastblock); block++) { 1472 1473 bh = udf_read_tagged(sb, block, block, &ident); 1474 if (!bh) { 1475 udf_err(sb, 1476 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1477 (unsigned long long)block); 1478 return 1; 1479 } 1480 1481 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1482 gd = (struct generic_desc *)bh->b_data; 1483 vdsn = le32_to_cpu(gd->volDescSeqNum); 1484 switch (ident) { 1485 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1486 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1487 if (vdsn >= curr->volDescSeqNum) { 1488 curr->volDescSeqNum = vdsn; 1489 curr->block = block; 1490 } 1491 break; 1492 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1493 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1494 if (vdsn >= curr->volDescSeqNum) { 1495 curr->volDescSeqNum = vdsn; 1496 curr->block = block; 1497 1498 vdp = (struct volDescPtr *)bh->b_data; 1499 next_s = le32_to_cpu( 1500 vdp->nextVolDescSeqExt.extLocation); 1501 next_e = le32_to_cpu( 1502 vdp->nextVolDescSeqExt.extLength); 1503 next_e = next_e >> sb->s_blocksize_bits; 1504 next_e += next_s; 1505 } 1506 break; 1507 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1508 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1509 if (vdsn >= curr->volDescSeqNum) { 1510 curr->volDescSeqNum = vdsn; 1511 curr->block = block; 1512 } 1513 break; 1514 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1515 curr = &vds[VDS_POS_PARTITION_DESC]; 1516 if (!curr->block) 1517 curr->block = block; 1518 break; 1519 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1520 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1521 if (vdsn >= curr->volDescSeqNum) { 1522 curr->volDescSeqNum = vdsn; 1523 curr->block = block; 1524 } 1525 break; 1526 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1527 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1528 if (vdsn >= curr->volDescSeqNum) { 1529 curr->volDescSeqNum = vdsn; 1530 curr->block = block; 1531 } 1532 break; 1533 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1534 vds[VDS_POS_TERMINATING_DESC].block = block; 1535 if (next_e) { 1536 block = next_s; 1537 lastblock = next_e; 1538 next_s = next_e = 0; 1539 } else 1540 done = 1; 1541 break; 1542 } 1543 brelse(bh); 1544 } 1545 /* 1546 * Now read interesting descriptors again and process them 1547 * in a suitable order 1548 */ 1549 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1550 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1551 return 1; 1552 } 1553 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1554 return 1; 1555 1556 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1557 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1558 return 1; 1559 1560 if (vds[VDS_POS_PARTITION_DESC].block) { 1561 /* 1562 * We rescan the whole descriptor sequence to find 1563 * partition descriptor blocks and process them. 1564 */ 1565 for (block = vds[VDS_POS_PARTITION_DESC].block; 1566 block < vds[VDS_POS_TERMINATING_DESC].block; 1567 block++) 1568 if (udf_load_partdesc(sb, block)) 1569 return 1; 1570 } 1571 1572 return 0; 1573 } 1574 1575 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1576 struct kernel_lb_addr *fileset) 1577 { 1578 struct anchorVolDescPtr *anchor; 1579 long main_s, main_e, reserve_s, reserve_e; 1580 1581 anchor = (struct anchorVolDescPtr *)bh->b_data; 1582 1583 /* Locate the main sequence */ 1584 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1585 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1586 main_e = main_e >> sb->s_blocksize_bits; 1587 main_e += main_s; 1588 1589 /* Locate the reserve sequence */ 1590 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1591 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1592 reserve_e = reserve_e >> sb->s_blocksize_bits; 1593 reserve_e += reserve_s; 1594 1595 /* Process the main & reserve sequences */ 1596 /* responsible for finding the PartitionDesc(s) */ 1597 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1598 return 1; 1599 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1600 } 1601 1602 /* 1603 * Check whether there is an anchor block in the given block and 1604 * load Volume Descriptor Sequence if so. 1605 */ 