1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <linux/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 #define VSD_FIRST_SECTOR_OFFSET 32768 80 #define VSD_MAX_SECTOR_OFFSET 0x800000 81 82 enum { UDF_MAX_LINKS = 0xffff }; 83 84 /* These are the "meat" - everything else is stuffing */ 85 static int udf_fill_super(struct super_block *, void *, int); 86 static void udf_put_super(struct super_block *); 87 static int udf_sync_fs(struct super_block *, int); 88 static int udf_remount_fs(struct super_block *, int *, char *); 89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 91 struct kernel_lb_addr *); 92 static void udf_load_fileset(struct super_block *, struct buffer_head *, 93 struct kernel_lb_addr *); 94 static void udf_open_lvid(struct super_block *); 95 static void udf_close_lvid(struct super_block *); 96 static unsigned int udf_count_free(struct super_block *); 97 static int udf_statfs(struct dentry *, struct kstatfs *); 98 static int udf_show_options(struct seq_file *, struct dentry *); 99 100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 101 { 102 struct logicalVolIntegrityDesc *lvid; 103 unsigned int partnum; 104 unsigned int offset; 105 106 if (!UDF_SB(sb)->s_lvid_bh) 107 return NULL; 108 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 109 partnum = le32_to_cpu(lvid->numOfPartitions); 110 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 111 offsetof(struct logicalVolIntegrityDesc, impUse)) / 112 (2 * sizeof(uint32_t)) < partnum) { 113 udf_err(sb, "Logical volume integrity descriptor corrupted " 114 "(numOfPartitions = %u)!\n", partnum); 115 return NULL; 116 } 117 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 118 offset = partnum * 2 * sizeof(uint32_t); 119 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 120 } 121 122 /* UDF filesystem type */ 123 static struct dentry *udf_mount(struct file_system_type *fs_type, 124 int flags, const char *dev_name, void *data) 125 { 126 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 127 } 128 129 static struct file_system_type udf_fstype = { 130 .owner = THIS_MODULE, 131 .name = "udf", 132 .mount = udf_mount, 133 .kill_sb = kill_block_super, 134 .fs_flags = FS_REQUIRES_DEV, 135 }; 136 MODULE_ALIAS_FS("udf"); 137 138 static struct kmem_cache *udf_inode_cachep; 139 140 static struct inode *udf_alloc_inode(struct super_block *sb) 141 { 142 struct udf_inode_info *ei; 143 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 144 if (!ei) 145 return NULL; 146 147 ei->i_unique = 0; 148 ei->i_lenExtents = 0; 149 ei->i_next_alloc_block = 0; 150 ei->i_next_alloc_goal = 0; 151 ei->i_strat4096 = 0; 152 init_rwsem(&ei->i_data_sem); 153 ei->cached_extent.lstart = -1; 154 spin_lock_init(&ei->i_extent_cache_lock); 155 156 return &ei->vfs_inode; 157 } 158 159 static void udf_i_callback(struct rcu_head *head) 160 { 161 struct inode *inode = container_of(head, struct inode, i_rcu); 162 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 163 } 164 165 static void udf_destroy_inode(struct inode *inode) 166 { 167 call_rcu(&inode->i_rcu, udf_i_callback); 168 } 169 170 static void init_once(void *foo) 171 { 172 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 173 174 ei->i_ext.i_data = NULL; 175 inode_init_once(&ei->vfs_inode); 176 } 177 178 static int __init init_inodecache(void) 179 { 180 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 181 sizeof(struct udf_inode_info), 182 0, (SLAB_RECLAIM_ACCOUNT | 183 SLAB_MEM_SPREAD), 184 init_once); 185 if (!udf_inode_cachep) 186 return -ENOMEM; 187 return 0; 188 } 189 190 static void destroy_inodecache(void) 191 { 192 /* 193 * Make sure all delayed rcu free inodes are flushed before we 194 * destroy cache. 195 */ 196 rcu_barrier(); 197 kmem_cache_destroy(udf_inode_cachep); 198 } 199 200 /* Superblock operations */ 201 static const struct super_operations udf_sb_ops = { 202 .alloc_inode = udf_alloc_inode, 203 .destroy_inode = udf_destroy_inode, 204 .write_inode = udf_write_inode, 205 .evict_inode = udf_evict_inode, 206 .put_super = udf_put_super, 207 .sync_fs = udf_sync_fs, 208 .statfs = udf_statfs, 209 .remount_fs = udf_remount_fs, 210 .show_options = udf_show_options, 211 }; 212 213 struct udf_options { 214 unsigned char novrs; 215 unsigned int blocksize; 216 unsigned int session; 217 unsigned int lastblock; 218 unsigned int anchor; 219 unsigned int volume; 220 unsigned short partition; 221 unsigned int fileset; 222 unsigned int rootdir; 223 unsigned int flags; 224 umode_t umask; 225 kgid_t gid; 226 kuid_t uid; 227 umode_t fmode; 228 umode_t dmode; 229 struct nls_table *nls_map; 230 }; 231 232 static int __init init_udf_fs(void) 233 { 234 int err; 235 236 err = init_inodecache(); 237 if (err) 238 goto out1; 239 err = register_filesystem(&udf_fstype); 240 if (err) 241 goto out; 242 243 return 0; 244 245 out: 246 destroy_inodecache(); 247 248 out1: 249 return err; 250 } 251 252 static void __exit exit_udf_fs(void) 253 { 254 unregister_filesystem(&udf_fstype); 255 destroy_inodecache(); 256 } 257 258 module_init(init_udf_fs) 259 module_exit(exit_udf_fs) 260 261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 262 { 263 struct udf_sb_info *sbi = UDF_SB(sb); 264 265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 266 GFP_KERNEL); 267 if (!sbi->s_partmaps) { 268 udf_err(sb, "Unable to allocate space for %d partition maps\n", 269 count); 270 sbi->s_partitions = 0; 271 return -ENOMEM; 272 } 273 274 sbi->s_partitions = count; 275 return 0; 276 } 277 278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 279 { 280 int i; 281 int nr_groups = bitmap->s_nr_groups; 282 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 283 nr_groups); 284 285 for (i = 0; i < nr_groups; i++) 286 if (bitmap->s_block_bitmap[i]) 287 brelse(bitmap->s_block_bitmap[i]); 288 289 if (size <= PAGE_SIZE) 290 kfree(bitmap); 291 else 292 vfree(bitmap); 293 } 294 295 static void udf_free_partition(struct udf_part_map *map) 296 { 297 int i; 298 struct udf_meta_data *mdata; 299 300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 301 iput(map->s_uspace.s_table); 302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 303 iput(map->s_fspace.s_table); 304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 305 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 307 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 308 if (map->s_partition_type == UDF_SPARABLE_MAP15) 309 for (i = 0; i < 4; i++) 310 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 311 else if (map->s_partition_type == UDF_METADATA_MAP25) { 312 mdata = &map->s_type_specific.s_metadata; 313 iput(mdata->s_metadata_fe); 314 mdata->s_metadata_fe = NULL; 315 316 iput(mdata->s_mirror_fe); 317 mdata->s_mirror_fe = NULL; 318 319 iput(mdata->s_bitmap_fe); 320 mdata->s_bitmap_fe = NULL; 321 } 322 } 323 324 static void udf_sb_free_partitions(struct super_block *sb) 325 { 326 struct udf_sb_info *sbi = UDF_SB(sb); 327 int i; 328 if (sbi->s_partmaps == NULL) 329 return; 330 for (i = 0; i < sbi->s_partitions; i++) 331 udf_free_partition(&sbi->s_partmaps[i]); 332 kfree(sbi->s_partmaps); 333 sbi->s_partmaps = NULL; 334 } 335 336 static int udf_show_options(struct seq_file *seq, struct dentry *root) 337 { 338 struct super_block *sb = root->d_sb; 339 struct udf_sb_info *sbi = UDF_SB(sb); 340 341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 342 seq_puts(seq, ",nostrict"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 344 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 346 seq_puts(seq, ",unhide"); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 348 seq_puts(seq, ",undelete"); 349 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 350 seq_puts(seq, ",noadinicb"); 351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 352 seq_puts(seq, ",shortad"); 353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 354 seq_puts(seq, ",uid=forget"); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 356 seq_puts(seq, ",uid=ignore"); 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 358 seq_puts(seq, ",gid=forget"); 359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 360 seq_puts(seq, ",gid=ignore"); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 362 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 364 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 365 if (sbi->s_umask != 0) 366 seq_printf(seq, ",umask=%ho", sbi->s_umask); 367 if (sbi->s_fmode != UDF_INVALID_MODE) 368 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 369 if (sbi->s_dmode != UDF_INVALID_MODE) 370 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 371 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 372 seq_printf(seq, ",session=%u", sbi->s_session); 373 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 374 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 375 if (sbi->s_anchor != 0) 376 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 377 /* 378 * volume, partition, fileset and rootdir seem to be ignored 379 * currently 380 */ 381 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 382 seq_puts(seq, ",utf8"); 383 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 384 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 385 386 return 0; 387 } 388 389 /* 390 * udf_parse_options 391 * 392 * PURPOSE 393 * Parse mount options. 