xref: /linux/fs/udf/super.c (revision 04eeb606a8383b306f4bc6991da8231b5f3924b0)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 #define VSD_FIRST_SECTOR_OFFSET		32768
80 #define VSD_MAX_SECTOR_OFFSET		0x800000
81 
82 enum { UDF_MAX_LINKS = 0xffff };
83 
84 /* These are the "meat" - everything else is stuffing */
85 static int udf_fill_super(struct super_block *, void *, int);
86 static void udf_put_super(struct super_block *);
87 static int udf_sync_fs(struct super_block *, int);
88 static int udf_remount_fs(struct super_block *, int *, char *);
89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91 			    struct kernel_lb_addr *);
92 static void udf_load_fileset(struct super_block *, struct buffer_head *,
93 			     struct kernel_lb_addr *);
94 static void udf_open_lvid(struct super_block *);
95 static void udf_close_lvid(struct super_block *);
96 static unsigned int udf_count_free(struct super_block *);
97 static int udf_statfs(struct dentry *, struct kstatfs *);
98 static int udf_show_options(struct seq_file *, struct dentry *);
99 
100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101 {
102 	struct logicalVolIntegrityDesc *lvid;
103 	unsigned int partnum;
104 	unsigned int offset;
105 
106 	if (!UDF_SB(sb)->s_lvid_bh)
107 		return NULL;
108 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109 	partnum = le32_to_cpu(lvid->numOfPartitions);
110 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
112 	     (2 * sizeof(uint32_t)) < partnum) {
113 		udf_err(sb, "Logical volume integrity descriptor corrupted "
114 			"(numOfPartitions = %u)!\n", partnum);
115 		return NULL;
116 	}
117 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
118 	offset = partnum * 2 * sizeof(uint32_t);
119 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120 }
121 
122 /* UDF filesystem type */
123 static struct dentry *udf_mount(struct file_system_type *fs_type,
124 		      int flags, const char *dev_name, void *data)
125 {
126 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127 }
128 
129 static struct file_system_type udf_fstype = {
130 	.owner		= THIS_MODULE,
131 	.name		= "udf",
132 	.mount		= udf_mount,
133 	.kill_sb	= kill_block_super,
134 	.fs_flags	= FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("udf");
137 
138 static struct kmem_cache *udf_inode_cachep;
139 
140 static struct inode *udf_alloc_inode(struct super_block *sb)
141 {
142 	struct udf_inode_info *ei;
143 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144 	if (!ei)
145 		return NULL;
146 
147 	ei->i_unique = 0;
148 	ei->i_lenExtents = 0;
149 	ei->i_next_alloc_block = 0;
150 	ei->i_next_alloc_goal = 0;
151 	ei->i_strat4096 = 0;
152 	init_rwsem(&ei->i_data_sem);
153 	ei->cached_extent.lstart = -1;
154 	spin_lock_init(&ei->i_extent_cache_lock);
155 
156 	return &ei->vfs_inode;
157 }
158 
159 static void udf_i_callback(struct rcu_head *head)
160 {
161 	struct inode *inode = container_of(head, struct inode, i_rcu);
162 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163 }
164 
165 static void udf_destroy_inode(struct inode *inode)
166 {
167 	call_rcu(&inode->i_rcu, udf_i_callback);
168 }
169 
170 static void init_once(void *foo)
171 {
172 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173 
174 	ei->i_ext.i_data = NULL;
175 	inode_init_once(&ei->vfs_inode);
176 }
177 
178 static int __init init_inodecache(void)
179 {
180 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181 					     sizeof(struct udf_inode_info),
182 					     0, (SLAB_RECLAIM_ACCOUNT |
183 						 SLAB_MEM_SPREAD),
184 					     init_once);
185 	if (!udf_inode_cachep)
186 		return -ENOMEM;
187 	return 0;
188 }
189 
190 static void destroy_inodecache(void)
191 {
192 	/*
193 	 * Make sure all delayed rcu free inodes are flushed before we
194 	 * destroy cache.
195 	 */
196 	rcu_barrier();
197 	kmem_cache_destroy(udf_inode_cachep);
198 }
199 
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202 	.alloc_inode	= udf_alloc_inode,
203 	.destroy_inode	= udf_destroy_inode,
204 	.write_inode	= udf_write_inode,
205 	.evict_inode	= udf_evict_inode,
206 	.put_super	= udf_put_super,
207 	.sync_fs	= udf_sync_fs,
208 	.statfs		= udf_statfs,
209 	.remount_fs	= udf_remount_fs,
210 	.show_options	= udf_show_options,
211 };
212 
213 struct udf_options {
214 	unsigned char novrs;
215 	unsigned int blocksize;
216 	unsigned int session;
217 	unsigned int lastblock;
218 	unsigned int anchor;
219 	unsigned int volume;
220 	unsigned short partition;
221 	unsigned int fileset;
222 	unsigned int rootdir;
223 	unsigned int flags;
224 	umode_t umask;
225 	kgid_t gid;
226 	kuid_t uid;
227 	umode_t fmode;
228 	umode_t dmode;
229 	struct nls_table *nls_map;
230 };
231 
232 static int __init init_udf_fs(void)
233 {
234 	int err;
235 
236 	err = init_inodecache();
237 	if (err)
238 		goto out1;
239 	err = register_filesystem(&udf_fstype);
240 	if (err)
241 		goto out;
242 
243 	return 0;
244 
245 out:
246 	destroy_inodecache();
247 
248 out1:
249 	return err;
250 }
251 
252 static void __exit exit_udf_fs(void)
253 {
254 	unregister_filesystem(&udf_fstype);
255 	destroy_inodecache();
256 }
257 
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260 
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263 	struct udf_sb_info *sbi = UDF_SB(sb);
264 
265 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 				  GFP_KERNEL);
267 	if (!sbi->s_partmaps) {
268 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 			count);
270 		sbi->s_partitions = 0;
271 		return -ENOMEM;
272 	}
273 
274 	sbi->s_partitions = count;
275 	return 0;
276 }
277 
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280 	int i;
281 	int nr_groups = bitmap->s_nr_groups;
282 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283 						nr_groups);
284 
285 	for (i = 0; i < nr_groups; i++)
286 		if (bitmap->s_block_bitmap[i])
287 			brelse(bitmap->s_block_bitmap[i]);
288 
289 	if (size <= PAGE_SIZE)
290 		kfree(bitmap);
291 	else
292 		vfree(bitmap);
293 }
294 
295 static void udf_free_partition(struct udf_part_map *map)
296 {
297 	int i;
298 	struct udf_meta_data *mdata;
299 
300 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301 		iput(map->s_uspace.s_table);
302 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303 		iput(map->s_fspace.s_table);
304 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
309 		for (i = 0; i < 4; i++)
310 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
312 		mdata = &map->s_type_specific.s_metadata;
313 		iput(mdata->s_metadata_fe);
314 		mdata->s_metadata_fe = NULL;
315 
316 		iput(mdata->s_mirror_fe);
317 		mdata->s_mirror_fe = NULL;
318 
319 		iput(mdata->s_bitmap_fe);
320 		mdata->s_bitmap_fe = NULL;
321 	}
322 }
323 
324 static void udf_sb_free_partitions(struct super_block *sb)
325 {
326 	struct udf_sb_info *sbi = UDF_SB(sb);
327 	int i;
328 	if (sbi->s_partmaps == NULL)
329 		return;
330 	for (i = 0; i < sbi->s_partitions; i++)
331 		udf_free_partition(&sbi->s_partmaps[i]);
332 	kfree(sbi->s_partmaps);
333 	sbi->s_partmaps = NULL;
334 }
335 
336 static int udf_show_options(struct seq_file *seq, struct dentry *root)
337 {
338 	struct super_block *sb = root->d_sb;
339 	struct udf_sb_info *sbi = UDF_SB(sb);
340 
341 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342 		seq_puts(seq, ",nostrict");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346 		seq_puts(seq, ",unhide");
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348 		seq_puts(seq, ",undelete");
349 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350 		seq_puts(seq, ",noadinicb");
351 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352 		seq_puts(seq, ",shortad");
353 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354 		seq_puts(seq, ",uid=forget");
355 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356 		seq_puts(seq, ",uid=ignore");
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358 		seq_puts(seq, ",gid=forget");
359 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360 		seq_puts(seq, ",gid=ignore");
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365 	if (sbi->s_umask != 0)
366 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
367 	if (sbi->s_fmode != UDF_INVALID_MODE)
368 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369 	if (sbi->s_dmode != UDF_INVALID_MODE)
370 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372 		seq_printf(seq, ",session=%u", sbi->s_session);
373 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375 	if (sbi->s_anchor != 0)
376 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377 	/*
378 	 * volume, partition, fileset and rootdir seem to be ignored
379 	 * currently
380 	 */
381 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382 		seq_puts(seq, ",utf8");
383 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385 
386 	return 0;
387 }
388 
389 /*
390  * udf_parse_options
391  *
392  * PURPOSE
393  *	Parse mount options.
394  *
395  * DESCRIPTION
396  *	The following mount options are supported:
397  *
398  *	gid=		Set the default group.
399  *	umask=		Set the default umask.
400  *	mode=		Set the default file permissions.
401  *	dmode=		Set the default directory permissions.
402  *	uid=		Set the default user.
403  *	bs=		Set the block size.
404  *	unhide		Show otherwise hidden files.