1606 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1607 struct kernel_lb_addr *fileset) 1608 { 1609 struct buffer_head *bh; 1610 uint16_t ident; 1611 int ret; 1612 1613 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1614 udf_fixed_to_variable(block) >= 1615 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1616 return 0; 1617 1618 bh = udf_read_tagged(sb, block, block, &ident); 1619 if (!bh) 1620 return 0; 1621 if (ident != TAG_IDENT_AVDP) { 1622 brelse(bh); 1623 return 0; 1624 } 1625 ret = udf_load_sequence(sb, bh, fileset); 1626 brelse(bh); 1627 return ret; 1628 } 1629 1630 /* Search for an anchor volume descriptor pointer */ 1631 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1632 struct kernel_lb_addr *fileset) 1633 { 1634 sector_t last[6]; 1635 int i; 1636 struct udf_sb_info *sbi = UDF_SB(sb); 1637 int last_count = 0; 1638 1639 /* First try user provided anchor */ 1640 if (sbi->s_anchor) { 1641 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1642 return lastblock; 1643 } 1644 /* 1645 * according to spec, anchor is in either: 1646 * block 256 1647 * lastblock-256 1648 * lastblock 1649 * however, if the disc isn't closed, it could be 512. 1650 */ 1651 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1652 return lastblock; 1653 /* 1654 * The trouble is which block is the last one. Drives often misreport 1655 * this so we try various possibilities. 1656 */ 1657 last[last_count++] = lastblock; 1658 if (lastblock >= 1) 1659 last[last_count++] = lastblock - 1; 1660 last[last_count++] = lastblock + 1; 1661 if (lastblock >= 2) 1662 last[last_count++] = lastblock - 2; 1663 if (lastblock >= 150) 1664 last[last_count++] = lastblock - 150; 1665 if (lastblock >= 152) 1666 last[last_count++] = lastblock - 152; 1667 1668 for (i = 0; i < last_count; i++) { 1669 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1670 sb->s_blocksize_bits) 1671 continue; 1672 if (udf_check_anchor_block(sb, last[i], fileset)) 1673 return last[i]; 1674 if (last[i] < 256) 1675 continue; 1676 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1677 return last[i]; 1678 } 1679 1680 /* Finally try block 512 in case media is open */ 1681 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1682 return last[0]; 1683 return 0; 1684 } 1685 1686 /* 1687 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1688 * area specified by it. The function expects sbi->s_lastblock to be the last 1689 * block on the media. 1690 * 1691 * Return 1 if ok, 0 if not found. 1692 * 1693 */ 1694 static int udf_find_anchor(struct super_block *sb, 1695 struct kernel_lb_addr *fileset) 1696 { 1697 sector_t lastblock; 1698 struct udf_sb_info *sbi = UDF_SB(sb); 1699 1700 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1701 if (lastblock) 1702 goto out; 1703 1704 /* No anchor found? Try VARCONV conversion of block numbers */ 1705 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1706 /* Firstly, we try to not convert number of the last block */ 1707 lastblock = udf_scan_anchors(sb, 1708 udf_variable_to_fixed(sbi->s_last_block), 1709 fileset); 1710 if (lastblock) 1711 goto out; 1712 1713 /* Secondly, we try with converted number of the last block */ 1714 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1715 if (!lastblock) { 1716 /* VARCONV didn't help. Clear it. */ 1717 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1718 return 0; 1719 } 1720 out: 1721 sbi->s_last_block = lastblock; 1722 return 1; 1723 } 1724 1725 /* 1726 * Check Volume Structure Descriptor, find Anchor block and load Volume 1727 * Descriptor Sequence 1728 */ 1729 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1730 int silent, struct kernel_lb_addr *fileset) 1731 { 1732 struct udf_sb_info *sbi = UDF_SB(sb); 1733 loff_t nsr_off; 1734 1735 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1736 if (!silent) 1737 udf_warn(sb, "Bad block size\n"); 1738 return 0; 1739 } 1740 sbi->s_last_block = uopt->lastblock; 1741 if (!uopt->novrs) { 1742 /* Check that it is NSR02 compliant */ 1743 nsr_off = udf_check_vsd(sb); 1744 if (!nsr_off) { 1745 if (!silent) 1746 udf_warn(sb, "No VRS found\n"); 1747 return 0; 1748 } 1749 if (nsr_off == -1) 1750 