394 * 395 * DESCRIPTION 396 * The following mount options are supported: 397 * 398 * gid= Set the default group. 399 * umask= Set the default umask. 400 * mode= Set the default file permissions. 401 * dmode= Set the default directory permissions. 402 * uid= Set the default user. 403 * bs= Set the block size. 404 * unhide Show otherwise hidden files. 405 * undelete Show deleted files in lists. 406 * adinicb Embed data in the inode (default) 407 * noadinicb Don't embed data in the inode 408 * shortad Use short ad's 409 * longad Use long ad's (default) 410 * nostrict Unset strict conformance 411 * iocharset= Set the NLS character set 412 * 413 * The remaining are for debugging and disaster recovery: 414 * 415 * novrs Skip volume sequence recognition 416 * 417 * The following expect a offset from 0. 418 * 419 * session= Set the CDROM session (default= last session) 420 * anchor= Override standard anchor location. (default= 256) 421 * volume= Override the VolumeDesc location. (unused) 422 * partition= Override the PartitionDesc location. (unused) 423 * lastblock= Set the last block of the filesystem/ 424 * 425 * The following expect a offset from the partition root. 426 * 427 * fileset= Override the fileset block location. (unused) 428 * rootdir= Override the root directory location. (unused) 429 * WARNING: overriding the rootdir to a non-directory may 430 * yield highly unpredictable results. 431 * 432 * PRE-CONDITIONS 433 * options Pointer to mount options string. 434 * uopts Pointer to mount options variable. 435 * 436 * POST-CONDITIONS 437 * <return> 1 Mount options parsed okay. 438 * <return> 0 Error parsing mount options. 439 * 440 * HISTORY 441 * July 1, 1997 - Andrew E. Mileski 442 * Written, tested, and released. 443 */ 444 445 enum { 446 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 447 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 448 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 449 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 450 Opt_rootdir, Opt_utf8, Opt_iocharset, 451 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 452 Opt_fmode, Opt_dmode 453 }; 454 455 static const match_table_t tokens = { 456 {Opt_novrs, "novrs"}, 457 {Opt_nostrict, "nostrict"}, 458 {Opt_bs, "bs=%u"}, 459 {Opt_unhide, "unhide"}, 460 {Opt_undelete, "undelete"}, 461 {Opt_noadinicb, "noadinicb"}, 462 {Opt_adinicb, "adinicb"}, 463 {Opt_shortad, "shortad"}, 464 {Opt_longad, "longad"}, 465 {Opt_uforget, "uid=forget"}, 466 {Opt_uignore, "uid=ignore"}, 467 {Opt_gforget, "gid=forget"}, 468 {Opt_gignore, "gid=ignore"}, 469 {Opt_gid, "gid=%u"}, 470 {Opt_uid, "uid=%u"}, 471 {Opt_umask, "umask=%o"}, 472 {Opt_session, "session=%u"}, 473 {Opt_lastblock, "lastblock=%u"}, 474 {Opt_anchor, "anchor=%u"}, 475 {Opt_volume, "volume=%u"}, 476 {Opt_partition, "partition=%u"}, 477 {Opt_fileset, "fileset=%u"}, 478 {Opt_rootdir, "rootdir=%u"}, 479 {Opt_utf8, "utf8"}, 480 {Opt_iocharset, "iocharset=%s"}, 481 {Opt_fmode, "mode=%o"}, 482 {Opt_dmode, "dmode=%o"}, 483 {Opt_err, NULL} 484 }; 485 486 static int udf_parse_options(char *options, struct udf_options *uopt, 487 bool remount) 488 { 489 char *p; 490 int option; 491 492 uopt->novrs = 0; 493 uopt->partition = 0xFFFF; 494 uopt->session = 0xFFFFFFFF; 495 uopt->lastblock = 0; 496 uopt->anchor = 0; 497 uopt->volume = 0xFFFFFFFF; 498 uopt->rootdir = 0xFFFFFFFF; 499 uopt->fileset = 0xFFFFFFFF; 500 uopt->nls_map = NULL; 501 502 if (!options) 503 return 1; 504 505 while ((p = strsep(&options, ",")) != NULL) { 506 substring_t args[MAX_OPT_ARGS]; 507 int token; 508 unsigned n; 509 if (!*p) 510 continue; 511 512 token = match_token(p, tokens, args); 513 switch (token) { 514 case Opt_novrs: 515 uopt->novrs = 1; 516 break; 517 case Opt_bs: 518 if (match_int(&args[0], &option)) 519 return 0; 520 n = option; 521 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 522 return 0; 523 uopt->blocksize = n; 524 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 525 break; 526 case Opt_unhide: 527 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 528 break; 529 case Opt_undelete: 530 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 531 break; 532 case Opt_noadinicb: 533 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 534 break; 535 case Opt_adinicb: 536 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 537 break; 538 case Opt_shortad: 539 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 540 break; 541 case Opt_longad: 542 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 543 break; 544 case Opt_gid: 545 if (match_int(args, &option)) 546 return 0; 547 uopt->gid = make_kgid(current_user_ns(), option); 548 if (!gid_valid(uopt->gid)) 549 return 0; 550 uopt->flags |= (1 << UDF_FLAG_GID_SET); 551 break; 552 case Opt_uid: 553 if (match_int(args, &option)) 554 return 0; 555 uopt->uid = make_kuid(current_user_ns(), option); 556 if (!uid_valid(uopt->uid)) 557 return 0; 558 uopt->flags |= (1 << UDF_FLAG_UID_SET); 559 break; 560 case Opt_umask: 561 if (match_octal(args, &option)) 562 return 0; 563 uopt->umask = option; 564 break; 565 case Opt_nostrict: 566 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 567 break; 568 case Opt_session: 569 if (match_int(args, &option)) 570 return 0; 571 uopt->session = option; 572 if (!remount) 573 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 574 break; 575 case Opt_lastblock: 576 if (match_int(args, &option)) 577 return 0; 578 uopt->lastblock = option; 579 if (!remount) 580 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 581 break; 582 case Opt_anchor: 583 if (match_int(args, &option)) 584 return 0; 585 uopt->anchor = option; 586 break; 587 case Opt_volume: 588 if (match_int(args, &option)) 589 return 0; 590 uopt->volume = option; 591 break; 592 case Opt_partition: 593 if (match_int(args, &option)) 594 return 0; 595 uopt->partition = option; 596 break; 597 case Opt_fileset: 598 if (match_int(args, &option)) 599 return 0; 600 uopt->fileset = option; 601 break; 602 case Opt_rootdir: 603 if (match_int(args, &option)) 604 return 0; 605 uopt->rootdir = option; 606 break; 607 case Opt_utf8: 608 uopt->flags |= (1 << UDF_FLAG_UTF8); 609 break; 610 #ifdef CONFIG_UDF_NLS 611 case Opt_iocharset: 612 uopt->nls_map = load_nls(args[0].from); 613 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 614 break; 615 #endif 616 case Opt_uignore: 617 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 618 break; 619 case Opt_uforget: 620 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 621 break; 622 case Opt_gignore: 623 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 624 break; 625 case Opt_gforget: 626 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 627 break; 628 case Opt_fmode: 629 if (match_octal(args, &option)) 630 return 0; 631 uopt->fmode = option & 0777; 632 break; 633 case Opt_dmode: 634 if (match_octal(args, &option)) 635 return 0; 636 uopt->dmode = option & 0777; 637 break; 638 default: 639 pr_err("bad mount option \"%s\" or missing value\n", p); 640 return 0; 641 } 642 } 643 return 1; 644 } 645 646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 647 { 648 struct udf_options uopt; 649 struct udf_sb_info *sbi = UDF_SB(sb); 650 int error = 0; 651 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 652 653 sync_filesystem(sb); 654 if (lvidiu) { 655 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 656 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY)) 657 return -EACCES; 658 } 659 660 uopt.flags = sbi->s_flags; 661 uopt.uid = sbi->s_uid; 662 uopt.gid = sbi->s_gid; 663 uopt.umask = sbi->s_umask; 664 uopt.fmode = sbi->s_fmode; 665 uopt.dmode = sbi->s_dmode; 666 667 if (!udf_parse_options(options, &uopt, true)) 668 return -EINVAL; 669 670 write_lock(&sbi->s_cred_lock); 671 sbi->s_flags = uopt.flags; 672 sbi->s_uid = uopt.uid; 673 sbi->s_gid = uopt.gid; 674 sbi->s_umask = uopt.umask; 675 sbi->s_fmode = uopt.fmode; 676 sbi->s_dmode = uopt.dmode; 677 write_unlock(&sbi->s_cred_lock); 678 679 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 680 goto out_unlock; 681 682 if (*flags & MS_RDONLY) 683 udf_close_lvid(sb); 684 else 685 udf_open_lvid(sb); 686 687 out_unlock: 688 return error; 689 } 690 691 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 692 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 693 static loff_t udf_check_vsd(struct super_block *sb) 694 { 695 struct volStructDesc *vsd = NULL; 696 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 697 int sectorsize; 698 struct buffer_head *bh = NULL; 699 int nsr02 = 0; 700 int nsr03 = 0; 701 struct udf_sb_info *sbi; 702 703 sbi = UDF_SB(sb); 704 if (sb->s_blocksize < sizeof(struct volStructDesc)) 705 sectorsize = sizeof(struct volStructDesc); 706 else 707 sectorsize = sb->s_blocksize; 708 709 sector += (sbi->s_session << sb->s_blocksize_bits); 710 711 udf_debug("Starting at sector %u (%ld byte sectors)\n", 712 (unsigned int)(sector >> sb->s_blocksize_bits), 713 sb->s_blocksize); 714 /* Process the sequence (if applicable). The hard limit on the sector 715 * offset is arbitrary, hopefully large enough so that all valid UDF 716 * filesystems will be recognised. There is no mention of an upper 717 * bound to the size of the volume recognition area in the standard. 