405  *	undelete	Show deleted files in lists.
406  *	adinicb		Embed data in the inode (default)
407  *	noadinicb	Don't embed data in the inode
408  *	shortad		Use short ad's
409  *	longad		Use long ad's (default)
410  *	nostrict	Unset strict conformance
411  *	iocharset=	Set the NLS character set
412  *
413  *	The remaining are for debugging and disaster recovery:
414  *
415  *	novrs		Skip volume sequence recognition
416  *
417  *	The following expect a offset from 0.
418  *
419  *	session=	Set the CDROM session (default= last session)
420  *	anchor=		Override standard anchor location. (default= 256)
421  *	volume=		Override the VolumeDesc location. (unused)
422  *	partition=	Override the PartitionDesc location. (unused)
423  *	lastblock=	Set the last block of the filesystem/
424  *
425  *	The following expect a offset from the partition root.
426  *
427  *	fileset=	Override the fileset block location. (unused)
428  *	rootdir=	Override the root directory location. (unused)
429  *		WARNING: overriding the rootdir to a non-directory may
430  *		yield highly unpredictable results.
431  *
432  * PRE-CONDITIONS
433  *	options		Pointer to mount options string.
434  *	uopts		Pointer to mount options variable.
435  *
436  * POST-CONDITIONS
437  *	<return>	1	Mount options parsed okay.
438  *	<return>	0	Error parsing mount options.
439  *
440  * HISTORY
441  *	July 1, 1997 - Andrew E. Mileski
442  *	Written, tested, and released.
443  */
444 
445 enum {
446 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450 	Opt_rootdir, Opt_utf8, Opt_iocharset,
451 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452 	Opt_fmode, Opt_dmode
453 };
454 
455 static const match_table_t tokens = {
456 	{Opt_novrs,	"novrs"},
457 	{Opt_nostrict,	"nostrict"},
458 	{Opt_bs,	"bs=%u"},
459 	{Opt_unhide,	"unhide"},
460 	{Opt_undelete,	"undelete"},
461 	{Opt_noadinicb,	"noadinicb"},
462 	{Opt_adinicb,	"adinicb"},
463 	{Opt_shortad,	"shortad"},
464 	{Opt_longad,	"longad"},
465 	{Opt_uforget,	"uid=forget"},
466 	{Opt_uignore,	"uid=ignore"},
467 	{Opt_gforget,	"gid=forget"},
468 	{Opt_gignore,	"gid=ignore"},
469 	{Opt_gid,	"gid=%u"},
470 	{Opt_uid,	"uid=%u"},
471 	{Opt_umask,	"umask=%o"},
472 	{Opt_session,	"session=%u"},
473 	{Opt_lastblock,	"lastblock=%u"},
474 	{Opt_anchor,	"anchor=%u"},
475 	{Opt_volume,	"volume=%u"},
476 	{Opt_partition,	"partition=%u"},
477 	{Opt_fileset,	"fileset=%u"},
478 	{Opt_rootdir,	"rootdir=%u"},
479 	{Opt_utf8,	"utf8"},
480 	{Opt_iocharset,	"iocharset=%s"},
481 	{Opt_fmode,     "mode=%o"},
482 	{Opt_dmode,     "dmode=%o"},
483 	{Opt_err,	NULL}
484 };
485 
486 static int udf_parse_options(char *options, struct udf_options *uopt,
487 			     bool remount)
488 {
489 	char *p;
490 	int option;
491 
492 	uopt->novrs = 0;
493 	uopt->partition = 0xFFFF;
494 	uopt->session = 0xFFFFFFFF;
495 	uopt->lastblock = 0;
496 	uopt->anchor = 0;
497 	uopt->volume = 0xFFFFFFFF;
498 	uopt->rootdir = 0xFFFFFFFF;
499 	uopt->fileset = 0xFFFFFFFF;
500 	uopt->nls_map = NULL;
501 
502 	if (!options)
503 		return 1;
504 
505 	while ((p = strsep(&options, ",")) != NULL) {
506 		substring_t args[MAX_OPT_ARGS];
507 		int token;
508 		unsigned n;
509 		if (!*p)
510 			continue;
511 
512 		token = match_token(p, tokens, args);
513 		switch (token) {
514 		case Opt_novrs:
515 			uopt->novrs = 1;
516 			break;
517 		case Opt_bs:
518 			if (match_int(&args[0], &option))
519 				return 0;
520 			n = option;
521 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522 				return 0;
523 			uopt->blocksize = n;
524 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525 			break;
526 		case Opt_unhide:
527 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528 			break;
529 		case Opt_undelete:
530 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531 			break;
532 		case Opt_noadinicb:
533 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534 			break;
535 		case Opt_adinicb:
536 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537 			break;
538 		case Opt_shortad:
539 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540 			break;
541 		case Opt_longad:
542 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543 			break;
544 		case Opt_gid:
545 			if (match_int(args, &option))
546 				return 0;
547 			uopt->gid = make_kgid(current_user_ns(), option);
548 			if (!gid_valid(uopt->gid))
549 				return 0;
550 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
551 			break;
552 		case Opt_uid:
553 			if (match_int(args, &option))
554 				return 0;
555 			uopt->uid = make_kuid(current_user_ns(), option);
556 			if (!uid_valid(uopt->uid))
557 				return 0;
558 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
559 			break;
560 		case Opt_umask:
561 			if (match_octal(args, &option))
562 				return 0;
563 			uopt->umask = option;
564 			break;
565 		case Opt_nostrict:
566 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567 			break;
568 		case Opt_session:
569 			if (match_int(args, &option))
570 				return 0;
571 			uopt->session = option;
572 			if (!remount)
573 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574 			break;
575 		case Opt_lastblock:
576 			if (match_int(args, &option))
577 				return 0;
578 			uopt->lastblock = option;
579 			if (!remount)
580 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581 			break;
582 		case Opt_anchor:
583 			if (match_int(args, &option))
584 				return 0;
585 			uopt->anchor = option;
586 			break;
587 		case Opt_volume:
588 			if (match_int(args, &option))
589 				return 0;
590 			uopt->volume = option;
591 			break;
592 		case Opt_partition:
593 			if (match_int(args, &option))
594 				return 0;
595 			uopt->partition = option;
596 			break;
597 		case Opt_fileset:
598 			if (match_int(args, &option))
599 				return 0;
600 			uopt->fileset = option;
601 			break;
602 		case Opt_rootdir:
603 			if (match_int(args, &option))
604 				return 0;
605 			uopt->rootdir = option;
606 			break;
607 		case Opt_utf8:
608 			uopt->flags |= (1 << UDF_FLAG_UTF8);
609 			break;
610 #ifdef CONFIG_UDF_NLS
611 		case Opt_iocharset:
612 			uopt->nls_map = load_nls(args[0].from);
613 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614 			break;
615 #endif
616 		case Opt_uignore:
617 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618 			break;
619 		case Opt_uforget:
620 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621 			break;
622 		case Opt_gignore:
623 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624 			break;
625 		case Opt_gforget:
626 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627 			break;
628 		case Opt_fmode:
629 			if (match_octal(args, &option))
630 				return 0;
631 			uopt->fmode = option & 0777;
632 			break;
633 		case Opt_dmode:
634 			if (match_octal(args, &option))
635 				return 0;
636 			uopt->dmode = option & 0777;
637 			break;
638 		default:
639 			pr_err("bad mount option \"%s\" or missing value\n", p);
640 			return 0;
641 		}
642 	}
643 	return 1;
644 }
645 
646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647 {
648 	struct udf_options uopt;
649 	struct udf_sb_info *sbi = UDF_SB(sb);
650 	int error = 0;
651 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652 
653 	sync_filesystem(sb);
654 	if (lvidiu) {
655 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657 			return -EACCES;
658 	}
659 
660 	uopt.flags = sbi->s_flags;
661 	uopt.uid   = sbi->s_uid;
662 	uopt.gid   = sbi->s_gid;
663 	uopt.umask = sbi->s_umask;
664 	uopt.fmode = sbi->s_fmode;
665 	uopt.dmode = sbi->s_dmode;
666 
667 	if (!udf_parse_options(options, &uopt, true))
668 		return -EINVAL;
669 
670 	write_lock(&sbi->s_cred_lock);
671 	sbi->s_flags = uopt.flags;
672 	sbi->s_uid   = uopt.uid;
673 	sbi->s_gid   = uopt.gid;
674 	sbi->s_umask = uopt.umask;
675 	sbi->s_fmode = uopt.fmode;
676 	sbi->s_dmode = uopt.dmode;
677 	write_unlock(&sbi->s_cred_lock);
678 
679 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680 		goto out_unlock;
681 
682 	if (*flags & MS_RDONLY)
683 		udf_close_lvid(sb);
684 	else
685 		udf_open_lvid(sb);
686 
687 out_unlock:
688 	return error;
689 }
690 
691 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693 static loff_t udf_check_vsd(struct super_block *sb)
694 {
695 	struct volStructDesc *vsd = NULL;
696 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697 	int sectorsize;
698 	struct buffer_head *bh = NULL;
699 	int nsr02 = 0;
700 	int nsr03 = 0;
701 	struct udf_sb_info *sbi;
702 
703 	sbi = UDF_SB(sb);
704 	if (sb->s_blocksize < sizeof(struct volStructDesc))
705 		sectorsize = sizeof(struct volStructDesc);
706 	else
707 		sectorsize = sb->s_blocksize;
708 
709 	sector += (sbi->s_session << sb->s_blocksize_bits);
710 
711 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
712 		  (unsigned int)(sector >> sb->s_blocksize_bits),
713 		  sb->s_blocksize);
714 	/* Process the sequence (if applicable). The hard limit on the sector
715 	 * offset is arbitrary, hopefully large enough so that all valid UDF
716 	 * filesystems will be recognised. There is no mention of an upper
717 	 * bound to the size of the volume recognition area in the standard.