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1751 if (!sbi->s_last_block) 1752 sbi->s_last_block = udf_get_last_block(sb); 1753 } else { 1754 udf_debug("Validity check skipped because of novrs option\n"); 1755 } 1756 1757 /* Look for anchor block and load Volume Descriptor Sequence */ 1758 sbi->s_anchor = uopt->anchor; 1759 if (!udf_find_anchor(sb, fileset)) { 1760 if (!silent) 1761 udf_warn(sb, "No anchor found\n"); 1762 return 0; 1763 } 1764 return 1; 1765 } 1766 1767 static void udf_open_lvid(struct super_block *sb) 1768 { 1769 struct udf_sb_info *sbi = UDF_SB(sb); 1770 struct buffer_head *bh = sbi->s_lvid_bh; 1771 struct logicalVolIntegrityDesc *lvid; 1772 struct logicalVolIntegrityDescImpUse *lvidiu; 1773 1774 if (!bh) 1775 return; 1776 1777 mutex_lock(&sbi->s_alloc_mutex); 1778 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1779 lvidiu = udf_sb_lvidiu(sbi); 1780 1781 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1782 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1783 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1784 CURRENT_TIME); 1785 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1786 1787 lvid->descTag.descCRC = cpu_to_le16( 1788 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1789 le16_to_cpu(lvid->descTag.descCRCLength))); 1790 1791 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1792 mark_buffer_dirty(bh); 1793 sbi->s_lvid_dirty = 0; 1794 mutex_unlock(&sbi->s_alloc_mutex); 1795 } 1796 1797 static void udf_close_lvid(struct super_block *sb) 1798 { 1799 struct udf_sb_info *sbi = UDF_SB(sb); 1800 struct buffer_head *bh = sbi->s_lvid_bh; 1801 struct logicalVolIntegrityDesc *lvid; 1802 struct logicalVolIntegrityDescImpUse *lvidiu; 1803 1804 if (!bh) 1805 return; 1806 1807 mutex_lock(&sbi->s_alloc_mutex); 1808 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1809 lvidiu = udf_sb_lvidiu(sbi); 1810 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1811 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1812 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1813 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1814 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1815 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1816 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1817 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1818 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1819 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1820 1821 lvid->descTag.descCRC = cpu_to_le16( 1822 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1823 le16_to_cpu(lvid->descTag.descCRCLength))); 1824 1825 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1826 /* 1827 * We set buffer uptodate unconditionally here to avoid spurious 1828 * warnings from mark_buffer_dirty() when previous EIO has marked 1829 * the buffer as !uptodate 1830 */ 1831 set_buffer_uptodate(bh); 1832 mark_buffer_dirty(bh); 1833 sbi->s_lvid_dirty = 0; 1834 mutex_unlock(&sbi->s_alloc_mutex); 1835 } 1836 1837 u64 lvid_get_unique_id(struct super_block *sb) 1838 { 1839 struct buffer_head *bh; 1840 struct udf_sb_info *sbi = UDF_SB(sb); 1841 struct logicalVolIntegrityDesc *lvid; 1842 struct logicalVolHeaderDesc *lvhd; 1843 u64 uniqueID; 1844 u64 ret; 1845 1846 bh = sbi->s_lvid_bh; 1847 if (!bh) 1848 return 0; 1849 1850 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1851 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1852 1853 mutex_lock(&sbi->s_alloc_mutex); 1854 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1855 if (!(++uniqueID & 0xFFFFFFFF)) 1856 uniqueID += 16; 1857 lvhd->uniqueID = cpu_to_le64(uniqueID); 1858 mutex_unlock(&sbi->s_alloc_mutex); 1859 mark_buffer_dirty(bh); 1860 1861 return ret; 1862 } 1863 1864 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 1865 { 1866 int i; 1867 int nr_groups = bitmap->s_nr_groups; 1868 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 1869 nr_groups); 1870 1871 for (i = 0; i < nr_groups; i++) 1872 if (bitmap->s_block_bitmap[i]) 1873 brelse(bitmap->s_block_bitmap[i]); 1874 1875 if (size <= PAGE_SIZE) 1876 kfree(bitmap); 1877 else 1878 vfree(bitmap); 1879 } 1880 1881 static void udf_free_partition(struct udf_part_map *map) 