718 * The limit will prevent the code to read all the sectors of a 719 * specially crafted image (like a bluray disc full of CD001 sectors), 720 * potentially causing minutes or even hours of uninterruptible I/O 721 * activity. This actually happened with uninitialised SSD partitions 722 * (all 0xFF) before the check for the limit and all valid IDs were 723 * added */ 724 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 725 sector += sectorsize) { 726 /* Read a block */ 727 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 728 if (!bh) 729 break; 730 731 /* Look for ISO descriptors */ 732 vsd = (struct volStructDesc *)(bh->b_data + 733 (sector & (sb->s_blocksize - 1))); 734 735 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 736 VSD_STD_ID_LEN)) { 737 switch (vsd->structType) { 738 case 0: 739 udf_debug("ISO9660 Boot Record found\n"); 740 break; 741 case 1: 742 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 743 break; 744 case 2: 745 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 746 break; 747 case 3: 748 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 749 break; 750 case 255: 751 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 752 break; 753 default: 754 udf_debug("ISO9660 VRS (%u) found\n", 755 vsd->structType); 756 break; 757 } 758 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 759 VSD_STD_ID_LEN)) 760 ; /* nothing */ 761 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 762 VSD_STD_ID_LEN)) { 763 brelse(bh); 764 break; 765 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 766 VSD_STD_ID_LEN)) 767 nsr02 = sector; 768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 769 VSD_STD_ID_LEN)) 770 nsr03 = sector; 771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 772 VSD_STD_ID_LEN)) 773 ; /* nothing */ 774 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 775 VSD_STD_ID_LEN)) 776 ; /* nothing */ 777 else { 778 /* invalid id : end of volume recognition area */ 779 brelse(bh); 780 break; 781 } 782 brelse(bh); 783 } 784 785 if (nsr03) 786 return nsr03; 787 else if (nsr02) 788 return nsr02; 789 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 790 VSD_FIRST_SECTOR_OFFSET) 791 return -1; 792 else 793 return 0; 794 } 795 796 static int udf_find_fileset(struct super_block *sb, 797 struct kernel_lb_addr *fileset, 798 struct kernel_lb_addr *root) 799 { 800 struct buffer_head *bh = NULL; 801 long lastblock; 802 uint16_t ident; 803 struct udf_sb_info *sbi; 804 805 if (fileset->logicalBlockNum != 0xFFFFFFFF || 806 fileset->partitionReferenceNum != 0xFFFF) { 807 bh = udf_read_ptagged(sb, fileset, 0, &ident); 808 809 if (!bh) { 810 return 1; 811 } else if (ident != TAG_IDENT_FSD) { 812 brelse(bh); 813 return 1; 814 } 815 816 } 817 818 sbi = UDF_SB(sb); 819 if (!bh) { 820 /* Search backwards through the partitions */ 821 struct kernel_lb_addr newfileset; 822 823 /* --> cvg: FIXME - is it reasonable? */ 824 return 1; 825 826 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 827 (newfileset.partitionReferenceNum != 0xFFFF && 828 fileset->logicalBlockNum == 0xFFFFFFFF && 829 fileset->partitionReferenceNum == 0xFFFF); 830 newfileset.partitionReferenceNum--) { 831 lastblock = sbi->s_partmaps 832 [newfileset.partitionReferenceNum] 833 .s_partition_len; 834 newfileset.logicalBlockNum = 0; 835 836 do { 837 bh = udf_read_ptagged(sb, &newfileset, 0, 838 &ident); 839 if (!bh) { 840 newfileset.logicalBlockNum++; 841 continue; 842 } 843 844 switch (ident) { 845 case TAG_IDENT_SBD: 846 { 847 struct spaceBitmapDesc *sp; 848 sp = (struct spaceBitmapDesc *) 849 bh->b_data; 850 newfileset.logicalBlockNum += 1 + 851 ((le32_to_cpu(sp->numOfBytes) + 852 sizeof(struct spaceBitmapDesc) 853 - 1) >> sb->s_blocksize_bits); 854 brelse(bh); 855 break; 856 } 857 case TAG_IDENT_FSD: 858 *fileset = newfileset; 859 break; 860 default: 861 newfileset.logicalBlockNum++; 862 brelse(bh); 863 bh = NULL; 864 break; 865 } 866 } while (newfileset.logicalBlockNum < lastblock && 867 fileset->logicalBlockNum == 0xFFFFFFFF && 868 fileset->partitionReferenceNum == 0xFFFF); 869 } 870 } 871 872 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 873 fileset->partitionReferenceNum != 0xFFFF) && bh) { 874 udf_debug("Fileset at block=%d, partition=%d\n", 875 fileset->logicalBlockNum, 876 fileset->partitionReferenceNum); 877 878 sbi->s_partition = fileset->partitionReferenceNum; 879 udf_load_fileset(sb, bh, root); 880 brelse(bh); 881 return 0; 882 } 883 return 1; 884 } 885 886 /* 887 * Load primary Volume Descriptor Sequence 888 * 889 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 890 * should be tried. 891 */ 892 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 893 { 894 struct primaryVolDesc *pvoldesc; 895 struct ustr *instr, *outstr; 896 struct buffer_head *bh; 897 uint16_t ident; 898 int ret = -ENOMEM; 899 900 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 901 if (!instr) 902 return -ENOMEM; 903 904 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 905 if (!outstr) 906 goto out1; 907 908 bh = udf_read_tagged(sb, block, block, &ident); 909 if (!bh) { 910 ret = -EAGAIN; 911 goto out2; 912 } 913 914 if (ident != TAG_IDENT_PVD) { 915 ret = -EIO; 916 goto out_bh; 917 } 918 919 pvoldesc = (struct primaryVolDesc *)bh->b_data; 920 921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 922 pvoldesc->recordingDateAndTime)) { 923 #ifdef UDFFS_DEBUG 924 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 927 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 928 #endif 929 } 930 931 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 932 if (udf_CS0toUTF8(outstr, instr)) { 933 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 934 outstr->u_len > 31 ? 31 : outstr->u_len); 935 udf_debug("volIdent[] = '%s'\n", 936 UDF_SB(sb)->s_volume_ident); 937 } 938 939 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 940 if (udf_CS0toUTF8(outstr, instr)) 941 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 942 943 ret = 0; 944 out_bh: 945 brelse(bh); 946 out2: 947 kfree(outstr); 948 out1: 949 kfree(instr); 950 return ret; 951 } 952 953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 954 u32 meta_file_loc, u32 partition_num) 955 { 956 struct kernel_lb_addr addr; 957 struct inode *metadata_fe; 958 959 addr.logicalBlockNum = meta_file_loc; 960 addr.partitionReferenceNum = partition_num; 961 962 metadata_fe = udf_iget_special(sb, &addr); 963 964 if (IS_ERR(metadata_fe)) { 965 udf_warn(sb, "metadata inode efe not found\n"); 966 return metadata_fe; 967 } 968 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 969 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 970 iput(metadata_fe); 971 return ERR_PTR(-EIO); 972 } 973 974 return metadata_fe; 975 } 976 977 static int udf_load_metadata_files(struct super_block *sb, int partition) 978 { 979 struct udf_sb_info *sbi = UDF_SB(sb); 980 struct udf_part_map *map; 981 struct udf_meta_data *mdata; 982 struct kernel_lb_addr addr; 983 struct inode *fe; 984 985 map = &sbi->s_partmaps[partition]; 986 mdata = &map->s_type_specific.s_metadata; 987 988 /* metadata address */ 989 udf_debug("Metadata file location: block = %d part = %d\n", 990 mdata->s_meta_file_loc, map->s_partition_num); 991 992 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 993 map->s_partition_num); 994 if (IS_ERR(fe)) { 995 /* mirror file entry */ 996 udf_debug("Mirror metadata file location: block = %d part = %d\n", 997 mdata->s_mirror_file_loc, map->s_partition_num); 998 999 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 1000 map->s_partition_num); 1001 1002 if (IS_ERR(fe)) { 1003 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 