718 	 *  The limit will prevent the code to read all the sectors of a
719 	 * specially crafted image (like a bluray disc full of CD001 sectors),
720 	 * potentially causing minutes or even hours of uninterruptible I/O
721 	 * activity. This actually happened with uninitialised SSD partitions
722 	 * (all 0xFF) before the check for the limit and all valid IDs were
723 	 * added */
724 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725 	     sector += sectorsize) {
726 		/* Read a block */
727 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728 		if (!bh)
729 			break;
730 
731 		/* Look for ISO  descriptors */
732 		vsd = (struct volStructDesc *)(bh->b_data +
733 					      (sector & (sb->s_blocksize - 1)));
734 
735 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736 				    VSD_STD_ID_LEN)) {
737 			switch (vsd->structType) {
738 			case 0:
739 				udf_debug("ISO9660 Boot Record found\n");
740 				break;
741 			case 1:
742 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
743 				break;
744 			case 2:
745 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746 				break;
747 			case 3:
748 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
749 				break;
750 			case 255:
751 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752 				break;
753 			default:
754 				udf_debug("ISO9660 VRS (%u) found\n",
755 					  vsd->structType);
756 				break;
757 			}
758 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759 				    VSD_STD_ID_LEN))
760 			; /* nothing */
761 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762 				    VSD_STD_ID_LEN)) {
763 			brelse(bh);
764 			break;
765 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766 				    VSD_STD_ID_LEN))
767 			nsr02 = sector;
768 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769 				    VSD_STD_ID_LEN))
770 			nsr03 = sector;
771 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772 				    VSD_STD_ID_LEN))
773 			; /* nothing */
774 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775 				    VSD_STD_ID_LEN))
776 			; /* nothing */
777 		else {
778 			/* invalid id : end of volume recognition area */
779 			brelse(bh);
780 			break;
781 		}
782 		brelse(bh);
783 	}
784 
785 	if (nsr03)
786 		return nsr03;
787 	else if (nsr02)
788 		return nsr02;
789 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790 			VSD_FIRST_SECTOR_OFFSET)
791 		return -1;
792 	else
793 		return 0;
794 }
795 
796 static int udf_find_fileset(struct super_block *sb,
797 			    struct kernel_lb_addr *fileset,
798 			    struct kernel_lb_addr *root)
799 {
800 	struct buffer_head *bh = NULL;
801 	long lastblock;
802 	uint16_t ident;
803 	struct udf_sb_info *sbi;
804 
805 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806 	    fileset->partitionReferenceNum != 0xFFFF) {
807 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
808 
809 		if (!bh) {
810 			return 1;
811 		} else if (ident != TAG_IDENT_FSD) {
812 			brelse(bh);
813 			return 1;
814 		}
815 
816 	}
817 
818 	sbi = UDF_SB(sb);
819 	if (!bh) {
820 		/* Search backwards through the partitions */
821 		struct kernel_lb_addr newfileset;
822 
823 /* --> cvg: FIXME - is it reasonable? */
824 		return 1;
825 
826 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827 		     (newfileset.partitionReferenceNum != 0xFFFF &&
828 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
829 		      fileset->partitionReferenceNum == 0xFFFF);
830 		     newfileset.partitionReferenceNum--) {
831 			lastblock = sbi->s_partmaps
832 					[newfileset.partitionReferenceNum]
833 						.s_partition_len;
834 			newfileset.logicalBlockNum = 0;
835 
836 			do {
837 				bh = udf_read_ptagged(sb, &newfileset, 0,
838 						      &ident);
839 				if (!bh) {
840 					newfileset.logicalBlockNum++;
841 					continue;
842 				}
843 
844 				switch (ident) {
845 				case TAG_IDENT_SBD:
846 				{
847 					struct spaceBitmapDesc *sp;
848 					sp = (struct spaceBitmapDesc *)
849 								bh->b_data;
850 					newfileset.logicalBlockNum += 1 +
851 						((le32_to_cpu(sp->numOfBytes) +
852 						  sizeof(struct spaceBitmapDesc)
853 						  - 1) >> sb->s_blocksize_bits);
854 					brelse(bh);
855 					break;
856 				}
857 				case TAG_IDENT_FSD:
858 					*fileset = newfileset;
859 					break;
860 				default:
861 					newfileset.logicalBlockNum++;
862 					brelse(bh);
863 					bh = NULL;
864 					break;
865 				}
866 			} while (newfileset.logicalBlockNum < lastblock &&
867 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
868 				 fileset->partitionReferenceNum == 0xFFFF);
869 		}
870 	}
871 
872 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
874 		udf_debug("Fileset at block=%d, partition=%d\n",
875 			  fileset->logicalBlockNum,
876 			  fileset->partitionReferenceNum);
877 
878 		sbi->s_partition = fileset->partitionReferenceNum;
879 		udf_load_fileset(sb, bh, root);
880 		brelse(bh);
881 		return 0;
882 	}
883 	return 1;
884 }
885 
886 /*
887  * Load primary Volume Descriptor Sequence
888  *
889  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890  * should be tried.
891  */
892 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893 {
894 	struct primaryVolDesc *pvoldesc;
895 	struct ustr *instr, *outstr;
896 	struct buffer_head *bh;
897 	uint16_t ident;
898 	int ret = -ENOMEM;
899 
900 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901 	if (!instr)
902 		return -ENOMEM;
903 
904 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905 	if (!outstr)
906 		goto out1;
907 
908 	bh = udf_read_tagged(sb, block, block, &ident);
909 	if (!bh) {
910 		ret = -EAGAIN;
911 		goto out2;
912 	}
913 
914 	if (ident != TAG_IDENT_PVD) {
915 		ret = -EIO;
916 		goto out_bh;
917 	}
918 
919 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
920 
921 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 			      pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929 	}
930 
931 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
932 		if (udf_CS0toUTF8(outstr, instr)) {
933 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
934 				outstr->u_len > 31 ? 31 : outstr->u_len);
935 			udf_debug("volIdent[] = '%s'\n",
936 				  UDF_SB(sb)->s_volume_ident);
937 		}
938 
939 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
940 		if (udf_CS0toUTF8(outstr, instr))
941 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942 
943 	ret = 0;
944 out_bh:
945 	brelse(bh);
946 out2:
947 	kfree(outstr);
948 out1:
949 	kfree(instr);
950 	return ret;
951 }
952 
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 					u32 meta_file_loc, u32 partition_num)
955 {
956 	struct kernel_lb_addr addr;
957 	struct inode *metadata_fe;
958 
959 	addr.logicalBlockNum = meta_file_loc;
960 	addr.partitionReferenceNum = partition_num;
961 
962 	metadata_fe = udf_iget_special(sb, &addr);
963 
964 	if (IS_ERR(metadata_fe)) {
965 		udf_warn(sb, "metadata inode efe not found\n");
966 		return metadata_fe;
967 	}
968 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 		iput(metadata_fe);
971 		return ERR_PTR(-EIO);
972 	}
973 
974 	return metadata_fe;
975 }
976 
977 static int udf_load_metadata_files(struct super_block *sb, int partition)
978 {
979 	struct udf_sb_info *sbi = UDF_SB(sb);
980 	struct udf_part_map *map;
981 	struct udf_meta_data *mdata;
982 	struct kernel_lb_addr addr;
983 	struct inode *fe;
984 
985 	map = &sbi->s_partmaps[partition];
986 	mdata = &map->s_type_specific.s_metadata;
987 
988 	/* metadata address */
989 	udf_debug("Metadata file location: block = %d part = %d\n",
990 		  mdata->s_meta_file_loc, map->s_partition_num);
991 
992 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
993 					 map->s_partition_num);
994 	if (IS_ERR(fe)) {
995 		/* mirror file entry */
996 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
997 			  mdata->s_mirror_file_loc, map->s_partition_num);
998 
999 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1000 						 map->s_partition_num);
1001 
1002 		if (IS_ERR(fe)) {
1003 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1004 			return PTR_ERR(fe);
1005 		}
1006 		mdata->s_mirror_fe = fe;
1007 	} else
1008 		mdata->s_metadata_fe = fe;
1009 
1010 
1011 	/*
1012 	 * bitmap file entry
1013 	 * Note:
1014 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1015 	*/
1016 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1017 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1018 		addr.partitionReferenceNum = map->s_partition_num;
1019 
1020 		udf_debug("Bitmap file location: block = %d part = %d\n",
1021 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1022 
1023 		fe = udf_iget_special(sb, &addr);
1024 		if (IS_ERR(fe)) {
1025 			if (sb->s_flags & MS_RDONLY)
1026 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1027 			else {
1028 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1029 				return PTR_ERR(fe);
1030 			}
1031 		} else
1032 			mdata->s_bitmap_fe = fe;
1033 	}
1034 
1035 	udf_debug("udf_load_metadata_files Ok\n");
1036 	return 0;
1037 }
1038 
1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1040 			     struct kernel_lb_addr *root)
1041 {
1042 	struct fileSetDesc *fset;
1043 
1044 	fset = (struct fileSetDesc *)bh->b_data;
1045 
1046 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1047 
1048 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1049 
1050 	udf_debug("Rootdir at block=%d, partition=%d\n",
1051 		  root->logicalBlockNum, root->partitionReferenceNum);
1052 }
1053 