1882 { 1883 int i; 1884 struct udf_meta_data *mdata; 1885 1886 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 1887 iput(map->s_uspace.s_table); 1888 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 1889 iput(map->s_fspace.s_table); 1890 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 1891 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 1892 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 1893 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 1894 if (map->s_partition_type == UDF_SPARABLE_MAP15) 1895 for (i = 0; i < 4; i++) 1896 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 1897 else if (map->s_partition_type == UDF_METADATA_MAP25) { 1898 mdata = &map->s_type_specific.s_metadata; 1899 iput(mdata->s_metadata_fe); 1900 mdata->s_metadata_fe = NULL; 1901 1902 iput(mdata->s_mirror_fe); 1903 mdata->s_mirror_fe = NULL; 1904 1905 iput(mdata->s_bitmap_fe); 1906 mdata->s_bitmap_fe = NULL; 1907 } 1908 } 1909 1910 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1911 { 1912 int i; 1913 int ret; 1914 struct inode *inode = NULL; 1915 struct udf_options uopt; 1916 struct kernel_lb_addr rootdir, fileset; 1917 struct udf_sb_info *sbi; 1918 1919 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1920 uopt.uid = -1; 1921 uopt.gid = -1; 1922 uopt.umask = 0; 1923 uopt.fmode = UDF_INVALID_MODE; 1924 uopt.dmode = UDF_INVALID_MODE; 1925 1926 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1927 if (!sbi) 1928 return -ENOMEM; 1929 1930 sb->s_fs_info = sbi; 1931 1932 mutex_init(&sbi->s_alloc_mutex); 1933 1934 if (!udf_parse_options((char *)options, &uopt, false)) 1935 goto error_out; 1936 1937 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1938 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1939 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 1940 goto error_out; 1941 } 1942 #ifdef CONFIG_UDF_NLS 1943 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1944 uopt.nls_map = load_nls_default(); 1945 if (!uopt.nls_map) 1946 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1947 else 1948 udf_debug("Using default NLS map\n"); 1949 } 1950 #endif 1951 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1952 uopt.flags |= (1 << UDF_FLAG_UTF8); 1953 1954 fileset.logicalBlockNum = 0xFFFFFFFF; 1955 fileset.partitionReferenceNum = 0xFFFF; 1956 1957 sbi->s_flags = uopt.flags; 1958 sbi->s_uid = uopt.uid; 1959 sbi->s_gid = uopt.gid; 1960 sbi->s_umask = uopt.umask; 1961 sbi->s_fmode = uopt.fmode; 1962 sbi->s_dmode = uopt.dmode; 1963 sbi->s_nls_map = uopt.nls_map; 1964 rwlock_init(&sbi->s_cred_lock); 1965 1966 if (uopt.session == 0xFFFFFFFF) 1967 sbi->s_session = udf_get_last_session(sb); 1968 else 1969 sbi->s_session = uopt.session; 1970 1971 udf_debug("Multi-session=%d\n", sbi->s_session); 1972 1973 /* Fill in the rest of the superblock */ 1974 sb->s_op = &udf_sb_ops; 1975 sb->s_export_op = &udf_export_ops; 1976 1977 sb->s_dirt = 0; 1978 sb->s_magic = UDF_SUPER_MAGIC; 1979 sb->s_time_gran = 1000; 1980 1981 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 1982 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1983 } else { 1984 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 1985 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1986 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 1987 if (!silent) 1988 pr_notice("Rescanning with blocksize %d\n", 1989 UDF_DEFAULT_BLOCKSIZE); 1990 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 1991 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 1992 } 1993 } 1994 if (!ret) { 1995 udf_warn(sb, "No partition found (1)\n"); 1996 goto error_out; 1997 } 1998 1999 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2000 2001 if (sbi->s_lvid_bh) { 2002 struct logicalVolIntegrityDescImpUse *lvidiu = 2003 udf_sb_lvidiu(sbi); 2004 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2005 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2006 /* uint16_t maxUDFWriteRev = 2007 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 2008 2009 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2010 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2011 le16_to_cpu(lvidiu->minUDFReadRev), 2012 UDF_MAX_READ_VERSION); 