1004 return PTR_ERR(fe); 1005 } 1006 mdata->s_mirror_fe = fe; 1007 } else 1008 mdata->s_metadata_fe = fe; 1009 1010 1011 /* 1012 * bitmap file entry 1013 * Note: 1014 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 1015 */ 1016 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 1017 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 1018 addr.partitionReferenceNum = map->s_partition_num; 1019 1020 udf_debug("Bitmap file location: block = %d part = %d\n", 1021 addr.logicalBlockNum, addr.partitionReferenceNum); 1022 1023 fe = udf_iget_special(sb, &addr); 1024 if (IS_ERR(fe)) { 1025 if (sb->s_flags & MS_RDONLY) 1026 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 1027 else { 1028 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 1029 return PTR_ERR(fe); 1030 } 1031 } else 1032 mdata->s_bitmap_fe = fe; 1033 } 1034 1035 udf_debug("udf_load_metadata_files Ok\n"); 1036 return 0; 1037 } 1038 1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1040 struct kernel_lb_addr *root) 1041 { 1042 struct fileSetDesc *fset; 1043 1044 fset = (struct fileSetDesc *)bh->b_data; 1045 1046 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1047 1048 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1049 1050 udf_debug("Rootdir at block=%d, partition=%d\n", 1051 root->logicalBlockNum, root->partitionReferenceNum); 1052 } 1053 1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1055 { 1056 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1057 return DIV_ROUND_UP(map->s_partition_len + 1058 (sizeof(struct spaceBitmapDesc) << 3), 1059 sb->s_blocksize * 8); 1060 } 1061 1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1063 { 1064 struct udf_bitmap *bitmap; 1065 int nr_groups; 1066 int size; 1067 1068 nr_groups = udf_compute_nr_groups(sb, index); 1069 size = sizeof(struct udf_bitmap) + 1070 (sizeof(struct buffer_head *) * nr_groups); 1071 1072 if (size <= PAGE_SIZE) 1073 bitmap = kzalloc(size, GFP_KERNEL); 1074 else 1075 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1076 1077 if (bitmap == NULL) 1078 return NULL; 1079 1080 bitmap->s_nr_groups = nr_groups; 1081 return bitmap; 1082 } 1083 1084 static int udf_fill_partdesc_info(struct super_block *sb, 1085 struct partitionDesc *p, int p_index) 1086 { 1087 struct udf_part_map *map; 1088 struct udf_sb_info *sbi = UDF_SB(sb); 1089 struct partitionHeaderDesc *phd; 1090 1091 map = &sbi->s_partmaps[p_index]; 1092 1093 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1094 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1095 1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1097 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1099 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1100 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1101 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1103 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1104 1105 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1106 p_index, map->s_partition_type, 1107 map->s_partition_root, map->s_partition_len); 1108 1109 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1110 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1111 return 0; 1112 1113 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1114 if (phd->unallocSpaceTable.extLength) { 1115 struct kernel_lb_addr loc = { 1116 .logicalBlockNum = le32_to_cpu( 1117 phd->unallocSpaceTable.extPosition), 1118 .partitionReferenceNum = p_index, 1119 }; 1120 struct inode *inode; 1121 1122 inode = udf_iget_special(sb, &loc); 1123 if (IS_ERR(inode)) { 1124 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1125 p_index); 1126 return PTR_ERR(inode); 1127 } 1128 map->s_uspace.s_table = inode; 1129 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1130 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1131 p_index, map->s_uspace.s_table->i_ino); 1132 } 1133 1134 if (phd->unallocSpaceBitmap.extLength) { 1135 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1136 if (!bitmap) 1137 return -ENOMEM; 1138 map->s_uspace.s_bitmap = bitmap; 1139 bitmap->s_extPosition = le32_to_cpu( 1140 phd->unallocSpaceBitmap.extPosition); 1141 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1142 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1143 p_index, bitmap->s_extPosition); 1144 } 1145 1146 if (phd->partitionIntegrityTable.extLength) 1147 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1148 1149 if (phd->freedSpaceTable.extLength) { 1150 struct kernel_lb_addr loc = { 1151 .logicalBlockNum = le32_to_cpu( 1152 phd->freedSpaceTable.extPosition), 1153 .partitionReferenceNum = p_index, 1154 }; 1155 struct inode *inode; 1156 1157 inode = udf_iget_special(sb, &loc); 1158 if (IS_ERR(inode)) { 1159 udf_debug("cannot load freedSpaceTable (part %d)\n", 1160 p_index); 1161 return PTR_ERR(inode); 1162 } 1163 map->s_fspace.s_table = inode; 1164 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1165 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1166 p_index, map->s_fspace.s_table->i_ino); 1167 } 1168 1169 if (phd->freedSpaceBitmap.extLength) { 1170 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1171 if (!bitmap) 1172 return -ENOMEM; 1173 map->s_fspace.s_bitmap = bitmap; 1174 bitmap->s_extPosition = le32_to_cpu( 1175 phd->freedSpaceBitmap.extPosition); 1176 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1177 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1178 p_index, bitmap->s_extPosition); 1179 } 1180 return 0; 1181 } 1182 1183 static void udf_find_vat_block(struct super_block *sb, int p_index, 1184 int type1_index, sector_t start_block) 1185 { 1186 struct udf_sb_info *sbi = UDF_SB(sb); 1187 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1188 sector_t vat_block; 1189 struct kernel_lb_addr ino; 1190 struct inode *inode; 1191 1192 /* 1193 * VAT file entry is in the last recorded block. Some broken disks have 1194 * it a few blocks before so try a bit harder... 1195 */ 1196 ino.partitionReferenceNum = type1_index; 1197 for (vat_block = start_block; 1198 vat_block >= map->s_partition_root && 1199 vat_block >= start_block - 3; vat_block--) { 1200 ino.logicalBlockNum = vat_block - map->s_partition_root; 1201 inode = udf_iget_special(sb, &ino); 1202 if (!IS_ERR(inode)) { 1203 sbi->s_vat_inode = inode; 1204 break; 1205 } 1206 } 1207 } 1208 1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1210 { 1211 struct udf_sb_info *sbi = UDF_SB(sb); 1212 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1213 struct buffer_head *bh = NULL; 1214 struct udf_inode_info *vati; 1215 uint32_t pos; 1216 struct virtualAllocationTable20 *vat20; 1217 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1218 1219 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1220 if (!sbi->s_vat_inode && 1221 sbi->s_last_block != blocks - 1) { 1222 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1223 (unsigned long)sbi->s_last_block, 1224 (unsigned long)blocks - 1); 1225 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1226 } 1227 if (!sbi->s_vat_inode) 1228 return -EIO; 1229 1230 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1231 map->s_type_specific.s_virtual.s_start_offset = 0; 1232 map->s_type_specific.s_virtual.s_num_entries = 1233 (sbi->s_vat_inode->i_size - 36) >> 2; 1234 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1235 vati = UDF_I(sbi->s_vat_inode); 1236 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1237 pos = udf_block_map(sbi->s_vat_inode, 0); 1238 bh = sb_bread(sb, pos); 1239 if (!bh) 1240 return -EIO; 1241 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1242 } else { 1243 vat20 = (struct virtualAllocationTable20 *) 1244 vati->i_ext.i_data; 1245 } 1246 1247 map->s_type_specific.s_virtual.s_start_offset = 1248 le16_to_cpu(vat20->lengthHeader); 1249 map->s_type_specific.s_virtual.s_num_entries = 1250 (sbi->s_vat_inode->i_size - 1251 map->s_type_specific.s_virtual. 1252 s_start_offset) >> 2; 1253 brelse(bh); 1254 } 1255 return 0; 1256 } 1257 1258 /* 1259 * Load partition descriptor block 1260 * 1261 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1262 * sequence. 