1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1055 {
1056 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1057 	return DIV_ROUND_UP(map->s_partition_len +
1058 			    (sizeof(struct spaceBitmapDesc) << 3),
1059 			    sb->s_blocksize * 8);
1060 }
1061 
1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1063 {
1064 	struct udf_bitmap *bitmap;
1065 	int nr_groups;
1066 	int size;
1067 
1068 	nr_groups = udf_compute_nr_groups(sb, index);
1069 	size = sizeof(struct udf_bitmap) +
1070 		(sizeof(struct buffer_head *) * nr_groups);
1071 
1072 	if (size <= PAGE_SIZE)
1073 		bitmap = kzalloc(size, GFP_KERNEL);
1074 	else
1075 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1076 
1077 	if (bitmap == NULL)
1078 		return NULL;
1079 
1080 	bitmap->s_nr_groups = nr_groups;
1081 	return bitmap;
1082 }
1083 
1084 static int udf_fill_partdesc_info(struct super_block *sb,
1085 		struct partitionDesc *p, int p_index)
1086 {
1087 	struct udf_part_map *map;
1088 	struct udf_sb_info *sbi = UDF_SB(sb);
1089 	struct partitionHeaderDesc *phd;
1090 
1091 	map = &sbi->s_partmaps[p_index];
1092 
1093 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1094 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1095 
1096 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1097 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1098 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1099 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1100 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1101 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1102 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1103 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1104 
1105 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1106 		  p_index, map->s_partition_type,
1107 		  map->s_partition_root, map->s_partition_len);
1108 
1109 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1110 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1111 		return 0;
1112 
1113 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1114 	if (phd->unallocSpaceTable.extLength) {
1115 		struct kernel_lb_addr loc = {
1116 			.logicalBlockNum = le32_to_cpu(
1117 				phd->unallocSpaceTable.extPosition),
1118 			.partitionReferenceNum = p_index,
1119 		};
1120 		struct inode *inode;
1121 
1122 		inode = udf_iget_special(sb, &loc);
1123 		if (IS_ERR(inode)) {
1124 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1125 				  p_index);
1126 			return PTR_ERR(inode);
1127 		}
1128 		map->s_uspace.s_table = inode;
1129 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1130 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1131 			  p_index, map->s_uspace.s_table->i_ino);
1132 	}
1133 
1134 	if (phd->unallocSpaceBitmap.extLength) {
1135 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136 		if (!bitmap)
1137 			return -ENOMEM;
1138 		map->s_uspace.s_bitmap = bitmap;
1139 		bitmap->s_extPosition = le32_to_cpu(
1140 				phd->unallocSpaceBitmap.extPosition);
1141 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1142 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1143 			  p_index, bitmap->s_extPosition);
1144 	}
1145 
1146 	if (phd->partitionIntegrityTable.extLength)
1147 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1148 
1149 	if (phd->freedSpaceTable.extLength) {
1150 		struct kernel_lb_addr loc = {
1151 			.logicalBlockNum = le32_to_cpu(
1152 				phd->freedSpaceTable.extPosition),
1153 			.partitionReferenceNum = p_index,
1154 		};
1155 		struct inode *inode;
1156 
1157 		inode = udf_iget_special(sb, &loc);
1158 		if (IS_ERR(inode)) {
1159 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1160 				  p_index);
1161 			return PTR_ERR(inode);
1162 		}
1163 		map->s_fspace.s_table = inode;
1164 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1165 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1166 			  p_index, map->s_fspace.s_table->i_ino);
1167 	}
1168 
1169 	if (phd->freedSpaceBitmap.extLength) {
1170 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1171 		if (!bitmap)
1172 			return -ENOMEM;
1173 		map->s_fspace.s_bitmap = bitmap;
1174 		bitmap->s_extPosition = le32_to_cpu(
1175 				phd->freedSpaceBitmap.extPosition);
1176 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1177 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1178 			  p_index, bitmap->s_extPosition);
1179 	}
1180 	return 0;
1181 }
1182 
1183 static void udf_find_vat_block(struct super_block *sb, int p_index,
1184 			       int type1_index, sector_t start_block)
1185 {
1186 	struct udf_sb_info *sbi = UDF_SB(sb);
1187 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1188 	sector_t vat_block;
1189 	struct kernel_lb_addr ino;
1190 	struct inode *inode;
1191 
1192 	/*
1193 	 * VAT file entry is in the last recorded block. Some broken disks have
1194 	 * it a few blocks before so try a bit harder...
1195 	 */
1196 	ino.partitionReferenceNum = type1_index;
1197 	for (vat_block = start_block;
1198 	     vat_block >= map->s_partition_root &&
1199 	     vat_block >= start_block - 3; vat_block--) {
1200 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1201 		inode = udf_iget_special(sb, &ino);
1202 		if (!IS_ERR(inode)) {
1203 			sbi->s_vat_inode = inode;
1204 			break;
1205 		}
1206 	}
1207 }
1208 
1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1210 {
1211 	struct udf_sb_info *sbi = UDF_SB(sb);
1212 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1213 	struct buffer_head *bh = NULL;
1214 	struct udf_inode_info *vati;
1215 	uint32_t pos;
1216 	struct virtualAllocationTable20 *vat20;
1217 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1218 
1219 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220 	if (!sbi->s_vat_inode &&
1221 	    sbi->s_last_block != blocks - 1) {
1222 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223 			  (unsigned long)sbi->s_last_block,
1224 			  (unsigned long)blocks - 1);
1225 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226 	}
1227 	if (!sbi->s_vat_inode)
1228 		return -EIO;
1229 
1230 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231 		map->s_type_specific.s_virtual.s_start_offset = 0;
1232 		map->s_type_specific.s_virtual.s_num_entries =
1233 			(sbi->s_vat_inode->i_size - 36) >> 2;
1234 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235 		vati = UDF_I(sbi->s_vat_inode);
1236 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237 			pos = udf_block_map(sbi->s_vat_inode, 0);
1238 			bh = sb_bread(sb, pos);
1239 			if (!bh)
1240 				return -EIO;
1241 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242 		} else {
1243 			vat20 = (struct virtualAllocationTable20 *)
1244 							vati->i_ext.i_data;
1245 		}
1246 
1247 		map->s_type_specific.s_virtual.s_start_offset =
1248 			le16_to_cpu(vat20->lengthHeader);
1249 		map->s_type_specific.s_virtual.s_num_entries =
1250 			(sbi->s_vat_inode->i_size -
1251 				map->s_type_specific.s_virtual.
1252 					s_start_offset) >> 2;
1253 		brelse(bh);
1254 	}
1255 	return 0;
1256 }
1257 
1258 /*
1259  * Load partition descriptor block
1260  *
1261  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262  * sequence.
1263  */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266 	struct buffer_head *bh;
1267 	struct partitionDesc *p;
1268 	struct udf_part_map *map;
1269 	struct udf_sb_info *sbi = UDF_SB(sb);
1270 	int i, type1_idx;
1271 	uint16_t partitionNumber;
1272 	uint16_t ident;
1273 	int ret;
1274 
1275 	bh = udf_read_tagged(sb, block, block, &ident);
1276 	if (!bh)
1277 		return -EAGAIN;
1278 	if (ident != TAG_IDENT_PD) {
1279 		ret = 0;
1280 		goto out_bh;
1281 	}
1282 
1283 	p = (struct partitionDesc *)bh->b_data;
1284 	partitionNumber = le16_to_cpu(p->partitionNumber);
1285 
1286 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1287 	for (i = 0; i < sbi->s_partitions; i++) {
1288 		map = &sbi->s_partmaps[i];
1289 		udf_debug("Searching map: (%d == %d)\n",
1290 			  map->s_partition_num, partitionNumber);
1291 		if (map->s_partition_num == partitionNumber &&
1292 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1294 			break;
1295 	}
1296 
1297 	if (i >= sbi->s_partitions) {
1298 		udf_debug("Partition (%d) not found in partition map\n",
1299 			  partitionNumber);
1300 		ret = 0;
1301 		goto out_bh;
1302 	}
1303 
1304 	ret = udf_fill_partdesc_info(sb, p, i);
1305 	if (ret < 0)
1306 		goto out_bh;
1307 
1308 	/*
1309 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310 	 * PHYSICAL partitions are already set up
1311 	 */
1312 	type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314 	map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316 	for (i = 0; i < sbi->s_partitions; i++) {
1317 		map = &sbi->s_partmaps[i];
1318 
1319 		if (map->s_partition_num == partitionNumber &&
1320 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322 		     map->s_partition_type == UDF_METADATA_MAP25))
1323 			break;
1324 	}
1325 
1326 	if (i >= sbi->s_partitions) {
1327 		ret = 0;
1328 		goto out_bh;
1329 	}
1330 
1331 	ret = udf_fill_partdesc_info(sb, p, i);
1332 	if (ret < 0)
1333 		goto out_bh;
1334 
1335 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1336 		ret = udf_load_metadata_files(sb, i);
1337 		if (ret < 0) {
1338 			udf_err(sb, "error loading MetaData partition map %d\n",
1339 				i);
1340 			goto out_bh;
1341 		}
1342 	} else {
1343 		/*
1344 		 * If we have a partition with virtual map, we don't handle
1345 		 * writing to it (we overwrite blocks instead of relocating
1346 		 * them).