2013 goto error_out; 2014 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 2015 sb->s_flags |= MS_RDONLY; 2016 2017 sbi->s_udfrev = minUDFWriteRev; 2018 2019 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2020 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2021 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2022 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2023 } 2024 2025 if (!sbi->s_partitions) { 2026 udf_warn(sb, "No partition found (2)\n"); 2027 goto error_out; 2028 } 2029 2030 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2031 UDF_PART_FLAG_READ_ONLY) { 2032 pr_notice("Partition marked readonly; forcing readonly mount\n"); 2033 sb->s_flags |= MS_RDONLY; 2034 } 2035 2036 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2037 udf_warn(sb, "No fileset found\n"); 2038 goto error_out; 2039 } 2040 2041 if (!silent) { 2042 struct timestamp ts; 2043 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2044 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2045 sbi->s_volume_ident, 2046 le16_to_cpu(ts.year), ts.month, ts.day, 2047 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2048 } 2049 if (!(sb->s_flags & MS_RDONLY)) 2050 udf_open_lvid(sb); 2051 2052 /* Assign the root inode */ 2053 /* assign inodes by physical block number */ 2054 /* perhaps it's not extensible enough, but for now ... */ 2055 inode = udf_iget(sb, &rootdir); 2056 if (!inode) { 2057 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2058 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2059 goto error_out; 2060 } 2061 2062 /* Allocate a dentry for the root inode */ 2063 sb->s_root = d_make_root(inode); 2064 if (!sb->s_root) { 2065 udf_err(sb, "Couldn't allocate root dentry\n"); 2066 goto error_out; 2067 } 2068 sb->s_maxbytes = MAX_LFS_FILESIZE; 2069 sb->s_max_links = UDF_MAX_LINKS; 2070 return 0; 2071 2072 error_out: 2073 if (sbi->s_vat_inode) 2074 iput(sbi->s_vat_inode); 2075 if (sbi->s_partitions) 2076 for (i = 0; i < sbi->s_partitions; i++) 2077 udf_free_partition(&sbi->s_partmaps[i]); 2078 #ifdef CONFIG_UDF_NLS 2079 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2080 unload_nls(sbi->s_nls_map); 2081 #endif 2082 if (!(sb->s_flags & MS_RDONLY)) 2083 udf_close_lvid(sb); 2084 brelse(sbi->s_lvid_bh); 2085 2086 kfree(sbi->s_partmaps); 2087 kfree(sbi); 2088 sb->s_fs_info = NULL; 2089 2090 return -EINVAL; 2091 } 2092 2093 void _udf_err(struct super_block *sb, const char *function, 2094 const char *fmt, ...) 2095 { 2096 struct va_format vaf; 2097 va_list args; 2098 2099 /* mark sb error */ 2100 if (!(sb->s_flags & MS_RDONLY)) 2101 sb->s_dirt = 1; 2102 2103 va_start(args, fmt); 2104 2105 vaf.fmt = fmt; 2106 vaf.va = &args; 2107 2108 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2109 2110 va_end(args); 2111 } 2112 2113 void _udf_warn(struct super_block *sb, const char *function, 2114 const char *fmt, ...) 2115 { 2116 struct va_format vaf; 2117 va_list args; 2118 2119 va_start(args, fmt); 2120 2121 vaf.fmt = fmt; 2122 vaf.va = &args; 2123 2124 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2125 2126 va_end(args); 2127 } 2128 2129 static void udf_put_super(struct super_block *sb) 2130 { 2131 int i; 2132 struct udf_sb_info *sbi; 2133 2134 sbi = UDF_SB(sb); 2135 2136 if (sbi->s_vat_inode) 2137 iput(sbi->s_vat_inode); 2138 if (sbi->s_partitions) 2139 for (i = 0; i < sbi->s_partitions; i++) 2140 udf_free_partition(&sbi->s_partmaps[i]); 2141 #ifdef CONFIG_UDF_NLS 2142 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2143 unload_nls(sbi->s_nls_map); 2144 #endif 2145 if (!