1263 */ 1264 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1265 { 1266 struct buffer_head *bh; 1267 struct partitionDesc *p; 1268 struct udf_part_map *map; 1269 struct udf_sb_info *sbi = UDF_SB(sb); 1270 int i, type1_idx; 1271 uint16_t partitionNumber; 1272 uint16_t ident; 1273 int ret; 1274 1275 bh = udf_read_tagged(sb, block, block, &ident); 1276 if (!bh) 1277 return -EAGAIN; 1278 if (ident != TAG_IDENT_PD) { 1279 ret = 0; 1280 goto out_bh; 1281 } 1282 1283 p = (struct partitionDesc *)bh->b_data; 1284 partitionNumber = le16_to_cpu(p->partitionNumber); 1285 1286 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1287 for (i = 0; i < sbi->s_partitions; i++) { 1288 map = &sbi->s_partmaps[i]; 1289 udf_debug("Searching map: (%d == %d)\n", 1290 map->s_partition_num, partitionNumber); 1291 if (map->s_partition_num == partitionNumber && 1292 (map->s_partition_type == UDF_TYPE1_MAP15 || 1293 map->s_partition_type == UDF_SPARABLE_MAP15)) 1294 break; 1295 } 1296 1297 if (i >= sbi->s_partitions) { 1298 udf_debug("Partition (%d) not found in partition map\n", 1299 partitionNumber); 1300 ret = 0; 1301 goto out_bh; 1302 } 1303 1304 ret = udf_fill_partdesc_info(sb, p, i); 1305 if (ret < 0) 1306 goto out_bh; 1307 1308 /* 1309 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1310 * PHYSICAL partitions are already set up 1311 */ 1312 type1_idx = i; 1313 #ifdef UDFFS_DEBUG 1314 map = NULL; /* supress 'maybe used uninitialized' warning */ 1315 #endif 1316 for (i = 0; i < sbi->s_partitions; i++) { 1317 map = &sbi->s_partmaps[i]; 1318 1319 if (map->s_partition_num == partitionNumber && 1320 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1321 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1322 map->s_partition_type == UDF_METADATA_MAP25)) 1323 break; 1324 } 1325 1326 if (i >= sbi->s_partitions) { 1327 ret = 0; 1328 goto out_bh; 1329 } 1330 1331 ret = udf_fill_partdesc_info(sb, p, i); 1332 if (ret < 0) 1333 goto out_bh; 1334 1335 if (map->s_partition_type == UDF_METADATA_MAP25) { 1336 ret = udf_load_metadata_files(sb, i); 1337 if (ret < 0) { 1338 udf_err(sb, "error loading MetaData partition map %d\n", 1339 i); 1340 goto out_bh; 1341 } 1342 } else { 1343 /* 1344 * If we have a partition with virtual map, we don't handle 1345 * writing to it (we overwrite blocks instead of relocating 1346 * them). 1347 */ 1348 if (!(sb->s_flags & MS_RDONLY)) { 1349 ret = -EACCES; 1350 goto out_bh; 1351 } 1352 ret = udf_load_vat(sb, i, type1_idx); 1353 if (ret < 0) 1354 goto out_bh; 1355 } 1356 ret = 0; 1357 out_bh: 1358 /* In case loading failed, we handle cleanup in udf_fill_super */ 1359 brelse(bh); 1360 return ret; 1361 } 1362 1363 static int udf_load_sparable_map(struct super_block *sb, 1364 struct udf_part_map *map, 1365 struct sparablePartitionMap *spm) 1366 { 1367 uint32_t loc; 1368 uint16_t ident; 1369 struct sparingTable *st; 1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1371 int i; 1372 struct buffer_head *bh; 1373 1374 map->s_partition_type = UDF_SPARABLE_MAP15; 1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1376 if (!is_power_of_2(sdata->s_packet_len)) { 1377 udf_err(sb, "error loading logical volume descriptor: " 1378 "Invalid packet length %u\n", 1379 (unsigned)sdata->s_packet_len); 1380 return -EIO; 1381 } 1382 if (spm->numSparingTables > 4) { 1383 udf_err(sb, "error loading logical volume descriptor: " 1384 "Too many sparing tables (%d)\n", 1385 (int)spm->numSparingTables); 1386 return -EIO; 1387 } 1388 1389 for (i = 0; i < spm->numSparingTables; i++) { 1390 loc = le32_to_cpu(spm->locSparingTable[i]); 1391 bh = udf_read_tagged(sb, loc, loc, &ident); 1392 if (!bh) 1393 continue; 1394 1395 st = (struct sparingTable *)bh->b_data; 1396 if (ident != 0 || 1397 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1398 strlen(UDF_ID_SPARING)) || 1399 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1400 sb->s_blocksize) { 1401 brelse(bh); 1402 continue; 1403 } 1404 1405 sdata->s_spar_map[i] = bh; 1406 } 1407 map->s_partition_func = udf_get_pblock_spar15; 1408 return 0; 1409 } 1410 1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1412 struct kernel_lb_addr *fileset) 1413 { 1414 struct logicalVolDesc *lvd; 1415 int i, offset; 1416 uint8_t type; 1417 struct udf_sb_info *sbi = UDF_SB(sb); 1418 struct genericPartitionMap *gpm; 1419 uint16_t ident; 1420 struct buffer_head *bh; 1421 unsigned int table_len; 1422 int ret; 1423 1424 bh = udf_read_tagged(sb, block, block, &ident); 1425 if (!bh) 1426 return -EAGAIN; 1427 BUG_ON(ident != TAG_IDENT_LVD); 1428 lvd = (struct logicalVolDesc *)bh->b_data; 1429 table_len = le32_to_cpu(lvd->mapTableLength); 1430 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1431 udf_err(sb, "error loading logical volume descriptor: " 1432 "Partition table too long (%u > %lu)\n", table_len, 1433 sb->s_blocksize - sizeof(*lvd)); 1434 ret = -EIO; 1435 goto out_bh; 1436 } 1437 1438 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1439 if (ret) 1440 goto out_bh; 1441 1442 for (i = 0, offset = 0; 1443 i < sbi->s_partitions && offset < table_len; 1444 i++, offset += gpm->partitionMapLength) { 1445 struct udf_part_map *map = &sbi->s_partmaps[i]; 1446 gpm = (struct genericPartitionMap *) 1447 &(lvd->partitionMaps[offset]); 1448 type = gpm->partitionMapType; 1449 if (type == 1) { 1450 struct genericPartitionMap1 *gpm1 = 1451 (struct genericPartitionMap1 *)gpm; 1452 map->s_partition_type = UDF_TYPE1_MAP15; 1453 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1454 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1455 map->s_partition_func = NULL; 1456 } else if (type == 2) { 1457 struct udfPartitionMap2 *upm2 = 1458 (struct udfPartitionMap2 *)gpm; 1459 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1460 strlen(UDF_ID_VIRTUAL))) { 1461 u16 suf = 1462 le16_to_cpu(((__le16 *)upm2->partIdent. 1463 identSuffix)[0]); 1464 if (suf < 0x0200) { 1465 map->s_partition_type = 1466 UDF_VIRTUAL_MAP15; 1467 map->s_partition_func = 1468 udf_get_pblock_virt15; 1469 } else { 1470 map->s_partition_type = 1471 UDF_VIRTUAL_MAP20; 1472 map->s_partition_func = 1473 udf_get_pblock_virt20; 1474 } 1475 } else if (!strncmp(upm2->partIdent.ident, 1476 UDF_ID_SPARABLE, 1477 strlen(UDF_ID_SPARABLE))) { 1478 ret = udf_load_sparable_map(sb, map, 1479 (struct sparablePartitionMap *)gpm); 1480 if (ret < 0) 1481 goto out_bh; 1482 } else if (!strncmp(upm2->partIdent.ident, 1483 UDF_ID_METADATA, 1484 strlen(UDF_ID_METADATA))) { 1485 struct udf_meta_data *mdata = 1486 &map->s_type_specific.s_metadata; 1487 struct metadataPartitionMap *mdm = 1488 (struct metadataPartitionMap *) 1489 &(lvd->partitionMaps[offset]); 1490 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1491 i, type, UDF_ID_METADATA); 1492 1493 map->s_partition_type = UDF_METADATA_MAP25; 1494 map->s_partition_func = udf_get_pblock_meta25; 1495 1496 mdata->s_meta_file_loc = 1497 le32_to_cpu(mdm->metadataFileLoc); 1498 mdata->s_mirror_file_loc = 1499 le32_to_cpu(mdm->metadataMirrorFileLoc); 1500 mdata->s_bitmap_file_loc = 1501 le32_to_cpu(mdm->metadataBitmapFileLoc); 1502 mdata->s_alloc_unit_size = 1503 le32_to_cpu(mdm->allocUnitSize); 1504 mdata->s_align_unit_size = 1505 le16_to_cpu(mdm->alignUnitSize); 1506 if (mdm->flags & 0x01) 1507 mdata->s_flags |= MF_DUPLICATE_MD; 1508 1509 udf_debug("Metadata Ident suffix=0x%x\n", 1510 le16_to_cpu(*(__le16 *) 1511 mdm->partIdent.identSuffix)); 1512 udf_debug("Metadata part num=%d\n", 1513 le16_to_cpu(mdm->partitionNum)); 1514 udf_debug("Metadata part alloc unit size=%d\n", 1515 le32_to_cpu(mdm->allocUnitSize)); 1516 udf_debug("Metadata file loc=%d\n", 1517 le32_to_cpu(mdm->metadataFileLoc)); 1518 udf_debug("Mirror file loc=%d\n", 1519 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1520 udf_debug("Bitmap file loc=%d\n", 1521 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1522 udf_debug("Flags: %d %d\n", 1523 mdata->s_flags, mdm->flags); 1524 } else { 1525 udf_debug("Unknown ident: %s\n", 1526 upm2->partIdent.ident); 1527 continue; 1528 } 1529 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1530 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1531 } 1532 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1533 i, map->s_partition_num, type, map->s_volumeseqnum); 1534 } 1535 1536 if (fileset) { 1537 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1538 1539 *fileset = lelb_to_cpu(la->extLocation); 1540 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1541 fileset->logicalBlockNum, 1542 fileset->partitionReferenceNum); 1543 } 1544 if (lvd->integritySeqExt.extLength) 1545 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1546 ret = 0; 1547 out_bh: 1548 brelse(bh); 1549 return ret; 1550 } 1551 1552 /* 1553 * udf_load_logicalvolint 1554 * 1555 */ 1556 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1557 { 1558 struct buffer_head *bh = NULL; 1559 uint16_t ident; 1560 struct udf_sb_info *sbi = UDF_SB(sb); 1561 struct logicalVolIntegrityDesc *lvid; 1562 1563 while (loc.extLength > 0 && 1564 (bh = udf_read_tagged(sb, loc.extLocation, 1565 loc.extLocation, &ident)) && 1566 ident == TAG_IDENT_LVID) { 1567 sbi->s_lvid_bh = bh; 1568 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1569 1570 if (lvid->nextIntegrityExt.extLength) 1571 udf_load_logicalvolint(sb, 1572 leea_to_cpu(lvid->nextIntegrityExt)); 1573 1574 if (sbi->s_lvid_bh != bh) 1575 brelse(bh); 1576 loc.extLength -= sb->s_blocksize; 1577 loc.extLocation++; 1578 } 1579 if (sbi->s_lvid_bh != bh) 1580 brelse(bh); 1581 } 1582 1583 /* 1584 * Process a main/reserve volume descriptor sequence. 