1347 		 */
1348 		if (!(sb->s_flags & MS_RDONLY)) {
1349 			ret = -EACCES;
1350 			goto out_bh;
1351 		}
1352 		ret = udf_load_vat(sb, i, type1_idx);
1353 		if (ret < 0)
1354 			goto out_bh;
1355 	}
1356 	ret = 0;
1357 out_bh:
1358 	/* In case loading failed, we handle cleanup in udf_fill_super */
1359 	brelse(bh);
1360 	return ret;
1361 }
1362 
1363 static int udf_load_sparable_map(struct super_block *sb,
1364 				 struct udf_part_map *map,
1365 				 struct sparablePartitionMap *spm)
1366 {
1367 	uint32_t loc;
1368 	uint16_t ident;
1369 	struct sparingTable *st;
1370 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371 	int i;
1372 	struct buffer_head *bh;
1373 
1374 	map->s_partition_type = UDF_SPARABLE_MAP15;
1375 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376 	if (!is_power_of_2(sdata->s_packet_len)) {
1377 		udf_err(sb, "error loading logical volume descriptor: "
1378 			"Invalid packet length %u\n",
1379 			(unsigned)sdata->s_packet_len);
1380 		return -EIO;
1381 	}
1382 	if (spm->numSparingTables > 4) {
1383 		udf_err(sb, "error loading logical volume descriptor: "
1384 			"Too many sparing tables (%d)\n",
1385 			(int)spm->numSparingTables);
1386 		return -EIO;
1387 	}
1388 
1389 	for (i = 0; i < spm->numSparingTables; i++) {
1390 		loc = le32_to_cpu(spm->locSparingTable[i]);
1391 		bh = udf_read_tagged(sb, loc, loc, &ident);
1392 		if (!bh)
1393 			continue;
1394 
1395 		st = (struct sparingTable *)bh->b_data;
1396 		if (ident != 0 ||
1397 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398 			    strlen(UDF_ID_SPARING)) ||
1399 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400 							sb->s_blocksize) {
1401 			brelse(bh);
1402 			continue;
1403 		}
1404 
1405 		sdata->s_spar_map[i] = bh;
1406 	}
1407 	map->s_partition_func = udf_get_pblock_spar15;
1408 	return 0;
1409 }
1410 
1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412 			       struct kernel_lb_addr *fileset)
1413 {
1414 	struct logicalVolDesc *lvd;
1415 	int i, offset;
1416 	uint8_t type;
1417 	struct udf_sb_info *sbi = UDF_SB(sb);
1418 	struct genericPartitionMap *gpm;
1419 	uint16_t ident;
1420 	struct buffer_head *bh;
1421 	unsigned int table_len;
1422 	int ret;
1423 
1424 	bh = udf_read_tagged(sb, block, block, &ident);
1425 	if (!bh)
1426 		return -EAGAIN;
1427 	BUG_ON(ident != TAG_IDENT_LVD);
1428 	lvd = (struct logicalVolDesc *)bh->b_data;
1429 	table_len = le32_to_cpu(lvd->mapTableLength);
1430 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431 		udf_err(sb, "error loading logical volume descriptor: "
1432 			"Partition table too long (%u > %lu)\n", table_len,
1433 			sb->s_blocksize - sizeof(*lvd));
1434 		ret = -EIO;
1435 		goto out_bh;
1436 	}
1437 
1438 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439 	if (ret)
1440 		goto out_bh;
1441 
1442 	for (i = 0, offset = 0;
1443 	     i < sbi->s_partitions && offset < table_len;
1444 	     i++, offset += gpm->partitionMapLength) {
1445 		struct udf_part_map *map = &sbi->s_partmaps[i];
1446 		gpm = (struct genericPartitionMap *)
1447 				&(lvd->partitionMaps[offset]);
1448 		type = gpm->partitionMapType;
1449 		if (type == 1) {
1450 			struct genericPartitionMap1 *gpm1 =
1451 				(struct genericPartitionMap1 *)gpm;
1452 			map->s_partition_type = UDF_TYPE1_MAP15;
1453 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455 			map->s_partition_func = NULL;
1456 		} else if (type == 2) {
1457 			struct udfPartitionMap2 *upm2 =
1458 						(struct udfPartitionMap2 *)gpm;
1459 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460 						strlen(UDF_ID_VIRTUAL))) {
1461 				u16 suf =
1462 					le16_to_cpu(((__le16 *)upm2->partIdent.
1463 							identSuffix)[0]);
1464 				if (suf < 0x0200) {
1465 					map->s_partition_type =
1466 							UDF_VIRTUAL_MAP15;
1467 					map->s_partition_func =
1468 							udf_get_pblock_virt15;
1469 				} else {
1470 					map->s_partition_type =
1471 							UDF_VIRTUAL_MAP20;
1472 					map->s_partition_func =
1473 							udf_get_pblock_virt20;
1474 				}
1475 			} else if (!strncmp(upm2->partIdent.ident,
1476 						UDF_ID_SPARABLE,
1477 						strlen(UDF_ID_SPARABLE))) {
1478 				ret = udf_load_sparable_map(sb, map,
1479 					(struct sparablePartitionMap *)gpm);
1480 				if (ret < 0)
1481 					goto out_bh;
1482 			} else if (!strncmp(upm2->partIdent.ident,
1483 						UDF_ID_METADATA,
1484 						strlen(UDF_ID_METADATA))) {
1485 				struct udf_meta_data *mdata =
1486 					&map->s_type_specific.s_metadata;
1487 				struct metadataPartitionMap *mdm =
1488 						(struct metadataPartitionMap *)
1489 						&(lvd->partitionMaps[offset]);
1490 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1491 					  i, type, UDF_ID_METADATA);
1492 
1493 				map->s_partition_type = UDF_METADATA_MAP25;
1494 				map->s_partition_func = udf_get_pblock_meta25;
1495 
1496 				mdata->s_meta_file_loc   =
1497 					le32_to_cpu(mdm->metadataFileLoc);
1498 				mdata->s_mirror_file_loc =
1499 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1500 				mdata->s_bitmap_file_loc =
1501 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1502 				mdata->s_alloc_unit_size =
1503 					le32_to_cpu(mdm->allocUnitSize);
1504 				mdata->s_align_unit_size =
1505 					le16_to_cpu(mdm->alignUnitSize);
1506 				if (mdm->flags & 0x01)
1507 					mdata->s_flags |= MF_DUPLICATE_MD;
1508 
1509 				udf_debug("Metadata Ident suffix=0x%x\n",
1510 					  le16_to_cpu(*(__le16 *)
1511 						      mdm->partIdent.identSuffix));
1512 				udf_debug("Metadata part num=%d\n",
1513 					  le16_to_cpu(mdm->partitionNum));
1514 				udf_debug("Metadata part alloc unit size=%d\n",
1515 					  le32_to_cpu(mdm->allocUnitSize));
1516 				udf_debug("Metadata file loc=%d\n",
1517 					  le32_to_cpu(mdm->metadataFileLoc));
1518 				udf_debug("Mirror file loc=%d\n",
1519 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1520 				udf_debug("Bitmap file loc=%d\n",
1521 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1522 				udf_debug("Flags: %d %d\n",
1523 					  mdata->s_flags, mdm->flags);
1524 			} else {
1525 				udf_debug("Unknown ident: %s\n",
1526 					  upm2->partIdent.ident);
1527 				continue;
1528 			}
1529 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531 		}
1532 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1534 	}
1535 
1536 	if (fileset) {
1537 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538 
1539 		*fileset = lelb_to_cpu(la->extLocation);
1540 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541 			  fileset->logicalBlockNum,
1542 			  fileset->partitionReferenceNum);
1543 	}
1544 	if (lvd->integritySeqExt.extLength)
1545 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546 	ret = 0;
1547 out_bh:
1548 	brelse(bh);
1549 	return ret;
1550 }
1551 
1552 /*
1553  * udf_load_logicalvolint
1554  *
1555  */
1556 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1557 {
1558 	struct buffer_head *bh = NULL;
1559 	uint16_t ident;
1560 	struct udf_sb_info *sbi = UDF_SB(sb);
1561 	struct logicalVolIntegrityDesc *lvid;
1562 
1563 	while (loc.extLength > 0 &&
1564 	       (bh = udf_read_tagged(sb, loc.extLocation,
1565 				     loc.extLocation, &ident)) &&
1566 	       ident == TAG_IDENT_LVID) {
1567 		sbi->s_lvid_bh = bh;
1568 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1569 
1570 		if (lvid->nextIntegrityExt.extLength)
1571 			udf_load_logicalvolint(sb,
1572 				leea_to_cpu(lvid->nextIntegrityExt));
1573 
1574 		if (sbi->s_lvid_bh != bh)
1575 			brelse(bh);
1576 		loc.extLength -= sb->s_blocksize;
1577 		loc.extLocation++;
1578 	}
1579 	if (sbi->s_lvid_bh != bh)
1580 		brelse(bh);
1581 }
1582 
1583 /*
1584  * Process a main/reserve volume descriptor sequence.