(sb->s_flags & MS_RDONLY)) 2146 udf_close_lvid(sb); 2147 brelse(sbi->s_lvid_bh); 2148 kfree(sbi->s_partmaps); 2149 kfree(sb->s_fs_info); 2150 sb->s_fs_info = NULL; 2151 } 2152 2153 static int udf_sync_fs(struct super_block *sb, int wait) 2154 { 2155 struct udf_sb_info *sbi = UDF_SB(sb); 2156 2157 mutex_lock(&sbi->s_alloc_mutex); 2158 if (sbi->s_lvid_dirty) { 2159 /* 2160 * Blockdevice will be synced later so we don't have to submit 2161 * the buffer for IO 2162 */ 2163 mark_buffer_dirty(sbi->s_lvid_bh); 2164 sb->s_dirt = 0; 2165 sbi->s_lvid_dirty = 0; 2166 } 2167 mutex_unlock(&sbi->s_alloc_mutex); 2168 2169 return 0; 2170 } 2171 2172 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2173 { 2174 struct super_block *sb = dentry->d_sb; 2175 struct udf_sb_info *sbi = UDF_SB(sb); 2176 struct logicalVolIntegrityDescImpUse *lvidiu; 2177 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2178 2179 if (sbi->s_lvid_bh != NULL) 2180 lvidiu = udf_sb_lvidiu(sbi); 2181 else 2182 lvidiu = NULL; 2183 2184 buf->f_type = UDF_SUPER_MAGIC; 2185 buf->f_bsize = sb->s_blocksize; 2186 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2187 buf->f_bfree = udf_count_free(sb); 2188 buf->f_bavail = buf->f_bfree; 2189 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2190 le32_to_cpu(lvidiu->numDirs)) : 0) 2191 + buf->f_bfree; 2192 buf->f_ffree = buf->f_bfree; 2193 buf->f_namelen = UDF_NAME_LEN - 2; 2194 buf->f_fsid.val[0] = (u32)id; 2195 buf->f_fsid.val[1] = (u32)(id >> 32); 2196 2197 return 0; 2198 } 2199 2200 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2201 struct udf_bitmap *bitmap) 2202 { 2203 struct buffer_head *bh = NULL; 2204 unsigned int accum = 0; 2205 int index; 2206 int block = 0, newblock; 2207 struct kernel_lb_addr loc; 2208 uint32_t bytes; 2209 uint8_t *ptr; 2210 uint16_t ident; 2211 struct spaceBitmapDesc *bm; 2212 2213 loc.logicalBlockNum = bitmap->s_extPosition; 2214 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2215 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2216 2217 if (!bh) { 2218 udf_err(sb, "udf_count_free failed\n"); 2219 goto out; 2220 } else if (ident != TAG_IDENT_SBD) { 2221 brelse(bh); 2222 udf_err(sb, "udf_count_free failed\n"); 2223 goto out; 2224 } 2225 2226 bm = (struct spaceBitmapDesc *)bh->b_data; 2227 bytes = le32_to_cpu(bm->numOfBytes); 2228 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2229 ptr = (uint8_t *)bh->b_data; 2230 2231 while (bytes > 0) { 2232 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2233 accum += bitmap_weight((const unsigned long *)(ptr + index), 2234 cur_bytes * 8); 2235 bytes -= cur_bytes; 2236 if (bytes) { 2237 brelse(bh); 2238 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2239 bh = udf_tread(sb, newblock); 2240 if (!bh) { 2241 udf_debug("read failed\n"); 2242 goto out; 2243 } 2244 index = 0; 2245 ptr = (uint8_t *)bh->b_data; 2246 } 2247 } 2248 brelse(bh); 2249 out: 2250 return accum; 2251 } 2252 2253 static unsigned int udf_count_free_table(struct super_block *sb, 2254 struct inode *table) 2255 { 2256 unsigned int accum = 0; 2257 uint32_t elen; 2258 struct kernel_lb_addr eloc; 2259 int8_t etype; 2260 struct extent_position epos; 2261 2262 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2263 epos.block = UDF_I(table)->i_location; 2264 epos.offset = sizeof(struct unallocSpaceEntry); 2265 epos.bh = NULL; 2266 2267 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2268 accum += (elen >> table->i_sb->s_blocksize_bits); 2269 2270 brelse(epos.bh); 2271 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2272 2273 return accum; 2274 } 2275 2276 static unsigned int udf_count_free(struct super_block *sb) 2277 { 2278 unsigned int accum = 0; 2279 struct udf_sb_info *sbi; 2280 struct udf_part_map *map; 2281 2282 sbi = UDF_SB(sb); 2283 if (sbi->s_lvid_bh) { 2284 struct logicalVolIntegrityDesc *lvid = 2285 (struct logicalVolIntegrityDesc *) 2286 sbi->s_lvid_bh->b_data; 2287 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2288 accum = le32_to_cpu( 2289 lvid->freeSpaceTable[sbi->s_partition]); 2290 if (accum == 0xFFFFFFFF) 2291 accum = 0; 2292 } 2293 } 2294 2295 if (accum) 2296 return accum; 2297 2298 map = &sbi->s_partmaps[sbi->s_partition]; 2299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2300 accum += udf_count_free_bitmap(sb, 2301 map->s_uspace.s_bitmap); 2302 } 2303 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2304 accum += udf_count_free_bitmap(sb, 2305 map->s_fspace.s_bitmap); 2306 } 2307 if (accum) 2308 return accum; 2309 2310 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2311 accum += udf_count_free_table(sb, 2312 map->s_uspace.s_table); 2313 } 2314 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2315 accum += udf_count_free_table(sb, 2316 map->s_fspace.s_table); 2317 } 2318 2319 return accum; 2320 } 2321