1585 * @block First block of first extent of the sequence. 1586 * @lastblock Lastblock of first extent of the sequence. 1587 * @fileset There we store extent containing root fileset 1588 * 1589 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1590 * sequence 1591 */ 1592 static noinline int udf_process_sequence( 1593 struct super_block *sb, 1594 sector_t block, sector_t lastblock, 1595 struct kernel_lb_addr *fileset) 1596 { 1597 struct buffer_head *bh = NULL; 1598 struct udf_vds_record vds[VDS_POS_LENGTH]; 1599 struct udf_vds_record *curr; 1600 struct generic_desc *gd; 1601 struct volDescPtr *vdp; 1602 int done = 0; 1603 uint32_t vdsn; 1604 uint16_t ident; 1605 long next_s = 0, next_e = 0; 1606 int ret; 1607 1608 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1609 1610 /* 1611 * Read the main descriptor sequence and find which descriptors 1612 * are in it. 1613 */ 1614 for (; (!done && block <= lastblock); block++) { 1615 1616 bh = udf_read_tagged(sb, block, block, &ident); 1617 if (!bh) { 1618 udf_err(sb, 1619 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1620 (unsigned long long)block); 1621 return -EAGAIN; 1622 } 1623 1624 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1625 gd = (struct generic_desc *)bh->b_data; 1626 vdsn = le32_to_cpu(gd->volDescSeqNum); 1627 switch (ident) { 1628 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1629 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1630 if (vdsn >= curr->volDescSeqNum) { 1631 curr->volDescSeqNum = vdsn; 1632 curr->block = block; 1633 } 1634 break; 1635 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1636 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1637 if (vdsn >= curr->volDescSeqNum) { 1638 curr->volDescSeqNum = vdsn; 1639 curr->block = block; 1640 1641 vdp = (struct volDescPtr *)bh->b_data; 1642 next_s = le32_to_cpu( 1643 vdp->nextVolDescSeqExt.extLocation); 1644 next_e = le32_to_cpu( 1645 vdp->nextVolDescSeqExt.extLength); 1646 next_e = next_e >> sb->s_blocksize_bits; 1647 next_e += next_s; 1648 } 1649 break; 1650 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1651 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1652 if (vdsn >= curr->volDescSeqNum) { 1653 curr->volDescSeqNum = vdsn; 1654 curr->block = block; 1655 } 1656 break; 1657 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1658 curr = &vds[VDS_POS_PARTITION_DESC]; 1659 if (!curr->block) 1660 curr->block = block; 1661 break; 1662 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1663 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1664 if (vdsn >= curr->volDescSeqNum) { 1665 curr->volDescSeqNum = vdsn; 1666 curr->block = block; 1667 } 1668 break; 1669 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1670 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1671 if (vdsn >= curr->volDescSeqNum) { 1672 curr->volDescSeqNum = vdsn; 1673 curr->block = block; 1674 } 1675 break; 1676 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1677 vds[VDS_POS_TERMINATING_DESC].block = block; 1678 if (next_e) { 1679 block = next_s; 1680 lastblock = next_e; 1681 next_s = next_e = 0; 1682 } else 1683 done = 1; 1684 break; 1685 } 1686 brelse(bh); 1687 } 1688 /* 1689 * Now read interesting descriptors again and process them 1690 * in a suitable order 1691 */ 1692 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1693 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1694 return -EAGAIN; 1695 } 1696 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block); 1697 if (ret < 0) 1698 return ret; 1699 1700 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1701 ret = udf_load_logicalvol(sb, 1702 vds[VDS_POS_LOGICAL_VOL_DESC].block, 1703 fileset); 1704 if (ret < 0) 1705 return ret; 1706 } 1707 1708 if (vds[VDS_POS_PARTITION_DESC].block) { 1709 /* 1710 * We rescan the whole descriptor sequence to find 1711 * partition descriptor blocks and process them. 1712 */ 1713 for (block = vds[VDS_POS_PARTITION_DESC].block; 1714 block < vds[VDS_POS_TERMINATING_DESC].block; 1715 block++) { 1716 ret = udf_load_partdesc(sb, block); 1717 if (ret < 0) 1718 return ret; 1719 } 1720 } 1721 1722 return 0; 1723 } 1724 1725 /* 1726 * Load Volume Descriptor Sequence described by anchor in bh 1727 * 1728 * Returns <0 on error, 0 on success 1729 */ 1730 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1731 struct kernel_lb_addr *fileset) 1732 { 1733 struct anchorVolDescPtr *anchor; 1734 sector_t main_s, main_e, reserve_s, reserve_e; 1735 int ret; 1736 1737 anchor = (struct anchorVolDescPtr *)bh->b_data; 1738 1739 /* Locate the main sequence */ 1740 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1741 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1742 main_e = main_e >> sb->s_blocksize_bits; 1743 main_e += main_s; 1744 1745 /* Locate the reserve sequence */ 1746 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1747 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1748 reserve_e = reserve_e >> sb->s_blocksize_bits; 1749 reserve_e += reserve_s; 1750 1751 /* Process the main & reserve sequences */ 1752 /* responsible for finding the PartitionDesc(s) */ 1753 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1754 if (ret != -EAGAIN) 1755 return ret; 1756 udf_sb_free_partitions(sb); 1757 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1758 if (ret < 0) { 1759 udf_sb_free_partitions(sb); 1760 /* No sequence was OK, return -EIO */ 1761 if (ret == -EAGAIN) 1762 ret = -EIO; 1763 } 1764 return ret; 1765 } 1766 1767 /* 1768 * Check whether there is an anchor block in the given block and 1769 * load Volume Descriptor Sequence if so. 1770 * 1771 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1772 * block 1773 */ 1774 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1775 struct kernel_lb_addr *fileset) 1776 { 1777 struct buffer_head *bh; 1778 uint16_t ident; 1779 int ret; 1780 1781 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1782 udf_fixed_to_variable(block) >= 1783 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1784 return -EAGAIN; 1785 1786 bh = udf_read_tagged(sb, block, block, &ident); 1787 if (!bh) 1788 return -EAGAIN; 1789 if (ident != TAG_IDENT_AVDP) { 1790 brelse(bh); 1791 return -EAGAIN; 1792 } 1793 ret = udf_load_sequence(sb, bh, fileset); 1794 brelse(bh); 1795 return ret; 1796 } 1797 1798 /* 1799 * Search for an anchor volume descriptor pointer. 1800 * 1801 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1802 * of anchors. 1803 */ 1804 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1805 struct kernel_lb_addr *fileset) 1806 { 1807 sector_t last[6]; 1808 int i; 1809 struct udf_sb_info *sbi = UDF_SB(sb); 1810 int last_count = 0; 1811 int ret; 1812 1813 /* First try user provided anchor */ 1814 if (sbi->s_anchor) { 1815 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1816 if (ret != -EAGAIN) 1817 return ret; 1818 } 1819 /* 1820 * according to spec, anchor is in either: 1821 * block 256 1822 * lastblock-256 1823 * lastblock 1824 * however, if the disc isn't closed, it could be 512. 1825 */ 1826 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1827 if (ret != -EAGAIN) 1828 return ret; 1829 /* 1830 * The trouble is which block is the last one. Drives often misreport 1831 * this so we try various possibilities. 1832 */ 1833 last[last_count++] = *lastblock; 1834 if (*lastblock >= 1) 1835 last[last_count++] = *lastblock - 1; 1836 last[last_count++] = *lastblock + 1; 1837 if (*lastblock >= 2) 1838 last[last_count++] = *lastblock - 2; 1839 if (*lastblock >= 150) 1840 last[last_count++] = *lastblock - 150; 1841 if (*lastblock >= 152) 1842 last[last_count++] = *lastblock - 152; 1843 1844 for (i = 0; i < last_count; i++) { 1845 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1846 sb->s_blocksize_bits) 1847 continue; 1848 ret = udf_check_anchor_block(sb, last[i], fileset); 1849 if (ret != -EAGAIN) { 1850 if (!ret) 1851 *lastblock = last[i]; 1852 return ret; 1853 } 1854 if (last[i] < 256) 1855 continue; 1856 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1857 if (ret != -EAGAIN) { 1858 if (!ret) 1859 *lastblock = last[i]; 1860 return ret; 1861 } 1862 } 1863 1864 /* Finally try block 512 in case media is open */ 1865 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1866 } 1867 1868 /* 1869 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1870 * area specified by it. The function expects sbi->s_lastblock to be the last 1871 * block on the media. 1872 * 1873 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1874 * was not found. 