1585  *   @block		First block of first extent of the sequence.
1586  *   @lastblock		Lastblock of first extent of the sequence.
1587  *   @fileset		There we store extent containing root fileset
1588  *
1589  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1590  * sequence
1591  */
1592 static noinline int udf_process_sequence(
1593 		struct super_block *sb,
1594 		sector_t block, sector_t lastblock,
1595 		struct kernel_lb_addr *fileset)
1596 {
1597 	struct buffer_head *bh = NULL;
1598 	struct udf_vds_record vds[VDS_POS_LENGTH];
1599 	struct udf_vds_record *curr;
1600 	struct generic_desc *gd;
1601 	struct volDescPtr *vdp;
1602 	int done = 0;
1603 	uint32_t vdsn;
1604 	uint16_t ident;
1605 	long next_s = 0, next_e = 0;
1606 	int ret;
1607 
1608 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1609 
1610 	/*
1611 	 * Read the main descriptor sequence and find which descriptors
1612 	 * are in it.
1613 	 */
1614 	for (; (!done && block <= lastblock); block++) {
1615 
1616 		bh = udf_read_tagged(sb, block, block, &ident);
1617 		if (!bh) {
1618 			udf_err(sb,
1619 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1620 				(unsigned long long)block);
1621 			return -EAGAIN;
1622 		}
1623 
1624 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1625 		gd = (struct generic_desc *)bh->b_data;
1626 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1627 		switch (ident) {
1628 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1629 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1630 			if (vdsn >= curr->volDescSeqNum) {
1631 				curr->volDescSeqNum = vdsn;
1632 				curr->block = block;
1633 			}
1634 			break;
1635 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1636 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1637 			if (vdsn >= curr->volDescSeqNum) {
1638 				curr->volDescSeqNum = vdsn;
1639 				curr->block = block;
1640 
1641 				vdp = (struct volDescPtr *)bh->b_data;
1642 				next_s = le32_to_cpu(
1643 					vdp->nextVolDescSeqExt.extLocation);
1644 				next_e = le32_to_cpu(
1645 					vdp->nextVolDescSeqExt.extLength);
1646 				next_e = next_e >> sb->s_blocksize_bits;
1647 				next_e += next_s;
1648 			}
1649 			break;
1650 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1651 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1652 			if (vdsn >= curr->volDescSeqNum) {
1653 				curr->volDescSeqNum = vdsn;
1654 				curr->block = block;
1655 			}
1656 			break;
1657 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1658 			curr = &vds[VDS_POS_PARTITION_DESC];
1659 			if (!curr->block)
1660 				curr->block = block;
1661 			break;
1662 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1663 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1664 			if (vdsn >= curr->volDescSeqNum) {
1665 				curr->volDescSeqNum = vdsn;
1666 				curr->block = block;
1667 			}
1668 			break;
1669 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1670 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1671 			if (vdsn >= curr->volDescSeqNum) {
1672 				curr->volDescSeqNum = vdsn;
1673 				curr->block = block;
1674 			}
1675 			break;
1676 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1677 			vds[VDS_POS_TERMINATING_DESC].block = block;
1678 			if (next_e) {
1679 				block = next_s;
1680 				lastblock = next_e;
1681 				next_s = next_e = 0;
1682 			} else
1683 				done = 1;
1684 			break;
1685 		}
1686 		brelse(bh);
1687 	}
1688 	/*
1689 	 * Now read interesting descriptors again and process them
1690 	 * in a suitable order
1691 	 */
1692 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1693 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1694 		return -EAGAIN;
1695 	}
1696 	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1697 	if (ret < 0)
1698 		return ret;
1699 
1700 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1701 		ret = udf_load_logicalvol(sb,
1702 					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1703 					  fileset);
1704 		if (ret < 0)
1705 			return ret;
1706 	}
1707 
1708 	if (vds[VDS_POS_PARTITION_DESC].block) {
1709 		/*
1710 		 * We rescan the whole descriptor sequence to find
1711 		 * partition descriptor blocks and process them.
1712 		 */
1713 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1714 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1715 		     block++) {
1716 			ret = udf_load_partdesc(sb, block);
1717 			if (ret < 0)
1718 				return ret;
1719 		}
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 /*
1726  * Load Volume Descriptor Sequence described by anchor in bh
1727  *
1728  * Returns <0 on error, 0 on success
1729  */
1730 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1731 			     struct kernel_lb_addr *fileset)
1732 {
1733 	struct anchorVolDescPtr *anchor;
1734 	sector_t main_s, main_e, reserve_s, reserve_e;
1735 	int ret;
1736 
1737 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1738 
1739 	/* Locate the main sequence */
1740 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1741 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1742 	main_e = main_e >> sb->s_blocksize_bits;
1743 	main_e += main_s;
1744 
1745 	/* Locate the reserve sequence */
1746 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1747 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1748 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1749 	reserve_e += reserve_s;
1750 
1751 	/* Process the main & reserve sequences */
1752 	/* responsible for finding the PartitionDesc(s) */
1753 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1754 	if (ret != -EAGAIN)
1755 		return ret;
1756 	udf_sb_free_partitions(sb);
1757 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1758 	if (ret < 0) {
1759 		udf_sb_free_partitions(sb);
1760 		/* No sequence was OK, return -EIO */
1761 		if (ret == -EAGAIN)
1762 			ret = -EIO;
1763 	}
1764 	return ret;
1765 }
1766 
1767 /*
1768  * Check whether there is an anchor block in the given block and
1769  * load Volume Descriptor Sequence if so.
1770  *
1771  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1772  * block
1773  */
1774 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1775 				  struct kernel_lb_addr *fileset)
1776 {
1777 	struct buffer_head *bh;
1778 	uint16_t ident;
1779 	int ret;
1780 
1781 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1782 	    udf_fixed_to_variable(block) >=
1783 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1784 		return -EAGAIN;
1785 
1786 	bh = udf_read_tagged(sb, block, block, &ident);
1787 	if (!bh)
1788 		return -EAGAIN;
1789 	if (ident != TAG_IDENT_AVDP) {
1790 		brelse(bh);
1791 		return -EAGAIN;
1792 	}
1793 	ret = udf_load_sequence(sb, bh, fileset);
1794 	brelse(bh);
1795 	return ret;
1796 }
1797 
1798 /*
1799  * Search for an anchor volume descriptor pointer.
1800  *
1801  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1802  * of anchors.
1803  */
1804 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1805 			    struct kernel_lb_addr *fileset)
1806 {
1807 	sector_t last[6];
1808 	int i;
1809 	struct udf_sb_info *sbi = UDF_SB(sb);
1810 	int last_count = 0;
1811 	int ret;
1812 
1813 	/* First try user provided anchor */
1814 	if (sbi->s_anchor) {
1815 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1816 		if (ret != -EAGAIN)
1817 			return ret;
1818 	}
1819 	/*
1820 	 * according to spec, anchor is in either:
1821 	 *     block 256
1822 	 *     lastblock-256
1823 	 *     lastblock
1824 	 *  however, if the disc isn't closed, it could be 512.
1825 	 */
1826 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1827 	if (ret != -EAGAIN)
1828 		return ret;
1829 	/*
1830 	 * The trouble is which block is the last one. Drives often misreport
1831 	 * this so we try various possibilities.
1832 	 */
1833 	last[last_count++] = *lastblock;
1834 	if (*lastblock >= 1)
1835 		last[last_count++] = *lastblock - 1;
1836 	last[last_count++] = *lastblock + 1;
1837 	if (*lastblock >= 2)
1838 		last[last_count++] = *lastblock - 2;
1839 	if (*lastblock >= 150)
1840 		last[last_count++] = *lastblock - 150;
1841 	if (*lastblock >= 152)
1842 		last[last_count++] = *lastblock - 152;
1843 
1844 	for (i = 0; i < last_count; i++) {
1845 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1846 				sb->s_blocksize_bits)
1847 			continue;
1848 		ret = udf_check_anchor_block(sb, last[i], fileset);
1849 		if (ret != -EAGAIN) {
1850 			if (!ret)
1851 				*lastblock = last[i];
1852 			return ret;
1853 		}
1854 		if (last[i] < 256)
1855 			continue;
1856 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1857 		if (ret != -EAGAIN) {
1858 			if (!ret)
1859 				*lastblock = last[i];
1860 			return ret;
1861 		}
1862 	}
1863 
1864 	/* Finally try block 512 in case media is open */
1865 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1866 }
1867 
1868 /*
1869  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1870  * area specified by it. The function expects sbi->s_lastblock to be the last
1871  * block on the media.
1872  *
1873  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1874  * was not found.
1875  */
1876 static int udf_find_anchor(struct super_block *sb,
1877 			   struct kernel_lb_addr *fileset)
1878 {
1879 	struct udf_sb_info *sbi = UDF_SB(sb);
1880 	sector_t lastblock = sbi->s_last_block;
1881 	int ret;
1882 
1883 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1884 	if (ret != -EAGAIN)
1885 		goto out;
1886 
1887 	/* No anchor found? Try VARCONV conversion of block numbers */
1888 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1889 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1890 	/* Firstly, we try to not convert number of the last block */
1891 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1892 	if (ret != -EAGAIN)
1893 		goto out;
1894 
1895 	lastblock = sbi->s_last_block;
1896 	/* Secondly, we try with converted number of the last block */
1897 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1898 	if (ret < 0) {
1899 		/* VARCONV didn't help. Clear it. */
1900 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1901 	}
1902 out:
1903 	if (ret == 0)
1904 		sbi->s_last_block = lastblock;
1905 	return ret;
1906 }
1907 
1908 /*
1909  * Check Volume Structure Descriptor, find Anchor block and load Volume
1910  * Descriptor Sequence.
1911  *
1912  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1913  * block was not found.
1914  */
1915 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1916 			int silent, struct kernel_lb_addr *fileset)
1917 {
1918 	struct udf_sb_info *sbi = UDF_SB(sb);
1919 	loff_t nsr_off;
1920 	int ret;
1921 
1922 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1923 		if (!silent)
1924 			udf_warn(sb, "Bad block size\n");
1925 		return -EINVAL;
1926 	}
1927 	sbi->s_last_block = uopt->lastblock;
1928 	if (!uopt->novrs) {
1929 		/* Check that it is NSR02 compliant */
1930 		nsr_off = udf_check_vsd(sb);
1931 		if (!nsr_off) {
1932 			if (!silent)
1933 				udf_warn(sb, "No VRS found\n");
1934 			return 0;
1935 		}
1936 		if (nsr_off == -1)
1937 			udf_debug("Failed to read sector at offset %d. "
1938 				  "Assuming open disc. Skipping validity "
1939 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1940 		if (!sbi->s_last_block)
1941 			sbi->s_last_block = udf_get_last_block(sb);
1942 	} else {
1943 		udf_debug("Validity check skipped because of novrs option\n");
1944 	}
1945 
1946 	/* Look for anchor block and load Volume Descriptor Sequence */
1947 	sbi->s_anchor = uopt->anchor;
1948 	ret = udf_find_anchor(sb, fileset);
1949 	if (ret < 0) {
1950 		if (!silent && ret == -EAGAIN)
1951 			udf_warn(sb, "No anchor found\n");
1952 		return ret;
1953 	}
1954 	return 0;
1955 }
1956 
1957 static void udf_open_lvid(struct super_block *sb)
1958 {
1959 	struct udf_sb_info *sbi = UDF_SB(sb);
1960 	struct buffer_head *bh = sbi->s_lvid_bh;
1961 	struct logicalVolIntegrityDesc *lvid;
1962 	struct logicalVolIntegrityDescImpUse *lvidiu;
1963 
1964 	if (!bh)
1965 		return;
1966 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1967 	lvidiu = udf_sb_lvidiu(sb);
1968 	if (!lvidiu)
1969 		return;
1970 
1971 	mutex_lock(&sbi->s_alloc_mutex);
1972 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1973 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1974 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1975 				CURRENT_TIME);
1976 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1977 
1978 	lvid->descTag.descCRC = cpu_to_le16(
1979 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1980 			le16_to_cpu(lvid->descTag.descCRCLength)));
1981 
1982 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1983 	mark_buffer_dirty(bh);
1984 	sbi->s_lvid_dirty = 0;
1985 	mutex_unlock(&sbi->s_alloc_mutex);
1986 	/* Make opening of filesystem visible on the media immediately */
1987 	sync_dirty_buffer(bh);
1988 }
1989 
1990 static void udf_close_lvid(struct super_block *sb)
1991 {
1992 	struct udf_sb_info *sbi = UDF_SB(sb);
1993 	struct buffer_head *bh = sbi->s_lvid_bh;
1994 	struct logicalVolIntegrityDesc *lvid;
1995 	struct logicalVolIntegrityDescImpUse *lvidiu;
1996 
1997 	if (!bh)
1998 		return;
1999 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000 	lvidiu = udf_sb_lvidiu(sb);
2001 	if (!lvidiu)
2002 		return;
2003 
2004 	mutex_lock(&sbi->s_alloc_mutex);
2005 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2008 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2009 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2010 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2011 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2012 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2013 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2014 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2015 
2016 	lvid->descTag.descCRC = cpu_to_le16(
2017 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2018 				le16_to_cpu(lvid->descTag.descCRCLength)));
2019 
2020 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2021 	/*
2022 	 * We set buffer uptodate unconditionally here to avoid spurious
2023 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2024 	 * the buffer as !uptodate
2025 	 */
2026 	set_buffer_uptodate(bh);
2027 	mark_buffer_dirty(bh);
2028 	sbi->s_lvid_dirty = 0;
2029 	mutex_unlock(&sbi->s_alloc_mutex);
2030 	/* Make closing of filesystem visible on the media immediately */
2031 	sync_dirty_buffer(bh);
2032 }
2033 
2034 u64 lvid_get_unique_id(struct super_block *sb)
2035 {
2036 	struct buffer_head *bh;
2037 	struct udf_sb_info *sbi = UDF_SB(sb);
2038 	struct logicalVolIntegrityDesc *lvid;
2039 	struct logicalVolHeaderDesc *lvhd;
2040 	u64 uniqueID;
2041 	u64 ret;
2042 
2043 	bh = sbi->s_lvid_bh;
2044 	if (!bh)
2045 		return 0;
2046 
2047 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2048 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2049 
2050 	mutex_lock(&sbi->s_alloc_mutex);
2051 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2052 	if (!(++uniqueID & 0xFFFFFFFF))
2053 		uniqueID += 16;
2054 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2055 	mutex_unlock(&sbi->s_alloc_mutex);
2056 	mark_buffer_dirty(bh);
2057 
2058 	return ret;
2059 }
2060 
2061 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2062 {
2063 	int ret = -EINVAL;
2064 	struct inode *inode = NULL;
2065 	struct udf_options uopt;
2066 	struct kernel_lb_addr rootdir, fileset;
2067 	struct udf_sb_info *sbi;
2068 
2069 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2070 	uopt.uid = INVALID_UID;
2071 	uopt.gid = INVALID_GID;
2072 	uopt.umask = 0;
2073 	uopt.fmode = UDF_INVALID_MODE;
2074 	uopt.dmode = UDF_INVALID_MODE;
2075 
2076 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2077 	if (!sbi)
2078 		return -ENOMEM;
2079 
2080 	sb->s_fs_info = sbi;
2081 
2082 	mutex_init(&sbi->s_alloc_mutex);
2083 
2084 	if (!udf_parse_options((char *)options, &uopt, false))
2085 		goto error_out;
2086 
2087 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2088 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2089 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2090 		goto error_out;
2091 	}
2092 #ifdef CONFIG_UDF_NLS
2093 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2094 		uopt.nls_map = load_nls_default();
2095 		if (!uopt.nls_map)
2096 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2097 		else
2098 			udf_debug("Using default NLS map\n");
2099 	}
2100 #endif
2101 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2102 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2103 
2104 	fileset.logicalBlockNum = 0xFFFFFFFF;
2105 	fileset.partitionReferenceNum = 0xFFFF;
2106 
2107 	sbi->s_flags = uopt.flags;
2108 	sbi->s_uid = uopt.uid;
2109 	sbi->s_gid = uopt.gid;
2110 	sbi->s_umask = uopt.umask;
2111 	sbi->s_fmode = uopt.fmode;
2112 	sbi->s_dmode = uopt.dmode;
2113 	sbi->s_nls_map = uopt.nls_map;
2114 	rwlock_init(&sbi->s_cred_lock);
2115 
2116 	if (uopt.session == 0xFFFFFFFF)
2117 		sbi->s_session = udf_get_last_session(sb);
2118 	else
2119 		sbi->s_session = uopt.session;
2120 
2121 	udf_debug("Multi-session=%d\n", sbi->s_session);
2122 
2123 	/* Fill in the rest of the superblock */
2124 	sb->s_op = &udf_sb_ops;
2125 	sb->s_export_op = &udf_export_ops;
2126 
2127 	sb->s_magic = UDF_SUPER_MAGIC;
2128 	sb->s_time_gran = 1000;
2129 
2130 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2131 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2132 	} else {
2133 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2134 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2135 		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2136 			if (!silent)
2137 				pr_notice("Rescanning with blocksize %d\n",
2138 					  UDF_DEFAULT_BLOCKSIZE);
2139 			brelse(sbi->s_lvid_bh);
2140 			sbi->s_lvid_bh = NULL;
2141 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2142 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2143 		}
2144 	}
2145 	if (ret < 0) {
2146 		if (ret == -EAGAIN) {
2147 			udf_warn(sb, "No partition found (1)\n");
2148 			ret = -EINVAL;
2149 		}
2150 		goto error_out;
2151 	}
2152 
2153 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2154 
2155 	if (sbi->s_lvid_bh) {
2156 		struct logicalVolIntegrityDescImpUse *lvidiu =
2157 							udf_sb_lvidiu(sb);
2158 		uint16_t minUDFReadRev;
2159 		uint16_t minUDFWriteRev;
2160 
2161 		if (!lvidiu) {
2162 			ret = -EINVAL;
2163 			goto error_out;
2164 		}
2165 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2166 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2167 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2168 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2169 				minUDFReadRev,
2170 				UDF_MAX_READ_VERSION);
2171 			ret = -EINVAL;
2172 			goto error_out;
2173 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2174 			   !(sb->s_flags & MS_RDONLY)) {
2175 			ret = -EACCES;
2176 			goto error_out;
2177 		}
2178 
2179 		sbi->s_udfrev = minUDFWriteRev;
2180 
2181 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2182 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2183 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2184 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2185 	}
2186 
2187 	if (!sbi->s_partitions) {
2188 		udf_warn(sb, "No partition found (2)\n");
2189 		ret = -EINVAL;
2190 		goto error_out;
2191 	}
2192 
2193 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2194 			UDF_PART_FLAG_READ_ONLY &&
2195 	    !(sb->s_flags & MS_RDONLY)) {
2196 		ret = -EACCES;
2197 		goto error_out;
2198 	}
2199 
2200 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2201 		udf_warn(sb, "No fileset found\n");
2202 		ret = -EINVAL;
2203 		goto error_out;
2204 	}
2205 
2206 	if (!silent) {
2207 		struct timestamp ts;
2208 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2209 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2210 			 sbi->s_volume_ident,
2211 			 le16_to_cpu(ts.year), ts.month, ts.day,
2212 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2213 	}
2214 	if (!(sb->s_flags & MS_RDONLY))
2215 		udf_open_lvid(sb);
2216 
2217 	/* Assign the root inode */
2218 	/* assign inodes by physical block number */
2219 	/* perhaps it's not extensible enough, but for now ... */
2220 	inode = udf_iget(sb, &rootdir);
2221 	if (IS_ERR(inode)) {
2222 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2223 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2224 		ret = PTR_ERR(inode);
2225 		goto error_out;
2226 	}
2227 
2228 	/* Allocate a dentry for the root inode */
2229 	sb->s_root = d_make_root(inode);
2230 	if (!sb->s_root) {
2231 		udf_err(sb, "Couldn't allocate root dentry\n");
2232 		ret = -ENOMEM;
2233 		goto error_out;
2234 	}
2235 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2236 	sb->s_max_links = UDF_MAX_LINKS;
2237 	return 0;
2238 
2239 error_out:
2240 	if (sbi->s_vat_inode)
2241 		iput(sbi->s_vat_inode);
2242 #ifdef CONFIG_UDF_NLS
2243 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2244 		unload_nls(sbi->s_nls_map);
2245 #endif
2246 	if (!(sb->s_flags & MS_RDONLY))
2247 		udf_close_lvid(sb);
2248 	brelse(sbi->s_lvid_bh);
2249 	udf_sb_free_partitions(sb);
2250 	kfree(sbi);
2251 	sb->s_fs_info = NULL;
2252 
2253 	return ret;
2254 }
2255 
2256 void _udf_err(struct super_block *sb, const char *function,
2257 	      const char *fmt, ...)