1875 */ 1876 static int udf_find_anchor(struct super_block *sb, 1877 struct kernel_lb_addr *fileset) 1878 { 1879 struct udf_sb_info *sbi = UDF_SB(sb); 1880 sector_t lastblock = sbi->s_last_block; 1881 int ret; 1882 1883 ret = udf_scan_anchors(sb, &lastblock, fileset); 1884 if (ret != -EAGAIN) 1885 goto out; 1886 1887 /* No anchor found? Try VARCONV conversion of block numbers */ 1888 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1889 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1890 /* Firstly, we try to not convert number of the last block */ 1891 ret = udf_scan_anchors(sb, &lastblock, fileset); 1892 if (ret != -EAGAIN) 1893 goto out; 1894 1895 lastblock = sbi->s_last_block; 1896 /* Secondly, we try with converted number of the last block */ 1897 ret = udf_scan_anchors(sb, &lastblock, fileset); 1898 if (ret < 0) { 1899 /* VARCONV didn't help. Clear it. */ 1900 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1901 } 1902 out: 1903 if (ret == 0) 1904 sbi->s_last_block = lastblock; 1905 return ret; 1906 } 1907 1908 /* 1909 * Check Volume Structure Descriptor, find Anchor block and load Volume 1910 * Descriptor Sequence. 1911 * 1912 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1913 * block was not found. 1914 */ 1915 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1916 int silent, struct kernel_lb_addr *fileset) 1917 { 1918 struct udf_sb_info *sbi = UDF_SB(sb); 1919 loff_t nsr_off; 1920 int ret; 1921 1922 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1923 if (!silent) 1924 udf_warn(sb, "Bad block size\n"); 1925 return -EINVAL; 1926 } 1927 sbi->s_last_block = uopt->lastblock; 1928 if (!uopt->novrs) { 1929 /* Check that it is NSR02 compliant */ 1930 nsr_off = udf_check_vsd(sb); 1931 if (!nsr_off) { 1932 if (!silent) 1933 udf_warn(sb, "No VRS found\n"); 1934 return 0; 1935 } 1936 if (nsr_off == -1) 1937 udf_debug("Failed to read sector at offset %d. " 1938 "Assuming open disc. Skipping validity " 1939 "check\n", VSD_FIRST_SECTOR_OFFSET); 1940 if (!sbi->s_last_block) 1941 sbi->s_last_block = udf_get_last_block(sb); 1942 } else { 1943 udf_debug("Validity check skipped because of novrs option\n"); 1944 } 1945 1946 /* Look for anchor block and load Volume Descriptor Sequence */ 1947 sbi->s_anchor = uopt->anchor; 1948 ret = udf_find_anchor(sb, fileset); 1949 if (ret < 0) { 1950 if (!silent && ret == -EAGAIN) 1951 udf_warn(sb, "No anchor found\n"); 1952 return ret; 1953 } 1954 return 0; 1955 } 1956 1957 static void udf_open_lvid(struct super_block *sb) 1958 { 1959 struct udf_sb_info *sbi = UDF_SB(sb); 1960 struct buffer_head *bh = sbi->s_lvid_bh; 1961 struct logicalVolIntegrityDesc *lvid; 1962 struct logicalVolIntegrityDescImpUse *lvidiu; 1963 1964 if (!bh) 1965 return; 1966 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1967 lvidiu = udf_sb_lvidiu(sb); 1968 if (!lvidiu) 1969 return; 1970 1971 mutex_lock(&sbi->s_alloc_mutex); 1972 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1973 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1974 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1975 CURRENT_TIME); 1976 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1977 1978 lvid->descTag.descCRC = cpu_to_le16( 1979 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1980 le16_to_cpu(lvid->descTag.descCRCLength))); 1981 1982 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1983 mark_buffer_dirty(bh); 1984 sbi->s_lvid_dirty = 0; 1985 mutex_unlock(&sbi->s_alloc_mutex); 1986 /* Make opening of filesystem visible on the media immediately */ 1987 sync_dirty_buffer(bh); 1988 } 1989 1990 static void udf_close_lvid(struct super_block *sb) 1991 { 1992 struct udf_sb_info *sbi = UDF_SB(sb); 1993 struct buffer_head *bh = sbi->s_lvid_bh; 1994 struct logicalVolIntegrityDesc *lvid; 1995 struct logicalVolIntegrityDescImpUse *lvidiu; 1996 1997 if (!bh) 1998 return; 1999 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2000 lvidiu = udf_sb_lvidiu(sb); 2001 if (!lvidiu) 2002 return; 2003 2004 mutex_lock(&sbi->s_alloc_mutex); 2005 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2006 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2007 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 2008 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2009 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2010 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2011 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2012 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2013 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2014 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2015 2016 lvid->descTag.descCRC = cpu_to_le16( 2017 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2018 le16_to_cpu(lvid->descTag.descCRCLength))); 2019 2020 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2021 /* 2022 * We set buffer uptodate unconditionally here to avoid spurious 2023 * warnings from mark_buffer_dirty() when previous EIO has marked 2024 * the buffer as !uptodate 2025 */ 2026 set_buffer_uptodate(bh); 2027 mark_buffer_dirty(bh); 2028 sbi->s_lvid_dirty = 0; 2029 mutex_unlock(&sbi->s_alloc_mutex); 2030 /* Make closing of filesystem visible on the media immediately */ 2031 sync_dirty_buffer(bh); 2032 } 2033 2034 u64 lvid_get_unique_id(struct super_block *sb) 2035 { 2036 struct buffer_head *bh; 2037 struct udf_sb_info *sbi = UDF_SB(sb); 2038 struct logicalVolIntegrityDesc *lvid; 2039 struct logicalVolHeaderDesc *lvhd; 2040 u64 uniqueID; 2041 u64 ret; 2042 2043 bh = sbi->s_lvid_bh; 2044 if (!bh) 2045 return 0; 2046 2047 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2048 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2049 2050 mutex_lock(&sbi->s_alloc_mutex); 2051 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2052 if (!(++uniqueID & 0xFFFFFFFF)) 2053 uniqueID += 16; 2054 lvhd->uniqueID = cpu_to_le64(uniqueID); 2055 mutex_unlock(&sbi->s_alloc_mutex); 2056 mark_buffer_dirty(bh); 2057 2058 return ret; 2059 } 2060 2061 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2062 { 2063 int ret = -EINVAL; 2064 struct inode *inode = NULL; 2065 struct udf_options uopt; 2066 struct kernel_lb_addr rootdir, fileset; 2067 struct udf_sb_info *sbi; 2068 2069 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2070 uopt.uid = INVALID_UID; 2071 uopt.gid = INVALID_GID; 2072 uopt.umask = 0; 2073 uopt.fmode = UDF_INVALID_MODE; 2074 uopt.dmode = UDF_INVALID_MODE; 2075 2076 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 2077 if (!sbi) 2078 return -ENOMEM; 2079 2080 sb->s_fs_info = sbi; 2081 2082 mutex_init(&sbi->s_alloc_mutex); 2083 2084 if (!udf_parse_options((char *)options, &uopt, false)) 2085 goto error_out; 2086 2087 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2088 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2089 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2090 goto error_out; 2091 } 2092 #ifdef CONFIG_UDF_NLS 2093 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2094 uopt.nls_map = load_nls_default(); 2095 if (!uopt.nls_map) 2096 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2097 else 2098 udf_debug("Using default NLS map\n"); 2099 } 2100 #endif 2101 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2102 uopt.flags |= (1 << UDF_FLAG_UTF8); 2103 2104 fileset.logicalBlockNum = 0xFFFFFFFF; 2105 fileset.partitionReferenceNum = 0xFFFF; 2106 2107 sbi->s_flags = uopt.flags; 2108 sbi->s_uid = uopt.uid; 2109 sbi->s_gid = uopt.gid; 2110 sbi->s_umask = uopt.umask; 2111 sbi->s_fmode = uopt.fmode; 2112 sbi->s_dmode = uopt.dmode; 2113 sbi->s_nls_map = uopt.nls_map; 2114 rwlock_init(&sbi->s_cred_lock); 2115 2116 if (uopt.session == 0xFFFFFFFF) 2117 sbi->s_session = udf_get_last_session(sb); 2118 else 2119 sbi->s_session = uopt.session; 2120 2121 udf_debug("Multi-session=%d\n", sbi->s_session); 2122 2123 /* Fill in the rest of the superblock */ 2124 sb->s_op = &udf_sb_ops; 2125 sb->s_export_op = &udf_export_ops; 2126 2127 sb->s_magic = UDF_SUPER_MAGIC; 2128 sb->s_time_gran = 1000; 2129 2130 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2131 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2132 } else { 2133 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2134 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2135 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2136 if (!silent) 2137 pr_notice("Rescanning with blocksize %d\n", 2138 UDF_DEFAULT_BLOCKSIZE); 2139 brelse(sbi->s_lvid_bh); 2140 sbi->s_lvid_bh = NULL; 2141 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2142 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2143 } 2144 } 2145 if (ret < 0) { 2146 if (ret == -EAGAIN) { 2147 udf_warn(sb, "No partition found (1)\n"); 2148 ret = -EINVAL; 2149 } 2150 goto error_out; 2151 } 2152 2153 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2154 2155 if (sbi->s_lvid_bh) { 2156 struct logicalVolIntegrityDescImpUse *lvidiu = 2157 udf_sb_lvidiu(sb); 2158 uint16_t minUDFReadRev; 2159 uint16_t minUDFWriteRev; 2160 2161 if (!lvidiu) { 2162 ret = -EINVAL; 2163 goto error_out; 2164 } 2165 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2166 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2167 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2168 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2169 minUDFReadRev, 2170 UDF_MAX_READ_VERSION); 2171 ret = -EINVAL; 2172 goto error_out; 2173 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2174 !(sb->s_flags & MS_RDONLY)) { 2175 ret = -EACCES; 2176 goto error_out; 2177 } 2178 2179 sbi->s_udfrev = minUDFWriteRev; 2180 2181 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2182 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2183 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2184 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2185 } 2186 2187 if (!sbi->s_partitions) { 2188 udf_warn(sb, "No partition found (2)\n"); 2189 ret = -EINVAL; 2190 goto error_out; 2191 } 2192 2193 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2194 UDF_PART_FLAG_READ_ONLY && 2195 !(sb->s_flags & MS_RDONLY)) { 2196 ret = -EACCES; 2197 goto error_out; 2198 } 2199 2200 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2201 udf_warn(sb, "No fileset found\n"); 2202 ret = -EINVAL; 2203 goto error_out; 2204 } 2205 2206 if (!silent) { 2207 struct timestamp ts; 2208 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2209 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2210 sbi->s_volume_ident, 2211 le16_to_cpu(ts.year), ts.month, ts.day, 2212 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2213 } 2214 if (!(sb->s_flags & MS_RDONLY)) 2215 udf_open_lvid(sb); 2216 2217 /* Assign the root inode */ 2218 /* assign inodes by physical block number */ 2219 /* perhaps it's not extensible enough, but for now ... */ 2220 inode = udf_iget(sb, &rootdir); 2221 if (IS_ERR(inode)) { 2222 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2223 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2224 ret = PTR_ERR(inode); 2225 goto error_out; 2226 } 2227 2228 /* Allocate a dentry for the root inode */ 2229 sb->s_root = d_make_root(inode); 2230 if (!sb->s_root) { 2231 udf_err(sb, "Couldn't allocate root dentry\n"); 2232 ret = -ENOMEM; 2233 goto error_out; 2234 } 2235 sb->s_maxbytes = MAX_LFS_FILESIZE; 2236 sb->s_max_links = UDF_MAX_LINKS; 2237 return 0; 2238 2239 error_out: 2240 if (sbi->s_vat_inode) 2241 iput(sbi->s_vat_inode); 2242 #ifdef CONFIG_UDF_NLS 2243 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2244 unload_nls(sbi->s_nls_map); 2245 #endif 2246 if (!(sb->s_flags & MS_RDONLY)) 2247 udf_close_lvid(sb); 2248 brelse(sbi->s_lvid_bh); 2249 udf_sb_free_partitions(sb); 2250 kfree(sbi); 2251 sb->s_fs_info = NULL; 2252 2253 return ret; 2254 } 2255 2256 void _udf_err(struct super_block *sb, const char *function, 2257 const char *fmt, ...) 2258 { 2259 struct va_format vaf; 2260 va_list args; 2261 2262 va_start(args, fmt); 2263 2264 vaf.fmt = fmt; 2265 vaf.va = &args; 2266 2267 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2268 2269 va_end(args); 2270 } 2271 2272 void _udf_warn(struct super_block *sb, const char *function, 2273 const char *fmt, ...) 2274 { 2275 struct va_format vaf; 2276 va_list args; 2277 2278 va_start(args, fmt); 2279 2280 vaf.fmt = fmt; 2281 vaf.va = &args; 2282 2283 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2284 2285 va_end(args); 2286 } 2287 2288 static void udf_put_super(struct super_block *sb) 2289 { 2290 struct udf_sb_info *sbi; 2291 2292 sbi = UDF_SB(sb); 2293 2294 if (sbi->s_vat_inode) 2295 iput(sbi->s_vat_inode); 2296 #ifdef CONFIG_UDF_NLS 2297 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2298 unload_nls(sbi->s_nls_map); 2299 #endif 2300 if (!(sb->s_flags & MS_RDONLY)) 2301 udf_close_lvid(sb); 2302 brelse(sbi->s_lvid_bh); 2303 udf_sb_free_partitions(sb); 2304 kfree(sb->s_fs_info); 2305 sb->s_fs_info = NULL; 2306 } 2307 2308 static int udf_sync_fs(struct super_block *sb, int wait) 2309 { 2310 struct udf_sb_info *sbi = UDF_SB(sb); 2311 2312 mutex_lock(&sbi->s_alloc_mutex); 2313 if (sbi->s_lvid_dirty) { 2314 /* 2315 * Blockdevice will be synced later so we don't have to submit 2316 * the buffer for IO 2317 */ 2318 mark_buffer_dirty(sbi->s_lvid_bh); 2319 sbi->s_lvid_dirty = 0; 2320 } 2321 mutex_unlock(&sbi->s_alloc_mutex); 2322 2323 return 0; 2324 } 2325 2326 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2327 { 2328 struct super_block *sb = dentry->d_sb; 2329 struct udf_sb_info *sbi = UDF_SB(sb); 2330 struct logicalVolIntegrityDescImpUse *lvidiu; 2331 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2332 2333 lvidiu = udf_sb_lvidiu(sb); 2334 buf->f_type = UDF_SUPER_MAGIC; 2335 buf->f_bsize = sb->s_blocksize; 2336 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2337 buf->f_bfree = udf_count_free(sb); 2338 buf->f_bavail = buf->f_bfree; 2339 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2340 le32_to_cpu(lvidiu->numDirs)) : 0) 2341 + buf->f_bfree; 2342 buf->f_ffree = buf->f_bfree; 2343 buf->f_namelen = UDF_NAME_LEN - 2; 2344 buf->f_fsid.val[0] = (u32)id; 2345 buf->f_fsid.val[1] = (u32)(id >> 32); 2346 2347 return 0; 2348 } 2349 2350 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2351 struct udf_bitmap *bitmap) 2352 { 2353 struct buffer_head *bh = NULL; 2354 unsigned int accum = 0; 2355 int index; 2356 int block = 0, newblock; 2357 struct kernel_lb_addr loc; 2358 uint32_t bytes; 2359 uint8_t *ptr; 2360 uint16_t ident; 2361 struct spaceBitmapDesc *bm; 2362 2363 loc.logicalBlockNum = bitmap->s_extPosition; 2364 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2365 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2366 2367 if (!bh) { 2368 udf_err(sb, "udf_count_free failed\n"); 2369 goto out; 2370 } else if (ident != TAG_IDENT_SBD) { 2371 brelse(bh); 2372 udf_err(sb, "udf_count_free failed\n"); 2373 goto out; 2374 } 2375 2376 bm = (struct spaceBitmapDesc *)bh->b_data; 2377 bytes = le32_to_cpu(bm->numOfBytes); 2378 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2379 ptr = (uint8_t *)bh->b_data; 2380 2381 while (bytes > 0) { 2382 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2383 accum += bitmap_weight((const unsigned long *)(ptr + index), 2384 cur_bytes * 8); 2385 bytes -= cur_bytes; 2386 if (bytes) { 2387 brelse(bh); 2388 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2389 bh = udf_tread(sb, newblock); 2390 if (!bh) { 2391 udf_debug("read failed\n"); 2392 goto out; 2393 } 2394 index = 0; 2395 ptr = (uint8_t *)bh->b_data; 2396 } 2397 } 2398 brelse(bh); 2399 out: 2400 return accum; 2401 } 2402 2403 static unsigned int udf_count_free_table(struct super_block *sb, 2404 struct inode *table) 2405 { 2406 unsigned int accum = 0; 2407 uint32_t elen; 2408 struct kernel_lb_addr eloc; 2409 int8_t etype; 2410 struct extent_position epos; 2411 2412 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2413 epos.block = UDF_I(table)->i_location; 2414 epos.offset = sizeof(struct unallocSpaceEntry); 2415 epos.bh = NULL; 2416 2417 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2418 accum += (elen >> table->i_sb->s_blocksize_bits); 2419 2420 brelse(epos.bh); 2421 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2422 2423 return accum; 2424 } 2425 2426 static unsigned int udf_count_free(struct super_block *sb) 2427 { 2428 unsigned int accum = 0; 2429 struct udf_sb_info *sbi; 2430 struct udf_part_map *map; 2431 2432 sbi = UDF_SB(sb); 2433 if (sbi->s_lvid_bh) { 2434 struct logicalVolIntegrityDesc *lvid = 2435 (struct logicalVolIntegrityDesc *) 2436 sbi->s_lvid_bh->b_data; 2437 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2438 accum = le32_to_cpu( 2439 lvid->freeSpaceTable[sbi->s_partition]); 2440 if (accum == 0xFFFFFFFF) 2441 accum = 0; 2442 } 2443 } 2444 2445 if (accum) 2446 return accum; 2447 2448 map = &sbi->s_partmaps[sbi->s_partition]; 2449 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2450 accum += udf_count_free_bitmap(sb, 2451 map->s_uspace.s_bitmap); 2452 } 2453 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2454 accum += udf_count_free_bitmap(sb, 2455 map->s_fspace.s_bitmap); 2456 } 2457 if (accum) 2458 return accum; 2459 2460 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2461 accum += udf_count_free_table(sb, 2462 map->s_uspace.s_table); 2463 } 2464 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2465 accum += udf_count_free_table(sb, 2466 map->s_fspace.s_table); 2467 } 2468 2469 return accum; 2470 } 2471