2258 {
2259 	struct va_format vaf;
2260 	va_list args;
2261 
2262 	va_start(args, fmt);
2263 
2264 	vaf.fmt = fmt;
2265 	vaf.va = &args;
2266 
2267 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2268 
2269 	va_end(args);
2270 }
2271 
2272 void _udf_warn(struct super_block *sb, const char *function,
2273 	       const char *fmt, ...)
2274 {
2275 	struct va_format vaf;
2276 	va_list args;
2277 
2278 	va_start(args, fmt);
2279 
2280 	vaf.fmt = fmt;
2281 	vaf.va = &args;
2282 
2283 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2284 
2285 	va_end(args);
2286 }
2287 
2288 static void udf_put_super(struct super_block *sb)
2289 {
2290 	struct udf_sb_info *sbi;
2291 
2292 	sbi = UDF_SB(sb);
2293 
2294 	if (sbi->s_vat_inode)
2295 		iput(sbi->s_vat_inode);
2296 #ifdef CONFIG_UDF_NLS
2297 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2298 		unload_nls(sbi->s_nls_map);
2299 #endif
2300 	if (!(sb->s_flags & MS_RDONLY))
2301 		udf_close_lvid(sb);
2302 	brelse(sbi->s_lvid_bh);
2303 	udf_sb_free_partitions(sb);
2304 	kfree(sb->s_fs_info);
2305 	sb->s_fs_info = NULL;
2306 }
2307 
2308 static int udf_sync_fs(struct super_block *sb, int wait)
2309 {
2310 	struct udf_sb_info *sbi = UDF_SB(sb);
2311 
2312 	mutex_lock(&sbi->s_alloc_mutex);
2313 	if (sbi->s_lvid_dirty) {
2314 		/*
2315 		 * Blockdevice will be synced later so we don't have to submit
2316 		 * the buffer for IO
2317 		 */
2318 		mark_buffer_dirty(sbi->s_lvid_bh);
2319 		sbi->s_lvid_dirty = 0;
2320 	}
2321 	mutex_unlock(&sbi->s_alloc_mutex);
2322 
2323 	return 0;
2324 }
2325 
2326 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2327 {
2328 	struct super_block *sb = dentry->d_sb;
2329 	struct udf_sb_info *sbi = UDF_SB(sb);
2330 	struct logicalVolIntegrityDescImpUse *lvidiu;
2331 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2332 
2333 	lvidiu = udf_sb_lvidiu(sb);
2334 	buf->f_type = UDF_SUPER_MAGIC;
2335 	buf->f_bsize = sb->s_blocksize;
2336 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2337 	buf->f_bfree = udf_count_free(sb);
2338 	buf->f_bavail = buf->f_bfree;
2339 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2340 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2341 			+ buf->f_bfree;
2342 	buf->f_ffree = buf->f_bfree;
2343 	buf->f_namelen = UDF_NAME_LEN - 2;
2344 	buf->f_fsid.val[0] = (u32)id;
2345 	buf->f_fsid.val[1] = (u32)(id >> 32);
2346 
2347 	return 0;
2348 }
2349 
2350 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2351 					  struct udf_bitmap *bitmap)
2352 {
2353 	struct buffer_head *bh = NULL;
2354 	unsigned int accum = 0;
2355 	int index;
2356 	int block = 0, newblock;
2357 	struct kernel_lb_addr loc;
2358 	uint32_t bytes;
2359 	uint8_t *ptr;
2360 	uint16_t ident;
2361 	struct spaceBitmapDesc *bm;
2362 
2363 	loc.logicalBlockNum = bitmap->s_extPosition;
2364 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2365 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2366 
2367 	if (!bh) {
2368 		udf_err(sb, "udf_count_free failed\n");
2369 		goto out;
2370 	} else if (ident != TAG_IDENT_SBD) {
2371 		brelse(bh);
2372 		udf_err(sb, "udf_count_free failed\n");
2373 		goto out;
2374 	}
2375 
2376 	bm = (struct spaceBitmapDesc *)bh->b_data;
2377 	bytes = le32_to_cpu(bm->numOfBytes);
2378 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2379 	ptr = (uint8_t *)bh->b_data;
2380 
2381 	while (bytes > 0) {
2382 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2383 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2384 					cur_bytes * 8);
2385 		bytes -= cur_bytes;
2386 		if (bytes) {
2387 			brelse(bh);
2388 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2389 			bh = udf_tread(sb, newblock);
2390 			if (!bh) {
2391 				udf_debug("read failed\n");
2392 				goto out;
2393 			}
2394 			index = 0;
2395 			ptr = (uint8_t *)bh->b_data;
2396 		}
2397 	}
2398 	brelse(bh);
2399 out:
2400 	return accum;
2401 }
2402 
2403 static unsigned int udf_count_free_table(struct super_block *sb,
2404 					 struct inode *table)
2405 {
2406 	unsigned int accum = 0;
2407 	uint32_t elen;
2408 	struct kernel_lb_addr eloc;
2409 	int8_t etype;
2410 	struct extent_position epos;
2411 
2412 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2413 	epos.block = UDF_I(table)->i_location;
2414 	epos.offset = sizeof(struct unallocSpaceEntry);
2415 	epos.bh = NULL;
2416 
2417 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2418 		accum += (elen >> table->i_sb->s_blocksize_bits);
2419 
2420 	brelse(epos.bh);
2421 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2422 
2423 	return accum;
2424 }
2425 
2426 static unsigned int udf_count_free(struct super_block *sb)
2427 {
2428 	unsigned int accum = 0;
2429 	struct udf_sb_info *sbi;
2430 	struct udf_part_map *map;
2431 
2432 	sbi = UDF_SB(sb);
2433 	if (sbi->s_lvid_bh) {
2434 		struct logicalVolIntegrityDesc *lvid =
2435 			(struct logicalVolIntegrityDesc *)
2436 			sbi->s_lvid_bh->b_data;
2437 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2438 			accum = le32_to_cpu(
2439 					lvid->freeSpaceTable[sbi->s_partition]);
2440 			if (accum == 0xFFFFFFFF)
2441 				accum = 0;
2442 		}
2443 	}
2444 
2445 	if (accum)
2446 		return accum;
2447 
2448 	map = &sbi->s_partmaps[sbi->s_partition];
2449 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2450 		accum += udf_count_free_bitmap(sb,
2451 					       map->s_uspace.s_bitmap);
2452 	}
2453 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2454 		accum += udf_count_free_bitmap(sb,
2455 					       map->s_fspace.s_bitmap);
2456 	}
2457 	if (accum)
2458 		return accum;
2459 
2460 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2461 		accum += udf_count_free_table(sb,
2462 					      map->s_uspace.s_table);
2463 	}
2464 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2465 		accum += udf_count_free_table(sb,
2466 					      map->s_fspace.s_table);
2467 	}
2468 
2469 	return accum;
2470 }
2471